IB/ipath: add new minor device to allow sending of diag packets
[linux-2.6/x86.git] / drivers / net / s2io.c
blobe72e0e099060f6386f22e3800dfdef76aa326e1e
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74 #include <asm/irq.h>
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
80 #define DRV_VERSION "2.0.15.2"
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
91 int ret;
93 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
96 return ret;
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC 1
113 #define LOW 2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
116 mac_info_t *mac_control;
118 mac_control = &sp->mac_control;
119 if (rxb_size <= rxd_count[sp->rxd_mode])
120 return PANIC;
121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122 return LOW;
123 return 0;
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
237 {"rmac_vlan_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
240 {"rmac_pf_discard"},
241 {"rmac_da_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
245 {"link_fault_cnt"},
246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
249 {"parity_err_cnt"},
250 {"serious_err_cnt"},
251 {"soft_reset_cnt"},
252 {"fifo_full_cnt"},
253 {"ring_full_cnt"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
276 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287 struct vlan_group *grp)
289 nic_t *nic = dev->priv;
290 unsigned long flags;
292 spin_lock_irqsave(&nic->tx_lock, flags);
293 nic->vlgrp = grp;
294 spin_unlock_irqrestore(&nic->tx_lock, flags);
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
300 nic_t *nic = dev->priv;
301 unsigned long flags;
303 spin_lock_irqsave(&nic->tx_lock, flags);
304 if (nic->vlgrp)
305 nic->vlgrp->vlan_devices[vid] = NULL;
306 spin_unlock_irqrestore(&nic->tx_lock, flags);
310 * Constants to be programmed into the Xena's registers, to configure
311 * the XAUI.
314 #define END_SIGN 0x0
315 static const u64 herc_act_dtx_cfg[] = {
316 /* Set address */
317 0x8000051536750000ULL, 0x80000515367500E0ULL,
318 /* Write data */
319 0x8000051536750004ULL, 0x80000515367500E4ULL,
320 /* Set address */
321 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322 /* Write data */
323 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324 /* Set address */
325 0x801205150D440000ULL, 0x801205150D4400E0ULL,
326 /* Write data */
327 0x801205150D440004ULL, 0x801205150D4400E4ULL,
328 /* Set address */
329 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330 /* Write data */
331 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332 /* Done */
333 END_SIGN
336 static const u64 xena_dtx_cfg[] = {
337 /* Set address */
338 0x8000051500000000ULL, 0x80000515000000E0ULL,
339 /* Write data */
340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341 /* Set address */
342 0x8001051500000000ULL, 0x80010515000000E0ULL,
343 /* Write data */
344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345 /* Set address */
346 0x8002051500000000ULL, 0x80020515000000E0ULL,
347 /* Write data */
348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349 END_SIGN
353 * Constants for Fixing the MacAddress problem seen mostly on
354 * Alpha machines.
356 static const u64 fix_mac[] = {
357 0x0060000000000000ULL, 0x0060600000000000ULL,
358 0x0040600000000000ULL, 0x0000600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0060600000000000ULL,
369 0x0020600000000000ULL, 0x0000600000000000ULL,
370 0x0040600000000000ULL, 0x0060600000000000ULL,
371 END_SIGN
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401 * aggregation happens until we hit max IP pkt size(64K)
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 #ifndef CONFIG_S2IO_NAPI
405 S2IO_PARM_INT(indicate_max_pkts, 0);
406 #endif
408 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
409 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
410 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
411 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
412 static unsigned int rts_frm_len[MAX_RX_RINGS] =
413 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415 module_param_array(tx_fifo_len, uint, NULL, 0);
416 module_param_array(rx_ring_sz, uint, NULL, 0);
417 module_param_array(rts_frm_len, uint, NULL, 0);
420 * S2IO device table.
421 * This table lists all the devices that this driver supports.
423 static struct pci_device_id s2io_tbl[] __devinitdata = {
424 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
425 PCI_ANY_ID, PCI_ANY_ID},
426 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
427 PCI_ANY_ID, PCI_ANY_ID},
428 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
429 PCI_ANY_ID, PCI_ANY_ID},
430 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
431 PCI_ANY_ID, PCI_ANY_ID},
432 {0,}
435 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437 static struct pci_driver s2io_driver = {
438 .name = "S2IO",
439 .id_table = s2io_tbl,
440 .probe = s2io_init_nic,
441 .remove = __devexit_p(s2io_rem_nic),
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
448 * init_shared_mem - Allocation and Initialization of Memory
449 * @nic: Device private variable.
450 * Description: The function allocates all the memory areas shared
451 * between the NIC and the driver. This includes Tx descriptors,
452 * Rx descriptors and the statistics block.
455 static int init_shared_mem(struct s2io_nic *nic)
457 u32 size;
458 void *tmp_v_addr, *tmp_v_addr_next;
459 dma_addr_t tmp_p_addr, tmp_p_addr_next;
460 RxD_block_t *pre_rxd_blk = NULL;
461 int i, j, blk_cnt, rx_sz, tx_sz;
462 int lst_size, lst_per_page;
463 struct net_device *dev = nic->dev;
464 unsigned long tmp;
465 buffAdd_t *ba;
467 mac_info_t *mac_control;
468 struct config_param *config;
470 mac_control = &nic->mac_control;
471 config = &nic->config;
474 /* Allocation and initialization of TXDLs in FIOFs */
475 size = 0;
476 for (i = 0; i < config->tx_fifo_num; i++) {
477 size += config->tx_cfg[i].fifo_len;
479 if (size > MAX_AVAILABLE_TXDS) {
480 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
481 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
482 return -EINVAL;
485 lst_size = (sizeof(TxD_t) * config->max_txds);
486 tx_sz = lst_size * size;
487 lst_per_page = PAGE_SIZE / lst_size;
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int fifo_len = config->tx_cfg[i].fifo_len;
491 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
492 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
493 GFP_KERNEL);
494 if (!mac_control->fifos[i].list_info) {
495 DBG_PRINT(ERR_DBG,
496 "Malloc failed for list_info\n");
497 return -ENOMEM;
499 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
501 for (i = 0; i < config->tx_fifo_num; i++) {
502 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
503 lst_per_page);
504 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505 mac_control->fifos[i].tx_curr_put_info.fifo_len =
506 config->tx_cfg[i].fifo_len - 1;
507 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508 mac_control->fifos[i].tx_curr_get_info.fifo_len =
509 config->tx_cfg[i].fifo_len - 1;
510 mac_control->fifos[i].fifo_no = i;
511 mac_control->fifos[i].nic = nic;
512 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
514 for (j = 0; j < page_num; j++) {
515 int k = 0;
516 dma_addr_t tmp_p;
517 void *tmp_v;
518 tmp_v = pci_alloc_consistent(nic->pdev,
519 PAGE_SIZE, &tmp_p);
520 if (!tmp_v) {
521 DBG_PRINT(ERR_DBG,
522 "pci_alloc_consistent ");
523 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
524 return -ENOMEM;
526 /* If we got a zero DMA address(can happen on
527 * certain platforms like PPC), reallocate.
528 * Store virtual address of page we don't want,
529 * to be freed later.
531 if (!tmp_p) {
532 mac_control->zerodma_virt_addr = tmp_v;
533 DBG_PRINT(INIT_DBG,
534 "%s: Zero DMA address for TxDL. ", dev->name);
535 DBG_PRINT(INIT_DBG,
536 "Virtual address %p\n", tmp_v);
537 tmp_v = pci_alloc_consistent(nic->pdev,
538 PAGE_SIZE, &tmp_p);
539 if (!tmp_v) {
540 DBG_PRINT(ERR_DBG,
541 "pci_alloc_consistent ");
542 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
543 return -ENOMEM;
546 while (k < lst_per_page) {
547 int l = (j * lst_per_page) + k;
548 if (l == config->tx_cfg[i].fifo_len)
549 break;
550 mac_control->fifos[i].list_info[l].list_virt_addr =
551 tmp_v + (k * lst_size);
552 mac_control->fifos[i].list_info[l].list_phy_addr =
553 tmp_p + (k * lst_size);
554 k++;
559 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
560 if (!nic->ufo_in_band_v)
561 return -ENOMEM;
562 memset(nic->ufo_in_band_v, 0, size);
564 /* Allocation and initialization of RXDs in Rings */
565 size = 0;
566 for (i = 0; i < config->rx_ring_num; i++) {
567 if (config->rx_cfg[i].num_rxd %
568 (rxd_count[nic->rxd_mode] + 1)) {
569 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
570 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
572 DBG_PRINT(ERR_DBG, "RxDs per Block");
573 return FAILURE;
575 size += config->rx_cfg[i].num_rxd;
576 mac_control->rings[i].block_count =
577 config->rx_cfg[i].num_rxd /
578 (rxd_count[nic->rxd_mode] + 1 );
579 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
580 mac_control->rings[i].block_count;
582 if (nic->rxd_mode == RXD_MODE_1)
583 size = (size * (sizeof(RxD1_t)));
584 else
585 size = (size * (sizeof(RxD3_t)));
586 rx_sz = size;
588 for (i = 0; i < config->rx_ring_num; i++) {
589 mac_control->rings[i].rx_curr_get_info.block_index = 0;
590 mac_control->rings[i].rx_curr_get_info.offset = 0;
591 mac_control->rings[i].rx_curr_get_info.ring_len =
592 config->rx_cfg[i].num_rxd - 1;
593 mac_control->rings[i].rx_curr_put_info.block_index = 0;
594 mac_control->rings[i].rx_curr_put_info.offset = 0;
595 mac_control->rings[i].rx_curr_put_info.ring_len =
596 config->rx_cfg[i].num_rxd - 1;
597 mac_control->rings[i].nic = nic;
598 mac_control->rings[i].ring_no = i;
600 blk_cnt = config->rx_cfg[i].num_rxd /
601 (rxd_count[nic->rxd_mode] + 1);
602 /* Allocating all the Rx blocks */
603 for (j = 0; j < blk_cnt; j++) {
604 rx_block_info_t *rx_blocks;
605 int l;
607 rx_blocks = &mac_control->rings[i].rx_blocks[j];
608 size = SIZE_OF_BLOCK; //size is always page size
609 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
610 &tmp_p_addr);
611 if (tmp_v_addr == NULL) {
613 * In case of failure, free_shared_mem()
614 * is called, which should free any
615 * memory that was alloced till the
616 * failure happened.
618 rx_blocks->block_virt_addr = tmp_v_addr;
619 return -ENOMEM;
621 memset(tmp_v_addr, 0, size);
622 rx_blocks->block_virt_addr = tmp_v_addr;
623 rx_blocks->block_dma_addr = tmp_p_addr;
624 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
625 rxd_count[nic->rxd_mode],
626 GFP_KERNEL);
627 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628 rx_blocks->rxds[l].virt_addr =
629 rx_blocks->block_virt_addr +
630 (rxd_size[nic->rxd_mode] * l);
631 rx_blocks->rxds[l].dma_addr =
632 rx_blocks->block_dma_addr +
633 (rxd_size[nic->rxd_mode] * l);
636 /* Interlinking all Rx Blocks */
637 for (j = 0; j < blk_cnt; j++) {
638 tmp_v_addr =
639 mac_control->rings[i].rx_blocks[j].block_virt_addr;
640 tmp_v_addr_next =
641 mac_control->rings[i].rx_blocks[(j + 1) %
642 blk_cnt].block_virt_addr;
643 tmp_p_addr =
644 mac_control->rings[i].rx_blocks[j].block_dma_addr;
645 tmp_p_addr_next =
646 mac_control->rings[i].rx_blocks[(j + 1) %
647 blk_cnt].block_dma_addr;
649 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
650 pre_rxd_blk->reserved_2_pNext_RxD_block =
651 (unsigned long) tmp_v_addr_next;
652 pre_rxd_blk->pNext_RxD_Blk_physical =
653 (u64) tmp_p_addr_next;
656 if (nic->rxd_mode >= RXD_MODE_3A) {
658 * Allocation of Storages for buffer addresses in 2BUFF mode
659 * and the buffers as well.
661 for (i = 0; i < config->rx_ring_num; i++) {
662 blk_cnt = config->rx_cfg[i].num_rxd /
663 (rxd_count[nic->rxd_mode]+ 1);
664 mac_control->rings[i].ba =
665 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
666 GFP_KERNEL);
667 if (!mac_control->rings[i].ba)
668 return -ENOMEM;
669 for (j = 0; j < blk_cnt; j++) {
670 int k = 0;
671 mac_control->rings[i].ba[j] =
672 kmalloc((sizeof(buffAdd_t) *
673 (rxd_count[nic->rxd_mode] + 1)),
674 GFP_KERNEL);
675 if (!mac_control->rings[i].ba[j])
676 return -ENOMEM;
677 while (k != rxd_count[nic->rxd_mode]) {
678 ba = &mac_control->rings[i].ba[j][k];
680 ba->ba_0_org = (void *) kmalloc
681 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
682 if (!ba->ba_0_org)
683 return -ENOMEM;
684 tmp = (unsigned long)ba->ba_0_org;
685 tmp += ALIGN_SIZE;
686 tmp &= ~((unsigned long) ALIGN_SIZE);
687 ba->ba_0 = (void *) tmp;
689 ba->ba_1_org = (void *) kmalloc
690 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
691 if (!ba->ba_1_org)
692 return -ENOMEM;
693 tmp = (unsigned long) ba->ba_1_org;
694 tmp += ALIGN_SIZE;
695 tmp &= ~((unsigned long) ALIGN_SIZE);
696 ba->ba_1 = (void *) tmp;
697 k++;
703 /* Allocation and initialization of Statistics block */
704 size = sizeof(StatInfo_t);
705 mac_control->stats_mem = pci_alloc_consistent
706 (nic->pdev, size, &mac_control->stats_mem_phy);
708 if (!mac_control->stats_mem) {
710 * In case of failure, free_shared_mem() is called, which
711 * should free any memory that was alloced till the
712 * failure happened.
