this_cpu: Page allocator conversion
[linux-2.6/x86.git] / mm / vmstat.c
blob1ba0bb7ad04398a52dcf9bbd661bf7ae8f746e23
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/vmstat.h>
17 #include <linux/sched.h>
19 #ifdef CONFIG_VM_EVENT_COUNTERS
20 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
21 EXPORT_PER_CPU_SYMBOL(vm_event_states);
23 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
25 int cpu;
26 int i;
28 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
30 for_each_cpu(cpu, cpumask) {
31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
33 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
34 ret[i] += this->event[i];
39 * Accumulate the vm event counters across all CPUs.
40 * The result is unavoidably approximate - it can change
41 * during and after execution of this function.
43 void all_vm_events(unsigned long *ret)
45 get_online_cpus();
46 sum_vm_events(ret, cpu_online_mask);
47 put_online_cpus();
49 EXPORT_SYMBOL_GPL(all_vm_events);
51 #ifdef CONFIG_HOTPLUG
53 * Fold the foreign cpu events into our own.
55 * This is adding to the events on one processor
56 * but keeps the global counts constant.
58 void vm_events_fold_cpu(int cpu)
60 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
61 int i;
63 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
64 count_vm_events(i, fold_state->event[i]);
65 fold_state->event[i] = 0;
68 #endif /* CONFIG_HOTPLUG */
70 #endif /* CONFIG_VM_EVENT_COUNTERS */
73 * Manage combined zone based / global counters
75 * vm_stat contains the global counters
77 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
78 EXPORT_SYMBOL(vm_stat);
80 #ifdef CONFIG_SMP
82 static int calculate_threshold(struct zone *zone)
84 int threshold;
85 int mem; /* memory in 128 MB units */
88 * The threshold scales with the number of processors and the amount
89 * of memory per zone. More memory means that we can defer updates for
90 * longer, more processors could lead to more contention.
91 * fls() is used to have a cheap way of logarithmic scaling.
93 * Some sample thresholds:
95 * Threshold Processors (fls) Zonesize fls(mem+1)
96 * ------------------------------------------------------------------
97 * 8 1 1 0.9-1 GB 4
98 * 16 2 2 0.9-1 GB 4
99 * 20 2 2 1-2 GB 5
100 * 24 2 2 2-4 GB 6
101 * 28 2 2 4-8 GB 7
102 * 32 2 2 8-16 GB 8
103 * 4 2 2 <128M 1
104 * 30 4 3 2-4 GB 5
105 * 48 4 3 8-16 GB 8
106 * 32 8 4 1-2 GB 4
107 * 32 8 4 0.9-1GB 4
108 * 10 16 5 <128M 1
109 * 40 16 5 900M 4
110 * 70 64 7 2-4 GB 5
111 * 84 64 7 4-8 GB 6
112 * 108 512 9 4-8 GB 6
113 * 125 1024 10 8-16 GB 8
114 * 125 1024 10 16-32 GB 9
117 mem = zone->present_pages >> (27 - PAGE_SHIFT);
119 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
122 * Maximum threshold is 125
124 threshold = min(125, threshold);
126 return threshold;
130 * Refresh the thresholds for each zone.
132 static void refresh_zone_stat_thresholds(void)
134 struct zone *zone;
135 int cpu;
136 int threshold;
138 for_each_populated_zone(zone) {
139 threshold = calculate_threshold(zone);
141 for_each_online_cpu(cpu)
142 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
143 = threshold;
148 * For use when we know that interrupts are disabled.
150 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
151 int delta)
153 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
155 s8 *p = pcp->vm_stat_diff + item;
156 long x;
158 x = delta + *p;
160 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
161 zone_page_state_add(x, zone, item);
162 x = 0;
164 *p = x;
166 EXPORT_SYMBOL(__mod_zone_page_state);
169 * For an unknown interrupt state
171 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
172 int delta)
174 unsigned long flags;
176 local_irq_save(flags);
177 __mod_zone_page_state(zone, item, delta);
178 local_irq_restore(flags);
180 EXPORT_SYMBOL(mod_zone_page_state);
183 * Optimized increment and decrement functions.
