KVM: Use macro to iterate over vcpus.
[linux-2.6/x86.git] / arch / x86 / kvm / x86.c
blob89862a80e32c8816584513837124f80128d01191
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45 #include <asm/mce.h>
47 #define MAX_IO_MSRS 256
48 #define CR0_RESERVED_BITS \
49 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
50 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
51 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
52 #define CR4_RESERVED_BITS \
53 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
54 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
55 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
56 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
58 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
60 #define KVM_MAX_MCE_BANKS 32
61 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
63 /* EFER defaults:
64 * - enable syscall per default because its emulated by KVM
65 * - enable LME and LMA per default on 64 bit KVM
67 #ifdef CONFIG_X86_64
68 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
69 #else
70 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
71 #endif
73 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
74 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
76 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
77 struct kvm_cpuid_entry2 __user *entries);
78 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
79 u32 function, u32 index);
81 struct kvm_x86_ops *kvm_x86_ops;
82 EXPORT_SYMBOL_GPL(kvm_x86_ops);
84 struct kvm_stats_debugfs_item debugfs_entries[] = {
85 { "pf_fixed", VCPU_STAT(pf_fixed) },
86 { "pf_guest", VCPU_STAT(pf_guest) },
87 { "tlb_flush", VCPU_STAT(tlb_flush) },
88 { "invlpg", VCPU_STAT(invlpg) },
89 { "exits", VCPU_STAT(exits) },
90 { "io_exits", VCPU_STAT(io_exits) },
91 { "mmio_exits", VCPU_STAT(mmio_exits) },
92 { "signal_exits", VCPU_STAT(signal_exits) },
93 { "irq_window", VCPU_STAT(irq_window_exits) },
94 { "nmi_window", VCPU_STAT(nmi_window_exits) },
95 { "halt_exits", VCPU_STAT(halt_exits) },
96 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
97 { "hypercalls", VCPU_STAT(hypercalls) },
98 { "request_irq", VCPU_STAT(request_irq_exits) },
99 { "irq_exits", VCPU_STAT(irq_exits) },
100 { "host_state_reload", VCPU_STAT(host_state_reload) },
101 { "efer_reload", VCPU_STAT(efer_reload) },
102 { "fpu_reload", VCPU_STAT(fpu_reload) },
103 { "insn_emulation", VCPU_STAT(insn_emulation) },
104 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
105 { "irq_injections", VCPU_STAT(irq_injections) },
106 { "nmi_injections", VCPU_STAT(nmi_injections) },
107 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
108 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
109 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
110 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
111 { "mmu_flooded", VM_STAT(mmu_flooded) },
112 { "mmu_recycled", VM_STAT(mmu_recycled) },
113 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
114 { "mmu_unsync", VM_STAT(mmu_unsync) },
115 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
116 { "largepages", VM_STAT(lpages) },
117 { NULL }
120 unsigned long segment_base(u16 selector)
122 struct descriptor_table gdt;
123 struct desc_struct *d;
124 unsigned long table_base;
125 unsigned long v;
127 if (selector == 0)
128 return 0;
130 asm("sgdt %0" : "=m"(gdt));
131 table_base = gdt.base;
133 if (selector & 4) { /* from ldt */
134 u16 ldt_selector;
136 asm("sldt %0" : "=g"(ldt_selector));
137 table_base = segment_base(ldt_selector);
139 d = (struct desc_struct *)(table_base + (selector & ~7));
140 v = d->base0 | ((unsigned long)d->base1 << 16) |
141 ((unsigned long)d->base2 << 24);
142 #ifdef CONFIG_X86_64
143 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
144 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
145 #endif
146 return v;
148 EXPORT_SYMBOL_GPL(segment_base);
150 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
152 if (irqchip_in_kernel(vcpu->kvm))
153 return vcpu->arch.apic_base;
154 else
155 return vcpu->arch.apic_base;
157 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
159 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
161 /* TODO: reserve bits check */
162 if (irqchip_in_kernel(vcpu->kvm))
163 kvm_lapic_set_base(vcpu, data);
164 else
165 vcpu->arch.apic_base = data;
167 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
169 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
171 WARN_ON(vcpu->arch.exception.pending);
172 vcpu->arch.exception.pending = true;
173 vcpu->arch.exception.has_error_code = false;
174 vcpu->arch.exception.nr = nr;
176 EXPORT_SYMBOL_GPL(kvm_queue_exception);
178 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
179 u32 error_code)
181 ++vcpu->stat.pf_guest;
183 if (vcpu->arch.exception.pending) {
184 if (vcpu->arch.exception.nr == PF_VECTOR) {
185 printk(KERN_DEBUG "kvm: inject_page_fault:"
186 " double fault 0x%lx\n", addr);
187 vcpu->arch.exception.nr = DF_VECTOR;
188 vcpu->arch.exception.error_code = 0;
189 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
190 /* triple fault -> shutdown */
191 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
193 return;
195 vcpu->arch.cr2 = addr;
196 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
199 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
201 vcpu->arch.nmi_pending = 1;
203 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
205 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
207 WARN_ON(vcpu->arch.exception.pending);
208 vcpu->arch.exception.pending = true;
209 vcpu->arch.exception.has_error_code = true;
210 vcpu->arch.exception.nr = nr;
211 vcpu->arch.exception.error_code = error_code;
213 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
215 static void __queue_exception(struct kvm_vcpu *vcpu)
217 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
218 vcpu->arch.exception.has_error_code,
219 vcpu->arch.exception.error_code);
223 * Load the pae pdptrs. Return true is they are all valid.
225 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
227 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
228 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
229 int i;
230 int ret;
231 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
233 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
234 offset * sizeof(u64), sizeof(pdpte));
235 if (ret < 0) {
236 ret = 0;
237 goto out;
239 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
240 if (is_present_gpte(pdpte[i]) &&
241 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
242 ret = 0;
243 goto out;
246 ret = 1;
248 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
249 __set_bit(VCPU_EXREG_PDPTR,
250 (unsigned long *)&vcpu->arch.regs_avail);
251 __set_bit(VCPU_EXREG_PDPTR,
252 (unsigned long *)&vcpu->arch.regs_dirty);
253 out:
255 return ret;
257 EXPORT_SYMBOL_GPL(load_pdptrs);
259 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
261 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
262 bool changed = true;
263 int r;
265 if (is_long_mode(vcpu) || !is_pae(vcpu))
266 return false;
268 if (!test_bit(VCPU_EXREG_PDPTR,
269 (unsigned long *)&vcpu->arch.regs_avail))
270 return true;
272 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
273 if (r < 0)
274 goto out;
275 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
276 out:
278 return changed;
281 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
283 if (cr0 & CR0_RESERVED_BITS) {
284 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
285 cr0, vcpu->arch.cr0);
286 kvm_inject_gp(vcpu, 0);
287 return;
290 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
291 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
292 kvm_inject_gp(vcpu, 0);
293 return;
296 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
297 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
298 "and a clear PE flag\n");
299 kvm_inject_gp(vcpu, 0);
300 return;
303 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
304 #ifdef CONFIG_X86_64
305 if ((vcpu->arch.shadow_efer & EFER_LME)) {
306 int cs_db, cs_l;
308 if (!is_pae(vcpu)) {
309 printk(KERN_DEBUG "set_cr0: #GP, start paging "
310 "in long mode while PAE is disabled\n");
311 kvm_inject_gp(vcpu, 0);
312 return;
314 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
315 if (cs_l) {
316 printk(KERN_DEBUG "set_cr0: #GP, start paging "
317 "in long mode while CS.L == 1\n");
318 kvm_inject_gp(vcpu, 0);
319 return;
322 } else
323 #endif
324 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
325 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
326 "reserved bits\n");
327 kvm_inject_gp(vcpu, 0);
328 return;
333 kvm_x86_ops->set_cr0(vcpu, cr0);
334 vcpu->arch.cr0 = cr0;
336 kvm_mmu_reset_context(vcpu);
337 return;
339 EXPORT_SYMBOL_GPL(kvm_set_cr0);
341 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
343 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
344 KVMTRACE_1D(LMSW, vcpu,
345 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
346 handler);
348 EXPORT_SYMBOL_GPL(kvm_lmsw);
350 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
352 unsigned long old_cr4 = vcpu->arch.cr4;
353 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
355 if (cr4 & CR4_RESERVED_BITS) {
356 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
357 kvm_inject_gp(vcpu, 0);
358 return;
361 if (is_long_mode(vcpu)) {
362 if (!(cr4 & X86_CR4_PAE)) {
363 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
364 "in long mode\n");
365 kvm_inject_gp(vcpu, 0);
366 return;
368 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
369 && ((cr4 ^ old_cr4) & pdptr_bits)
370 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
371 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
372 kvm_inject_gp(vcpu, 0);
373 return;
376 if (cr4 & X86_CR4_VMXE) {
377 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
378 kvm_inject_gp(vcpu, 0);
379 return;
381 kvm_x86_ops->set_cr4(vcpu, cr4);
382 vcpu->arch.cr4 = cr4;
383 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
384 kvm_mmu_reset_context(vcpu);
386 EXPORT_SYMBOL_GPL(kvm_set_cr4);
388 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
390 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
391 kvm_mmu_sync_roots(vcpu);
392 kvm_mmu_flush_tlb(vcpu);
393 return;
396 if (is_long_mode(vcpu)) {
397 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
398 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
399 kvm_inject_gp(vcpu, 0);
400 return;
402 } else {
403 if (is_pae(vcpu)) {
404 if (cr3 & CR3_PAE_RESERVED_BITS) {
405 printk(KERN_DEBUG
406 "set_cr3: #GP, reserved bits\n");
407 kvm_inject_gp(vcpu, 0);
408 return;
410 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
411 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
412 "reserved bits\n");
413 kvm_inject_gp(vcpu, 0);
414 return;
418 * We don't check reserved bits in nonpae mode, because
419 * this isn't enforced, and VMware depends on this.
424 * Does the new cr3 value map to physical memory? (Note, we
425 * catch an invalid cr3 even in real-mode, because it would
426 * cause trouble later on when we turn on paging anyway.)
428 * A real CPU would silently accept an invalid cr3 and would
429 * attempt to use it - with largely undefined (and often hard
430 * to debug) behavior on the guest side.
432 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
433 kvm_inject_gp(vcpu, 0);
434 else {
435 vcpu->arch.cr3 = cr3;
436 vcpu->arch.mmu.new_cr3(vcpu);
439 EXPORT_SYMBOL_GPL(kvm_set_cr3);
441 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
443 if (cr8 & CR8_RESERVED_BITS) {
444 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
445 kvm_inject_gp(vcpu, 0);
446 return;
448 if (irqchip_in_kernel(vcpu->kvm))
449 kvm_lapic_set_tpr(vcpu, cr8);
450 else
451 vcpu->arch.cr8 = cr8;
453 EXPORT_SYMBOL_GPL(kvm_set_cr8);
455 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
457 if (irqchip_in_kernel(vcpu->kvm))
458 return kvm_lapic_get_cr8(vcpu);
459 else
460 return vcpu->arch.cr8;
462 EXPORT_SYMBOL_GPL(kvm_get_cr8);
464 static inline u32 bit(int bitno)
466 return 1 << (bitno & 31);
470 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
471 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
473 * This list is modified at module load time to reflect the
474 * capabilities of the host cpu.
476 static u32 msrs_to_save[] = {
477 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
478 MSR_K6_STAR,
479 #ifdef CONFIG_X86_64
480 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
481 #endif
482 MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
483 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
486 static unsigned num_msrs_to_save;
488 static u32 emulated_msrs[] = {
489 MSR_IA32_MISC_ENABLE,
492 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
494 if (efer & efer_reserved_bits) {
495 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
496 efer);
497 kvm_inject_gp(vcpu, 0);
498 return;
501 if (is_paging(vcpu)
502 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
503 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
504 kvm_inject_gp(vcpu, 0);
505 return;
508 if (efer & EFER_FFXSR) {
509 struct kvm_cpuid_entry2 *feat;
511 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
512 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
513 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
514 kvm_inject_gp(vcpu, 0);
515 return;
519 if (efer & EFER_SVME) {
520 struct kvm_cpuid_entry2 *feat;
522 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
523 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
524 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
525 kvm_inject_gp(vcpu, 0);
526 return;
530 kvm_x86_ops->set_efer(vcpu, efer);
532 efer &= ~EFER_LMA;
533 efer |= vcpu->arch.shadow_efer & EFER_LMA;
535 vcpu->arch.shadow_efer = efer;
537 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
538 kvm_mmu_reset_context(vcpu);
541 void kvm_enable_efer_bits(u64 mask)
543 efer_reserved_bits &= ~mask;
545 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
549 * Writes msr value into into the appropriate "register".
550 * Returns 0 on success, non-0 otherwise.
551 * Assumes vcpu_load() was already called.
553 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
555 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
559 * Adapt set_msr() to msr_io()'s calling convention
561 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
563 return kvm_set_msr(vcpu, index, *data);
566 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
568 static int version;
569 struct pvclock_wall_clock wc;
570 struct timespec now, sys, boot;
572 if (!wall_clock)
573 return;
575 version++;
577 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
580 * The guest calculates current wall clock time by adding
581 * system time (updated by kvm_write_guest_time below) to the
582 * wall clock specified here. guest system time equals host
583 * system time for us, thus we must fill in host boot time here.
585 now = current_kernel_time();
586 ktime_get_ts(&sys);
587 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
589 wc.sec = boot.tv_sec;
590 wc.nsec = boot.tv_nsec;
591 wc.version = version;
593 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
595 version++;
596 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
599 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
601 uint32_t quotient, remainder;
603 /* Don't try to replace with do_div(), this one calculates
604 * "(dividend << 32) / divisor" */
605 __asm__ ( "divl %4"
606 : "=a" (quotient), "=d" (remainder)
607 : "0" (0), "1" (dividend), "r" (divisor) );
608 return quotient;
611 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
613 uint64_t nsecs = 1000000000LL;
614 int32_t shift = 0;
615 uint64_t tps64;
616 uint32_t tps32;
618 tps64 = tsc_khz * 1000LL;
619 while (tps64 > nsecs*2) {
620 tps64 >>= 1;
621 shift--;
624 tps32 = (uint32_t)tps64;
625 while (tps32 <= (uint32_t)nsecs) {
626 tps32 <<= 1;
627 shift++;
630 hv_clock->tsc_shift = shift;
631 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
633 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
634 __func__, tsc_khz, hv_clock->tsc_shift,
635 hv_clock->tsc_to_system_mul);
638 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
640 static void kvm_write_guest_time(struct kvm_vcpu *v)
642 struct timespec ts;
643 unsigned long flags;
644 struct kvm_vcpu_arch *vcpu = &v->arch;
645 void *shared_kaddr;
646 unsigned long this_tsc_khz;
648 if ((!vcpu->time_page))
649 return;
651 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
652 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
653 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
654 vcpu->hv_clock_tsc_khz = this_tsc_khz;
656 put_cpu_var(cpu_tsc_khz);
658 /* Keep irq disabled to prevent changes to the clock */
659 local_irq_save(flags);
660 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
661 ktime_get_ts(&ts);
662 local_irq_restore(flags);
664 /* With all the info we got, fill in the values */
666 vcpu->hv_clock.system_time = ts.tv_nsec +
667 (NSEC_PER_SEC * (u64)ts.tv_sec);
669 * The interface expects us to write an even number signaling that the
670 * update is finished. Since the guest won't see the intermediate
671 * state, we just increase by 2 at the end.