714 return -ENOMEM;
716 mac_control->stats_mem_sz = size;
718 tmp_v_addr = mac_control->stats_mem;
719 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
720 memset(tmp_v_addr, 0, size);
721 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722 (unsigned long long) tmp_p_addr);
724 return SUCCESS;
728 * free_shared_mem - Free the allocated Memory
729 * @nic: Device private variable.
730 * Description: This function is to free all memory locations allocated by
731 * the init_shared_mem() function and return it to the kernel.
734 static void free_shared_mem(struct s2io_nic *nic)
736 int i, j, blk_cnt, size;
737 void *tmp_v_addr;
738 dma_addr_t tmp_p_addr;
739 mac_info_t *mac_control;
740 struct config_param *config;
741 int lst_size, lst_per_page;
742 struct net_device *dev = nic->dev;
744 if (!nic)
745 return;
747 mac_control = &nic->mac_control;
748 config = &nic->config;
750 lst_size = (sizeof(TxD_t) * config->max_txds);
751 lst_per_page = PAGE_SIZE / lst_size;
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
755 lst_per_page);
756 for (j = 0; j < page_num; j++) {
757 int mem_blks = (j * lst_per_page);
758 if (!mac_control->fifos[i].list_info)
759 return;
760 if (!mac_control->fifos[i].list_info[mem_blks].
761 list_virt_addr)
762 break;
763 pci_free_consistent(nic->pdev, PAGE_SIZE,
764 mac_control->fifos[i].
765 list_info[mem_blks].
766 list_virt_addr,
767 mac_control->fifos[i].
768 list_info[mem_blks].
769 list_phy_addr);
771 /* If we got a zero DMA address during allocation,
772 * free the page now
774 if (mac_control->zerodma_virt_addr) {
775 pci_free_consistent(nic->pdev, PAGE_SIZE,
776 mac_control->zerodma_virt_addr,
777 (dma_addr_t)0);
778 DBG_PRINT(INIT_DBG,
779 "%s: Freeing TxDL with zero DMA addr. ",
780 dev->name);
781 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782 mac_control->zerodma_virt_addr);
784 kfree(mac_control->fifos[i].list_info);
787 size = SIZE_OF_BLOCK;
788 for (i = 0; i < config->rx_ring_num; i++) {
789 blk_cnt = mac_control->rings[i].block_count;
790 for (j = 0; j < blk_cnt; j++) {
791 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
792 block_virt_addr;
793 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
794 block_dma_addr;
795 if (tmp_v_addr == NULL)
796 break;
797 pci_free_consistent(nic->pdev, size,
798 tmp_v_addr, tmp_p_addr);
799 kfree(mac_control->rings[i].rx_blocks[j].rxds);
803 if (nic->rxd_mode >= RXD_MODE_3A) {
804 /* Freeing buffer storage addresses in 2BUFF mode. */
805 for (i = 0; i < config->rx_ring_num; i++) {
806 blk_cnt = config->rx_cfg[i].num_rxd /
807 (rxd_count[nic->rxd_mode] + 1);
808 for (j = 0; j < blk_cnt; j++) {
809 int k = 0;
810 if (!mac_control->rings[i].ba[j])
811 continue;
812 while (k != rxd_count[nic->rxd_mode]) {
813 buffAdd_t *ba =
814 &mac_control->rings[i].ba[j][k];
815 kfree(ba->ba_0_org);
816 kfree(ba->ba_1_org);
817 k++;
819 kfree(mac_control->rings[i].ba[j]);
821 kfree(mac_control->rings[i].ba);
825 if (mac_control->stats_mem) {
826 pci_free_consistent(nic->pdev,
827 mac_control->stats_mem_sz,
828 mac_control->stats_mem,
829 mac_control->stats_mem_phy);
831 if (nic->ufo_in_band_v)
832 kfree(nic->ufo_in_band_v);
836 * s2io_verify_pci_mode -
839 static int s2io_verify_pci_mode(nic_t *nic)
841 XENA_dev_config_t __iomem *bar0 = nic->bar0;
842 register u64 val64 = 0;
843 int mode;
845 val64 = readq(&bar0->pci_mode);
846 mode = (u8)GET_PCI_MODE(val64);
848 if ( val64 & PCI_MODE_UNKNOWN_MODE)
849 return -1; /* Unknown PCI mode */
850 return mode;
853 #define NEC_VENID 0x1033
854 #define NEC_DEVID 0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
857 struct pci_dev *tdev = NULL;
858 while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
860 if (tdev->bus == s2io_pdev->bus->parent)
861 return 1;
864 return 0;
867 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
869 * s2io_print_pci_mode -
871 static int s2io_print_pci_mode(nic_t *nic)
873 XENA_dev_config_t __iomem *bar0 = nic->bar0;
874 register u64 val64 = 0;
875 int mode;
876 struct config_param *config = &nic->config;
878 val64 = readq(&bar0->pci_mode);
879 mode = (u8)GET_PCI_MODE(val64);
881 if ( val64 & PCI_MODE_UNKNOWN_MODE)
882 return -1; /* Unknown PCI mode */
884 config->bus_speed = bus_speed[mode];
886 if (s2io_on_nec_bridge(nic->pdev)) {
887 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
888 nic->dev->name);
889 return mode;
892 if (val64 & PCI_MODE_32_BITS) {
893 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
894 } else {
895 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
898 switch(mode) {
899 case PCI_MODE_PCI_33:
900 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
901 break;
902 case PCI_MODE_PCI_66:
903 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
904 break;
905 case PCI_MODE_PCIX_M1_66:
906 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
907 break;
908 case PCI_MODE_PCIX_M1_100:
909 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
910 break;
911 case PCI_MODE_PCIX_M1_133:
912 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
913 break;
914 case PCI_MODE_PCIX_M2_66:
915 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
916 break;
917 case PCI_MODE_PCIX_M2_100:
918 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
919 break;
920 case PCI_MODE_PCIX_M2_133:
921 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
922 break;
923 default:
924 return -1; /* Unsupported bus speed */
927 return mode;
931 * init_nic - Initialization of hardware
932 * @nic: device peivate variable
933 * Description: The function sequentially configures every block
934 * of the H/W from their reset values.
935 * Return Value: SUCCESS on success and
936 * '-1' on failure (endian settings incorrect).
939 static int init_nic(struct s2io_nic *nic)
941 XENA_dev_config_t __iomem *bar0 = nic->bar0;
942 struct net_device *dev = nic->dev;
943 register u64 val64 = 0;
944 void __iomem *add;
945 u32 time;
946 int i, j;
947 mac_info_t *mac_control;
948 struct config_param *config;
949 int dtx_cnt = 0;
950 unsigned long long mem_share;
951 int mem_size;
953 mac_control = &nic->mac_control;
954 config = &nic->config;
956 /* to set the swapper controle on the card */
957 if(s2io_set_swapper(nic)) {
958 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
959 return -1;
963 * Herc requires EOI to be removed from reset before XGXS, so..
965 if (nic->device_type & XFRAME_II_DEVICE) {
966 val64 = 0xA500000000ULL;
967 writeq(val64, &bar0->sw_reset);
968 msleep(500);
969 val64 = readq(&bar0->sw_reset);
972 /* Remove XGXS from reset state */
973 val64 = 0;
974 writeq(val64, &bar0->sw_reset);
975 msleep(500);
976 val64 = readq(&bar0->sw_reset);
978 /* Enable Receiving broadcasts */
979 add = &bar0->mac_cfg;
980 val64 = readq(&bar0->mac_cfg);
981 val64 |= MAC_RMAC_BCAST_ENABLE;
982 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
983 writel((u32) val64, add);
984 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
985 writel((u32) (val64 >> 32), (add + 4));
987 /* Read registers in all blocks */
988 val64 = readq(&bar0->mac_int_mask);
989 val64 = readq(&bar0->mc_int_mask);
990 val64 = readq(&bar0->xgxs_int_mask);
992 /* Set MTU */
993 val64 = dev->mtu;
994 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
996 if (nic->device_type & XFRAME_II_DEVICE) {
997 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
998 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
999 &bar0->dtx_control, UF);
1000 if (dtx_cnt & 0x1)
1001 msleep(1); /* Necessary!! */
1002 dtx_cnt++;
1004 } else {
1005 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1006 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1007 &bar0->dtx_control, UF);
1008 val64 = readq(&bar0->dtx_control);
1009 dtx_cnt++;
1013 /* Tx DMA Initialization */
1014 val64 = 0;
1015 writeq(val64, &bar0->tx_fifo_partition_0);
1016 writeq(val64, &bar0->tx_fifo_partition_1);
1017 writeq(val64, &bar0->tx_fifo_partition_2);
1018 writeq(val64, &bar0->tx_fifo_partition_3);
1021 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1022 val64 |=
1023 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1024 13) | vBIT(config->tx_cfg[i].fifo_priority,
1025 ((i * 32) + 5), 3);
1027 if (i == (config->tx_fifo_num - 1)) {
1028 if (i % 2 == 0)
1029 i++;
1032 switch (i) {
1033 case 1:
1034 writeq(val64, &bar0->tx_fifo_partition_0);
1035 val64 = 0;
1036 break;
1037 case 3:
1038 writeq(val64, &bar0->tx_fifo_partition_1);
1039 val64 = 0;
1040 break;
1041 case 5:
1042 writeq(val64, &bar0->tx_fifo_partition_2);
1043 val64 = 0;
1044 break;
1045 case 7:
1046 writeq(val64, &bar0->tx_fifo_partition_3);
1047 break;
1052 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1053 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055 if ((nic->device_type == XFRAME_I_DEVICE) &&
1056 (get_xena_rev_id(nic->pdev) < 4))
1057 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1059 val64 = readq(&bar0->tx_fifo_partition_0);
1060 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1061 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1064 * Initialization of Tx_PA_CONFIG register to ignore packet
1065 * integrity checking.
1067 val64 = readq(&bar0->tx_pa_cfg);
1068 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1069 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1070 writeq(val64, &bar0->tx_pa_cfg);
1072 /* Rx DMA intialization. */
1073 val64 = 0;
1074 for (i = 0; i < config->rx_ring_num; i++) {
1075 val64 |=
1076 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1079 writeq(val64, &bar0->rx_queue_priority);
1082 * Allocating equal share of memory to all the
1083 * configured Rings.