185 * These are only for a single page and therefore can take a struct page *
186 * argument instead of struct zone *. This allows the inclusion of the code
187 * generated for page_zone(page) into the optimized functions.
189 * No overflow check is necessary and therefore the differential can be
190 * incremented or decremented in place which may allow the compilers to
191 * generate better code.
192 * The increment or decrement is known and therefore one boundary check can
193 * be omitted.
195 * NOTE: These functions are very performance sensitive. Change only
196 * with care.
198 * Some processors have inc/dec instructions that are atomic vs an interrupt.
199 * However, the code must first determine the differential location in a zone
200 * based on the processor number and then inc/dec the counter. There is no
201 * guarantee without disabling preemption that the processor will not change
202 * in between and therefore the atomicity vs. interrupt cannot be exploited
203 * in a useful way here.
205 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
207 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
208 s8 *p = pcp->vm_stat_diff + item;
210 (*p)++;
212 if (unlikely(*p > pcp->stat_threshold)) {
213 int overstep = pcp->stat_threshold / 2;
215 zone_page_state_add(*p + overstep, zone, item);
216 *p = -overstep;
220 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
222 __inc_zone_state(page_zone(page), item);
224 EXPORT_SYMBOL(__inc_zone_page_state);
226 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
228 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
229 s8 *p = pcp->vm_stat_diff + item;
231 (*p)--;
233 if (unlikely(*p < - pcp->stat_threshold)) {
234 int overstep = pcp->stat_threshold / 2;
236 zone_page_state_add(*p - overstep, zone, item);
237 *p = overstep;
241 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
243 __dec_zone_state(page_zone(page), item);
245 EXPORT_SYMBOL(__dec_zone_page_state);
247 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
249 unsigned long flags;
251 local_irq_save(flags);
252 __inc_zone_state(zone, item);
253 local_irq_restore(flags);
256 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
258 unsigned long flags;
259 struct zone *zone;
261 zone = page_zone(page);
262 local_irq_save(flags);
263 __inc_zone_state(zone, item);
264 local_irq_restore(flags);
266 EXPORT_SYMBOL(inc_zone_page_state);
268 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
270 unsigned long flags;
272 local_irq_save(flags);
273 __dec_zone_page_state(page, item);
274 local_irq_restore(flags);
276 EXPORT_SYMBOL(dec_zone_page_state);
279 * Update the zone counters for one cpu.
281 * The cpu specified must be either the current cpu or a processor that
282 * is not online. If it is the current cpu then the execution thread must
283 * be pinned to the current cpu.
285 * Note that refresh_cpu_vm_stats strives to only access
286 * node local memory. The per cpu pagesets on remote zones are placed
287 * in the memory local to the processor using that pageset. So the
288 * loop over all zones will access a series of cachelines local to
289 * the processor.
291 * The call to zone_page_state_add updates the cachelines with the
292 * statistics in the remote zone struct as well as the global cachelines
293 * with the global counters. These could cause remote node cache line
294 * bouncing and will have to be only done when necessary.
296 void refresh_cpu_vm_stats(int cpu)
298 struct zone *zone;
299 int i;
300 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
302 for_each_populated_zone(zone) {
303 struct per_cpu_pageset *p;
305 p = per_cpu_ptr(zone->pageset, cpu);
307 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
308 if (p->vm_stat_diff[i]) {
309 unsigned long flags;
310 int v;
312 local_irq_save(flags);
313 v = p->vm_stat_diff[i];
314 p->vm_stat_diff[i] = 0;
315 local_irq_restore(flags);
316 atomic_long_add(v, &zone->vm_stat[i]);
317 global_diff[i] += v;
318 #ifdef CONFIG_NUMA
319 /* 3 seconds idle till flush */
320 p->expire = 3;
321 #endif
323 cond_resched();
324 #ifdef CONFIG_NUMA
326 * Deal with draining the remote pageset of this
327 * processor
329 * Check if there are pages remaining in this pageset
330 * if not then there is nothing to expire.
332 if (!p->expire || !p->pcp.count)
333 continue;
336 * We never drain zones local to this processor.