673 vcpu->hv_clock.version += 2;
675 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
677 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
678 sizeof(vcpu->hv_clock));
680 kunmap_atomic(shared_kaddr, KM_USER0);
682 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
685 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
687 struct kvm_vcpu_arch *vcpu = &v->arch;
689 if (!vcpu->time_page)
690 return 0;
691 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
692 return 1;
695 static bool msr_mtrr_valid(unsigned msr)
697 switch (msr) {
698 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
699 case MSR_MTRRfix64K_00000:
700 case MSR_MTRRfix16K_80000:
701 case MSR_MTRRfix16K_A0000:
702 case MSR_MTRRfix4K_C0000:
703 case MSR_MTRRfix4K_C8000:
704 case MSR_MTRRfix4K_D0000:
705 case MSR_MTRRfix4K_D8000:
706 case MSR_MTRRfix4K_E0000:
707 case MSR_MTRRfix4K_E8000:
708 case MSR_MTRRfix4K_F0000:
709 case MSR_MTRRfix4K_F8000:
710 case MSR_MTRRdefType:
711 case MSR_IA32_CR_PAT:
712 return true;
713 case 0x2f8:
714 return true;
716 return false;
719 static bool valid_pat_type(unsigned t)
721 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
724 static bool valid_mtrr_type(unsigned t)
726 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
729 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
731 int i;
733 if (!msr_mtrr_valid(msr))
734 return false;
736 if (msr == MSR_IA32_CR_PAT) {
737 for (i = 0; i < 8; i++)
738 if (!valid_pat_type((data >> (i * 8)) & 0xff))
739 return false;
740 return true;
741 } else if (msr == MSR_MTRRdefType) {
742 if (data & ~0xcff)
743 return false;
744 return valid_mtrr_type(data & 0xff);
745 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
746 for (i = 0; i < 8 ; i++)
747 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
748 return false;
749 return true;
752 /* variable MTRRs */
753 return valid_mtrr_type(data & 0xff);
756 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
758 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
760 if (!mtrr_valid(vcpu, msr, data))
761 return 1;
763 if (msr == MSR_MTRRdefType) {
764 vcpu->arch.mtrr_state.def_type = data;
765 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
766 } else if (msr == MSR_MTRRfix64K_00000)
767 p[0] = data;
768 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
769 p[1 + msr - MSR_MTRRfix16K_80000] = data;
770 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
771 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
772 else if (msr == MSR_IA32_CR_PAT)
773 vcpu->arch.pat = data;
774 else { /* Variable MTRRs */
775 int idx, is_mtrr_mask;
776 u64 *pt;
778 idx = (msr - 0x200) / 2;
779 is_mtrr_mask = msr - 0x200 - 2 * idx;
780 if (!is_mtrr_mask)
781 pt =
782 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
783 else
784 pt =
785 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
786 *pt = data;
789 kvm_mmu_reset_context(vcpu);
790 return 0;
793 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
795 u64 mcg_cap = vcpu->arch.mcg_cap;
796 unsigned bank_num = mcg_cap & 0xff;
798 switch (msr) {
799 case MSR_IA32_MCG_STATUS:
800 vcpu->arch.mcg_status = data;
801 break;
802 case MSR_IA32_MCG_CTL:
803 if (!(mcg_cap & MCG_CTL_P))
804 return 1;
805 if (data != 0 && data != ~(u64)0)
806 return -1;
807 vcpu->arch.mcg_ctl = data;
808 break;
809 default:
810 if (msr >= MSR_IA32_MC0_CTL &&
811 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
812 u32 offset = msr - MSR_IA32_MC0_CTL;
813 /* only 0 or all 1s can be written to IA32_MCi_CTL */
814 if ((offset & 0x3) == 0 &&
815 data != 0 && data != ~(u64)0)
816 return -1;
817 vcpu->arch.mce_banks[offset] = data;
818 break;
820 return 1;
822 return 0;
825 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
827 switch (msr) {
828 case MSR_EFER:
829 set_efer(vcpu, data);
830 break;
831 case MSR_IA32_DEBUGCTLMSR:
832 if (!data) {
833 /* We support the non-activated case already */
834 break;
835 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
836 /* Values other than LBR and BTF are vendor-specific,
837 thus reserved and should throw a #GP */
838 return 1;
840 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
841 __func__, data);
842 break;
843 case MSR_IA32_UCODE_REV:
844 case MSR_IA32_UCODE_WRITE:
845 case MSR_VM_HSAVE_PA:
846 break;
847 case 0x200 ... 0x2ff:
848 return set_msr_mtrr(vcpu, msr, data);
849 case MSR_IA32_APICBASE:
850 kvm_set_apic_base(vcpu, data);
851 break;
852 case MSR_IA32_MISC_ENABLE:
853 vcpu->arch.ia32_misc_enable_msr = data;
854 break;
855 case MSR_KVM_WALL_CLOCK:
856 vcpu->kvm->arch.wall_clock = data;
857 kvm_write_wall_clock(vcpu->kvm, data);
858 break;
859 case MSR_KVM_SYSTEM_TIME: {
860 if (vcpu->arch.time_page) {
861 kvm_release_page_dirty(vcpu->arch.time_page);
862 vcpu->arch.time_page = NULL;
865 vcpu->arch.time = data;
867 /* we verify if the enable bit is set... */
868 if (!(data & 1))
869 break;
871 /* ...but clean it before doing the actual write */
872 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
874 vcpu->arch.time_page =
875 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
877 if (is_error_page(vcpu->arch.time_page)) {
878 kvm_release_page_clean(vcpu->arch.time_page);
879 vcpu->arch.time_page = NULL;
882 kvm_request_guest_time_update(vcpu);
883 break;
885 case MSR_IA32_MCG_CTL:
886 case MSR_IA32_MCG_STATUS:
887 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
888 return set_msr_mce(vcpu, msr, data);
889 default:
890 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
891 return 1;
893 return 0;
895 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
899 * Reads an msr value (of 'msr_index') into 'pdata'.
900 * Returns 0 on success, non-0 otherwise.
901 * Assumes vcpu_load() was already called.
903 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
905 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
908 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
910 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
912 if (!msr_mtrr_valid(msr))
913 return 1;
915 if (msr == MSR_MTRRdefType)
916 *pdata = vcpu->arch.mtrr_state.def_type +
917 (vcpu->arch.mtrr_state.enabled << 10);
918 else if (msr == MSR_MTRRfix64K_00000)
919 *pdata = p[0];
920 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
921 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
922 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
923 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
924 else if (msr == MSR_IA32_CR_PAT)
925 *pdata = vcpu->arch.pat;
926 else { /* Variable MTRRs */
927 int idx, is_mtrr_mask;
928 u64 *pt;
930 idx = (msr - 0x200) / 2;
931 is_mtrr_mask = msr - 0x200 - 2 * idx;
932 if (!is_mtrr_mask)
933 pt =
934 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
935 else
936 pt =
937 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
938 *pdata = *pt;
941 return 0;
944 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
946 u64 data;
947 u64 mcg_cap = vcpu->arch.mcg_cap;
948 unsigned bank_num = mcg_cap & 0xff;
950 switch (msr) {
951 case MSR_IA32_P5_MC_ADDR:
952 case MSR_IA32_P5_MC_TYPE:
953 data = 0;
954 break;
955 case MSR_IA32_MCG_CAP:
956 data = vcpu->arch.mcg_cap;
957 break;
958 case MSR_IA32_MCG_CTL:
959 if (!(mcg_cap & MCG_CTL_P))
960 return 1;
961 data = vcpu->arch.mcg_ctl;
962 break;
963 case MSR_IA32_MCG_STATUS:
964 data = vcpu->arch.mcg_status;
965 break;
966 default:
967 if (msr >= MSR_IA32_MC0_CTL &&
968 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
969 u32 offset = msr - MSR_IA32_MC0_CTL;
970 data = vcpu->arch.mce_banks[offset];
971 break;
973 return 1;
975 *pdata = data;
976 return 0;
979 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
981 u64 data;
983 switch (msr) {
984 case MSR_IA32_PLATFORM_ID:
985 case MSR_IA32_UCODE_REV:
986 case MSR_IA32_EBL_CR_POWERON:
987 case MSR_IA32_DEBUGCTLMSR:
988 case MSR_IA32_LASTBRANCHFROMIP:
989 case MSR_IA32_LASTBRANCHTOIP:
990 case MSR_IA32_LASTINTFROMIP:
991 case MSR_IA32_LASTINTTOIP:
992 case MSR_K8_SYSCFG:
993 case MSR_K7_HWCR:
994 case MSR_VM_HSAVE_PA:
995 case MSR_P6_EVNTSEL0:
996 case MSR_P6_EVNTSEL1:
997 case MSR_K7_EVNTSEL0:
998 data = 0;
999 break;
1000 case MSR_MTRRcap:
1001 data = 0x500 | KVM_NR_VAR_MTRR;
1002 break;
1003 case 0x200 ... 0x2ff:
1004 return get_msr_mtrr(vcpu, msr, pdata);
1005 case 0xcd: /* fsb frequency */
1006 data = 3;
1007 break;
1008 case MSR_IA32_APICBASE:
1009 data = kvm_get_apic_base(vcpu);
1010 break;
1011 case MSR_IA32_MISC_ENABLE:
1012 data = vcpu->arch.ia32_misc_enable_msr;
1013 break;
1014 case MSR_IA32_PERF_STATUS:
1015 /* TSC increment by tick */
1016 data = 1000ULL;
1017 /* CPU multiplier */
1018 data |= (((uint64_t)4ULL) << 40);
1019 break;
1020 case MSR_EFER:
1021 data = vcpu->arch.shadow_efer;
1022 break;
1023 case MSR_KVM_WALL_CLOCK:
1024 data = vcpu->kvm->arch.wall_clock;
1025 break;
1026 case MSR_KVM_SYSTEM_TIME:
1027 data = vcpu->arch.time;
1028 break;
1029 case MSR_IA32_P5_MC_ADDR:
1030 case MSR_IA32_P5_MC_TYPE:
1031 case MSR_IA32_MCG_CAP:
1032 case MSR_IA32_MCG_CTL:
1033 case MSR_IA32_MCG_STATUS:
1034 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1035 return get_msr_mce(vcpu, msr, pdata);
1036 default:
1037 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1038 return 1;
1040 *pdata = data;
1041 return 0;
1043 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1046 * Read or write a bunch of msrs. All parameters are kernel addresses.
1048 * @return number of msrs set successfully.
1050 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1051 struct kvm_msr_entry *entries,
1052 int (*do_msr)(struct kvm_vcpu *vcpu,
1053 unsigned index, u64 *data))
1055 int i;
1057 vcpu_load(vcpu);
1059 down_read(&vcpu->kvm->slots_lock);
1060 for (i = 0; i < msrs->nmsrs; ++i)
1061 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1062 break;
1063 up_read(&vcpu->kvm->slots_lock);
1065 vcpu_put(vcpu);
1067 return i;
1071 * Read or write a bunch of msrs. Parameters are user addresses.
1073 * @return number of msrs set successfully.