1085 val64 = 0;
1086 if (nic->device_type & XFRAME_II_DEVICE)
1087 mem_size = 32;
1088 else
1089 mem_size = 64;
1091 for (i = 0; i < config->rx_ring_num; i++) {
1092 switch (i) {
1093 case 0:
1094 mem_share = (mem_size / config->rx_ring_num +
1095 mem_size % config->rx_ring_num);
1096 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1097 continue;
1098 case 1:
1099 mem_share = (mem_size / config->rx_ring_num);
1100 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1101 continue;
1102 case 2:
1103 mem_share = (mem_size / config->rx_ring_num);
1104 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1105 continue;
1106 case 3:
1107 mem_share = (mem_size / config->rx_ring_num);
1108 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1109 continue;
1110 case 4:
1111 mem_share = (mem_size / config->rx_ring_num);
1112 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1113 continue;
1114 case 5:
1115 mem_share = (mem_size / config->rx_ring_num);
1116 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1117 continue;
1118 case 6:
1119 mem_share = (mem_size / config->rx_ring_num);
1120 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1121 continue;
1122 case 7:
1123 mem_share = (mem_size / config->rx_ring_num);
1124 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1125 continue;
1128 writeq(val64, &bar0->rx_queue_cfg);
1131 * Filling Tx round robin registers
1132 * as per the number of FIFOs
1134 switch (config->tx_fifo_num) {
1135 case 1:
1136 val64 = 0x0000000000000000ULL;
1137 writeq(val64, &bar0->tx_w_round_robin_0);
1138 writeq(val64, &bar0->tx_w_round_robin_1);
1139 writeq(val64, &bar0->tx_w_round_robin_2);
1140 writeq(val64, &bar0->tx_w_round_robin_3);
1141 writeq(val64, &bar0->tx_w_round_robin_4);
1142 break;
1143 case 2:
1144 val64 = 0x0000010000010000ULL;
1145 writeq(val64, &bar0->tx_w_round_robin_0);
1146 val64 = 0x0100000100000100ULL;
1147 writeq(val64, &bar0->tx_w_round_robin_1);
1148 val64 = 0x0001000001000001ULL;
1149 writeq(val64, &bar0->tx_w_round_robin_2);
1150 val64 = 0x0000010000010000ULL;
1151 writeq(val64, &bar0->tx_w_round_robin_3);
1152 val64 = 0x0100000000000000ULL;
1153 writeq(val64, &bar0->tx_w_round_robin_4);
1154 break;
1155 case 3:
1156 val64 = 0x0001000102000001ULL;
1157 writeq(val64, &bar0->tx_w_round_robin_0);
1158 val64 = 0x0001020000010001ULL;
1159 writeq(val64, &bar0->tx_w_round_robin_1);
1160 val64 = 0x0200000100010200ULL;
1161 writeq(val64, &bar0->tx_w_round_robin_2);
1162 val64 = 0x0001000102000001ULL;
1163 writeq(val64, &bar0->tx_w_round_robin_3);
1164 val64 = 0x0001020000000000ULL;
1165 writeq(val64, &bar0->tx_w_round_robin_4);
1166 break;
1167 case 4:
1168 val64 = 0x0001020300010200ULL;
1169 writeq(val64, &bar0->tx_w_round_robin_0);
1170 val64 = 0x0100000102030001ULL;
1171 writeq(val64, &bar0->tx_w_round_robin_1);
1172 val64 = 0x0200010000010203ULL;
1173 writeq(val64, &bar0->tx_w_round_robin_2);
1174 val64 = 0x0001020001000001ULL;
1175 writeq(val64, &bar0->tx_w_round_robin_3);
1176 val64 = 0x0203000100000000ULL;
1177 writeq(val64, &bar0->tx_w_round_robin_4);
1178 break;
1179 case 5:
1180 val64 = 0x0001000203000102ULL;
1181 writeq(val64, &bar0->tx_w_round_robin_0);
1182 val64 = 0x0001020001030004ULL;
1183 writeq(val64, &bar0->tx_w_round_robin_1);
1184 val64 = 0x0001000203000102ULL;
1185 writeq(val64, &bar0->tx_w_round_robin_2);
1186 val64 = 0x0001020001030004ULL;
1187 writeq(val64, &bar0->tx_w_round_robin_3);
1188 val64 = 0x0001000000000000ULL;
1189 writeq(val64, &bar0->tx_w_round_robin_4);
1190 break;
1191 case 6:
1192 val64 = 0x0001020304000102ULL;
1193 writeq(val64, &bar0->tx_w_round_robin_0);
1194 val64 = 0x0304050001020001ULL;
1195 writeq(val64, &bar0->tx_w_round_robin_1);
1196 val64 = 0x0203000100000102ULL;
1197 writeq(val64, &bar0->tx_w_round_robin_2);
1198 val64 = 0x0304000102030405ULL;
1199 writeq(val64, &bar0->tx_w_round_robin_3);
1200 val64 = 0x0001000200000000ULL;
1201 writeq(val64, &bar0->tx_w_round_robin_4);
1202 break;
1203 case 7:
1204 val64 = 0x0001020001020300ULL;
1205 writeq(val64, &bar0->tx_w_round_robin_0);
1206 val64 = 0x0102030400010203ULL;
1207 writeq(val64, &bar0->tx_w_round_robin_1);
1208 val64 = 0x0405060001020001ULL;
1209 writeq(val64, &bar0->tx_w_round_robin_2);
1210 val64 = 0x0304050000010200ULL;
1211 writeq(val64, &bar0->tx_w_round_robin_3);
1212 val64 = 0x0102030000000000ULL;
1213 writeq(val64, &bar0->tx_w_round_robin_4);
1214 break;
1215 case 8:
1216 val64 = 0x0001020300040105ULL;
1217 writeq(val64, &bar0->tx_w_round_robin_0);
1218 val64 = 0x0200030106000204ULL;
1219 writeq(val64, &bar0->tx_w_round_robin_1);
1220 val64 = 0x0103000502010007ULL;
1221 writeq(val64, &bar0->tx_w_round_robin_2);
1222 val64 = 0x0304010002060500ULL;
1223 writeq(val64, &bar0->tx_w_round_robin_3);
1224 val64 = 0x0103020400000000ULL;
1225 writeq(val64, &bar0->tx_w_round_robin_4);
1226 break;
1229 /* Enable all configured Tx FIFO partitions */
1230 val64 = readq(&bar0->tx_fifo_partition_0);
1231 val64 |= (TX_FIFO_PARTITION_EN);
1232 writeq(val64, &bar0->tx_fifo_partition_0);
1234 /* Filling the Rx round robin registers as per the
1235 * number of Rings and steering based on QoS.
1237 switch (config->rx_ring_num) {
1238 case 1:
1239 val64 = 0x8080808080808080ULL;
1240 writeq(val64, &bar0->rts_qos_steering);
1241 break;
1242 case 2:
1243 val64 = 0x0000010000010000ULL;
1244 writeq(val64, &bar0->rx_w_round_robin_0);
1245 val64 = 0x0100000100000100ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_1);
1247 val64 = 0x0001000001000001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_2);
1249 val64 = 0x0000010000010000ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_3);
1251 val64 = 0x0100000000000000ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_4);
1254 val64 = 0x8080808040404040ULL;
1255 writeq(val64, &bar0->rts_qos_steering);
1256 break;
1257 case 3:
1258 val64 = 0x0001000102000001ULL;
1259 writeq(val64, &bar0->rx_w_round_robin_0);
1260 val64 = 0x0001020000010001ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_1);
1262 val64 = 0x0200000100010200ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_2);
1264 val64 = 0x0001000102000001ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_3);
1266 val64 = 0x0001020000000000ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_4);
1269 val64 = 0x8080804040402020ULL;
1270 writeq(val64, &bar0->rts_qos_steering);
1271 break;
1272 case 4:
1273 val64 = 0x0001020300010200ULL;
1274 writeq(val64, &bar0->rx_w_round_robin_0);
1275 val64 = 0x0100000102030001ULL;
1276 writeq(val64, &bar0->rx_w_round_robin_1);
1277 val64 = 0x0200010000010203ULL;
1278 writeq(val64, &bar0->rx_w_round_robin_2);
1279 val64 = 0x0001020001000001ULL;
1280 writeq(val64, &bar0->rx_w_round_robin_3);
1281 val64 = 0x0203000100000000ULL;
1282 writeq(val64, &bar0->rx_w_round_robin_4);
1284 val64 = 0x8080404020201010ULL;
1285 writeq(val64, &bar0->rts_qos_steering);
1286 break;
1287 case 5:
1288 val64 = 0x0001000203000102ULL;
1289 writeq(val64, &bar0->rx_w_round_robin_0);
1290 val64 = 0x0001020001030004ULL;
1291 writeq(val64, &bar0->rx_w_round_robin_1);
1292 val64 = 0x0001000203000102ULL;
1293 writeq(val64, &bar0->rx_w_round_robin_2);
1294 val64 = 0x0001020001030004ULL;
1295 writeq(val64, &bar0->rx_w_round_robin_3);
1296 val64 = 0x0001000000000000ULL;
1297 writeq(val64, &bar0->rx_w_round_robin_4);
1299 val64 = 0x8080404020201008ULL;
1300 writeq(val64, &bar0->rts_qos_steering);
1301 break;
1302 case 6:
1303 val64 = 0x0001020304000102ULL;
1304 writeq(val64, &bar0->rx_w_round_robin_0);
1305 val64 = 0x0304050001020001ULL;
1306 writeq(val64, &bar0->rx_w_round_robin_1);
1307 val64 = 0x0203000100000102ULL;
1308 writeq(val64, &bar0->rx_w_round_robin_2);
1309 val64 = 0x0304000102030405ULL;
1310 writeq(val64, &bar0->rx_w_round_robin_3);
1311 val64 = 0x0001000200000000ULL;
1312 writeq(val64, &bar0->rx_w_round_robin_4);
1314 val64 = 0x8080404020100804ULL;
1315 writeq(val64, &bar0->rts_qos_steering);
1316 break;
1317 case 7:
1318 val64 = 0x0001020001020300ULL;
1319 writeq(val64, &bar0->rx_w_round_robin_0);
1320 val64 = 0x0102030400010203ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_1);
1322 val64 = 0x0405060001020001ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_2);
1324 val64 = 0x0304050000010200ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_3);
1326 val64 = 0x0102030000000000ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_4);
1329 val64 = 0x8080402010080402ULL;
1330 writeq(val64, &bar0->rts_qos_steering);
1331 break;
1332 case 8:
1333 val64 = 0x0001020300040105ULL;
1334 writeq(val64, &bar0->rx_w_round_robin_0);
1335 val64 = 0x0200030106000204ULL;
1336 writeq(val64, &bar0->rx_w_round_robin_1);
1337 val64 = 0x0103000502010007ULL;
1338 writeq(val64, &bar0->rx_w_round_robin_2);
1339 val64 = 0x0304010002060500ULL;
1340 writeq(val64, &bar0->rx_w_round_robin_3);
1341 val64 = 0x0103020400000000ULL;
1342 writeq(val64, &bar0->rx_w_round_robin_4);
1344 val64 = 0x8040201008040201ULL;
1345 writeq(val64, &bar0->rts_qos_steering);
1346 break;
1349 /* UDP Fix */
1350 val64 = 0;
1351 for (i = 0; i < 8; i++)
1352 writeq(val64, &bar0->rts_frm_len_n[i]);
1354 /* Set the default rts frame length for the rings configured */
1355 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1356 for (i = 0 ; i < config->rx_ring_num ; i++)
1357 writeq(val64, &bar0->rts_frm_len_n[i]);
1359 /* Set the frame length for the configured rings
1360 * desired by the user
1362 for (i = 0; i < config->rx_ring_num; i++) {
1363 /* If rts_frm_len[i] == 0 then it is assumed that user not
1364 * specified frame length steering.
1365 * If the user provides the frame length then program
1366 * the rts_frm_len register for those values or else
1367 * leave it as it is.
1369 if (rts_frm_len[i] != 0) {
1370 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1371 &bar0->rts_frm_len_n[i]);
1375 /* Program statistics memory */
1376 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1378 if (nic->device_type == XFRAME_II_DEVICE) {
1379 val64 = STAT_BC(0x320);
1380 writeq(val64, &bar0->stat_byte_cnt);
1384 * Initializing the sampling rate for the device to calculate the
1385 * bandwidth utilization.
1387 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1388 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1389 writeq(val64, &bar0->mac_link_util);
1393 * Initializing the Transmit and Receive Traffic Interrupt
1394 * Scheme.
1397 * TTI Initialization. Default Tx timer gets us about
1398 * 250 interrupts per sec. Continuous interrupts are enabled
1399 * by default.
1401 if (nic->device_type == XFRAME_II_DEVICE) {
1402 int count = (nic->config.bus_speed * 125)/2;
1403 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1404 } else {
1406 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1409 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1410 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1411 if (use_continuous_tx_intrs)
1412 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1413 writeq(val64, &bar0->tti_data1_mem);
1415 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1416 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1417 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1418 writeq(val64, &bar0->tti_data2_mem);
1420 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1421 writeq(val64, &bar0->tti_command_mem);
1424 * Once the operation completes, the Strobe bit of the command
1425 * register will be reset. We poll for this particular condition
1426 * We wait for a maximum of 500ms for the operation to complete,
1427 * if it's not complete by then we return error.
1429 time = 0;
1430 while (TRUE) {
1431 val64 = readq(&bar0->tti_command_mem);
1432 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1433 break;
1435 if (time > 10) {
1436 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1437 dev->name);
1438 return -1;
1440 msleep(50);
1441 time++;
1444 if (nic->config.bimodal) {
1445 int k = 0;
1446 for (k = 0; k < config->rx_ring_num; k++) {
1447 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1448 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1449 writeq(val64, &bar0->tti_command_mem);
1452 * Once the operation completes, the Strobe bit of the command
1453 * register will be reset. We poll for this particular condition
1454 * We wait for a maximum of 500ms for the operation to complete,
1455 * if it's not complete by then we return error.
1457 time = 0;
1458 while (TRUE) {
1459 val64 = readq(&bar0->tti_command_mem);
1460 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1461 break;
1463 if (time > 10) {
1464 DBG_PRINT(ERR_DBG,
1465 "%s: TTI init Failed\n",
1466 dev->name);
1467 return -1;
1469 time++;
1470 msleep(50);
1473 } else {
1475 /* RTI Initialization */
1476 if (nic->device_type == XFRAME_II_DEVICE) {
1478 * Programmed to generate Apprx 500 Intrs per
1479 * second
1481 int count = (nic->config.bus_speed * 125)/4;
1482 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1483 } else {
1484 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1487 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1488 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1490 writeq(val64, &bar0->rti_data1_mem);
1492 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1493 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1494 if (nic->intr_type == MSI_X)
1495 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1496 RTI_DATA2_MEM_RX_UFC_D(0x40));
1497 else
1498 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1499 RTI_DATA2_MEM_RX_UFC_D(0x80));
1500 writeq(val64, &bar0->rti_data2_mem);
1502 for (i = 0; i < config->rx_ring_num; i++) {
1503 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1504 | RTI_CMD_MEM_OFFSET(i);
1505 writeq(val64, &bar0->rti_command_mem);
1508 * Once the operation completes, the Strobe bit of the
1509 * command register will be reset. We poll for this
1510 * particular condition. We wait for a maximum of 500ms
1511 * for the operation to complete, if it's not complete
1512 * by then we return error.
1514 time = 0;
1515 while (TRUE) {
1516 val64 = readq(&bar0->rti_command_mem);
1517 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1518 break;
1520 if (time > 10) {
1521 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1522 dev->name);
1523 return -1;
1525 time++;
1526 msleep(50);
1532 * Initializing proper values as Pause threshold into all
1533 * the 8 Queues on Rx side.