338 if (zone_to_nid(zone) == numa_node_id()) {
339 p->expire = 0;
340 continue;
343 p->expire--;
344 if (p->expire)
345 continue;
347 if (p->pcp.count)
348 drain_zone_pages(zone, &p->pcp);
349 #endif
352 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
353 if (global_diff[i])
354 atomic_long_add(global_diff[i], &vm_stat[i]);
357 #endif
359 #ifdef CONFIG_NUMA
361 * zonelist = the list of zones passed to the allocator
362 * z = the zone from which the allocation occurred.
364 * Must be called with interrupts disabled.
366 void zone_statistics(struct zone *preferred_zone, struct zone *z)
368 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
369 __inc_zone_state(z, NUMA_HIT);
370 } else {
371 __inc_zone_state(z, NUMA_MISS);
372 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
374 if (z->node == numa_node_id())
375 __inc_zone_state(z, NUMA_LOCAL);
376 else
377 __inc_zone_state(z, NUMA_OTHER);
379 #endif
381 #ifdef CONFIG_PROC_FS
382 #include <linux/proc_fs.h>
383 #include <linux/seq_file.h>
385 static char * const migratetype_names[MIGRATE_TYPES] = {
386 "Unmovable",
387 "Reclaimable",
388 "Movable",
389 "Reserve",
390 "Isolate",
393 static void *frag_start(struct seq_file *m, loff_t *pos)
395 pg_data_t *pgdat;
396 loff_t node = *pos;
397 for (pgdat = first_online_pgdat();
398 pgdat && node;
399 pgdat = next_online_pgdat(pgdat))
400 --node;
402 return pgdat;
405 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
407 pg_data_t *pgdat = (pg_data_t *)arg;
409 (*pos)++;
410 return next_online_pgdat(pgdat);
413 static void frag_stop(struct seq_file *m, void *arg)
417 /* Walk all the zones in a node and print using a callback */
418 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
419 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
421 struct zone *zone;
422 struct zone *node_zones = pgdat->node_zones;
423 unsigned long flags;
425 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
426 if (!populated_zone(zone))
427 continue;
429 spin_lock_irqsave(&zone->lock, flags);
430 print(m, pgdat, zone);
431 spin_unlock_irqrestore(&zone->lock, flags);
435 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
436 struct zone *zone)
438 int order;
440 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
441 for (order = 0; order < MAX_ORDER; ++order)
442 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
443 seq_putc(m, '\n');
447 * This walks the free areas for each zone.
449 static int frag_show(struct seq_file *m, void *arg)
451 pg_data_t *pgdat = (pg_data_t *)arg;
452 walk_zones_in_node(m, pgdat, frag_show_print);
453 return 0;
456 static void pagetypeinfo_showfree_print(struct seq_file *m,
457 pg_data_t *pgdat, struct zone *zone)
459 int order, mtype;
461 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
462 seq_printf(m, "Node %4d, zone %8s, type %12s ",
463 pgdat->node_id,
464 zone->name,
465 migratetype_names[mtype]);
466 for (order = 0; order < MAX_ORDER; ++order) {
467 unsigned long freecount = 0;
468 struct free_area *area;
469 struct list_head *curr;
471 area = &(zone->free_area[order]);
473 list_for_each(curr, &area->free_list[mtype])
474 freecount++;
475 seq_printf(m, "%6lu ", freecount);
477 seq_putc(m, '\n');
481 /* Print out the free pages at each order for each migatetype */
482 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
484 int order;
485 pg_data_t *pgdat = (pg_data_t *)arg;
487 /* Print header */
488 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
489 for (order = 0; order < MAX_ORDER; ++order)
490 seq_printf(m, "%6d ", order);
491 seq_putc(m, '\n');
493 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
495 return 0;
498 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
499 pg_data_t *pgdat, struct zone *zone)
501 int mtype;
502 unsigned long pfn;
503 unsigned long start_pfn = zone->zone_start_pfn;
504 unsigned long end_pfn = start_pfn + zone->spanned_pages;
505 unsigned long count[MIGRATE_TYPES] = { 0, };
507 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
508 struct page *page;
510 if (!pfn_valid(pfn))
511 continue;
513 page = pfn_to_page(pfn);
515 /* Watch for unexpected holes punched in the memmap */
516 if (!memmap_valid_within(pfn, page, zone))
517 continue;
519 mtype = get_pageblock_migratetype(page);
521 if (mtype < MIGRATE_TYPES)
522 count[mtype]++;
525 /* Print counts */
526 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
527 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
528 seq_printf(m, "%12lu ", count[mtype]);
529 seq_putc(m, '\n');
532 /* Print out the free pages at each order for each migratetype */
533 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
535 int mtype;
536 pg_data_t *pgdat = (pg_data_t *)arg;
538 seq_printf(m, "\n%-23s", "Number of blocks type ");
539 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
540 seq_printf(m, "%12s ", migratetype_names[mtype]);
541 seq_putc(m, '\n');
542 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
544 return 0;
548 * This prints out statistics in relation to grouping pages by mobility.