1075 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1076 int (*do_msr)(struct kvm_vcpu *vcpu,
1077 unsigned index, u64 *data),
1078 int writeback)
1080 struct kvm_msrs msrs;
1081 struct kvm_msr_entry *entries;
1082 int r, n;
1083 unsigned size;
1085 r = -EFAULT;
1086 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1087 goto out;
1089 r = -E2BIG;
1090 if (msrs.nmsrs >= MAX_IO_MSRS)
1091 goto out;
1093 r = -ENOMEM;
1094 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1095 entries = vmalloc(size);
1096 if (!entries)
1097 goto out;
1099 r = -EFAULT;
1100 if (copy_from_user(entries, user_msrs->entries, size))
1101 goto out_free;
1103 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1104 if (r < 0)
1105 goto out_free;
1107 r = -EFAULT;
1108 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1109 goto out_free;
1111 r = n;
1113 out_free:
1114 vfree(entries);
1115 out:
1116 return r;
1119 int kvm_dev_ioctl_check_extension(long ext)
1121 int r;
1123 switch (ext) {
1124 case KVM_CAP_IRQCHIP:
1125 case KVM_CAP_HLT:
1126 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1127 case KVM_CAP_SET_TSS_ADDR:
1128 case KVM_CAP_EXT_CPUID:
1129 case KVM_CAP_CLOCKSOURCE:
1130 case KVM_CAP_PIT:
1131 case KVM_CAP_NOP_IO_DELAY:
1132 case KVM_CAP_MP_STATE:
1133 case KVM_CAP_SYNC_MMU:
1134 case KVM_CAP_REINJECT_CONTROL:
1135 case KVM_CAP_IRQ_INJECT_STATUS:
1136 case KVM_CAP_ASSIGN_DEV_IRQ:
1137 case KVM_CAP_IRQFD:
1138 case KVM_CAP_PIT2:
1139 r = 1;
1140 break;
1141 case KVM_CAP_COALESCED_MMIO:
1142 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1143 break;
1144 case KVM_CAP_VAPIC:
1145 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1146 break;
1147 case KVM_CAP_NR_VCPUS:
1148 r = KVM_MAX_VCPUS;
1149 break;
1150 case KVM_CAP_NR_MEMSLOTS:
1151 r = KVM_MEMORY_SLOTS;
1152 break;
1153 case KVM_CAP_PV_MMU:
1154 r = !tdp_enabled;
1155 break;
1156 case KVM_CAP_IOMMU:
1157 r = iommu_found();
1158 break;
1159 case KVM_CAP_MCE:
1160 r = KVM_MAX_MCE_BANKS;
1161 break;
1162 default:
1163 r = 0;
1164 break;
1166 return r;
1170 long kvm_arch_dev_ioctl(struct file *filp,
1171 unsigned int ioctl, unsigned long arg)
1173 void __user *argp = (void __user *)arg;
1174 long r;
1176 switch (ioctl) {
1177 case KVM_GET_MSR_INDEX_LIST: {
1178 struct kvm_msr_list __user *user_msr_list = argp;
1179 struct kvm_msr_list msr_list;
1180 unsigned n;
1182 r = -EFAULT;
1183 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1184 goto out;
1185 n = msr_list.nmsrs;
1186 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1187 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1188 goto out;
1189 r = -E2BIG;
1190 if (n < msr_list.nmsrs)
1191 goto out;
1192 r = -EFAULT;
1193 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1194 num_msrs_to_save * sizeof(u32)))
1195 goto out;
1196 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1197 &emulated_msrs,
1198 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1199 goto out;
1200 r = 0;
1201 break;
1203 case KVM_GET_SUPPORTED_CPUID: {
1204 struct kvm_cpuid2 __user *cpuid_arg = argp;
1205 struct kvm_cpuid2 cpuid;
1207 r = -EFAULT;
1208 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1209 goto out;
1210 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1211 cpuid_arg->entries);
1212 if (r)
1213 goto out;
1215 r = -EFAULT;
1216 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1217 goto out;
1218 r = 0;
1219 break;
1221 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1222 u64 mce_cap;
1224 mce_cap = KVM_MCE_CAP_SUPPORTED;
1225 r = -EFAULT;
1226 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1227 goto out;
1228 r = 0;
1229 break;
1231 default:
1232 r = -EINVAL;
1234 out:
1235 return r;
1238 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1240 kvm_x86_ops->vcpu_load(vcpu, cpu);
1241 kvm_request_guest_time_update(vcpu);
1244 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1246 kvm_x86_ops->vcpu_put(vcpu);
1247 kvm_put_guest_fpu(vcpu);
1250 static int is_efer_nx(void)
1252 unsigned long long efer = 0;
1254 rdmsrl_safe(MSR_EFER, &efer);
1255 return efer & EFER_NX;
1258 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1260 int i;
1261 struct kvm_cpuid_entry2 *e, *entry;
1263 entry = NULL;
1264 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1265 e = &vcpu->arch.cpuid_entries[i];
1266 if (e->function == 0x80000001) {
1267 entry = e;
1268 break;
1271 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1272 entry->edx &= ~(1 << 20);
1273 printk(KERN_INFO "kvm: guest NX capability removed\n");
1277 /* when an old userspace process fills a new kernel module */
1278 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1279 struct kvm_cpuid *cpuid,
1280 struct kvm_cpuid_entry __user *entries)
1282 int r, i;
1283 struct kvm_cpuid_entry *cpuid_entries;
1285 r = -E2BIG;
1286 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1287 goto out;
1288 r = -ENOMEM;
1289 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1290 if (!cpuid_entries)
1291 goto out;
1292 r = -EFAULT;
1293 if (copy_from_user(cpuid_entries, entries,
1294 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1295 goto out_free;
1296 for (i = 0; i < cpuid->nent; i++) {
1297 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1298 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1299 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1300 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1301 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1302 vcpu->arch.cpuid_entries[i].index = 0;
1303 vcpu->arch.cpuid_entries[i].flags = 0;
1304 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1305 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1306 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1308 vcpu->arch.cpuid_nent = cpuid->nent;
1309 cpuid_fix_nx_cap(vcpu);
1310 r = 0;
1312 out_free:
1313 vfree(cpuid_entries);
1314 out:
1315 return r;
1318 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1319 struct kvm_cpuid2 *cpuid,
1320 struct kvm_cpuid_entry2 __user *entries)
1322 int r;
1324 r = -E2BIG;
1325 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1326 goto out;
1327 r = -EFAULT;
1328 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1329 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1330 goto out;
1331 vcpu->arch.cpuid_nent = cpuid->nent;
1332 return 0;
1334 out:
1335 return r;
1338 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1339 struct kvm_cpuid2 *cpuid,
1340 struct kvm_cpuid_entry2 __user *entries)
1342 int r;
1344 r = -E2BIG;
1345 if (cpuid->nent < vcpu->arch.cpuid_nent)
1346 goto out;
1347 r = -EFAULT;
1348 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1349 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1350 goto out;
1351 return 0;
1353 out:
1354 cpuid->nent = vcpu->arch.cpuid_nent;
1355 return r;
1358 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1359 u32 index)
1361 entry->function = function;
1362 entry->index = index;
1363 cpuid_count(entry->function, entry->index,
1364 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1365 entry->flags = 0;
1368 #define F(x) bit(X86_FEATURE_##x)
1370 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1371 u32 index, int *nent, int maxnent)
1373 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1374 #ifdef CONFIG_X86_64
1375 unsigned f_lm = F(LM);
1376 #else
1377 unsigned f_lm = 0;
1378 #endif
1380 /* cpuid 1.edx */
1381 const u32 kvm_supported_word0_x86_features =
1382 F(FPU) | F(VME) | F(DE) | F(PSE) |
1383 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1384 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1385 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1386 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1387 0 /* Reserved, DS, ACPI */ | F(MMX) |
1388 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1389 0 /* HTT, TM, Reserved, PBE */;
1390 /* cpuid 0x80000001.edx */
1391 const u32 kvm_supported_word1_x86_features =
1392 F(FPU) | F(VME) | F(DE) | F(PSE) |
1393 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1394 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1395 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1396 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1397 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1398 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1399 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1400 /* cpuid 1.ecx */
1401 const u32 kvm_supported_word4_x86_features =
1402 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1403 0 /* DS-CPL, VMX, SMX, EST */ |
1404 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1405 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1406 0 /* Reserved, DCA */ | F(XMM4_1) |
1407 F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
1408 0 /* Reserved, XSAVE, OSXSAVE */;
1409 /* cpuid 0x80000001.ecx */
1410 const u32 kvm_supported_word6_x86_features =
1411 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1412 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1413 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1414 0 /* SKINIT */ | 0 /* WDT */;
1416 /* all calls to cpuid_count() should be made on the same cpu */
1417 get_cpu();
1418 do_cpuid_1_ent(entry, function, index);
1419 ++*nent;
1421 switch (function) {
1422 case 0:
1423 entry->eax = min(entry->eax, (u32)0xb);
1424 break;
1425 case 1:
1426 entry->edx &= kvm_supported_word0_x86_features;
1427 entry->ecx &= kvm_supported_word4_x86_features;
1428 break;
1429 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1430 * may return different values. This forces us to get_cpu() before
1431 * issuing the first command, and also to emulate this annoying behavior
1432 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1433 case 2: {
1434 int t, times = entry->eax & 0xff;
1436 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1437 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1438 for (t = 1; t < times && *nent < maxnent; ++t) {
1439 do_cpuid_1_ent(&entry[t], function, 0);
1440 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1441 ++*nent;
1443 break;
1445 /* function 4 and 0xb have additional index. */
1446 case 4: {
1447 int i, cache_type;
1449 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1450 /* read more entries until cache_type is zero */
1451 for (i = 1; *nent < maxnent; ++i) {
1452 cache_type = entry[i - 1].eax & 0x1f;
1453 if (!cache_type)
1454 break;
1455 do_cpuid_1_ent(&entry[i], function, i);
1456 entry[i].flags |=
1457 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1458 ++*nent;
1460 break;
1462 case 0xb: {
1463 int i, level_type;
1465 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1466 /* read more entries until level_type is zero */
1467 for (i = 1; *nent < maxnent; ++i) {
1468 level_type = entry[i - 1].ecx & 0xff00;
1469 if (!level_type)
1470 break;
1471 do_cpuid_1_ent(&entry[i], function, i);
1472 entry[i].flags |=
1473 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1474 ++*nent;
1476 break;
1478 case 0x80000000:
1479 entry->eax = min(entry->eax, 0x8000001a);
1480 break;
1481 case 0x80000001:
1482 entry->edx &= kvm_supported_word1_x86_features;
1483 entry->ecx &= kvm_supported_word6_x86_features;
1484 break;
1486 put_cpu();
1489 #undef F
1491 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1492 struct kvm_cpuid_entry2 __user *entries)
1494 struct kvm_cpuid_entry2 *cpuid_entries;
1495 int limit, nent = 0, r = -E2BIG;
1496 u32 func;
1498 if (cpuid->nent < 1)
1499 goto out;
1500 r = -ENOMEM;
1501 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1502 if (!cpuid_entries)
1503 goto out;
1505 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1506 limit = cpuid_entries[0].eax;
1507 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1508 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1509 &nent, cpuid->nent);
1510 r = -E2BIG;
1511 if (nent >= cpuid->nent)
1512 goto out_free;
1514 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1515 limit = cpuid_entries[nent - 1].eax;
1516 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1517 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1518 &nent, cpuid->nent);
1519 r = -E2BIG;
1520 if (nent >= cpuid->nent)
1521 goto out_free;
1523 r = -EFAULT;
1524 if (copy_to_user(entries, cpuid_entries,
1525 nent * sizeof(struct kvm_cpuid_entry2)))
1526 goto out_free;
1527 cpuid->nent = nent;
1528 r = 0;
1530 out_free:
1531 vfree(cpuid_entries);
1532 out:
1533 return r;
1536 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1537 struct kvm_lapic_state *s)
1539 vcpu_load(vcpu);
1540 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1541 vcpu_put(vcpu);
1543 return 0;
1546 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1547 struct kvm_lapic_state *s)
1549 vcpu_load(vcpu);
1550 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1551 kvm_apic_post_state_restore(vcpu);
1552 vcpu_put(vcpu);
1554 return 0;
1557 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1558 struct kvm_interrupt *irq)
1560 if (irq->irq < 0 || irq->irq >= 256)
1561 return -EINVAL;
1562 if (irqchip_in_kernel(vcpu->kvm))
1563 return -ENXIO;
1564 vcpu_load(vcpu);
1566 kvm_queue_interrupt(vcpu, irq->irq, false);
1568 vcpu_put(vcpu);
1570 return 0;
1573 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1575 vcpu_load(vcpu);
1576 kvm_inject_nmi(vcpu);
1577 vcpu_put(vcpu);
1579 return 0;
1582 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1583 struct kvm_tpr_access_ctl *tac)
1585 if (tac->flags)
1586 return -EINVAL;
1587 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1588 return 0;
1591 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1592 u64 mcg_cap)
1594 int r;
1595 unsigned bank_num = mcg_cap & 0xff, bank;
1597 r = -EINVAL;
1598 if (!bank_num)
1599 goto out;
1600 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1601 goto out;
1602 r = 0;
1603 vcpu->arch.mcg_cap = mcg_cap;
1604 /* Init IA32_MCG_CTL to all 1s */
1605 if (mcg_cap & MCG_CTL_P)
1606 vcpu->arch.mcg_ctl = ~(u64)0;
1607 /* Init IA32_MCi_CTL to all 1s */
1608 for (bank = 0; bank < bank_num; bank++)
1609 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1610 out:
1611 return r;
1614 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1615 struct kvm_x86_mce *mce)
1617 u64 mcg_cap = vcpu->arch.mcg_cap;
1618 unsigned bank_num = mcg_cap & 0xff;
1619 u64 *banks = vcpu->arch.mce_banks;
1621 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1622 return -EINVAL;
1624 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1625 * reporting is disabled
1627 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1628 vcpu->arch.mcg_ctl != ~(u64)0)
1629 return 0;
1630 banks += 4 * mce->bank;
1632 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1633 * reporting is disabled for the bank
1635 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1636 return 0;
1637 if (mce->status & MCI_STATUS_UC) {
1638 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1639 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1640 printk(KERN_DEBUG "kvm: set_mce: "
1641 "injects mce exception while "
1642 "previous one is in progress!\n");
1643 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1644 return 0;
1646 if (banks[1] & MCI_STATUS_VAL)
1647 mce->status |= MCI_STATUS_OVER;
1648 banks[2] = mce->addr;
1649 banks[3] = mce->misc;
1650 vcpu->arch.mcg_status = mce->mcg_status;
1651 banks[1] = mce->status;
1652 kvm_queue_exception(vcpu, MC_VECTOR);
1653 } else if (!(banks[1] & MCI_STATUS_VAL)
1654 || !(banks[1] & MCI_STATUS_UC)) {
1655 if (banks[1] & MCI_STATUS_VAL)
1656 mce->status |= MCI_STATUS_OVER;
1657 banks[2] = mce->addr;
1658 banks[3] = mce->misc;
1659 banks[1] = mce->status;
1660 } else
1661 banks[1] |= MCI_STATUS_OVER;
1662 return 0;
1665 long kvm_arch_vcpu_ioctl(struct file *filp,
1666 unsigned int ioctl, unsigned long arg)
1668 struct kvm_vcpu *vcpu = filp->private_data;
1669 void __user *argp = (void __user *)arg;
1670 int r;
1671 struct kvm_lapic_state *lapic = NULL;
1673 switch (ioctl) {
1674 case KVM_GET_LAPIC: {
1675 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1677 r = -ENOMEM;
1678 if (!lapic)
1679 goto out;
1680 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1681 if (r)
1682 goto out;
1683 r = -EFAULT;
1684 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1685 goto out;
1686 r = 0;
1687 break;
1689 case KVM_SET_LAPIC: {
1690 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1691 r = -ENOMEM;
1692 if (!lapic)
1693 goto out;
1694 r = -EFAULT;
1695 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1696 goto out;
1697 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1698 if (r)
1699 goto out;
1700 r = 0;
1701 break;
1703 case KVM_INTERRUPT: {
1704 struct kvm_interrupt irq;
1706 r = -EFAULT;
1707 if (copy_from_user(&irq, argp, sizeof irq))
1708 goto out;
1709 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1710 if (r)
1711 goto out;
1712 r = 0;
1713 break;
1715 case KVM_NMI: {
1716 r = kvm_vcpu_ioctl_nmi(vcpu);
1717 if (r)
1718 goto out;
1719 r = 0;
1720 break;
1722 case KVM_SET_CPUID: {
1723 struct kvm_cpuid __user *cpuid_arg = argp;
1724 struct kvm_cpuid cpuid;
1726 r = -EFAULT;
1727 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1728 goto out;
1729 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1730 if (r)
1731 goto out;
1732 break;
1734 case KVM_SET_CPUID2: {
1735 struct kvm_cpuid2 __user *cpuid_arg = argp;
1736 struct kvm_cpuid2 cpuid;
1738 r = -EFAULT;
1739 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1740 goto out;
1741 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1742 cpuid_arg->entries);
1743 if (r)
1744 goto out;
1745 break;
1747 case KVM_GET_CPUID2: {
1748 struct kvm_cpuid2 __user *cpuid_arg = argp;
1749 struct kvm_cpuid2 cpuid;
1751 r = -EFAULT;
1752 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1753 goto out;
1754 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1755 cpuid_arg->entries);
1756 if (r)
1757 goto out;
1758 r = -EFAULT;
1759 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1760 goto out;
1761 r = 0;
1762 break;
1764 case KVM_GET_MSRS:
1765 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1766 break;
1767 case KVM_SET_MSRS:
1768 r = msr_io(vcpu, argp, do_set_msr, 0);
1769 break;
1770 case KVM_TPR_ACCESS_REPORTING: {
1771 struct kvm_tpr_access_ctl tac;
1773 r = -EFAULT;
1774 if (copy_from_user(&tac, argp, sizeof tac))
1775 goto out;
1776 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1777 if (r)
1778 goto out;
1779 r = -EFAULT;
1780 if (copy_to_user(argp, &tac, sizeof tac))
1781 goto out;
1782 r = 0;
1783 break;
1785 case KVM_SET_VAPIC_ADDR: {
1786 struct kvm_vapic_addr va;
1788 r = -EINVAL;
1789 if (!irqchip_in_kernel(vcpu->kvm))
1790 goto out;
1791 r = -EFAULT;
1792 if (copy_from_user(&va, argp, sizeof va))
1793 goto out;
1794 r = 0;
1795 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1796 break;
1798 case KVM_X86_SETUP_MCE: {
1799 u64 mcg_cap;
1801 r = -EFAULT;
1802 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1803 goto out;
1804 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1805 break;
1807 case KVM_X86_SET_MCE: {
1808 struct kvm_x86_mce mce;
1810 r = -EFAULT;
1811 if (copy_from_user(&mce, argp, sizeof mce))
1812 goto out;
1813 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1814 break;
1816 default:
1817 r = -EINVAL;
1819 out:
1820 kfree(lapic);
1821 return r;
1824 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1826 int ret;
1828 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1829 return -1;
1830 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1831 return ret;
1834 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1835 u32 kvm_nr_mmu_pages)
1837 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1838 return -EINVAL;
1840 down_write(&kvm->slots_lock);
1841 spin_lock(&kvm->mmu_lock);
1843 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1844 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1846 spin_unlock(&kvm->mmu_lock);
1847 up_write(&kvm->slots_lock);
1848 return 0;
1851 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1853 return kvm->arch.n_alloc_mmu_pages;
1856 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1858 int i;
1859 struct kvm_mem_alias *alias;
1861 for (i = 0; i < kvm->arch.naliases; ++i) {
1862 alias = &kvm->arch.aliases[i];
1863 if (gfn >= alias->base_gfn
1864 && gfn < alias->base_gfn + alias->npages)
1865 return alias->target_gfn + gfn - alias->base_gfn;
1867 return gfn;
1871 * Set a new alias region. Aliases map a portion of physical memory into
1872 * another portion. This is useful for memory windows, for example the PC
1873 * VGA region.