1535 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1536 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1538 /* Disable RMAC PAD STRIPPING */
1539 add = &bar0->mac_cfg;
1540 val64 = readq(&bar0->mac_cfg);
1541 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1542 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543 writel((u32) (val64), add);
1544 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545 writel((u32) (val64 >> 32), (add + 4));
1546 val64 = readq(&bar0->mac_cfg);
1548 /* Enable FCS stripping by adapter */
1549 add = &bar0->mac_cfg;
1550 val64 = readq(&bar0->mac_cfg);
1551 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1552 if (nic->device_type == XFRAME_II_DEVICE)
1553 writeq(val64, &bar0->mac_cfg);
1554 else {
1555 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1556 writel((u32) (val64), add);
1557 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1558 writel((u32) (val64 >> 32), (add + 4));
1562 * Set the time value to be inserted in the pause frame
1563 * generated by xena.
1565 val64 = readq(&bar0->rmac_pause_cfg);
1566 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1567 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1568 writeq(val64, &bar0->rmac_pause_cfg);
1571 * Set the Threshold Limit for Generating the pause frame
1572 * If the amount of data in any Queue exceeds ratio of
1573 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1574 * pause frame is generated
1576 val64 = 0;
1577 for (i = 0; i < 4; i++) {
1578 val64 |=
1579 (((u64) 0xFF00 | nic->mac_control.
1580 mc_pause_threshold_q0q3)
1581 << (i * 2 * 8));
1583 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1585 val64 = 0;
1586 for (i = 0; i < 4; i++) {
1587 val64 |=
1588 (((u64) 0xFF00 | nic->mac_control.
1589 mc_pause_threshold_q4q7)
1590 << (i * 2 * 8));
1592 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1595 * TxDMA will stop Read request if the number of read split has
1596 * exceeded the limit pointed by shared_splits
1598 val64 = readq(&bar0->pic_control);
1599 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1600 writeq(val64, &bar0->pic_control);
1602 if (nic->config.bus_speed == 266) {
1603 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1604 writeq(0x0, &bar0->read_retry_delay);
1605 writeq(0x0, &bar0->write_retry_delay);
1609 * Programming the Herc to split every write transaction
1610 * that does not start on an ADB to reduce disconnects.
1612 if (nic->device_type == XFRAME_II_DEVICE) {
1613 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1614 writeq(val64, &bar0->misc_control);
1615 val64 = readq(&bar0->pic_control2);
1616 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1617 writeq(val64, &bar0->pic_control2);
1619 if (strstr(nic->product_name, "CX4")) {
1620 val64 = TMAC_AVG_IPG(0x17);
1621 writeq(val64, &bar0->tmac_avg_ipg);
1624 return SUCCESS;
1626 #define LINK_UP_DOWN_INTERRUPT 1
1627 #define MAC_RMAC_ERR_TIMER 2
1629 static int s2io_link_fault_indication(nic_t *nic)
1631 if (nic->intr_type != INTA)
1632 return MAC_RMAC_ERR_TIMER;
1633 if (nic->device_type == XFRAME_II_DEVICE)
1634 return LINK_UP_DOWN_INTERRUPT;
1635 else
1636 return MAC_RMAC_ERR_TIMER;
1640 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1641 * @nic: device private variable,
1642 * @mask: A mask indicating which Intr block must be modified and,
1643 * @flag: A flag indicating whether to enable or disable the Intrs.
1644 * Description: This function will either disable or enable the interrupts
1645 * depending on the flag argument. The mask argument can be used to
1646 * enable/disable any Intr block.
1647 * Return Value: NONE.
1650 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1652 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1653 register u64 val64 = 0, temp64 = 0;
1655 /* Top level interrupt classification */
1656 /* PIC Interrupts */
1657 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1658 /* Enable PIC Intrs in the general intr mask register */
1659 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1660 if (flag == ENABLE_INTRS) {
1661 temp64 = readq(&bar0->general_int_mask);
1662 temp64 &= ~((u64) val64);
1663 writeq(temp64, &bar0->general_int_mask);
1665 * If Hercules adapter enable GPIO otherwise
1666 * disable all PCIX, Flash, MDIO, IIC and GPIO
1667 * interrupts for now.
1668 * TODO
1670 if (s2io_link_fault_indication(nic) ==
1671 LINK_UP_DOWN_INTERRUPT ) {
1672 temp64 = readq(&bar0->pic_int_mask);
1673 temp64 &= ~((u64) PIC_INT_GPIO);
1674 writeq(temp64, &bar0->pic_int_mask);
1675 temp64 = readq(&bar0->gpio_int_mask);
1676 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1677 writeq(temp64, &bar0->gpio_int_mask);
1678 } else {
1679 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1682 * No MSI Support is available presently, so TTI and
1683 * RTI interrupts are also disabled.
1685 } else if (flag == DISABLE_INTRS) {
1687 * Disable PIC Intrs in the general
1688 * intr mask register
1690 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1691 temp64 = readq(&bar0->general_int_mask);
1692 val64 |= temp64;
1693 writeq(val64, &bar0->general_int_mask);
1697 /* DMA Interrupts */
1698 /* Enabling/Disabling Tx DMA interrupts */
1699 if (mask & TX_DMA_INTR) {
1700 /* Enable TxDMA Intrs in the general intr mask register */
1701 val64 = TXDMA_INT_M;
1702 if (flag == ENABLE_INTRS) {
1703 temp64 = readq(&bar0->general_int_mask);
1704 temp64 &= ~((u64) val64);
1705 writeq(temp64, &bar0->general_int_mask);
1707 * Keep all interrupts other than PFC interrupt
1708 * and PCC interrupt disabled in DMA level.
1710 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1711 TXDMA_PCC_INT_M);
1712 writeq(val64, &bar0->txdma_int_mask);
1714 * Enable only the MISC error 1 interrupt in PFC block
1716 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1717 writeq(val64, &bar0->pfc_err_mask);
1719 * Enable only the FB_ECC error interrupt in PCC block
1721 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1722 writeq(val64, &bar0->pcc_err_mask);
1723 } else if (flag == DISABLE_INTRS) {
1725 * Disable TxDMA Intrs in the general intr mask
1726 * register
1728 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1729 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1730 temp64 = readq(&bar0->general_int_mask);
1731 val64 |= temp64;
1732 writeq(val64, &bar0->general_int_mask);
1736 /* Enabling/Disabling Rx DMA interrupts */
1737 if (mask & RX_DMA_INTR) {
1738 /* Enable RxDMA Intrs in the general intr mask register */
1739 val64 = RXDMA_INT_M;
1740 if (flag == ENABLE_INTRS) {
1741 temp64 = readq(&bar0->general_int_mask);
1742 temp64 &= ~((u64) val64);
1743 writeq(temp64, &bar0->general_int_mask);
1745 * All RxDMA block interrupts are disabled for now
1746 * TODO
1748 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1749 } else if (flag == DISABLE_INTRS) {
1751 * Disable RxDMA Intrs in the general intr mask
1752 * register
1754 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1755 temp64 = readq(&bar0->general_int_mask);
1756 val64 |= temp64;
1757 writeq(val64, &bar0->general_int_mask);
1761 /* MAC Interrupts */
1762 /* Enabling/Disabling MAC interrupts */
1763 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1764 val64 = TXMAC_INT_M | RXMAC_INT_M;
1765 if (flag == ENABLE_INTRS) {
1766 temp64 = readq(&bar0->general_int_mask);
1767 temp64 &= ~((u64) val64);
1768 writeq(temp64, &bar0->general_int_mask);
1770 * All MAC block error interrupts are disabled for now
1771 * TODO
1773 } else if (flag == DISABLE_INTRS) {
1775 * Disable MAC Intrs in the general intr mask register
1777 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1778 writeq(DISABLE_ALL_INTRS,
1779 &bar0->mac_rmac_err_mask);
1781 temp64 = readq(&bar0->general_int_mask);
1782 val64 |= temp64;
1783 writeq(val64, &bar0->general_int_mask);
1787 /* XGXS Interrupts */
1788 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1789 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1790 if (flag == ENABLE_INTRS) {
1791 temp64 = readq(&bar0->general_int_mask);
1792 temp64 &= ~((u64) val64);
1793 writeq(temp64, &bar0->general_int_mask);
1795 * All XGXS block error interrupts are disabled for now
1796 * TODO
1798 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1799 } else if (flag == DISABLE_INTRS) {
1801 * Disable MC Intrs in the general intr mask register
1803 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1804 temp64 = readq(&bar0->general_int_mask);
1805 val64 |= temp64;
1806 writeq(val64, &bar0->general_int_mask);
1810 /* Memory Controller(MC) interrupts */
1811 if (mask & MC_INTR) {
1812 val64 = MC_INT_M;
1813 if (flag == ENABLE_INTRS) {
1814 temp64 = readq(&bar0->general_int_mask);
1815 temp64 &= ~((u64) val64);
1816 writeq(temp64, &bar0->general_int_mask);
1818 * Enable all MC Intrs.
1820 writeq(0x0, &bar0->mc_int_mask);
1821 writeq(0x0, &bar0->mc_err_mask);
1822 } else if (flag == DISABLE_INTRS) {
1824 * Disable MC Intrs in the general intr mask register
1826 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1827 temp64 = readq(&bar0->general_int_mask);
1828 val64 |= temp64;
1829 writeq(val64, &bar0->general_int_mask);
1834 /* Tx traffic interrupts */
1835 if (mask & TX_TRAFFIC_INTR) {
1836 val64 = TXTRAFFIC_INT_M;
1837 if (flag == ENABLE_INTRS) {
1838 temp64 = readq(&bar0->general_int_mask);
1839 temp64 &= ~((u64) val64);
1840 writeq(temp64, &bar0->general_int_mask);
1842 * Enable all the Tx side interrupts
1843 * writing 0 Enables all 64 TX interrupt levels
1845 writeq(0x0, &bar0->tx_traffic_mask);
1846 } else if (flag == DISABLE_INTRS) {
1848 * Disable Tx Traffic Intrs in the general intr mask
1849 * register.
1851 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1852 temp64 = readq(&bar0->general_int_mask);
1853 val64 |= temp64;
1854 writeq(val64, &bar0->general_int_mask);
1858 /* Rx traffic interrupts */
1859 if (mask & RX_TRAFFIC_INTR) {
1860 val64 = RXTRAFFIC_INT_M;
1861 if (flag == ENABLE_INTRS) {
1862 temp64 = readq(&bar0->general_int_mask);
1863 temp64 &= ~((u64) val64);
1864 writeq(temp64, &bar0->general_int_mask);
1865 /* writing 0 Enables all 8 RX interrupt levels */
1866 writeq(0x0, &bar0->rx_traffic_mask);
1867 } else if (flag == DISABLE_INTRS) {
1869 * Disable Rx Traffic Intrs in the general intr mask
1870 * register.
1872 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1873 temp64 = readq(&bar0->general_int_mask);
1874 val64 |= temp64;
1875 writeq(val64, &bar0->general_int_mask);
1880 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1882 int ret = 0;
1884 if (flag == FALSE) {
1885 if ((!herc && (rev_id >= 4)) || herc) {
1886 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1887 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1888 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1889 ret = 1;
1891 }else {
1892 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1893 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1894 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1895 ret = 1;
1898 } else {
1899 if ((!herc && (rev_id >= 4)) || herc) {
1900 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1901 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1902 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1903 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1904 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1905 ret = 1;
1907 } else {
1908 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1909 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1910 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1911 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1912 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1913 ret = 1;
1918 return ret;
1921 * verify_xena_quiescence - Checks whether the H/W is ready
1922 * @val64 : Value read from adapter status register.
1923 * @flag : indicates if the adapter enable bit was ever written once
1924 * before.
1925 * Description: Returns whether the H/W is ready to go or not. Depending
1926 * on whether adapter enable bit was written or not the comparison
1927 * differs and the calling function passes the input argument flag to
1928 * indicate this.
1929 * Return: 1 If xena is quiescence
1930 * 0 If Xena is not quiescence
1933 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1935 int ret = 0, herc;
1936 u64 tmp64 = ~((u64) val64);
1937 int rev_id = get_xena_rev_id(sp->pdev);
1939 herc = (sp->device_type == XFRAME_II_DEVICE);
1940 if (!
1941 (tmp64 &
1942 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1943 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1944 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1945 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1946 ADAPTER_STATUS_P_PLL_LOCK))) {
1947 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1950 return ret;
1954 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1955 * @sp: Pointer to device specifc structure
1956 * Description :
1957 * New procedure to clear mac address reading problems on Alpha platforms
1961 static void fix_mac_address(nic_t * sp)
1963 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1964 u64 val64;
1965 int i = 0;
1967 while (fix_mac[i] != END_SIGN) {
1968 writeq(fix_mac[i++], &bar0->gpio_control);
1969 udelay(10);
1970 val64 = readq(&bar0->gpio_control);
1975 * start_nic - Turns the device on
1976 * @nic : device private variable.
1977 * Description:
1978 * This function actually turns the device on. Before this function is
1979 * called,all Registers are configured from their reset states
1980 * and shared memory is allocated but the NIC is still quiescent. On
1981 * calling this function, the device interrupts are cleared and the NIC is
1982 * literally switched on by writing into the adapter control register.