549 * It is expensive to collect so do not constantly read the file.
551 static int pagetypeinfo_show(struct seq_file *m, void *arg)
553 pg_data_t *pgdat = (pg_data_t *)arg;
555 /* check memoryless node */
556 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
557 return 0;
559 seq_printf(m, "Page block order: %d\n", pageblock_order);
560 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
561 seq_putc(m, '\n');
562 pagetypeinfo_showfree(m, pgdat);
563 pagetypeinfo_showblockcount(m, pgdat);
565 return 0;
568 static const struct seq_operations fragmentation_op = {
569 .start = frag_start,
570 .next = frag_next,
571 .stop = frag_stop,
572 .show = frag_show,
575 static int fragmentation_open(struct inode *inode, struct file *file)
577 return seq_open(file, &fragmentation_op);
580 static const struct file_operations fragmentation_file_operations = {
581 .open = fragmentation_open,
582 .read = seq_read,
583 .llseek = seq_lseek,
584 .release = seq_release,
587 static const struct seq_operations pagetypeinfo_op = {
588 .start = frag_start,
589 .next = frag_next,
590 .stop = frag_stop,
591 .show = pagetypeinfo_show,
594 static int pagetypeinfo_open(struct inode *inode, struct file *file)
596 return seq_open(file, &pagetypeinfo_op);
599 static const struct file_operations pagetypeinfo_file_ops = {
600 .open = pagetypeinfo_open,
601 .read = seq_read,
602 .llseek = seq_lseek,
603 .release = seq_release,
606 #ifdef CONFIG_ZONE_DMA
607 #define TEXT_FOR_DMA(xx) xx "_dma",
608 #else
609 #define TEXT_FOR_DMA(xx)
610 #endif
612 #ifdef CONFIG_ZONE_DMA32
613 #define TEXT_FOR_DMA32(xx) xx "_dma32",
614 #else
615 #define TEXT_FOR_DMA32(xx)
616 #endif
618 #ifdef CONFIG_HIGHMEM
619 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
620 #else
621 #define TEXT_FOR_HIGHMEM(xx)
622 #endif
624 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
625 TEXT_FOR_HIGHMEM(xx) xx "_movable",
627 static const char * const vmstat_text[] = {
628 /* Zoned VM counters */
629 "nr_free_pages",
630 "nr_inactive_anon",
631 "nr_active_anon",
632 "nr_inactive_file",
633 "nr_active_file",
634 "nr_unevictable",
635 "nr_mlock",
636 "nr_anon_pages",
637 "nr_mapped",
638 "nr_file_pages",
639 "nr_dirty",
640 "nr_writeback",
641 "nr_slab_reclaimable",
642 "nr_slab_unreclaimable",
643 "nr_page_table_pages",
644 "nr_kernel_stack",
645 "nr_unstable",
646 "nr_bounce",
647 "nr_vmscan_write",
648 "nr_writeback_temp",
649 "nr_isolated_anon",
650 "nr_isolated_file",
651 "nr_shmem",
652 #ifdef CONFIG_NUMA
653 "numa_hit",
654 "numa_miss",
655 "numa_foreign",
656 "numa_interleave",
657 "numa_local",
658 "numa_other",