1875 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1876 struct kvm_memory_alias *alias)
1878 int r, n;
1879 struct kvm_mem_alias *p;
1881 r = -EINVAL;
1882 /* General sanity checks */
1883 if (alias->memory_size & (PAGE_SIZE - 1))
1884 goto out;
1885 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1886 goto out;
1887 if (alias->slot >= KVM_ALIAS_SLOTS)
1888 goto out;
1889 if (alias->guest_phys_addr + alias->memory_size
1890 < alias->guest_phys_addr)
1891 goto out;
1892 if (alias->target_phys_addr + alias->memory_size
1893 < alias->target_phys_addr)
1894 goto out;
1896 down_write(&kvm->slots_lock);
1897 spin_lock(&kvm->mmu_lock);
1899 p = &kvm->arch.aliases[alias->slot];
1900 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1901 p->npages = alias->memory_size >> PAGE_SHIFT;
1902 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1904 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1905 if (kvm->arch.aliases[n - 1].npages)
1906 break;
1907 kvm->arch.naliases = n;
1909 spin_unlock(&kvm->mmu_lock);
1910 kvm_mmu_zap_all(kvm);
1912 up_write(&kvm->slots_lock);
1914 return 0;
1916 out:
1917 return r;
1920 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1922 int r;
1924 r = 0;
1925 switch (chip->chip_id) {
1926 case KVM_IRQCHIP_PIC_MASTER:
1927 memcpy(&chip->chip.pic,
1928 &pic_irqchip(kvm)->pics[0],
1929 sizeof(struct kvm_pic_state));
1930 break;
1931 case KVM_IRQCHIP_PIC_SLAVE:
1932 memcpy(&chip->chip.pic,
1933 &pic_irqchip(kvm)->pics[1],
1934 sizeof(struct kvm_pic_state));
1935 break;
1936 case KVM_IRQCHIP_IOAPIC:
1937 memcpy(&chip->chip.ioapic,
1938 ioapic_irqchip(kvm),
1939 sizeof(struct kvm_ioapic_state));
1940 break;
1941 default:
1942 r = -EINVAL;
1943 break;
1945 return r;
1948 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1950 int r;
1952 r = 0;
1953 switch (chip->chip_id) {
1954 case KVM_IRQCHIP_PIC_MASTER:
1955 memcpy(&pic_irqchip(kvm)->pics[0],
1956 &chip->chip.pic,
1957 sizeof(struct kvm_pic_state));
1958 break;
1959 case KVM_IRQCHIP_PIC_SLAVE:
1960 memcpy(&pic_irqchip(kvm)->pics[1],
1961 &chip->chip.pic,
1962 sizeof(struct kvm_pic_state));
1963 break;
1964 case KVM_IRQCHIP_IOAPIC:
1965 memcpy(ioapic_irqchip(kvm),
1966 &chip->chip.ioapic,
1967 sizeof(struct kvm_ioapic_state));
1968 break;
1969 default:
1970 r = -EINVAL;
1971 break;
1973 kvm_pic_update_irq(pic_irqchip(kvm));
1974 return r;
1977 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1979 int r = 0;
1981 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1982 return r;
1985 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1987 int r = 0;
1989 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1990 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1991 return r;
1994 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1995 struct kvm_reinject_control *control)
1997 if (!kvm->arch.vpit)
1998 return -ENXIO;
1999 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2000 return 0;
2004 * Get (and clear) the dirty memory log for a memory slot.
2006 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2007 struct kvm_dirty_log *log)
2009 int r;
2010 int n;
2011 struct kvm_memory_slot *memslot;
2012 int is_dirty = 0;
2014 down_write(&kvm->slots_lock);
2016 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2017 if (r)
2018 goto out;
2020 /* If nothing is dirty, don't bother messing with page tables. */
2021 if (is_dirty) {
2022 spin_lock(&kvm->mmu_lock);
2023 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2024 spin_unlock(&kvm->mmu_lock);
2025 kvm_flush_remote_tlbs(kvm);
2026 memslot = &kvm->memslots[log->slot];
2027 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2028 memset(memslot->dirty_bitmap, 0, n);
2030 r = 0;
2031 out:
2032 up_write(&kvm->slots_lock);
2033 return r;
2036 long kvm_arch_vm_ioctl(struct file *filp,
2037 unsigned int ioctl, unsigned long arg)
2039 struct kvm *kvm = filp->private_data;
2040 void __user *argp = (void __user *)arg;
2041 int r = -EINVAL;
2043 * This union makes it completely explicit to gcc-3.x
2044 * that these two variables' stack usage should be
2045 * combined, not added together.
2047 union {
2048 struct kvm_pit_state ps;
2049 struct kvm_memory_alias alias;
2050 struct kvm_pit_config pit_config;
2051 } u;
2053 switch (ioctl) {
2054 case KVM_SET_TSS_ADDR:
2055 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2056 if (r < 0)
2057 goto out;
2058 break;
2059 case KVM_SET_MEMORY_REGION: {
2060 struct kvm_memory_region kvm_mem;
2061 struct kvm_userspace_memory_region kvm_userspace_mem;
2063 r = -EFAULT;
2064 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2065 goto out;
2066 kvm_userspace_mem.slot = kvm_mem.slot;
2067 kvm_userspace_mem.flags = kvm_mem.flags;
2068 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2069 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2070 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2071 if (r)
2072 goto out;
2073 break;
2075 case KVM_SET_NR_MMU_PAGES:
2076 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2077 if (r)
2078 goto out;
2079 break;
2080 case KVM_GET_NR_MMU_PAGES:
2081 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2082 break;
2083 case KVM_SET_MEMORY_ALIAS:
2084 r = -EFAULT;
2085 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2086 goto out;
2087 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2088 if (r)
2089 goto out;
2090 break;
2091 case KVM_CREATE_IRQCHIP:
2092 r = -ENOMEM;
2093 kvm->arch.vpic = kvm_create_pic(kvm);
2094 if (kvm->arch.vpic) {
2095 r = kvm_ioapic_init(kvm);
2096 if (r) {
2097 kfree(kvm->arch.vpic);
2098 kvm->arch.vpic = NULL;
2099 goto out;
2101 } else
2102 goto out;
2103 r = kvm_setup_default_irq_routing(kvm);
2104 if (r) {
2105 kfree(kvm->arch.vpic);
2106 kfree(kvm->arch.vioapic);
2107 goto out;
2109 break;
2110 case KVM_CREATE_PIT:
2111 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2112 goto create_pit;
2113 case KVM_CREATE_PIT2:
2114 r = -EFAULT;
2115 if (copy_from_user(&u.pit_config, argp,
2116 sizeof(struct kvm_pit_config)))
2117 goto out;
2118 create_pit:
2119 mutex_lock(&kvm->lock);
2120 r = -EEXIST;
2121 if (kvm->arch.vpit)
2122 goto create_pit_unlock;
2123 r = -ENOMEM;
2124 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2125 if (kvm->arch.vpit)
2126 r = 0;
2127 create_pit_unlock:
2128 mutex_unlock(&kvm->lock);
2129 break;
2130 case KVM_IRQ_LINE_STATUS:
2131 case KVM_IRQ_LINE: {
2132 struct kvm_irq_level irq_event;
2134 r = -EFAULT;
2135 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2136 goto out;
2137 if (irqchip_in_kernel(kvm)) {
2138 __s32 status;
2139 mutex_lock(&kvm->irq_lock);
2140 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2141 irq_event.irq, irq_event.level);
2142 mutex_unlock(&kvm->irq_lock);
2143 if (ioctl == KVM_IRQ_LINE_STATUS) {
2144 irq_event.status = status;
2145 if (copy_to_user(argp, &irq_event,
2146 sizeof irq_event))
2147 goto out;
2149 r = 0;
2151 break;
2153 case KVM_GET_IRQCHIP: {
2154 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2155 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2157 r = -ENOMEM;
2158 if (!chip)
2159 goto out;
2160 r = -EFAULT;
2161 if (copy_from_user(chip, argp, sizeof *chip))
2162 goto get_irqchip_out;
2163 r = -ENXIO;
2164 if (!irqchip_in_kernel(kvm))
2165 goto get_irqchip_out;
2166 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2167 if (r)
2168 goto get_irqchip_out;
2169 r = -EFAULT;
2170 if (copy_to_user(argp, chip, sizeof *chip))
2171 goto get_irqchip_out;
2172 r = 0;
2173 get_irqchip_out:
2174 kfree(chip);
2175 if (r)
2176 goto out;
2177 break;
2179 case KVM_SET_IRQCHIP: {
2180 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2181 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2183 r = -ENOMEM;
2184 if (!chip)
2185 goto out;
2186 r = -EFAULT;
2187 if (copy_from_user(chip, argp, sizeof *chip))
2188 goto set_irqchip_out;
2189 r = -ENXIO;
2190 if (!irqchip_in_kernel(kvm))
2191 goto set_irqchip_out;
2192 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2193 if (r)
2194 goto set_irqchip_out;
2195 r = 0;
2196 set_irqchip_out:
2197 kfree(chip);
2198 if (r)
2199 goto out;
2200 break;
2202 case KVM_GET_PIT: {
2203 r = -EFAULT;
2204 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2205 goto out;
2206 r = -ENXIO;
2207 if (!kvm->arch.vpit)
2208 goto out;
2209 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2210 if (r)
2211 goto out;
2212 r = -EFAULT;
2213 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2214 goto out;
2215 r = 0;
2216 break;
2218 case KVM_SET_PIT: {
2219 r = -EFAULT;
2220 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2221 goto out;
2222 r = -ENXIO;
2223 if (!kvm->arch.vpit)
2224 goto out;
2225 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2226 if (r)
2227 goto out;
2228 r = 0;
2229 break;
2231 case KVM_REINJECT_CONTROL: {
2232 struct kvm_reinject_control control;
2233 r = -EFAULT;
2234 if (copy_from_user(&control, argp, sizeof(control)))
2235 goto out;
2236 r = kvm_vm_ioctl_reinject(kvm, &control);
2237 if (r)
2238 goto out;
2239 r = 0;
2240 break;
2242 default:
2245 out:
2246 return r;
2249 static void kvm_init_msr_list(void)
2251 u32 dummy[2];
2252 unsigned i, j;
2254 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2255 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2256 continue;
2257 if (j < i)
2258 msrs_to_save[j] = msrs_to_save[i];
2259 j++;
2261 num_msrs_to_save = j;
2265 * Only apic need an MMIO device hook, so shortcut now..
2267 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2268 gpa_t addr, int len,
2269 int is_write)
2271 struct kvm_io_device *dev;
2273 if (vcpu->arch.apic) {
2274 dev = &vcpu->arch.apic->dev;
2275 if (kvm_iodevice_in_range(dev, addr, len, is_write))
2276 return dev;
2278 return NULL;
2282 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2283 gpa_t addr, int len,
2284 int is_write)
2286 struct kvm_io_device *dev;
2288 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2289 if (dev == NULL)
2290 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2291 is_write);
2292 return dev;
2295 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2296 struct kvm_vcpu *vcpu)
2298 void *data = val;
2299 int r = X86EMUL_CONTINUE;
2301 while (bytes) {
2302 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2303 unsigned offset = addr & (PAGE_SIZE-1);
2304 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2305 int ret;
2307 if (gpa == UNMAPPED_GVA) {
2308 r = X86EMUL_PROPAGATE_FAULT;
2309 goto out;
2311 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2312 if (ret < 0) {
2313 r = X86EMUL_UNHANDLEABLE;
2314 goto out;
2317 bytes -= toread;
2318 data += toread;
2319 addr += toread;
2321 out:
2322 return r;
2325 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2326 struct kvm_vcpu *vcpu)
2328 void *data = val;
2329 int r = X86EMUL_CONTINUE;
2331 while (bytes) {
2332 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2333 unsigned offset = addr & (PAGE_SIZE-1);
2334 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2335 int ret;
2337 if (gpa == UNMAPPED_GVA) {
2338 r = X86EMUL_PROPAGATE_FAULT;
2339 goto out;
2341 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2342 if (ret < 0) {
2343 r = X86EMUL_UNHANDLEABLE;
2344 goto out;
2347 bytes -= towrite;
2348 data += towrite;
2349 addr += towrite;
2351 out:
2352 return r;
2356 static int emulator_read_emulated(unsigned long addr,
2357 void *val,
2358 unsigned int bytes,
2359 struct kvm_vcpu *vcpu)
2361 struct kvm_io_device *mmio_dev;
2362 gpa_t gpa;
2364 if (vcpu->mmio_read_completed) {
2365 memcpy(val, vcpu->mmio_data, bytes);
2366 vcpu->mmio_read_completed = 0;
2367 return X86EMUL_CONTINUE;
2370 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2372 /* For APIC access vmexit */
2373 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2374 goto mmio;
2376 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2377 == X86EMUL_CONTINUE)
2378 return X86EMUL_CONTINUE;
2379 if (gpa == UNMAPPED_GVA)
2380 return X86EMUL_PROPAGATE_FAULT;
2382 mmio:
2384 * Is this MMIO handled locally?