1983 * Return Value:
1984 * SUCCESS on success and -1 on failure.
1987 static int start_nic(struct s2io_nic *nic)
1989 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1990 struct net_device *dev = nic->dev;
1991 register u64 val64 = 0;
1992 u16 subid, i;
1993 mac_info_t *mac_control;
1994 struct config_param *config;
1996 mac_control = &nic->mac_control;
1997 config = &nic->config;
1999 /* PRC Initialization and configuration */
2000 for (i = 0; i < config->rx_ring_num; i++) {
2001 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2002 &bar0->prc_rxd0_n[i]);
2004 val64 = readq(&bar0->prc_ctrl_n[i]);
2005 if (nic->config.bimodal)
2006 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2007 if (nic->rxd_mode == RXD_MODE_1)
2008 val64 |= PRC_CTRL_RC_ENABLED;
2009 else
2010 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2011 if (nic->device_type == XFRAME_II_DEVICE)
2012 val64 |= PRC_CTRL_GROUP_READS;
2013 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2014 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2015 writeq(val64, &bar0->prc_ctrl_n[i]);
2018 if (nic->rxd_mode == RXD_MODE_3B) {
2019 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2020 val64 = readq(&bar0->rx_pa_cfg);
2021 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2022 writeq(val64, &bar0->rx_pa_cfg);
2026 * Enabling MC-RLDRAM. After enabling the device, we timeout
2027 * for around 100ms, which is approximately the time required
2028 * for the device to be ready for operation.
2030 val64 = readq(&bar0->mc_rldram_mrs);
2031 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2032 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2033 val64 = readq(&bar0->mc_rldram_mrs);
2035 msleep(100); /* Delay by around 100 ms. */
2037 /* Enabling ECC Protection. */
2038 val64 = readq(&bar0->adapter_control);
2039 val64 &= ~ADAPTER_ECC_EN;
2040 writeq(val64, &bar0->adapter_control);
2043 * Clearing any possible Link state change interrupts that
2044 * could have popped up just before Enabling the card.
2046 val64 = readq(&bar0->mac_rmac_err_reg);
2047 if (val64)
2048 writeq(val64, &bar0->mac_rmac_err_reg);
2051 * Verify if the device is ready to be enabled, if so enable
2052 * it.
2054 val64 = readq(&bar0->adapter_status);
2055 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2056 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2057 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2058 (unsigned long long) val64);
2059 return FAILURE;
2063 * With some switches, link might be already up at this point.
2064 * Because of this weird behavior, when we enable laser,
2065 * we may not get link. We need to handle this. We cannot
2066 * figure out which switch is misbehaving. So we are forced to
2067 * make a global change.
2070 /* Enabling Laser. */
2071 val64 = readq(&bar0->adapter_control);
2072 val64 |= ADAPTER_EOI_TX_ON;
2073 writeq(val64, &bar0->adapter_control);
2075 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2077 * Dont see link state interrupts initally on some switches,
2078 * so directly scheduling the link state task here.
2080 schedule_work(&nic->set_link_task);
2082 /* SXE-002: Initialize link and activity LED */
2083 subid = nic->pdev->subsystem_device;
2084 if (((subid & 0xFF) >= 0x07) &&
2085 (nic->device_type == XFRAME_I_DEVICE)) {
2086 val64 = readq(&bar0->gpio_control);
2087 val64 |= 0x0000800000000000ULL;
2088 writeq(val64, &bar0->gpio_control);
2089 val64 = 0x0411040400000000ULL;
2090 writeq(val64, (void __iomem *)bar0 + 0x2700);
2093 return SUCCESS;
2096 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2098 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2100 nic_t *nic = fifo_data->nic;
2101 struct sk_buff *skb;
2102 TxD_t *txds;
2103 u16 j, frg_cnt;
2105 txds = txdlp;
2106 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2107 pci_unmap_single(nic->pdev, (dma_addr_t)
2108 txds->Buffer_Pointer, sizeof(u64),
2109 PCI_DMA_TODEVICE);
2110 txds++;
2113 skb = (struct sk_buff *) ((unsigned long)
2114 txds->Host_Control);
2115 if (!skb) {
2116 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2117 return NULL;
2119 pci_unmap_single(nic->pdev, (dma_addr_t)
2120 txds->Buffer_Pointer,
2121 skb->len - skb->data_len,
2122 PCI_DMA_TODEVICE);
2123 frg_cnt = skb_shinfo(skb)->nr_frags;
2124 if (frg_cnt) {
2125 txds++;
2126 for (j = 0; j < frg_cnt; j++, txds++) {
2127 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2128 if (!txds->Buffer_Pointer)
2129 break;
2130 pci_unmap_page(nic->pdev, (dma_addr_t)
2131 txds->Buffer_Pointer,
2132 frag->size, PCI_DMA_TODEVICE);
2135 memset(txdlp,0, (sizeof(TxD_t) * fifo_data->max_txds));
2136 return(skb);
2140 * free_tx_buffers - Free all queued Tx buffers
2141 * @nic : device private variable.
2142 * Description:
2143 * Free all queued Tx buffers.
2144 * Return Value: void
2147 static void free_tx_buffers(struct s2io_nic *nic)
2149 struct net_device *dev = nic->dev;
2150 struct sk_buff *skb;
2151 TxD_t *txdp;
2152 int i, j;
2153 mac_info_t *mac_control;
2154 struct config_param *config;
2155 int cnt = 0;
2157 mac_control = &nic->mac_control;
2158 config = &nic->config;
2160 for (i = 0; i < config->tx_fifo_num; i++) {
2161 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2162 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2163 list_virt_addr;
2164 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2165 if (skb) {
2166 dev_kfree_skb(skb);
2167 cnt++;
2170 DBG_PRINT(INTR_DBG,
2171 "%s:forcibly freeing %d skbs on FIFO%d\n",
2172 dev->name, cnt, i);
2173 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2174 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2179 * stop_nic - To stop the nic
2180 * @nic ; device private variable.
2181 * Description:
2182 * This function does exactly the opposite of what the start_nic()
2183 * function does. This function is called to stop the device.
2184 * Return Value:
2185 * void.
2188 static void stop_nic(struct s2io_nic *nic)
2190 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2191 register u64 val64 = 0;
2192 u16 interruptible;
2193 mac_info_t *mac_control;
2194 struct config_param *config;
2196 mac_control = &nic->mac_control;
2197 config = &nic->config;
2199 /* Disable all interrupts */
2200 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2201 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2202 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2203 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2205 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2206 val64 = readq(&bar0->adapter_control);
2207 val64 &= ~(ADAPTER_CNTL_EN);
2208 writeq(val64, &bar0->adapter_control);
2211 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2213 struct net_device *dev = nic->dev;
2214 struct sk_buff *frag_list;
2215 void *tmp;
2217 /* Buffer-1 receives L3/L4 headers */
2218 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2219 (nic->pdev, skb->data, l3l4hdr_size + 4,
2220 PCI_DMA_FROMDEVICE);
2222 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2223 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2224 if (skb_shinfo(skb)->frag_list == NULL) {
2225 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2226 return -ENOMEM ;
2228 frag_list = skb_shinfo(skb)->frag_list;
2229 frag_list->next = NULL;
2230 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2231 frag_list->data = tmp;
2232 frag_list->tail = tmp;
2234 /* Buffer-2 receives L4 data payload */
2235 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2236 frag_list->data, dev->mtu,
2237 PCI_DMA_FROMDEVICE);
2238 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2239 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2241 return SUCCESS;
2245 * fill_rx_buffers - Allocates the Rx side skbs
2246 * @nic: device private variable
2247 * @ring_no: ring number
2248 * Description:
2249 * The function allocates Rx side skbs and puts the physical
2250 * address of these buffers into the RxD buffer pointers, so that the NIC
2251 * can DMA the received frame into these locations.
2252 * The NIC supports 3 receive modes, viz
2253 * 1. single buffer,
2254 * 2. three buffer and
2255 * 3. Five buffer modes.
2256 * Each mode defines how many fragments the received frame will be split
2257 * up into by the NIC. The frame is split into L3 header, L4 Header,
2258 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2259 * is split into 3 fragments. As of now only single buffer mode is
2260 * supported.
2261 * Return Value:
2262 * SUCCESS on success or an appropriate -ve value on failure.
2265 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2267 struct net_device *dev = nic->dev;
2268 struct sk_buff *skb;
2269 RxD_t *rxdp;
2270 int off, off1, size, block_no, block_no1;
2271 u32 alloc_tab = 0;
2272 u32 alloc_cnt;
2273 mac_info_t *mac_control;
2274 struct config_param *config;
2275 u64 tmp;
2276 buffAdd_t *ba;
2277 #ifndef CONFIG_S2IO_NAPI
2278 unsigned long flags;
2279 #endif
2280 RxD_t *first_rxdp = NULL;
2282 mac_control = &nic->mac_control;
2283 config = &nic->config;
2284 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2285 atomic_read(&nic->rx_bufs_left[ring_no]);
2287 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2288 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2289 while (alloc_tab < alloc_cnt) {
2290 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2291 block_index;
2292 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2294 rxdp = mac_control->rings[ring_no].
2295 rx_blocks[block_no].rxds[off].virt_addr;
2297 if ((block_no == block_no1) && (off == off1) &&
2298 (rxdp->Host_Control)) {
2299 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2300 dev->name);
2301 DBG_PRINT(INTR_DBG, " info equated\n");
2302 goto end;
2304 if (off && (off == rxd_count[nic->rxd_mode])) {
2305 mac_control->rings[ring_no].rx_curr_put_info.
2306 block_index++;
2307 if (mac_control->rings[ring_no].rx_curr_put_info.
2308 block_index == mac_control->rings[ring_no].
2309 block_count)
2310 mac_control->rings[ring_no].rx_curr_put_info.
2311 block_index = 0;
2312 block_no = mac_control->rings[ring_no].
2313 rx_curr_put_info.block_index;
2314 if (off == rxd_count[nic->rxd_mode])
2315 off = 0;
2316 mac_control->rings[ring_no].rx_curr_put_info.
2317 offset = off;
2318 rxdp = mac_control->rings[ring_no].
2319 rx_blocks[block_no].block_virt_addr;
2320 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2321 dev->name, rxdp);
2323 #ifndef CONFIG_S2IO_NAPI
2324 spin_lock_irqsave(&nic->put_lock, flags);
2325 mac_control->rings[ring_no].put_pos =
2326 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2327 spin_unlock_irqrestore(&nic->put_lock, flags);
2328 #endif
2329 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2330 ((nic->rxd_mode >= RXD_MODE_3A) &&
2331 (rxdp->Control_2 & BIT(0)))) {
2332 mac_control->rings[ring_no].rx_curr_put_info.
2333 offset = off;
2334 goto end;
2336 /* calculate size of skb based on ring mode */
2337 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2338 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2339 if (nic->rxd_mode == RXD_MODE_1)
2340 size += NET_IP_ALIGN;
2341 else if (nic->rxd_mode == RXD_MODE_3B)
2342 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2343 else
2344 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2346 /* allocate skb */
2347 skb = dev_alloc_skb(size);
2348 if(!skb) {
2349 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2350 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2351 if (first_rxdp) {
2352 wmb();
2353 first_rxdp->Control_1 |= RXD_OWN_XENA;
2355 return -ENOMEM ;
2357 if (nic->rxd_mode == RXD_MODE_1) {
2358 /* 1 buffer mode - normal operation mode */
2359 memset(rxdp, 0, sizeof(RxD1_t));
2360 skb_reserve(skb, NET_IP_ALIGN);
2361 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2362 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2363 PCI_DMA_FROMDEVICE);
2364 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2366 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2368 * 2 or 3 buffer mode -
2369 * Both 2 buffer mode and 3 buffer mode provides 128
2370 * byte aligned receive buffers.
2372 * 3 buffer mode provides header separation where in
2373 * skb->data will have L3/L4 headers where as
2374 * skb_shinfo(skb)->frag_list will have the L4 data
2375 * payload
2378 memset(rxdp, 0, sizeof(RxD3_t));
2379 ba = &mac_control->rings[ring_no].ba[block_no][off];
2380 skb_reserve(skb, BUF0_LEN);
2381 tmp = (u64)(unsigned long) skb->data;
2382 tmp += ALIGN_SIZE;
2383 tmp &= ~ALIGN_SIZE;
2384 skb->data = (void *) (unsigned long)tmp;
2385 skb->tail = (void *) (unsigned long)tmp;
2387 if (!(((RxD3_t*)rxdp)->Buffer0_ptr))
2388 ((RxD3_t*)rxdp)->Buffer0_ptr =
2389 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2390 PCI_DMA_FROMDEVICE);
2391 else
2392 pci_dma_sync_single_for_device(nic->pdev,
2393 (dma_addr_t) ((RxD3_t*)rxdp)->Buffer0_ptr,
2394 BUF0_LEN, PCI_DMA_FROMDEVICE);
2395 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2396 if (nic->rxd_mode == RXD_MODE_3B) {
2397 /* Two buffer mode */
2400 * Buffer2 will have L3/L4 header plus
2401 * L4 payload
2403 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2404 (nic->pdev, skb->data, dev->mtu + 4,
2405 PCI_DMA_FROMDEVICE);
2407 /* Buffer-1 will be dummy buffer. Not used */
2408 if (!(((RxD3_t*)rxdp)->Buffer1_ptr)) {
2409 ((RxD3_t*)rxdp)->Buffer1_ptr =
2410 pci_map_single(nic->pdev,
2411 ba->ba_1, BUF1_LEN,
2412 PCI_DMA_FROMDEVICE);
2414 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2415 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2416 (dev->mtu + 4);
2417 } else {
2418 /* 3 buffer mode */
2419 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2420 dev_kfree_skb_irq(skb);
2421 if (first_rxdp) {
2422 wmb();
2423 first_rxdp->Control_1 |=
2424 RXD_OWN_XENA;
2426 return -ENOMEM ;
2429 rxdp->Control_2 |= BIT(0);
2431 rxdp->Host_Control = (unsigned long) (skb);
2432 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2433 rxdp->Control_1 |= RXD_OWN_XENA;
2434 off++;
2435 if (off == (rxd_count[nic->rxd_mode] + 1))
2436 off = 0;
2437 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2439 rxdp->Control_2 |= SET_RXD_MARKER;
2440 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2441 if (first_rxdp) {
2442 wmb();
2443 first_rxdp->Control_1 |= RXD_OWN_XENA;
2445 first_rxdp = rxdp;
2447 atomic_inc(&nic->rx_bufs_left[ring_no]);
2448 alloc_tab++;
2451 end:
2452 /* Transfer ownership of first descriptor to adapter just before
2453 * exiting. Before that, use memory barrier so that ownership
2454 * and other fields are seen by adapter correctly.