659 #endif
661 #ifdef CONFIG_VM_EVENT_COUNTERS
662 "pgpgin",
663 "pgpgout",
664 "pswpin",
665 "pswpout",
667 TEXTS_FOR_ZONES("pgalloc")
669 "pgfree",
670 "pgactivate",
671 "pgdeactivate",
673 "pgfault",
674 "pgmajfault",
676 TEXTS_FOR_ZONES("pgrefill")
677 TEXTS_FOR_ZONES("pgsteal")
678 TEXTS_FOR_ZONES("pgscan_kswapd")
679 TEXTS_FOR_ZONES("pgscan_direct")
681 #ifdef CONFIG_NUMA
682 "zone_reclaim_failed",
683 #endif
684 "pginodesteal",
685 "slabs_scanned",
686 "kswapd_steal",
687 "kswapd_inodesteal",
688 "kswapd_low_wmark_hit_quickly",
689 "kswapd_high_wmark_hit_quickly",
690 "kswapd_skip_congestion_wait",
691 "pageoutrun",
692 "allocstall",
694 "pgrotated",
695 #ifdef CONFIG_HUGETLB_PAGE
696 "htlb_buddy_alloc_success",
697 "htlb_buddy_alloc_fail",
698 #endif
699 "unevictable_pgs_culled",
700 "unevictable_pgs_scanned",
701 "unevictable_pgs_rescued",
702 "unevictable_pgs_mlocked",
703 "unevictable_pgs_munlocked",
704 "unevictable_pgs_cleared",
705 "unevictable_pgs_stranded",
706 "unevictable_pgs_mlockfreed",
707 #endif
710 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
711 struct zone *zone)
713 int i;
714 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
715 seq_printf(m,
716 "\n pages free %lu"
717 "\n min %lu"
718 "\n low %lu"
719 "\n high %lu"
720 "\n scanned %lu"
721 "\n spanned %lu"
722 "\n present %lu",
723 zone_page_state(zone, NR_FREE_PAGES),
724 min_wmark_pages(zone),
725 low_wmark_pages(zone),
726 high_wmark_pages(zone),
727 zone->pages_scanned,
728 zone->spanned_pages,
729 zone->present_pages);
731 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
732 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
733 zone_page_state(zone, i));
735 seq_printf(m,
736 "\n protection: (%lu",
737 zone->lowmem_reserve[0]);
738 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
739 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
740 seq_printf(m,
742 "\n pagesets");
743 for_each_online_cpu(i) {
744 struct per_cpu_pageset *pageset;
746 pageset = per_cpu_ptr(zone->pageset, i);
747 seq_printf(m,
748 "\n cpu: %i"
749 "\n count: %i"
750 "\n high: %i"
751 "\n batch: %i",
753 pageset->pcp.count,
754 pageset->pcp.high,
755 pageset->pcp.batch);
756 #ifdef CONFIG_SMP
757 seq_printf(m, "\n vm stats threshold: %d",
758 pageset->stat_threshold);
759 #endif
761 seq_printf(m,
762 "\n all_unreclaimable: %u"
763 "\n prev_priority: %i"
764 "\n start_pfn: %lu"
765 "\n inactive_ratio: %u",
766 zone_is_all_unreclaimable(zone),
767 zone->prev_priority,
768 zone->zone_start_pfn,
769 zone->inactive_ratio);
770 seq_putc(m, '\n');
774 * Output information about zones in @pgdat.