2386 mutex_lock(&vcpu->kvm->lock);
2387 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2388 mutex_unlock(&vcpu->kvm->lock);
2389 if (mmio_dev) {
2390 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2391 return X86EMUL_CONTINUE;
2394 vcpu->mmio_needed = 1;
2395 vcpu->mmio_phys_addr = gpa;
2396 vcpu->mmio_size = bytes;
2397 vcpu->mmio_is_write = 0;
2399 return X86EMUL_UNHANDLEABLE;
2402 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2403 const void *val, int bytes)
2405 int ret;
2407 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2408 if (ret < 0)
2409 return 0;
2410 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2411 return 1;
2414 static int emulator_write_emulated_onepage(unsigned long addr,
2415 const void *val,
2416 unsigned int bytes,
2417 struct kvm_vcpu *vcpu)
2419 struct kvm_io_device *mmio_dev;
2420 gpa_t gpa;
2422 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2424 if (gpa == UNMAPPED_GVA) {
2425 kvm_inject_page_fault(vcpu, addr, 2);
2426 return X86EMUL_PROPAGATE_FAULT;
2429 /* For APIC access vmexit */
2430 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2431 goto mmio;
2433 if (emulator_write_phys(vcpu, gpa, val, bytes))
2434 return X86EMUL_CONTINUE;
2436 mmio:
2438 * Is this MMIO handled locally?
2440 mutex_lock(&vcpu->kvm->lock);
2441 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2442 mutex_unlock(&vcpu->kvm->lock);
2443 if (mmio_dev) {
2444 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2445 return X86EMUL_CONTINUE;
2448 vcpu->mmio_needed = 1;
2449 vcpu->mmio_phys_addr = gpa;
2450 vcpu->mmio_size = bytes;
2451 vcpu->mmio_is_write = 1;
2452 memcpy(vcpu->mmio_data, val, bytes);
2454 return X86EMUL_CONTINUE;
2457 int emulator_write_emulated(unsigned long addr,
2458 const void *val,
2459 unsigned int bytes,
2460 struct kvm_vcpu *vcpu)
2462 /* Crossing a page boundary? */
2463 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2464 int rc, now;
2466 now = -addr & ~PAGE_MASK;
2467 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2468 if (rc != X86EMUL_CONTINUE)
2469 return rc;
2470 addr += now;
2471 val += now;
2472 bytes -= now;
2474 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2476 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2478 static int emulator_cmpxchg_emulated(unsigned long addr,
2479 const void *old,
2480 const void *new,
2481 unsigned int bytes,
2482 struct kvm_vcpu *vcpu)
2484 static int reported;
2486 if (!reported) {
2487 reported = 1;
2488 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2490 #ifndef CONFIG_X86_64
2491 /* guests cmpxchg8b have to be emulated atomically */
2492 if (bytes == 8) {
2493 gpa_t gpa;
2494 struct page *page;
2495 char *kaddr;
2496 u64 val;
2498 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2500 if (gpa == UNMAPPED_GVA ||
2501 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2502 goto emul_write;
2504 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2505 goto emul_write;
2507 val = *(u64 *)new;
2509 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2511 kaddr = kmap_atomic(page, KM_USER0);
2512 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2513 kunmap_atomic(kaddr, KM_USER0);
2514 kvm_release_page_dirty(page);
2516 emul_write:
2517 #endif
2519 return emulator_write_emulated(addr, new, bytes, vcpu);
2522 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2524 return kvm_x86_ops->get_segment_base(vcpu, seg);
2527 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2529 kvm_mmu_invlpg(vcpu, address);
2530 return X86EMUL_CONTINUE;
2533 int emulate_clts(struct kvm_vcpu *vcpu)
2535 KVMTRACE_0D(CLTS, vcpu, handler);
2536 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2537 return X86EMUL_CONTINUE;
2540 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2542 struct kvm_vcpu *vcpu = ctxt->vcpu;
2544 switch (dr) {
2545 case 0 ... 3:
2546 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2547 return X86EMUL_CONTINUE;
2548 default:
2549 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2550 return X86EMUL_UNHANDLEABLE;
2554 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2556 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2557 int exception;
2559 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2560 if (exception) {
2561 /* FIXME: better handling */
2562 return X86EMUL_UNHANDLEABLE;
2564 return X86EMUL_CONTINUE;
2567 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2569 u8 opcodes[4];
2570 unsigned long rip = kvm_rip_read(vcpu);
2571 unsigned long rip_linear;
2573 if (!printk_ratelimit())
2574 return;
2576 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2578 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2580 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2581 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2583 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2585 static struct x86_emulate_ops emulate_ops = {
2586 .read_std = kvm_read_guest_virt,
2587 .read_emulated = emulator_read_emulated,
2588 .write_emulated = emulator_write_emulated,
2589 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2592 static void cache_all_regs(struct kvm_vcpu *vcpu)
2594 kvm_register_read(vcpu, VCPU_REGS_RAX);
2595 kvm_register_read(vcpu, VCPU_REGS_RSP);
2596 kvm_register_read(vcpu, VCPU_REGS_RIP);
2597 vcpu->arch.regs_dirty = ~0;
2600 int emulate_instruction(struct kvm_vcpu *vcpu,
2601 struct kvm_run *run,
2602 unsigned long cr2,
2603 u16 error_code,
2604 int emulation_type)
2606 int r, shadow_mask;
2607 struct decode_cache *c;
2609 kvm_clear_exception_queue(vcpu);
2610 vcpu->arch.mmio_fault_cr2 = cr2;
2612 * TODO: fix x86_emulate.c to use guest_read/write_register
2613 * instead of direct ->regs accesses, can save hundred cycles
2614 * on Intel for instructions that don't read/change RSP, for
2615 * for example.
2617 cache_all_regs(vcpu);
2619 vcpu->mmio_is_write = 0;
2620 vcpu->arch.pio.string = 0;
2622 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2623 int cs_db, cs_l;
2624 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2626 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2627 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2628 vcpu->arch.emulate_ctxt.mode =
2629 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2630 ? X86EMUL_MODE_REAL : cs_l
2631 ? X86EMUL_MODE_PROT64 : cs_db
2632 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2634 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2636 /* Reject the instructions other than VMCALL/VMMCALL when
2637 * try to emulate invalid opcode */
2638 c = &vcpu->arch.emulate_ctxt.decode;
2639 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2640 (!(c->twobyte && c->b == 0x01 &&
2641 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2642 c->modrm_mod == 3 && c->modrm_rm == 1)))
2643 return EMULATE_FAIL;
2645 ++vcpu->stat.insn_emulation;
2646 if (r) {
2647 ++vcpu->stat.insn_emulation_fail;
2648 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2649 return EMULATE_DONE;
2650 return EMULATE_FAIL;
2654 if (emulation_type & EMULTYPE_SKIP) {
2655 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2656 return EMULATE_DONE;
2659 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2660 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2662 if (r == 0)
2663 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2665 if (vcpu->arch.pio.string)
2666 return EMULATE_DO_MMIO;
2668 if ((r || vcpu->mmio_is_write) && run) {
2669 run->exit_reason = KVM_EXIT_MMIO;
2670 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2671 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2672 run->mmio.len = vcpu->mmio_size;
2673 run->mmio.is_write = vcpu->mmio_is_write;
2676 if (r) {
2677 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2678 return EMULATE_DONE;
2679 if (!vcpu->mmio_needed) {
2680 kvm_report_emulation_failure(vcpu, "mmio");
2681 return EMULATE_FAIL;
2683 return EMULATE_DO_MMIO;
2686 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2688 if (vcpu->mmio_is_write) {
2689 vcpu->mmio_needed = 0;
2690 return EMULATE_DO_MMIO;
2693 return EMULATE_DONE;
2695 EXPORT_SYMBOL_GPL(emulate_instruction);
2697 static int pio_copy_data(struct kvm_vcpu *vcpu)
2699 void *p = vcpu->arch.pio_data;
2700 gva_t q = vcpu->arch.pio.guest_gva;
2701 unsigned bytes;
2702 int ret;
2704 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2705 if (vcpu->arch.pio.in)
2706 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2707 else
2708 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2709 return ret;
2712 int complete_pio(struct kvm_vcpu *vcpu)
2714 struct kvm_pio_request *io = &vcpu->arch.pio;
2715 long delta;
2716 int r;
2717 unsigned long val;
2719 if (!io->string) {
2720 if (io->in) {
2721 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2722 memcpy(&val, vcpu->arch.pio_data, io->size);
2723 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2725 } else {
2726 if (io->in) {
2727 r = pio_copy_data(vcpu);
2728 if (r)
2729 return r;
2732 delta = 1;
2733 if (io->rep) {
2734 delta *= io->cur_count;
2736 * The size of the register should really depend on
2737 * current address size.
2739 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2740 val -= delta;
2741 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2743 if (io->down)
2744 delta = -delta;
2745 delta *= io->size;
2746 if (io->in) {
2747 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2748 val += delta;
2749 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2750 } else {
2751 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2752 val += delta;
2753 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2757 io->count -= io->cur_count;
2758 io->cur_count = 0;
2760 return 0;
2763 static void kernel_pio(struct kvm_io_device *pio_dev,
2764 struct kvm_vcpu *vcpu,
2765 void *pd)
2767 /* TODO: String I/O for in kernel device */
2769 if (vcpu->arch.pio.in)
2770 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2771 vcpu->arch.pio.size,
2772 pd);
2773 else
2774 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2775 vcpu->arch.pio.size,
2776 pd);
2779 static void pio_string_write(struct kvm_io_device *pio_dev,
2780 struct kvm_vcpu *vcpu)
2782 struct kvm_pio_request *io = &vcpu->arch.pio;
2783 void *pd = vcpu->arch.pio_data;
2784 int i;
2786 for (i = 0; i < io->cur_count; i++) {
2787 kvm_iodevice_write(pio_dev, io->port,
2788 io->size,
2789 pd);
2790 pd += io->size;
2794 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2795 gpa_t addr, int len,
2796 int is_write)
2798 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2801 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2802 int size, unsigned port)
2804 struct kvm_io_device *pio_dev;
2805 unsigned long val;
2807 vcpu->run->exit_reason = KVM_EXIT_IO;
2808 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2809 vcpu->run->io.size = vcpu->arch.pio.size = size;
2810 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2811 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2812 vcpu->run->io.port = vcpu->arch.pio.port = port;
2813 vcpu->arch.pio.in = in;
2814 vcpu->arch.pio.string = 0;
2815 vcpu->arch.pio.down = 0;
2816 vcpu->arch.pio.rep = 0;
2818 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2819 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2820 handler);
2821 else
2822 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2823 handler);
2825 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2826 memcpy(vcpu->arch.pio_data, &val, 4);
2828 mutex_lock(&vcpu->kvm->lock);
2829 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2830 mutex_unlock(&vcpu->kvm->lock);
2831 if (pio_dev) {
2832 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2833 complete_pio(vcpu);
2834 return 1;
2836 return 0;
2838 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2840 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2841 int size, unsigned long count, int down,
2842 gva_t address, int rep, unsigned port)
2844 unsigned now, in_page;
2845 int ret = 0;
2846 struct kvm_io_device *pio_dev;
2848 vcpu->run->exit_reason = KVM_EXIT_IO;
2849 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2850 vcpu->run->io.size = vcpu->arch.pio.size = size;
2851 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2852 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2853 vcpu->run->io.port = vcpu->arch.pio.port = port;
2854 vcpu->arch.pio.in = in;
2855 vcpu->arch.pio.string = 1;
2856 vcpu->arch.pio.down = down;
2857 vcpu->arch.pio.rep = rep;
2859 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2860 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2861 handler);
2862 else
2863 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2864 handler);
2866 if (!count) {
2867 kvm_x86_ops->skip_emulated_instruction(vcpu);
2868 return 1;
2871 if (!down)
2872 in_page = PAGE_SIZE - offset_in_page(address);
2873 else
2874 in_page = offset_in_page(address) + size;
2875 now = min(count, (unsigned long)in_page / size);
2876 if (!now)
2877 now = 1;
2878 if (down) {
2880 * String I/O in reverse. Yuck. Kill the guest, fix later.
2882 pr_unimpl(vcpu, "guest string pio down\n");
2883 kvm_inject_gp(vcpu, 0);
2884 return 1;
2886 vcpu->run->io.count = now;
2887 vcpu->arch.pio.cur_count = now;
2889 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2890 kvm_x86_ops->skip_emulated_instruction(vcpu);
2892 vcpu->arch.pio.guest_gva = address;
2894 mutex_lock(&vcpu->kvm->lock);
2895 pio_dev = vcpu_find_pio_dev(vcpu, port,
2896 vcpu->arch.pio.cur_count,
2897 !vcpu->arch.pio.in);
2898 mutex_unlock(&vcpu->kvm->lock);
2900 if (!vcpu->arch.pio.in) {
2901 /* string PIO write */
2902 ret = pio_copy_data(vcpu);
2903 if (ret == X86EMUL_PROPAGATE_FAULT) {
2904 kvm_inject_gp(vcpu, 0);
2905 return 1;
2907 if (ret == 0 && pio_dev) {
2908 pio_string_write(pio_dev, vcpu);
2909 complete_pio(vcpu);
2910 if (vcpu->arch.pio.count == 0)
2911 ret = 1;
2913 } else if (pio_dev)
2914 pr_unimpl(vcpu, "no string pio read support yet, "
2915 "port %x size %d count %ld\n",
2916 port, size, count);
2918 return ret;
2920 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2922 static void bounce_off(void *info)
2924 /* nothing */
2927 static unsigned int ref_freq;
2928 static unsigned long tsc_khz_ref;
2930 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2931 void *data)
2933 struct cpufreq_freqs *freq = data;
2934 struct kvm *kvm;
2935 struct kvm_vcpu *vcpu;
2936 int i, send_ipi = 0;
2938 if (!ref_freq)
2939 ref_freq = freq->old;
2941 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2942 return 0;
2943 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2944 return 0;
2945 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2947 spin_lock(&kvm_lock);
2948 list_for_each_entry(kvm, &vm_list, vm_list) {
2949 kvm_for_each_vcpu(i, vcpu, kvm) {
2950 if (vcpu->cpu != freq->cpu)
2951 continue;
2952 if (!kvm_request_guest_time_update(vcpu))
2953 continue;
2954 if (vcpu->cpu != smp_processor_id())
2955 send_ipi++;
2958 spin_unlock(&kvm_lock);
2960 if (freq->old < freq->new && send_ipi) {
2962 * We upscale the frequency. Must make the guest
2963 * doesn't see old kvmclock values while running with
2964 * the new frequency, otherwise we risk the guest sees
2965 * time go backwards.