2456 if (first_rxdp) {
2457 wmb();
2458 first_rxdp->Control_1 |= RXD_OWN_XENA;
2461 return SUCCESS;
2464 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2466 struct net_device *dev = sp->dev;
2467 int j;
2468 struct sk_buff *skb;
2469 RxD_t *rxdp;
2470 mac_info_t *mac_control;
2471 buffAdd_t *ba;
2473 mac_control = &sp->mac_control;
2474 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2475 rxdp = mac_control->rings[ring_no].
2476 rx_blocks[blk].rxds[j].virt_addr;
2477 skb = (struct sk_buff *)
2478 ((unsigned long) rxdp->Host_Control);
2479 if (!skb) {
2480 continue;
2482 if (sp->rxd_mode == RXD_MODE_1) {
2483 pci_unmap_single(sp->pdev, (dma_addr_t)
2484 ((RxD1_t*)rxdp)->Buffer0_ptr,
2485 dev->mtu +
2486 HEADER_ETHERNET_II_802_3_SIZE
2487 + HEADER_802_2_SIZE +
2488 HEADER_SNAP_SIZE,
2489 PCI_DMA_FROMDEVICE);
2490 memset(rxdp, 0, sizeof(RxD1_t));
2491 } else if(sp->rxd_mode == RXD_MODE_3B) {
2492 ba = &mac_control->rings[ring_no].
2493 ba[blk][j];
2494 pci_unmap_single(sp->pdev, (dma_addr_t)
2495 ((RxD3_t*)rxdp)->Buffer0_ptr,
2496 BUF0_LEN,
2497 PCI_DMA_FROMDEVICE);
2498 pci_unmap_single(sp->pdev, (dma_addr_t)
2499 ((RxD3_t*)rxdp)->Buffer1_ptr,
2500 BUF1_LEN,
2501 PCI_DMA_FROMDEVICE);
2502 pci_unmap_single(sp->pdev, (dma_addr_t)
2503 ((RxD3_t*)rxdp)->Buffer2_ptr,
2504 dev->mtu + 4,
2505 PCI_DMA_FROMDEVICE);
2506 memset(rxdp, 0, sizeof(RxD3_t));
2507 } else {
2508 pci_unmap_single(sp->pdev, (dma_addr_t)
2509 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2510 PCI_DMA_FROMDEVICE);
2511 pci_unmap_single(sp->pdev, (dma_addr_t)
2512 ((RxD3_t*)rxdp)->Buffer1_ptr,
2513 l3l4hdr_size + 4,
2514 PCI_DMA_FROMDEVICE);
2515 pci_unmap_single(sp->pdev, (dma_addr_t)
2516 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2517 PCI_DMA_FROMDEVICE);
2518 memset(rxdp, 0, sizeof(RxD3_t));
2520 dev_kfree_skb(skb);
2521 atomic_dec(&sp->rx_bufs_left[ring_no]);
2526 * free_rx_buffers - Frees all Rx buffers
2527 * @sp: device private variable.
2528 * Description:
2529 * This function will free all Rx buffers allocated by host.
2530 * Return Value:
2531 * NONE.
2534 static void free_rx_buffers(struct s2io_nic *sp)
2536 struct net_device *dev = sp->dev;
2537 int i, blk = 0, buf_cnt = 0;
2538 mac_info_t *mac_control;
2539 struct config_param *config;
2541 mac_control = &sp->mac_control;
2542 config = &sp->config;
2544 for (i = 0; i < config->rx_ring_num; i++) {
2545 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2546 free_rxd_blk(sp,i,blk);
2548 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2549 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2550 mac_control->rings[i].rx_curr_put_info.offset = 0;
2551 mac_control->rings[i].rx_curr_get_info.offset = 0;
2552 atomic_set(&sp->rx_bufs_left[i], 0);
2553 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2554 dev->name, buf_cnt, i);
2559 * s2io_poll - Rx interrupt handler for NAPI support
2560 * @dev : pointer to the device structure.
2561 * @budget : The number of packets that were budgeted to be processed
2562 * during one pass through the 'Poll" function.
2563 * Description:
2564 * Comes into picture only if NAPI support has been incorporated. It does
2565 * the same thing that rx_intr_handler does, but not in a interrupt context
2566 * also It will process only a given number of packets.
2567 * Return value:
2568 * 0 on success and 1 if there are No Rx packets to be processed.
2571 #if defined(CONFIG_S2IO_NAPI)
2572 static int s2io_poll(struct net_device *dev, int *budget)
2574 nic_t *nic = dev->priv;
2575 int pkt_cnt = 0, org_pkts_to_process;
2576 mac_info_t *mac_control;
2577 struct config_param *config;
2578 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2579 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2580 int i;
2582 atomic_inc(&nic->isr_cnt);
2583 mac_control = &nic->mac_control;
2584 config = &nic->config;
2586 nic->pkts_to_process = *budget;
2587 if (nic->pkts_to_process > dev->quota)
2588 nic->pkts_to_process = dev->quota;
2589 org_pkts_to_process = nic->pkts_to_process;
2591 writeq(val64, &bar0->rx_traffic_int);
2592 val64 = readl(&bar0->rx_traffic_int);
2594 for (i = 0; i < config->rx_ring_num; i++) {
2595 rx_intr_handler(&mac_control->rings[i]);
2596 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2597 if (!nic->pkts_to_process) {
2598 /* Quota for the current iteration has been met */
2599 goto no_rx;
2602 if (!pkt_cnt)
2603 pkt_cnt = 1;
2605 dev->quota -= pkt_cnt;
2606 *budget -= pkt_cnt;
2607 netif_rx_complete(dev);
2609 for (i = 0; i < config->rx_ring_num; i++) {
2610 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2611 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2612 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2613 break;
2616 /* Re enable the Rx interrupts. */
2617 writeq(0x0, &bar0->rx_traffic_mask);
2618 val64 = readl(&bar0->rx_traffic_mask);
2619 atomic_dec(&nic->isr_cnt);
2620 return 0;
2622 no_rx:
2623 dev->quota -= pkt_cnt;
2624 *budget -= pkt_cnt;
2626 for (i = 0; i < config->rx_ring_num; i++) {
2627 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2628 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2629 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2630 break;
2633 atomic_dec(&nic->isr_cnt);
2634 return 1;
2636 #endif
2638 #ifdef CONFIG_NET_POLL_CONTROLLER
2640 * s2io_netpoll - netpoll event handler entry point
2641 * @dev : pointer to the device structure.
2642 * Description:
2643 * This function will be called by upper layer to check for events on the
2644 * interface in situations where interrupts are disabled. It is used for
2645 * specific in-kernel networking tasks, such as remote consoles and kernel
2646 * debugging over the network (example netdump in RedHat).
2648 static void s2io_netpoll(struct net_device *dev)
2650 nic_t *nic = dev->priv;
2651 mac_info_t *mac_control;
2652 struct config_param *config;
2653 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2654 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2655 int i;
2657 disable_irq(dev->irq);
2659 atomic_inc(&nic->isr_cnt);
2660 mac_control = &nic->mac_control;
2661 config = &nic->config;
2663 writeq(val64, &bar0->rx_traffic_int);
2664 writeq(val64, &bar0->tx_traffic_int);
2666 /* we need to free up the transmitted skbufs or else netpoll will
2667 * run out of skbs and will fail and eventually netpoll application such
2668 * as netdump will fail.
2670 for (i = 0; i < config->tx_fifo_num; i++)
2671 tx_intr_handler(&mac_control->fifos[i]);
2673 /* check for received packet and indicate up to network */
2674 for (i = 0; i < config->rx_ring_num; i++)
2675 rx_intr_handler(&mac_control->rings[i]);
2677 for (i = 0; i < config->rx_ring_num; i++) {
2678 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2679 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2680 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2681 break;
2684 atomic_dec(&nic->isr_cnt);
2685 enable_irq(dev->irq);
2686 return;
2688 #endif
2691 * rx_intr_handler - Rx interrupt handler
2692 * @nic: device private variable.
2693 * Description:
2694 * If the interrupt is because of a received frame or if the
2695 * receive ring contains fresh as yet un-processed frames,this function is
2696 * called. It picks out the RxD at which place the last Rx processing had
2697 * stopped and sends the skb to the OSM's Rx handler and then increments
2698 * the offset.
2699 * Return Value:
2700 * NONE.
2702 static void rx_intr_handler(ring_info_t *ring_data)
2704 nic_t *nic = ring_data->nic;
2705 struct net_device *dev = (struct net_device *) nic->dev;
2706 int get_block, put_block, put_offset;
2707 rx_curr_get_info_t get_info, put_info;
2708 RxD_t *rxdp;
2709 struct sk_buff *skb;
2710 #ifndef CONFIG_S2IO_NAPI
2711 int pkt_cnt = 0;
2712 #endif
2713 int i;
2715 spin_lock(&nic->rx_lock);
2716 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2717 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2718 __FUNCTION__, dev->name);
2719 spin_unlock(&nic->rx_lock);
2720 return;
2723 get_info = ring_data->rx_curr_get_info;
2724 get_block = get_info.block_index;
2725 put_info = ring_data->rx_curr_put_info;
2726 put_block = put_info.block_index;
2727 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2728 #ifndef CONFIG_S2IO_NAPI
2729 spin_lock(&nic->put_lock);
2730 put_offset = ring_data->put_pos;
2731 spin_unlock(&nic->put_lock);
2732 #else
2733 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2734 put_info.offset;
2735 #endif
2736 while (RXD_IS_UP2DT(rxdp)) {
2737 /* If your are next to put index then it's FIFO full condition */
2738 if ((get_block == put_block) &&
2739 (get_info.offset + 1) == put_info.offset) {
2740 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2741 break;
2743 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2744 if (skb == NULL) {
2745 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2746 dev->name);
2747 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2748 spin_unlock(&nic->rx_lock);
2749 return;
2751 if (nic->rxd_mode == RXD_MODE_1) {
2752 pci_unmap_single(nic->pdev, (dma_addr_t)
2753 ((RxD1_t*)rxdp)->Buffer0_ptr,
2754 dev->mtu +
2755 HEADER_ETHERNET_II_802_3_SIZE +
2756 HEADER_802_2_SIZE +
2757 HEADER_SNAP_SIZE,
2758 PCI_DMA_FROMDEVICE);
2759 } else if (nic->rxd_mode == RXD_MODE_3B) {
2760 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2761 ((RxD3_t*)rxdp)->Buffer0_ptr,
2762 BUF0_LEN, PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(nic->pdev, (dma_addr_t)
2764 ((RxD3_t*)rxdp)->Buffer2_ptr,
2765 dev->mtu + 4,
2766 PCI_DMA_FROMDEVICE);
2767 } else {
2768 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2769 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2770 PCI_DMA_FROMDEVICE);
2771 pci_unmap_single(nic->pdev, (dma_addr_t)
2772 ((RxD3_t*)rxdp)->Buffer1_ptr,
2773 l3l4hdr_size + 4,
2774 PCI_DMA_FROMDEVICE);
2775 pci_unmap_single(nic->pdev, (dma_addr_t)
2776 ((RxD3_t*)rxdp)->Buffer2_ptr,
2777 dev->mtu, PCI_DMA_FROMDEVICE);
2779 prefetch(skb->data);
2780 rx_osm_handler(ring_data, rxdp);
2781 get_info.offset++;
2782 ring_data->rx_curr_get_info.offset = get_info.offset;
2783 rxdp = ring_data->rx_blocks[get_block].