776 static int zoneinfo_show(struct seq_file *m, void *arg)
778 pg_data_t *pgdat = (pg_data_t *)arg;
779 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
780 return 0;
783 static const struct seq_operations zoneinfo_op = {
784 .start = frag_start, /* iterate over all zones. The same as in
785 * fragmentation. */
786 .next = frag_next,
787 .stop = frag_stop,
788 .show = zoneinfo_show,
791 static int zoneinfo_open(struct inode *inode, struct file *file)
793 return seq_open(file, &zoneinfo_op);
796 static const struct file_operations proc_zoneinfo_file_operations = {
797 .open = zoneinfo_open,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = seq_release,
803 static void *vmstat_start(struct seq_file *m, loff_t *pos)
805 unsigned long *v;
806 #ifdef CONFIG_VM_EVENT_COUNTERS
807 unsigned long *e;
808 #endif
809 int i;
811 if (*pos >= ARRAY_SIZE(vmstat_text))
812 return NULL;
814 #ifdef CONFIG_VM_EVENT_COUNTERS
815 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
816 + sizeof(struct vm_event_state), GFP_KERNEL);
817 #else
818 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
819 GFP_KERNEL);
820 #endif
821 m->private = v;
822 if (!v)
823 return ERR_PTR(-ENOMEM);
824 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
825 v[i] = global_page_state(i);
826 #ifdef CONFIG_VM_EVENT_COUNTERS
827 e = v + NR_VM_ZONE_STAT_ITEMS;
828 all_vm_events(e);
829 e[PGPGIN] /= 2; /* sectors -> kbytes */
830 e[PGPGOUT] /= 2;
831 #endif
832 return v + *pos;
835 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
837 (*pos)++;
838 if (*pos >= ARRAY_SIZE(vmstat_text))
839 return NULL;
840 return (unsigned long *)m->private + *pos;
843 static int vmstat_show(struct seq_file *m, void *arg)
845 unsigned long *l = arg;
846 unsigned long off = l - (unsigned long *)m->private;
848 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
849 return 0;
852 static void vmstat_stop(struct seq_file *m, void *arg)
854 kfree(m->private);
855 m->private = NULL;
858 static const struct seq_operations vmstat_op = {
859 .start = vmstat_start,
860 .next = vmstat_next,
861 .stop = vmstat_stop,
862 .show = vmstat_show,
865 static int vmstat_open(struct inode *inode, struct file *file)
867 return seq_open(file, &vmstat_op);
870 static const struct file_operations proc_vmstat_file_operations = {
871 .open = vmstat_open,
872 .read = seq_read,
873 .llseek = seq_lseek,
874 .release = seq_release,
876 #endif /* CONFIG_PROC_FS */
878 #ifdef CONFIG_SMP
879 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
880 int sysctl_stat_interval __read_mostly = HZ;
882 static void vmstat_update(struct work_struct *w)
884 refresh_cpu_vm_stats(smp_processor_id());
885 schedule_delayed_work(&__get_cpu_var(vmstat_work),
886 round_jiffies_relative(sysctl_stat_interval));
889 static void __cpuinit start_cpu_timer(int cpu)
891 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
893 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
894 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
898 * Use the cpu notifier to insure that the thresholds are recalculated
899 * when necessary.
901 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
902 unsigned long action,
903 void *hcpu)
905 long cpu = (long)hcpu;
907 switch (action) {
908 case CPU_ONLINE:
909 case CPU_ONLINE_FROZEN:
910 start_cpu_timer(cpu);
911 break;
912 case CPU_DOWN_PREPARE:
913 case CPU_DOWN_PREPARE_FROZEN:
914 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
915 per_cpu(vmstat_work, cpu).work.func = NULL;
916 break;
917 case CPU_DOWN_FAILED:
918 case CPU_DOWN_FAILED_FROZEN:
919 start_cpu_timer(cpu);
920 break;
921 case CPU_DEAD:
922 case CPU_DEAD_FROZEN:
923 refresh_zone_stat_thresholds();
924 break;
925 default:
926 break;
928 return NOTIFY_OK;
931 static struct notifier_block __cpuinitdata vmstat_notifier =
932 { &vmstat_cpuup_callback, NULL, 0 };
933 #endif
935 static int __init setup_vmstat(void)
937 #ifdef CONFIG_SMP
938 int cpu;
940 refresh_zone_stat_thresholds();
941 register_cpu_notifier(&vmstat_notifier);
943 for_each_online_cpu(cpu)
944 start_cpu_timer(cpu);
945 #endif
946 #ifdef CONFIG_PROC_FS
947 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
948 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
949 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
950 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
951 #endif
952 return 0;
954 module_init(setup_vmstat)