2967 * In case we update the frequency for another cpu
2968 * (which might be in guest context) send an interrupt
2969 * to kick the cpu out of guest context. Next time
2970 * guest context is entered kvmclock will be updated,
2971 * so the guest will not see stale values.
2973 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2975 return 0;
2978 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2979 .notifier_call = kvmclock_cpufreq_notifier
2982 int kvm_arch_init(void *opaque)
2984 int r, cpu;
2985 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2987 if (kvm_x86_ops) {
2988 printk(KERN_ERR "kvm: already loaded the other module\n");
2989 r = -EEXIST;
2990 goto out;
2993 if (!ops->cpu_has_kvm_support()) {
2994 printk(KERN_ERR "kvm: no hardware support\n");
2995 r = -EOPNOTSUPP;
2996 goto out;
2998 if (ops->disabled_by_bios()) {
2999 printk(KERN_ERR "kvm: disabled by bios\n");
3000 r = -EOPNOTSUPP;
3001 goto out;
3004 r = kvm_mmu_module_init();
3005 if (r)
3006 goto out;
3008 kvm_init_msr_list();
3010 kvm_x86_ops = ops;
3011 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3012 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3013 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3014 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3016 for_each_possible_cpu(cpu)
3017 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3018 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3019 tsc_khz_ref = tsc_khz;
3020 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3021 CPUFREQ_TRANSITION_NOTIFIER);
3024 return 0;
3026 out:
3027 return r;
3030 void kvm_arch_exit(void)
3032 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3033 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3034 CPUFREQ_TRANSITION_NOTIFIER);
3035 kvm_x86_ops = NULL;
3036 kvm_mmu_module_exit();
3039 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3041 ++vcpu->stat.halt_exits;
3042 KVMTRACE_0D(HLT, vcpu, handler);
3043 if (irqchip_in_kernel(vcpu->kvm)) {
3044 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3045 return 1;
3046 } else {
3047 vcpu->run->exit_reason = KVM_EXIT_HLT;
3048 return 0;
3051 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3053 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3054 unsigned long a1)
3056 if (is_long_mode(vcpu))
3057 return a0;
3058 else
3059 return a0 | ((gpa_t)a1 << 32);
3062 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3064 unsigned long nr, a0, a1, a2, a3, ret;
3065 int r = 1;
3067 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3068 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3069 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3070 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3071 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3073 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
3075 if (!is_long_mode(vcpu)) {
3076 nr &= 0xFFFFFFFF;
3077 a0 &= 0xFFFFFFFF;
3078 a1 &= 0xFFFFFFFF;
3079 a2 &= 0xFFFFFFFF;
3080 a3 &= 0xFFFFFFFF;
3083 switch (nr) {
3084 case KVM_HC_VAPIC_POLL_IRQ:
3085 ret = 0;
3086 break;
3087 case KVM_HC_MMU_OP:
3088 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3089 break;
3090 default:
3091 ret = -KVM_ENOSYS;
3092 break;
3094 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3095 ++vcpu->stat.hypercalls;
3096 return r;
3098 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3100 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3102 char instruction[3];
3103 int ret = 0;
3104 unsigned long rip = kvm_rip_read(vcpu);
3108 * Blow out the MMU to ensure that no other VCPU has an active mapping
3109 * to ensure that the updated hypercall appears atomically across all
3110 * VCPUs.
3112 kvm_mmu_zap_all(vcpu->kvm);
3114 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3115 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3116 != X86EMUL_CONTINUE)
3117 ret = -EFAULT;
3119 return ret;
3122 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3124 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3127 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3129 struct descriptor_table dt = { limit, base };
3131 kvm_x86_ops->set_gdt(vcpu, &dt);
3134 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3136 struct descriptor_table dt = { limit, base };
3138 kvm_x86_ops->set_idt(vcpu, &dt);
3141 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3142 unsigned long *rflags)
3144 kvm_lmsw(vcpu, msw);
3145 *rflags = kvm_x86_ops->get_rflags(vcpu);
3148 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3150 unsigned long value;
3152 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3153 switch (cr) {
3154 case 0:
3155 value = vcpu->arch.cr0;
3156 break;
3157 case 2:
3158 value = vcpu->arch.cr2;
3159 break;
3160 case 3:
3161 value = vcpu->arch.cr3;
3162 break;
3163 case 4:
3164 value = vcpu->arch.cr4;
3165 break;
3166 case 8:
3167 value = kvm_get_cr8(vcpu);
3168 break;
3169 default:
3170 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3171 return 0;
3173 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
3174 (u32)((u64)value >> 32), handler);
3176 return value;
3179 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3180 unsigned long *rflags)
3182 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
3183 (u32)((u64)val >> 32), handler);
3185 switch (cr) {
3186 case 0:
3187 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3188 *rflags = kvm_x86_ops->get_rflags(vcpu);
3189 break;
3190 case 2:
3191 vcpu->arch.cr2 = val;
3192 break;
3193 case 3:
3194 kvm_set_cr3(vcpu, val);
3195 break;
3196 case 4:
3197 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3198 break;
3199 case 8:
3200 kvm_set_cr8(vcpu, val & 0xfUL);
3201 break;
3202 default:
3203 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3207 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3209 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3210 int j, nent = vcpu->arch.cpuid_nent;
3212 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3213 /* when no next entry is found, the current entry[i] is reselected */
3214 for (j = i + 1; ; j = (j + 1) % nent) {
3215 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3216 if (ej->function == e->function) {
3217 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3218 return j;
3221 return 0; /* silence gcc, even though control never reaches here */
3224 /* find an entry with matching function, matching index (if needed), and that
3225 * should be read next (if it's stateful) */
3226 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3227 u32 function, u32 index)
3229 if (e->function != function)
3230 return 0;
3231 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3232 return 0;
3233 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3234 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3235 return 0;
3236 return 1;
3239 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3240 u32 function, u32 index)
3242 int i;
3243 struct kvm_cpuid_entry2 *best = NULL;
3245 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3246 struct kvm_cpuid_entry2 *e;
3248 e = &vcpu->arch.cpuid_entries[i];
3249 if (is_matching_cpuid_entry(e, function, index)) {
3250 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3251 move_to_next_stateful_cpuid_entry(vcpu, i);
3252 best = e;
3253 break;
3256 * Both basic or both extended?
3258 if (((e->function ^ function) & 0x80000000) == 0)
3259 if (!best || e->function > best->function)
3260 best = e;
3262 return best;
3265 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3267 struct kvm_cpuid_entry2 *best;
3269 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3270 if (best)
3271 return best->eax & 0xff;
3272 return 36;
3275 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3277 u32 function, index;
3278 struct kvm_cpuid_entry2 *best;
3280 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3281 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3282 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3283 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3284 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3285 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3286 best = kvm_find_cpuid_entry(vcpu, function, index);
3287 if (best) {
3288 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3289 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3290 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3291 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3293 kvm_x86_ops->skip_emulated_instruction(vcpu);
3294 KVMTRACE_5D(CPUID, vcpu, function,
3295 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3296 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3297 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3298 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3300 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3303 * Check if userspace requested an interrupt window, and that the
3304 * interrupt window is open.
3306 * No need to exit to userspace if we already have an interrupt queued.
3308 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3309 struct kvm_run *kvm_run)
3311 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3312 kvm_run->request_interrupt_window &&
3313 kvm_arch_interrupt_allowed(vcpu));
3316 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3317 struct kvm_run *kvm_run)
3319 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3320 kvm_run->cr8 = kvm_get_cr8(vcpu);
3321 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3322 if (irqchip_in_kernel(vcpu->kvm))
3323 kvm_run->ready_for_interrupt_injection = 1;
3324 else
3325 kvm_run->ready_for_interrupt_injection =
3326 kvm_arch_interrupt_allowed(vcpu) &&
3327 !kvm_cpu_has_interrupt(vcpu) &&
3328 !kvm_event_needs_reinjection(vcpu);
3331 static void vapic_enter(struct kvm_vcpu *vcpu)
3333 struct kvm_lapic *apic = vcpu->arch.apic;
3334 struct page *page;
3336 if (!apic || !apic->vapic_addr)
3337 return;
3339 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3341 vcpu->arch.apic->vapic_page = page;
3344 static void vapic_exit(struct kvm_vcpu *vcpu)
3346 struct kvm_lapic *apic = vcpu->arch.apic;
3348 if (!apic || !apic->vapic_addr)
3349 return;
3351 down_read(&vcpu->kvm->slots_lock);
3352 kvm_release_page_dirty(apic->vapic_page);
3353 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3354 up_read(&vcpu->kvm->slots_lock);
3357 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3359 int max_irr, tpr;
3361 if (!kvm_x86_ops->update_cr8_intercept)
3362 return;
3364 if (!vcpu->arch.apic->vapic_addr)
3365 max_irr = kvm_lapic_find_highest_irr(vcpu);
3366 else
3367 max_irr = -1;
3369 if (max_irr != -1)
3370 max_irr >>= 4;
3372 tpr = kvm_lapic_get_cr8(vcpu);
3374 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3377 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3379 /* try to reinject previous events if any */
3380 if (vcpu->arch.nmi_injected) {
3381 kvm_x86_ops->set_nmi(vcpu);
3382 return;
3385 if (vcpu->arch.interrupt.pending) {
3386 kvm_x86_ops->set_irq(vcpu);
3387 return;
3390 /* try to inject new event if pending */
3391 if (vcpu->arch.nmi_pending) {
3392 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3393 vcpu->arch.nmi_pending = false;
3394 vcpu->arch.nmi_injected = true;
3395 kvm_x86_ops->set_nmi(vcpu);
3397 } else if (kvm_cpu_has_interrupt(vcpu)) {
3398 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3399 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3400 false);
3401 kvm_x86_ops->set_irq(vcpu);
3406 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3408 int r;
3409 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3410 kvm_run->request_interrupt_window;
3412 if (vcpu->requests)
3413 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3414 kvm_mmu_unload(vcpu);
3416 r = kvm_mmu_reload(vcpu);
3417 if (unlikely(r))
3418 goto out;
3420 if (vcpu->requests) {
3421 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3422 __kvm_migrate_timers(vcpu);
3423 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3424 kvm_write_guest_time(vcpu);
3425 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3426 kvm_mmu_sync_roots(vcpu);
3427 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3428 kvm_x86_ops->tlb_flush(vcpu);
3429 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3430 &vcpu->requests)) {
3431 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3432 r = 0;
3433 goto out;
3435 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3436 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3437 r = 0;
3438 goto out;
3442 preempt_disable();
3444 kvm_x86_ops->prepare_guest_switch(vcpu);
3445 kvm_load_guest_fpu(vcpu);
3447 local_irq_disable();
3449 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3450 smp_mb__after_clear_bit();
3452 if (vcpu->requests || need_resched() || signal_pending(current)) {
3453 local_irq_enable();
3454 preempt_enable();
3455 r = 1;
3456 goto out;
3459 if (vcpu->arch.exception.pending)
3460 __queue_exception(vcpu);
3461 else
3462 inject_pending_irq(vcpu, kvm_run);
3464 /* enable NMI/IRQ window open exits if needed */
3465 if (vcpu->arch.nmi_pending)
3466 kvm_x86_ops->enable_nmi_window(vcpu);
3467 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3468 kvm_x86_ops->enable_irq_window(vcpu);
3470 if (kvm_lapic_enabled(vcpu)) {
3471 update_cr8_intercept(vcpu);
3472 kvm_lapic_sync_to_vapic(vcpu);
3475 up_read(&vcpu->kvm->slots_lock);
3477 kvm_guest_enter();
3479 get_debugreg(vcpu->arch.host_dr6, 6);
3480 get_debugreg(vcpu->arch.host_dr7, 7);
3481 if (unlikely(vcpu->arch.switch_db_regs)) {
3482 get_debugreg(vcpu->arch.host_db[0], 0);
3483 get_debugreg(vcpu->arch.host_db[1], 1);
3484 get_debugreg(vcpu->arch.host_db[2], 2);
3485 get_debugreg(vcpu->arch.host_db[3], 3);
3487 set_debugreg(0, 7);
3488 set_debugreg(vcpu->arch.eff_db[0], 0);
3489 set_debugreg(vcpu->arch.eff_db[1], 1);
3490 set_debugreg(vcpu->arch.eff_db[2], 2);
3491 set_debugreg(vcpu->arch.eff_db[3], 3);
3494 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3495 kvm_x86_ops->run(vcpu, kvm_run);
3497 if (unlikely(vcpu->arch.switch_db_regs)) {
3498 set_debugreg(0, 7);
3499 set_debugreg(vcpu->arch.host_db[0], 0);
3500 set_debugreg(vcpu->arch.host_db[1], 1);
3501 set_debugreg(vcpu->arch.host_db[2], 2);
3502 set_debugreg(vcpu->arch.host_db[3], 3);
3504 set_debugreg(vcpu->arch.host_dr6, 6);
3505 set_debugreg(vcpu->arch.host_dr7, 7);
3507 set_bit(KVM_REQ_KICK, &vcpu->requests);
3508 local_irq_enable();
3510 ++vcpu->stat.exits;
3513 * We must have an instruction between local_irq_enable() and
3514 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3515 * the interrupt shadow. The stat.exits increment will do nicely.