2784 rxds[get_info.offset].virt_addr;
2785 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2786 get_info.offset = 0;
2787 ring_data->rx_curr_get_info.offset = get_info.offset;
2788 get_block++;
2789 if (get_block == ring_data->block_count)
2790 get_block = 0;
2791 ring_data->rx_curr_get_info.block_index = get_block;
2792 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2795 #ifdef CONFIG_S2IO_NAPI
2796 nic->pkts_to_process -= 1;
2797 if (!nic->pkts_to_process)
2798 break;
2799 #else
2800 pkt_cnt++;
2801 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2802 break;
2803 #endif
2805 if (nic->lro) {
2806 /* Clear all LRO sessions before exiting */
2807 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2808 lro_t *lro = &nic->lro0_n[i];
2809 if (lro->in_use) {
2810 update_L3L4_header(nic, lro);
2811 queue_rx_frame(lro->parent);
2812 clear_lro_session(lro);
2817 spin_unlock(&nic->rx_lock);
2821 * tx_intr_handler - Transmit interrupt handler
2822 * @nic : device private variable
2823 * Description:
2824 * If an interrupt was raised to indicate DMA complete of the
2825 * Tx packet, this function is called. It identifies the last TxD
2826 * whose buffer was freed and frees all skbs whose data have already
2827 * DMA'ed into the NICs internal memory.
2828 * Return Value:
2829 * NONE
2832 static void tx_intr_handler(fifo_info_t *fifo_data)
2834 nic_t *nic = fifo_data->nic;
2835 struct net_device *dev = (struct net_device *) nic->dev;
2836 tx_curr_get_info_t get_info, put_info;
2837 struct sk_buff *skb;
2838 TxD_t *txdlp;
2840 get_info = fifo_data->tx_curr_get_info;
2841 put_info = fifo_data->tx_curr_put_info;
2842 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2843 list_virt_addr;
2844 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2845 (get_info.offset != put_info.offset) &&
2846 (txdlp->Host_Control)) {
2847 /* Check for TxD errors */
2848 if (txdlp->Control_1 & TXD_T_CODE) {
2849 unsigned long long err;
2850 err = txdlp->Control_1 & TXD_T_CODE;
2851 if (err & 0x1) {
2852 nic->mac_control.stats_info->sw_stat.
2853 parity_err_cnt++;
2855 if ((err >> 48) == 0xA) {
2856 DBG_PRINT(TX_DBG, "TxD returned due \
2857 to loss of link\n");
2859 else {
2860 DBG_PRINT(ERR_DBG, "***TxD error \
2861 %llx\n", err);
2865 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2866 if (skb == NULL) {
2867 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2868 __FUNCTION__);
2869 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2870 return;
2873 /* Updating the statistics block */
2874 nic->stats.tx_bytes += skb->len;
2875 dev_kfree_skb_irq(skb);
2877 get_info.offset++;
2878 if (get_info.offset == get_info.fifo_len + 1)
2879 get_info.offset = 0;
2880 txdlp = (TxD_t *) fifo_data->list_info
2881 [get_info.offset].list_virt_addr;
2882 fifo_data->tx_curr_get_info.offset =
2883 get_info.offset;
2886 spin_lock(&nic->tx_lock);
2887 if (netif_queue_stopped(dev))
2888 netif_wake_queue(dev);
2889 spin_unlock(&nic->tx_lock);
2893 * s2io_mdio_write - Function to write in to MDIO registers
2894 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2895 * @addr : address value
2896 * @value : data value
2897 * @dev : pointer to net_device structure
2898 * Description:
2899 * This function is used to write values to the MDIO registers
2900 * NONE
2902 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2904 u64 val64 = 0x0;
2905 nic_t *sp = dev->priv;
2906 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2908 //address transaction
2909 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2910 | MDIO_MMD_DEV_ADDR(mmd_type)
2911 | MDIO_MMS_PRT_ADDR(0x0);
2912 writeq(val64, &bar0->mdio_control);
2913 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2914 writeq(val64, &bar0->mdio_control);
2915 udelay(100);
2917 //Data transaction
2918 val64 = 0x0;
2919 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2920 | MDIO_MMD_DEV_ADDR(mmd_type)
2921 | MDIO_MMS_PRT_ADDR(0x0)
2922 | MDIO_MDIO_DATA(value)
2923 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2924 writeq(val64, &bar0->mdio_control);
2925 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2926 writeq(val64, &bar0->mdio_control);
2927 udelay(100);
2929 val64 = 0x0;
2930 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2931 | MDIO_MMD_DEV_ADDR(mmd_type)
2932 | MDIO_MMS_PRT_ADDR(0x0)
2933 | MDIO_OP(MDIO_OP_READ_TRANS);
2934 writeq(val64, &bar0->mdio_control);
2935 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2936 writeq(val64, &bar0->mdio_control);
2937 udelay(100);
2942 * s2io_mdio_read - Function to write in to MDIO registers
2943 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2944 * @addr : address value
2945 * @dev : pointer to net_device structure
2946 * Description:
2947 * This function is used to read values to the MDIO registers
2948 * NONE
2950 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2952 u64 val64 = 0x0;
2953 u64 rval64 = 0x0;
2954 nic_t *sp = dev->priv;
2955 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2957 /* address transaction */
2958 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2959 | MDIO_MMD_DEV_ADDR(mmd_type)
2960 | MDIO_MMS_PRT_ADDR(0x0);
2961 writeq(val64, &bar0->mdio_control);
2962 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2963 writeq(val64, &bar0->mdio_control);
2964 udelay(100);
2966 /* Data transaction */
2967 val64 = 0x0;
2968 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2969 | MDIO_MMD_DEV_ADDR(mmd_type)
2970 | MDIO_MMS_PRT_ADDR(0x0)
2971 | MDIO_OP(MDIO_OP_READ_TRANS);
2972 writeq(val64, &bar0->mdio_control);
2973 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2974 writeq(val64, &bar0->mdio_control);
2975 udelay(100);
2977 /* Read the value from regs */
2978 rval64 = readq(&bar0->mdio_control);
2979 rval64 = rval64 & 0xFFFF0000;
2980 rval64 = rval64 >> 16;
2981 return rval64;
2984 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2985 * @counter : couter value to be updated
2986 * @flag : flag to indicate the status
2987 * @type : counter type
2988 * Description:
2989 * This function is to check the status of the xpak counters value
2990 * NONE
2993 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2995 u64 mask = 0x3;
2996 u64 val64;
2997 int i;
2998 for(i = 0; i <index; i++)
2999 mask = mask << 0x2;
3001 if(flag > 0)
3003 *counter = *counter + 1;
3004 val64 = *regs_stat & mask;
3005 val64 = val64 >> (index * 0x2);
3006 val64 = val64 + 1;
3007 if(val64 == 3)
3009 switch(type)
3011 case 1:
3012 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3013 "service. Excessive temperatures may "
3014 "result in premature transceiver "
3015 "failure \n");
3016 break;
3017 case 2:
3018 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3019 "service Excessive bias currents may "
3020 "indicate imminent laser diode "
3021 "failure \n");
3022 break;
3023 case 3:
3024 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3025 "service Excessive laser output "
3026 "power may saturate far-end "
3027 "receiver\n");
3028 break;
3029 default:
3030 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3031 "type \n");
3033 val64 = 0x0;
3035 val64 = val64 << (index * 0x2);
3036 *regs_stat = (*regs_stat & (~mask)) | (val64);
3038 } else {
3039 *regs_stat = *regs_stat & (~mask);
3044 * s2io_updt_xpak_counter - Function to update the xpak counters
3045 * @dev : pointer to net_device struct
3046 * Description:
3047 * This function is to upate the status of the xpak counters value
3048 * NONE
3050 static void s2io_updt_xpak_counter(struct net_device *dev)
3052 u16 flag = 0x0;
3053 u16 type = 0x0;
3054 u16 val16 = 0x0;
3055 u64 val64 = 0x0;
3056 u64 addr = 0x0;
3058 nic_t *sp = dev->priv;
3059 StatInfo_t *stat_info = sp->mac_control.stats_info;
3061 /* Check the communication with the MDIO slave */
3062 addr = 0x0000;
3063 val64 = 0x0;
3064 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3065 if((val64 == 0xFFFF) || (val64 == 0x0000))
3067 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3068 "Returned %llx\n", (unsigned long long)val64);
3069 return;
3072 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3073 if(val64 != 0x2040)
3075 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3076 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3077 (unsigned long long)val64);
3078 return;
3081 /* Loading the DOM register to MDIO register */
3082 addr = 0xA100;
3083 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3084 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3086 /* Reading the Alarm flags */
3087 addr = 0xA070;
3088 val64 = 0x0;
3089 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3091 flag = CHECKBIT(val64, 0x7);
3092 type = 1;
3093 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3094 &stat_info->xpak_stat.xpak_regs_stat,
3095 0x0, flag, type);
3097 if(CHECKBIT(val64, 0x6))
3098 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3100 flag = CHECKBIT(val64, 0x3);
3101 type = 2;
3102 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3103 &stat_info->xpak_stat.xpak_regs_stat,
3104 0x2, flag, type);
3106 if(CHECKBIT(val64, 0x2))
3107 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3109 flag = CHECKBIT(val64, 0x1);
3110 type = 3;
3111 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3112 &stat_info->xpak_stat.xpak_regs_stat,
3113 0x4, flag, type);
3115 if(CHECKBIT(val64, 0x0))
3116 stat_info->xpak_stat.alarm_laser_output_power_low++;
3118 /* Reading the Warning flags */
3119 addr = 0xA074;
3120 val64 = 0x0;
3121 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3123 if(CHECKBIT(val64, 0x7))
3124 stat_info->xpak_stat.warn_transceiver_temp_high++;
3126 if(CHECKBIT(val64, 0x6))
3127 stat_info->xpak_stat.warn_transceiver_temp_low++;
3129 if(CHECKBIT(val64, 0x3))
3130 stat_info->xpak_stat.warn_laser_bias_current_high++;
3132 if(CHECKBIT(val64, 0x2))
3133 stat_info->xpak_stat.warn_laser_bias_current_low++;
3135 if(CHECKBIT(val64, 0x1))
3136 stat_info->xpak_stat.warn_laser_output_power_high++;
3138 if(CHECKBIT(val64, 0x0))
3139 stat_info->xpak_stat.warn_laser_output_power_low++;
3143 * alarm_intr_handler - Alarm Interrrupt handler
3144 * @nic: device private variable
3145 * Description: If the interrupt was neither because of Rx packet or Tx
3146 * complete, this function is called. If the interrupt was to indicate
3147 * a loss of link, the OSM link status handler is invoked for any other
3148 * alarm interrupt the block that raised the interrupt is displayed
3149 * and a H/W reset is issued.
3150 * Return Value:
3151 * NONE
3154 static void alarm_intr_handler(struct s2io_nic *nic)
3156 struct net_device *dev = (struct net_device *) nic->dev;
3157 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3158 register u64 val64 = 0, err_reg = 0;
3159 u64 cnt;
3160 int i;
3161 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3162 /* Handling the XPAK counters update */
3163 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3164 /* waiting for an hour */
3165 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3166 } else {
3167 s2io_updt_xpak_counter(dev);
3168 /* reset the count to zero */
3169 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3172 /* Handling link status change error Intr */
3173 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3174 err_reg = readq(&bar0->mac_rmac_err_reg);
3175 writeq(err_reg, &bar0->mac_rmac_err_reg);
3176 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3177 schedule_work(&nic->set_link_task);
3181 /* Handling Ecc errors */
3182 val64 = readq(&bar0->mc_err_reg);
3183 writeq(val64, &bar0->mc_err_reg);
3184 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3185 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3186 nic->mac_control.stats_info->sw_stat.
3187 double_ecc_errs++;
3188 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3189 dev->name);
3190 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3191 if (nic->device_type != XFRAME_II_DEVICE) {
3192 /* Reset XframeI only if critical error */
3193 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3194 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3195 netif_stop_queue(dev);
3196 schedule_work(&nic->rst_timer_task);
3197 nic->mac_control.stats_info->sw_stat.
3198 soft_reset_cnt++;
3201 } else {
3202 nic->mac_control.stats_info->sw_stat.
3203 single_ecc_errs++;
3207 /* In case of a serious error, the device will be Reset. */
3208 val64 = readq(&bar0->serr_source);
3209 if (val64 & SERR_SOURCE_ANY) {
3210 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3211 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3212 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3213 (unsigned long long)val64);
3214 netif_stop_queue(dev);
3215 schedule_work(&nic->rst_timer_task);
3216 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3220 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3221 * Error occurs, the adapter will be recycled by disabling the
3222 * adapter enable bit and enabling it again after the device
3223 * becomes Quiescent.
3225 val64 = readq(&bar0->pcc_err_reg);
3226 writeq(val64, &bar0->pcc_err_reg);
3227 if (val64 & PCC_FB_ECC_DB_ERR) {
3228 u64 ac = readq(&bar0->adapter_control);
3229 ac &= ~(ADAPTER_CNTL_EN);
3230 writeq(ac, &bar0->adapter_control);
3231 ac = readq(&bar0->adapter_control);
3232 schedule_work(&nic->set_link_task);
3234 /* Check for data parity error */
3235 val64 = readq(&bar0->pic_int_status);
3236 if (val64 & PIC_INT_GPIO) {
3237 val64 = readq(&bar0->gpio_int_reg);
3238 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3239 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3240 schedule_work(&nic->rst_timer_task);
3241 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3245 /* Check for ring full counter */
3246 if (nic->device_type & XFRAME_II_DEVICE) {
3247 val64 = readq(&bar0->ring_bump_counter1);
3248 for (i=0; i<4; i++) {
3249 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3250 cnt >>= 64 - ((i+1)*16);
3251 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3252 += cnt;
3255 val64 = readq(&bar0->ring_bump_counter2);
3256 for (i=0; i<4; i++) {
3257 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3258 cnt >>= 64 - ((i+1)*16);
3259 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3260 += cnt;
3264 /* Other type of interrupts are not being handled now, TODO */
3268 * wait_for_cmd_complete - waits for a command to complete.