3516 * But we need to prevent reordering, hence this barrier():
3518 barrier();
3520 kvm_guest_exit();
3522 preempt_enable();
3524 down_read(&vcpu->kvm->slots_lock);
3527 * Profile KVM exit RIPs:
3529 if (unlikely(prof_on == KVM_PROFILING)) {
3530 unsigned long rip = kvm_rip_read(vcpu);
3531 profile_hit(KVM_PROFILING, (void *)rip);
3535 kvm_lapic_sync_from_vapic(vcpu);
3537 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3538 out:
3539 return r;
3543 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3545 int r;
3547 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3548 pr_debug("vcpu %d received sipi with vector # %x\n",
3549 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3550 kvm_lapic_reset(vcpu);
3551 r = kvm_arch_vcpu_reset(vcpu);
3552 if (r)
3553 return r;
3554 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3557 down_read(&vcpu->kvm->slots_lock);
3558 vapic_enter(vcpu);
3560 r = 1;
3561 while (r > 0) {
3562 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3563 r = vcpu_enter_guest(vcpu, kvm_run);
3564 else {
3565 up_read(&vcpu->kvm->slots_lock);
3566 kvm_vcpu_block(vcpu);
3567 down_read(&vcpu->kvm->slots_lock);
3568 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3570 switch(vcpu->arch.mp_state) {
3571 case KVM_MP_STATE_HALTED:
3572 vcpu->arch.mp_state =
3573 KVM_MP_STATE_RUNNABLE;
3574 case KVM_MP_STATE_RUNNABLE:
3575 break;
3576 case KVM_MP_STATE_SIPI_RECEIVED:
3577 default:
3578 r = -EINTR;
3579 break;
3584 if (r <= 0)
3585 break;
3587 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3588 if (kvm_cpu_has_pending_timer(vcpu))
3589 kvm_inject_pending_timer_irqs(vcpu);
3591 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3592 r = -EINTR;
3593 kvm_run->exit_reason = KVM_EXIT_INTR;
3594 ++vcpu->stat.request_irq_exits;
3596 if (signal_pending(current)) {
3597 r = -EINTR;
3598 kvm_run->exit_reason = KVM_EXIT_INTR;
3599 ++vcpu->stat.signal_exits;
3601 if (need_resched()) {
3602 up_read(&vcpu->kvm->slots_lock);
3603 kvm_resched(vcpu);
3604 down_read(&vcpu->kvm->slots_lock);
3608 up_read(&vcpu->kvm->slots_lock);
3609 post_kvm_run_save(vcpu, kvm_run);
3611 vapic_exit(vcpu);
3613 return r;
3616 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3618 int r;
3619 sigset_t sigsaved;
3621 vcpu_load(vcpu);
3623 if (vcpu->sigset_active)
3624 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3626 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3627 kvm_vcpu_block(vcpu);
3628 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3629 r = -EAGAIN;
3630 goto out;
3633 /* re-sync apic's tpr */
3634 if (!irqchip_in_kernel(vcpu->kvm))
3635 kvm_set_cr8(vcpu, kvm_run->cr8);
3637 if (vcpu->arch.pio.cur_count) {
3638 r = complete_pio(vcpu);
3639 if (r)
3640 goto out;
3642 #if CONFIG_HAS_IOMEM
3643 if (vcpu->mmio_needed) {
3644 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3645 vcpu->mmio_read_completed = 1;
3646 vcpu->mmio_needed = 0;
3648 down_read(&vcpu->kvm->slots_lock);
3649 r = emulate_instruction(vcpu, kvm_run,
3650 vcpu->arch.mmio_fault_cr2, 0,
3651 EMULTYPE_NO_DECODE);
3652 up_read(&vcpu->kvm->slots_lock);
3653 if (r == EMULATE_DO_MMIO) {
3655 * Read-modify-write. Back to userspace.
3657 r = 0;
3658 goto out;
3661 #endif
3662 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3663 kvm_register_write(vcpu, VCPU_REGS_RAX,
3664 kvm_run->hypercall.ret);
3666 r = __vcpu_run(vcpu, kvm_run);
3668 out:
3669 if (vcpu->sigset_active)
3670 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3672 vcpu_put(vcpu);
3673 return r;
3676 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3678 vcpu_load(vcpu);
3680 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3681 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3682 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3683 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3684 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3685 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3686 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3687 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3688 #ifdef CONFIG_X86_64
3689 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3690 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3691 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3692 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3693 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3694 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3695 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3696 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3697 #endif
3699 regs->rip = kvm_rip_read(vcpu);
3700 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3703 * Don't leak debug flags in case they were set for guest debugging
3705 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3706 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3708 vcpu_put(vcpu);
3710 return 0;
3713 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3715 vcpu_load(vcpu);
3717 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3718 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3719 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3720 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3721 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3722 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3723 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3724 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3725 #ifdef CONFIG_X86_64
3726 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3727 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3728 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3729 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3730 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3731 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3732 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3733 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3735 #endif
3737 kvm_rip_write(vcpu, regs->rip);
3738 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3741 vcpu->arch.exception.pending = false;
3743 vcpu_put(vcpu);
3745 return 0;
3748 void kvm_get_segment(struct kvm_vcpu *vcpu,
3749 struct kvm_segment *var, int seg)
3751 kvm_x86_ops->get_segment(vcpu, var, seg);
3754 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3756 struct kvm_segment cs;
3758 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3759 *db = cs.db;
3760 *l = cs.l;
3762 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3764 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3765 struct kvm_sregs *sregs)
3767 struct descriptor_table dt;
3769 vcpu_load(vcpu);
3771 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3772 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3773 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3774 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3775 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3776 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3778 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3779 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3781 kvm_x86_ops->get_idt(vcpu, &dt);
3782 sregs->idt.limit = dt.limit;
3783 sregs->idt.base = dt.base;
3784 kvm_x86_ops->get_gdt(vcpu, &dt);
3785 sregs->gdt.limit = dt.limit;
3786 sregs->gdt.base = dt.base;
3788 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3789 sregs->cr0 = vcpu->arch.cr0;
3790 sregs->cr2 = vcpu->arch.cr2;
3791 sregs->cr3 = vcpu->arch.cr3;
3792 sregs->cr4 = vcpu->arch.cr4;
3793 sregs->cr8 = kvm_get_cr8(vcpu);
3794 sregs->efer = vcpu->arch.shadow_efer;
3795 sregs->apic_base = kvm_get_apic_base(vcpu);
3797 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3799 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3800 set_bit(vcpu->arch.interrupt.nr,
3801 (unsigned long *)sregs->interrupt_bitmap);
3803 vcpu_put(vcpu);
3805 return 0;
3808 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3809 struct kvm_mp_state *mp_state)
3811 vcpu_load(vcpu);
3812 mp_state->mp_state = vcpu->arch.mp_state;
3813 vcpu_put(vcpu);
3814 return 0;
3817 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3818 struct kvm_mp_state *mp_state)
3820 vcpu_load(vcpu);
3821 vcpu->arch.mp_state = mp_state->mp_state;
3822 vcpu_put(vcpu);
3823 return 0;
3826 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3827 struct kvm_segment *var, int seg)
3829 kvm_x86_ops->set_segment(vcpu, var, seg);
3832 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3833 struct kvm_segment *kvm_desct)
3835 kvm_desct->base = seg_desc->base0;
3836 kvm_desct->base |= seg_desc->base1 << 16;
3837 kvm_desct->base |= seg_desc->base2 << 24;
3838 kvm_desct->limit = seg_desc->limit0;
3839 kvm_desct->limit |= seg_desc->limit << 16;
3840 if (seg_desc->g) {
3841 kvm_desct->limit <<= 12;
3842 kvm_desct->limit |= 0xfff;
3844 kvm_desct->selector = selector;
3845 kvm_desct->type = seg_desc->type;
3846 kvm_desct->present = seg_desc->p;
3847 kvm_desct->dpl = seg_desc->dpl;
3848 kvm_desct->db = seg_desc->d;
3849 kvm_desct->s = seg_desc->s;
3850 kvm_desct->l = seg_desc->l;
3851 kvm_desct->g = seg_desc->g;
3852 kvm_desct->avl = seg_desc->avl;
3853 if (!selector)
3854 kvm_desct->unusable = 1;
3855 else
3856 kvm_desct->unusable = 0;
3857 kvm_desct->padding = 0;
3860 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3861 u16 selector,
3862 struct descriptor_table *dtable)
3864 if (selector & 1 << 2) {
3865 struct kvm_segment kvm_seg;
3867 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3869 if (kvm_seg.unusable)
3870 dtable->limit = 0;
3871 else
3872 dtable->limit = kvm_seg.limit;
3873 dtable->base = kvm_seg.base;
3875 else
3876 kvm_x86_ops->get_gdt(vcpu, dtable);
3879 /* allowed just for 8 bytes segments */
3880 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3881 struct desc_struct *seg_desc)
3883 gpa_t gpa;
3884 struct descriptor_table dtable;
3885 u16 index = selector >> 3;
3887 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3889 if (dtable.limit < index * 8 + 7) {
3890 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3891 return 1;
3893 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3894 gpa += index * 8;
3895 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3898 /* allowed just for 8 bytes segments */
3899 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3900 struct desc_struct *seg_desc)
3902 gpa_t gpa;
3903 struct descriptor_table dtable;
3904 u16 index = selector >> 3;
3906 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3908 if (dtable.limit < index * 8 + 7)
3909 return 1;
3910 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3911 gpa += index * 8;
3912 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3915 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3916 struct desc_struct *seg_desc)
3918 u32 base_addr;
3920 base_addr = seg_desc->base0;
3921 base_addr |= (seg_desc->base1 << 16);
3922 base_addr |= (seg_desc->base2 << 24);
3924 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3927 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3929 struct kvm_segment kvm_seg;
3931 kvm_get_segment(vcpu, &kvm_seg, seg);
3932 return kvm_seg.selector;
3935 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3936 u16 selector,
3937 struct kvm_segment *kvm_seg)
3939 struct desc_struct seg_desc;
3941 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3942 return 1;
3943 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3944 return 0;
3947 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3949 struct kvm_segment segvar = {
3950 .base = selector << 4,
3951 .limit = 0xffff,
3952 .selector = selector,
3953 .type = 3,
3954 .present = 1,
3955 .dpl = 3,
3956 .db = 0,
3957 .s = 1,
3958 .l = 0,
3959 .g = 0,
3960 .avl = 0,
3961 .unusable = 0,
3963 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3964 return 0;
3967 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3968 int type_bits, int seg)
3970 struct kvm_segment kvm_seg;
3972 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3973 return kvm_load_realmode_segment(vcpu, selector, seg);
3974 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3975 return 1;
3976 kvm_seg.type |= type_bits;
3978 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3979 seg != VCPU_SREG_LDTR)
3980 if (!kvm_seg.s)
3981 kvm_seg.unusable = 1;
3983 kvm_set_segment(vcpu, &kvm_seg, seg);
3984 return 0;
3987 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3988 struct tss_segment_32 *tss)
3990 tss->cr3 = vcpu->arch.cr3;
3991 tss->eip = kvm_rip_read(vcpu);
3992 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3993 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3994 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3995 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3996 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3997 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3998 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3999 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4000 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4001 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4002 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4003 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4004 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4005 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4006 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4007 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4010 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4011 struct tss_segment_32 *tss)
4013 kvm_set_cr3(vcpu, tss->cr3);
4015 kvm_rip_write(vcpu, tss->eip);
4016 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4018 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4019 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4020 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4021 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4022 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4023 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4024 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4025 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4027 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4028 return 1;
4030 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4031 return 1;
4033 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4034 return 1;
4036 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4037 return 1;
4039 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4040 return 1;
4042 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4043 return 1;
4045 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4046 return 1;
4047 return 0;
4050 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4051 struct tss_segment_16 *tss)
4053 tss->ip = kvm_rip_read(vcpu);
4054 tss->flag = kvm_x86_ops->get_rflags(vcpu);
4055 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4056 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4057 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4058 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4059 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4060 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4061 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4062 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4064 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4065 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4066 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4067 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4068 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4069 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4072 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4073 struct tss_segment_16 *tss)
4075 kvm_rip_write(vcpu, tss->ip);
4076 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4077 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4078 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4079 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4080 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4081 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4082 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4083 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4084 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4086 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4087 return 1;
4089 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4090 return 1;
4092 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4093 return 1;
4095 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4096 return 1;
4098 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4099 return 1;
4100 return 0;
4103 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4104 u16 old_tss_sel, u32 old_tss_base,
4105 struct desc_struct *nseg_desc)
4107 struct tss_segment_16 tss_segment_16;
4108 int ret = 0;
4110 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4111 sizeof tss_segment_16))
4112 goto out;
4114 save_state_to_tss16(vcpu, &tss_segment_16);
4116 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4117 sizeof tss_segment_16))
4118 goto out;
4120 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4121 &tss_segment_16, sizeof tss_segment_16))
4122 goto out;
4124 if (old_tss_sel != 0xffff) {
4125 tss_segment_16.prev_task_link = old_tss_sel;
4127 if (kvm_write_guest(vcpu->kvm,
4128 get_tss_base_addr(vcpu, nseg_desc),
4129 &tss_segment_16.prev_task_link,
4130 sizeof tss_segment_16.prev_task_link))
4131 goto out;
4134 if (load_state_from_tss16(vcpu, &tss_segment_16))
4135 goto out;
4137 ret = 1;
4138 out:
4139 return ret;
4142 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4143 u16 old_tss_sel, u32 old_tss_base,
4144 struct desc_struct *nseg_desc)
4146 struct tss_segment_32 tss_segment_32;
4147 int ret = 0;
4149 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4150 sizeof tss_segment_32))
4151 goto out;
4153 save_state_to_tss32(vcpu, &tss_segment_32);
4155 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4156 sizeof tss_segment_32))
4157 goto out;
4159 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4160 &tss_segment_32, sizeof tss_segment_32))
4161 goto out;
4163 if (old_tss_sel != 0xffff) {
4164 tss_segment_32.prev_task_link = old_tss_sel;
4166 if (kvm_write_guest(vcpu->kvm,
4167 get_tss_base_addr(vcpu, nseg_desc),
4168 &tss_segment_32.prev_task_link,
4169 sizeof tss_segment_32.prev_task_link))
4170 goto out;
4173 if (load_state_from_tss32(vcpu, &tss_segment_32))
4174 goto out;
4176 ret = 1;
4177 out:
4178 return ret;
4181 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4183 struct kvm_segment tr_seg;
4184 struct desc_struct cseg_desc;
4185 struct desc_struct nseg_desc;
4186 int ret = 0;
4187 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4188 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4190 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4192 /* FIXME: Handle errors. Failure to read either TSS or their
4193 * descriptors should generate a pagefault.
4195 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4196 goto out;
4198 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4199 goto out;
4201 if (reason != TASK_SWITCH_IRET) {
4202 int cpl;
4204 cpl = kvm_x86_ops->get_cpl(vcpu);
4205 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4206 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4207 return 1;
4211 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
4212 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4213 return 1;
4216 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4217 cseg_desc.type &= ~(1 << 1); //clear the B flag
4218 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4221 if (reason == TASK_SWITCH_IRET) {
4222 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4223 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4226 /* set back link to prev task only if NT bit is set in eflags
4227 note that old_tss_sel is not used afetr this point */
4228 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4229 old_tss_sel = 0xffff;
4231 /* set back link to prev task only if NT bit is set in eflags
4232 note that old_tss_sel is not used afetr this point */
4233 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4234 old_tss_sel = 0xffff;
4236 if (nseg_desc.type & 8)
4237 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4238 old_tss_base, &nseg_desc);
4239 else
4240 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4241 old_tss_base, &nseg_desc);
4243 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4244 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4245 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4248 if (reason != TASK_SWITCH_IRET) {
4249 nseg_desc.type |= (1 << 1);
4250 save_guest_segment_descriptor(vcpu, tss_selector,
4251 &nseg_desc);
4254 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4255 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4256 tr_seg.type = 11;
4257 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4258 out:
4259 return ret;
4261 EXPORT_SYMBOL_GPL(kvm_task_switch);
4263 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4264 struct kvm_sregs *sregs)
4266 int mmu_reset_needed = 0;
4267 int pending_vec, max_bits;
4268 struct descriptor_table dt;
4270 vcpu_load(vcpu);
4272 dt.limit = sregs->idt.limit;
4273 dt.base = sregs->idt.base;
4274 kvm_x86_ops->set_idt(vcpu, &dt);
4275 dt.limit = sregs->gdt.limit;
4276 dt.base = sregs->gdt.base;
4277 kvm_x86_ops->set_gdt(vcpu, &dt);
4279 vcpu->arch.cr2 = sregs->cr2;
4280 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4282 down_read(&vcpu->kvm->slots_lock);
4283 if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4284 vcpu->arch.cr3 = sregs->cr3;
4285 else
4286 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4287 up_read(&vcpu->kvm->slots_lock);
4289 kvm_set_cr8(vcpu, sregs->cr8);
4291 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4292 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4293 kvm_set_apic_base(vcpu, sregs->apic_base);
4295 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4297 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4298 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4299 vcpu->arch.cr0 = sregs->cr0;
4301 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4302 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4303 if (!is_long_mode(vcpu) && is_pae(vcpu))
4304 load_pdptrs(vcpu, vcpu->arch.cr3);
4306 if (mmu_reset_needed)
4307 kvm_mmu_reset_context(vcpu);
4309 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4310 pending_vec = find_first_bit(
4311 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4312 if (pending_vec < max_bits) {
4313 kvm_queue_interrupt(vcpu, pending_vec, false);
4314 pr_debug("Set back pending irq %d\n", pending_vec);
4315 if (irqchip_in_kernel(vcpu->kvm))
4316 kvm_pic_clear_isr_ack(vcpu->kvm);
4319 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4320 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4321 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4322 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4323 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4324 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4326 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4327 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4329 /* Older userspace won't unhalt the vcpu on reset. */
4330 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4331 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4332 !(vcpu->arch.cr0 & X86_CR0_PE))
4333 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4335 vcpu_put(vcpu);
4337 return 0;
4340 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4341 struct kvm_guest_debug *dbg)
4343 int i, r;
4345 vcpu_load(vcpu);
4347 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4348 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4349 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4350 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4351 vcpu->arch.switch_db_regs =
4352 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4353 } else {
4354 for (i = 0; i < KVM_NR_DB_REGS; i++)
4355 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4356 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4359 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4361 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4362 kvm_queue_exception(vcpu, DB_VECTOR);
4363 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4364 kvm_queue_exception(vcpu, BP_VECTOR);
4366 vcpu_put(vcpu);
4368 return r;
4372 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4373 * we have asm/x86/processor.h
4375 struct fxsave {
4376 u16 cwd;
4377 u16 swd;
4378 u16 twd;
4379 u16 fop;
4380 u64 rip;
4381 u64 rdp;
4382 u32 mxcsr;
4383 u32 mxcsr_mask;
4384 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4385 #ifdef CONFIG_X86_64
4386 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4387 #else
4388 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4389 #endif
4393 * Translate a guest virtual address to a guest physical address.
4395 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4396 struct kvm_translation *tr)
4398 unsigned long vaddr = tr->linear_address;
4399 gpa_t gpa;
4401 vcpu_load(vcpu);
4402 down_read(&vcpu->kvm->slots_lock);
4403 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4404 up_read(&vcpu->kvm->slots_lock);
4405 tr->physical_address = gpa;
4406 tr->valid = gpa != UNMAPPED_GVA;
4407 tr->writeable = 1;
4408 tr->usermode = 0;
4409 vcpu_put(vcpu);
4411 return 0;
4414 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4416 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4418 vcpu_load(vcpu);
4420 memcpy(fpu->fpr, fxsave->st_space, 128);
4421 fpu->fcw = fxsave->cwd;
4422 fpu->fsw = fxsave->swd;
4423 fpu->ftwx = fxsave->twd;
4424 fpu->last_opcode = fxsave->fop;
4425 fpu->last_ip = fxsave->rip;
4426 fpu->last_dp = fxsave->rdp;
4427 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4429 vcpu_put(vcpu);
4431 return 0;
4434 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4436 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4438 vcpu_load(vcpu);
4440 memcpy(fxsave->st_space, fpu->fpr, 128);
4441 fxsave->cwd = fpu->fcw;
4442 fxsave->swd = fpu->fsw;
4443 fxsave->twd = fpu->ftwx;
4444 fxsave->fop = fpu->last_opcode;
4445 fxsave->rip = fpu->last_ip;
4446 fxsave->rdp = fpu->last_dp;
4447 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4449 vcpu_put(vcpu);
4451 return 0;
4454 void fx_init(struct kvm_vcpu *vcpu)
4456 unsigned after_mxcsr_mask;
4459 * Touch the fpu the first time in non atomic context as if
4460 * this is the first fpu instruction the exception handler
4461 * will fire before the instruction returns and it'll have to
4462 * allocate ram with GFP_KERNEL.
4464 if (!used_math())
4465 kvm_fx_save(&vcpu->arch.host_fx_image);
4467 /* Initialize guest FPU by resetting ours and saving into guest's */
4468 preempt_disable();
4469 kvm_fx_save(&vcpu->arch.host_fx_image);
4470 kvm_fx_finit();
4471 kvm_fx_save(&vcpu->arch.guest_fx_image);
4472 kvm_fx_restore(&vcpu->arch.host_fx_image);
4473 preempt_enable();
4475 vcpu->arch.cr0 |= X86_CR0_ET;
4476 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4477 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4478 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4479 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4481 EXPORT_SYMBOL_GPL(fx_init);
4483 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4485 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4486 return;
4488 vcpu->guest_fpu_loaded = 1;
4489 kvm_fx_save(&vcpu->arch.host_fx_image);
4490 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4492 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4494 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4496 if (!vcpu->guest_fpu_loaded)
4497 return;
4499 vcpu->guest_fpu_loaded = 0;
4500 kvm_fx_save(&vcpu->arch.guest_fx_image);
4501 kvm_fx_restore(&vcpu->arch.host_fx_image);
4502 ++vcpu->stat.fpu_reload;
4504 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4506 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4508 if (vcpu->arch.time_page) {
4509 kvm_release_page_dirty(vcpu->arch.time_page);
4510 vcpu->arch.time_page = NULL;
4513 kvm_x86_ops->vcpu_free(vcpu);
4516 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4517 unsigned int id)
4519 return kvm_x86_ops->vcpu_create(kvm, id);
4522 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4524 int r;
4526 /* We do fxsave: this must be aligned. */
4527 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4529 vcpu->arch.mtrr_state.have_fixed = 1;
4530 vcpu_load(vcpu);
4531 r = kvm_arch_vcpu_reset(vcpu);
4532 if (r == 0)
4533 r = kvm_mmu_setup(vcpu);
4534 vcpu_put(vcpu);
4535 if (r < 0)
4536 goto free_vcpu;
4538 return 0;
4539 free_vcpu:
4540 kvm_x86_ops->vcpu_free(vcpu);
4541 return r;
4544 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4546 vcpu_load(vcpu);
4547 kvm_mmu_unload(vcpu);
4548 vcpu_put(vcpu);
4550 kvm_x86_ops->vcpu_free(vcpu);
4553 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4555 vcpu->arch.nmi_pending = false;
4556 vcpu->arch.nmi_injected = false;
4558 vcpu->arch.switch_db_regs = 0;
4559 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4560 vcpu->arch.dr6 = DR6_FIXED_1;
4561 vcpu->arch.dr7 = DR7_FIXED_1;
4563 return kvm_x86_ops->vcpu_reset(vcpu);
4566 void kvm_arch_hardware_enable(void *garbage)
4568 kvm_x86_ops->hardware_enable(garbage);
4571 void kvm_arch_hardware_disable(void *garbage)
4573 kvm_x86_ops->hardware_disable(garbage);
4576 int kvm_arch_hardware_setup(void)
4578 return kvm_x86_ops->hardware_setup();
4581 void kvm_arch_hardware_unsetup(void)
4583 kvm_x86_ops->hardware_unsetup();
4586 void kvm_arch_check_processor_compat(void *rtn)
4588 kvm_x86_ops->check_processor_compatibility(rtn);
4591 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4593 struct page *page;
4594 struct kvm *kvm;
4595 int r;
4597 BUG_ON(vcpu->kvm == NULL);
4598 kvm = vcpu->kvm;
4600 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4601 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4602 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4603 else
4604 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4606 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4607 if (!page) {
4608 r = -ENOMEM;
4609 goto fail;
4611 vcpu->arch.pio_data = page_address(page);
4613 r = kvm_mmu_create(vcpu);
4614 if (r < 0)
4615 goto fail_free_pio_data;
4617 if (irqchip_in_kernel(kvm)) {
4618 r = kvm_create_lapic(vcpu);
4619 if (r < 0)
4620 goto fail_mmu_destroy;
4623 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4624 GFP_KERNEL);
4625 if (!vcpu->arch.mce_banks) {
4626 r = -ENOMEM;
4627 goto fail_mmu_destroy;
4629 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4631 return 0;
4633 fail_mmu_destroy:
4634 kvm_mmu_destroy(vcpu);
4635 fail_free_pio_data:
4636 free_page((unsigned long)vcpu->arch.pio_data);
4637 fail:
4638 return r;
4641 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4643 kvm_free_lapic(vcpu);
4644 down_read(&vcpu->kvm->slots_lock);
4645 kvm_mmu_destroy(vcpu);
4646 up_read(&vcpu->kvm->slots_lock);
4647 free_page((unsigned long)vcpu->arch.pio_data);
4650 struct kvm *kvm_arch_create_vm(void)
4652 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4654 if (!kvm)
4655 return ERR_PTR(-ENOMEM);
4657 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4658 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4660 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4661 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4663 rdtscll(kvm->arch.vm_init_tsc);
4665 return kvm;
4668 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4670 vcpu_load(vcpu);
4671 kvm_mmu_unload(vcpu);
4672 vcpu_put(vcpu);
4675 static void kvm_free_vcpus(struct kvm *kvm)
4677 unsigned int i;
4678 struct kvm_vcpu *vcpu;
4681 * Unpin any mmu pages first.
4683 kvm_for_each_vcpu(i, vcpu, kvm)
4684 kvm_unload_vcpu_mmu(vcpu);
4685 kvm_for_each_vcpu(i, vcpu, kvm)
4686 kvm_arch_vcpu_free(vcpu);
4688 mutex_lock(&kvm->lock);
4689 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4690 kvm->vcpus[i] = NULL;
4692 atomic_set(&kvm->online_vcpus, 0);
4693 mutex_unlock(&kvm->lock);
4696 void kvm_arch_sync_events(struct kvm *kvm)
4698 kvm_free_all_assigned_devices(kvm);
4701 void kvm_arch_destroy_vm(struct kvm *kvm)
4703 kvm_iommu_unmap_guest(kvm);
4704 kvm_free_pit(kvm);
4705 kfree(kvm->arch.vpic);
4706 kfree(kvm->arch.vioapic);
4707 kvm_free_vcpus(kvm);
4708 kvm_free_physmem(kvm);
4709 if (kvm->arch.apic_access_page)
4710 put_page(kvm->arch.apic_access_page);
4711 if (kvm->arch.ept_identity_pagetable)
4712 put_page(kvm->arch.ept_identity_pagetable);
4713 kfree(kvm);
4716 int kvm_arch_set_memory_region(struct kvm *kvm,
4717 struct kvm_userspace_memory_region *mem,
4718 struct kvm_memory_slot old,
4719 int user_alloc)
4721 int npages = mem->memory_size >> PAGE_SHIFT;
4722 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4724 /*To keep backward compatibility with older userspace,
4725 *x86 needs to hanlde !user_alloc case.
4727 if (!user_alloc) {
4728 if (npages && !old.rmap) {
4729 unsigned long userspace_addr;
4731 down_write(&current->mm->mmap_sem);
4732 userspace_addr = do_mmap(NULL, 0,
4733 npages * PAGE_SIZE,
4734 PROT_READ | PROT_WRITE,
4735 MAP_PRIVATE | MAP_ANONYMOUS,
4737 up_write(&current->mm->mmap_sem);
4739 if (IS_ERR((void *)userspace_addr))
4740 return PTR_ERR((void *)userspace_addr);
4742 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4743 spin_lock(&kvm->mmu_lock);
4744 memslot->userspace_addr = userspace_addr;
4745 spin_unlock(&kvm->mmu_lock);
4746 } else {
4747 if (!old.user_alloc && old.rmap) {
4748 int ret;
4750 down_write(&current->mm->mmap_sem);
4751 ret = do_munmap(current->mm, old.userspace_addr,
4752 old.npages * PAGE_SIZE);
4753 up_write(&current->mm->mmap_sem);
4754 if (ret < 0)
4755 printk(KERN_WARNING
4756 "kvm_vm_ioctl_set_memory_region: "
4757 "failed to munmap memory\n");
4762 spin_lock(&kvm->mmu_lock);
4763 if (!kvm->arch.n_requested_mmu_pages) {
4764 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4765 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4768 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4769 spin_unlock(&kvm->mmu_lock);
4770 kvm_flush_remote_tlbs(kvm);
4772 return 0;
4775 void kvm_arch_flush_shadow(struct kvm *kvm)
4777 kvm_mmu_zap_all(kvm);
4778 kvm_reload_remote_mmus(kvm);
4781 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4783 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4784 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4785 || vcpu->arch.nmi_pending;
4788 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4790 int me;
4791 int cpu = vcpu->cpu;
4793 if (waitqueue_active(&vcpu->wq)) {
4794 wake_up_interruptible(&vcpu->wq);
4795 ++vcpu->stat.halt_wakeup;
4798 me = get_cpu();
4799 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4800 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4801 smp_send_reschedule(cpu);
4802 put_cpu();
4805 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4807 return kvm_x86_ops->interrupt_allowed(vcpu);