3269 * @sp : private member of the device structure, which is a pointer to the
3270 * s2io_nic structure.
3271 * Description: Function that waits for a command to Write into RMAC
3272 * ADDR DATA registers to be completed and returns either success or
3273 * error depending on whether the command was complete or not.
3274 * Return value:
3275 * SUCCESS on success and FAILURE on failure.
3278 static int wait_for_cmd_complete(void *addr, u64 busy_bit)
3280 int ret = FAILURE, cnt = 0;
3281 u64 val64;
3283 while (TRUE) {
3284 val64 = readq(addr);
3285 if (!(val64 & busy_bit)) {
3286 ret = SUCCESS;
3287 break;
3290 if(in_interrupt())
3291 mdelay(50);
3292 else
3293 msleep(50);
3295 if (cnt++ > 10)
3296 break;
3298 return ret;
3302 * s2io_reset - Resets the card.
3303 * @sp : private member of the device structure.
3304 * Description: Function to Reset the card. This function then also
3305 * restores the previously saved PCI configuration space registers as
3306 * the card reset also resets the configuration space.
3307 * Return value:
3308 * void.
3311 static void s2io_reset(nic_t * sp)
3313 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3314 u64 val64;
3315 u16 subid, pci_cmd;
3317 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3318 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3320 val64 = SW_RESET_ALL;
3321 writeq(val64, &bar0->sw_reset);
3324 * At this stage, if the PCI write is indeed completed, the
3325 * card is reset and so is the PCI Config space of the device.
3326 * So a read cannot be issued at this stage on any of the
3327 * registers to ensure the write into "sw_reset" register
3328 * has gone through.
3329 * Question: Is there any system call that will explicitly force
3330 * all the write commands still pending on the bus to be pushed
3331 * through?
3332 * As of now I'am just giving a 250ms delay and hoping that the
3333 * PCI write to sw_reset register is done by this time.
3335 msleep(250);
3336 if (strstr(sp->product_name, "CX4")) {
3337 msleep(750);
3340 /* Restore the PCI state saved during initialization. */
3341 pci_restore_state(sp->pdev);
3342 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3343 pci_cmd);
3344 s2io_init_pci(sp);
3346 msleep(250);
3348 /* Set swapper to enable I/O register access */
3349 s2io_set_swapper(sp);
3351 /* Restore the MSIX table entries from local variables */
3352 restore_xmsi_data(sp);
3354 /* Clear certain PCI/PCI-X fields after reset */
3355 if (sp->device_type == XFRAME_II_DEVICE) {
3356 /* Clear "detected parity error" bit */
3357 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3359 /* Clearing PCIX Ecc status register */
3360 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3362 /* Clearing PCI_STATUS error reflected here */
3363 writeq(BIT(62), &bar0->txpic_int_reg);
3366 /* Reset device statistics maintained by OS */
3367 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3369 /* SXE-002: Configure link and activity LED to turn it off */
3370 subid = sp->pdev->subsystem_device;
3371 if (((subid & 0xFF) >= 0x07) &&
3372 (sp->device_type == XFRAME_I_DEVICE)) {
3373 val64 = readq(&bar0->gpio_control);
3374 val64 |= 0x0000800000000000ULL;
3375 writeq(val64, &bar0->gpio_control);
3376 val64 = 0x0411040400000000ULL;
3377 writeq(val64, (void __iomem *)bar0 + 0x2700);
3381 * Clear spurious ECC interrupts that would have occured on
3382 * XFRAME II cards after reset.
3384 if (sp->device_type == XFRAME_II_DEVICE) {
3385 val64 = readq(&bar0->pcc_err_reg);
3386 writeq(val64, &bar0->pcc_err_reg);
3389 sp->device_enabled_once = FALSE;
3393 * s2io_set_swapper - to set the swapper controle on the card
3394 * @sp : private member of the device structure,
3395 * pointer to the s2io_nic structure.
3396 * Description: Function to set the swapper control on the card
3397 * correctly depending on the 'endianness' of the system.
3398 * Return value:
3399 * SUCCESS on success and FAILURE on failure.
3402 static int s2io_set_swapper(nic_t * sp)
3404 struct net_device *dev = sp->dev;
3405 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3406 u64 val64, valt, valr;
3409 * Set proper endian settings and verify the same by reading
3410 * the PIF Feed-back register.
3413 val64 = readq(&bar0->pif_rd_swapper_fb);
3414 if (val64 != 0x0123456789ABCDEFULL) {
3415 int i = 0;
3416 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3417 0x8100008181000081ULL, /* FE=1, SE=0 */
3418 0x4200004242000042ULL, /* FE=0, SE=1 */
3419 0}; /* FE=0, SE=0 */
3421 while(i<4) {
3422 writeq(value[i], &bar0->swapper_ctrl);
3423 val64 = readq(&bar0->pif_rd_swapper_fb);
3424 if (val64 == 0x0123456789ABCDEFULL)
3425 break;
3426 i++;
3428 if (i == 4) {
3429 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3430 dev->name);
3431 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3432 (unsigned long long) val64);
3433 return FAILURE;
3435 valr = value[i];
3436 } else {
3437 valr = readq(&bar0->swapper_ctrl);
3440 valt = 0x0123456789ABCDEFULL;
3441 writeq(valt, &bar0->xmsi_address);
3442 val64 = readq(&bar0->xmsi_address);
3444 if(val64 != valt) {
3445 int i = 0;
3446 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3447 0x0081810000818100ULL, /* FE=1, SE=0 */
3448 0x0042420000424200ULL, /* FE=0, SE=1 */
3449 0}; /* FE=0, SE=0 */
3451 while(i<4) {
3452 writeq((value[i] | valr), &bar0->swapper_ctrl);
3453 writeq(valt, &bar0->xmsi_address);
3454 val64 = readq(&bar0->xmsi_address);
3455 if(val64 == valt)
3456 break;
3457 i++;
3459 if(i == 4) {
3460 unsigned long long x = val64;
3461 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3462 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3463 return FAILURE;
3466 val64 = readq(&bar0->swapper_ctrl);
3467 val64 &= 0xFFFF000000000000ULL;
3469 #ifdef __BIG_ENDIAN
3471 * The device by default set to a big endian format, so a
3472 * big endian driver need not set anything.
3474 val64 |= (SWAPPER_CTRL_TXP_FE |
3475 SWAPPER_CTRL_TXP_SE |
3476 SWAPPER_CTRL_TXD_R_FE |
3477 SWAPPER_CTRL_TXD_W_FE |
3478 SWAPPER_CTRL_TXF_R_FE |
3479 SWAPPER_CTRL_RXD_R_FE |
3480 SWAPPER_CTRL_RXD_W_FE |
3481 SWAPPER_CTRL_RXF_W_FE |
3482 SWAPPER_CTRL_XMSI_FE |
3483 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3484 if (sp->intr_type == INTA)
3485 val64 |= SWAPPER_CTRL_XMSI_SE;
3486 writeq(val64, &bar0->swapper_ctrl);
3487 #else
3489 * Initially we enable all bits to make it accessible by the
3490 * driver, then we selectively enable only those bits that
3491 * we want to set.
3493 val64 |= (SWAPPER_CTRL_TXP_FE |
3494 SWAPPER_CTRL_TXP_SE |
3495 SWAPPER_CTRL_TXD_R_FE |
3496 SWAPPER_CTRL_TXD_R_SE |
3497 SWAPPER_CTRL_TXD_W_FE |
3498 SWAPPER_CTRL_TXD_W_SE |
3499 SWAPPER_CTRL_TXF_R_FE |
3500 SWAPPER_CTRL_RXD_R_FE |
3501 SWAPPER_CTRL_RXD_R_SE |
3502 SWAPPER_CTRL_RXD_W_FE |
3503 SWAPPER_CTRL_RXD_W_SE |
3504 SWAPPER_CTRL_RXF_W_FE |
3505 SWAPPER_CTRL_XMSI_FE |
3506 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3507 if (sp->intr_type == INTA)
3508 val64 |= SWAPPER_CTRL_XMSI_SE;
3509 writeq(val64, &bar0->swapper_ctrl);
3510 #endif
3511 val64 = readq(&bar0->swapper_ctrl);
3514 * Verifying if endian settings are accurate by reading a
3515 * feedback register.
3517 val64 = readq(&bar0->pif_rd_swapper_fb);
3518 if (val64 != 0x0123456789ABCDEFULL) {
3519 /* Endian settings are incorrect, calls for another dekko. */
3520 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3521 dev->name);
3522 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3523 (unsigned long long) val64);
3524 return FAILURE;
3527 return SUCCESS;
3530 static int wait_for_msix_trans(nic_t *nic, int i)
3532 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3533 u64 val64;
3534 int ret = 0, cnt = 0;
3536 do {
3537 val64 = readq(&bar0->xmsi_access);
3538 if (!(val64 & BIT(15)))
3539 break;
3540 mdelay(1);
3541 cnt++;
3542 } while(cnt < 5);
3543 if (cnt == 5) {
3544 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3545 ret = 1;
3548 return ret;
3551 static void restore_xmsi_data(nic_t *nic)
3553 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3554 u64 val64;
3555 int i;
3557 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3558 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3559 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3560 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3561 writeq(val64, &bar0->xmsi_access);
3562 if (wait_for_msix_trans(nic, i)) {
3563 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3564 continue;
3569 static void store_xmsi_data(nic_t *nic)
3571 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3572 u64 val64, addr, data;
3573 int i;
3575 /* Store and display */
3576 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3577 val64 = (BIT(15) | vBIT(i, 26, 6));
3578 writeq(val64, &bar0->xmsi_access);
3579 if (wait_for_msix_trans(nic, i)) {
3580 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3581 continue;
3583 addr = readq(&bar0->xmsi_address);
3584 data = readq(&bar0->xmsi_data);
3585 if (addr && data) {
3586 nic->msix_info[i].addr = addr;
3587 nic->msix_info[i].data = data;
3592 int s2io_enable_msi(nic_t *nic)
3594 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3595 u16 msi_ctrl, msg_val;
3596 struct config_param *config = &nic->config;
3597 struct net_device *dev = nic->dev;
3598 u64 val64, tx_mat, rx_mat;
3599 int i, err;
3601 val64 = readq(&bar0->pic_control);
3602 val64 &= ~BIT(1);
3603 writeq(val64, &bar0->pic_control);
3605 err = pci_enable_msi(nic->pdev);
3606 if (err) {
3607 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3608 nic->dev->name);
3609 return err;
3613 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3614 * for interrupt handling.
3616 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3617 msg_val ^= 0x1;
3618 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3619 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3621 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3622 msi_ctrl |= 0x10;
3623 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3625 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3626 tx_mat = readq(&bar0->tx_mat0_n[0]);
3627 for (i=0; i<config->tx_fifo_num; i++) {
3628 tx_mat |= TX_MAT_SET(i, 1);
3630 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3632 rx_mat = readq(&bar0->rx_mat);
3633 for (i=0; i<config->rx_ring_num; i++) {
3634 rx_mat |= RX_MAT_SET(i, 1);
3636 writeq(rx_mat, &bar0->rx_mat);
3638 dev->irq = nic->pdev->irq;
3639 return 0;
3642 static int s2io_enable_msi_x(nic_t *nic)
3644 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3645 u64 tx_mat, rx_mat;
3646 u16 msi_control; /* Temp variable */
3647 int ret, i, j, msix_indx = 1;
3649 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3650 GFP_KERNEL);
3651 if (nic->entries == NULL) {
3652 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3653 return -ENOMEM;
3655 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3657 nic->s2io_entries =
3658 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3659 GFP_KERNEL);
3660 if (nic->s2io_entries == NULL) {
3661 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3662 kfree(nic->entries);
3663 return -ENOMEM;
3665 memset(nic->s2io_entries, 0,
3666 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3668 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3669 nic->entries[i].entry = i;
3670 nic->s2io_entries[i].entry = i;
3671 nic->s2io_entries[i].arg = NULL;
3672 nic->s2io_entries[i].in_use = 0;
3675 tx_mat = readq(&bar0->tx_mat0_n[0]);
3676 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3677 tx_mat |= TX_MAT_SET(i, msix_indx);
3678 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3679 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3680 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3682 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3684 if (!nic->config.bimodal) {
3685 rx_mat = readq(&bar0->rx_mat);
3686 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3687 rx_mat |= RX_MAT_SET(j, msix_indx);
3688 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3689 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3690 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3692 writeq(rx_mat, &bar0->rx_mat);
3693 } else {
3694 tx_mat = readq(&bar0->tx_mat0_n[7]);
3695 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3696 tx_mat |= TX_MAT_SET(i, msix_indx);
3697 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3698 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3699 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3701 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3704 nic->avail_msix_vectors = 0;
3705 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3706 /* We fail init if error or we get less vectors than min required */
3707 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3708 nic->avail_msix_vectors = ret;
3709 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3711 if (ret) {
3712 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3713 kfree(nic->entries);
3714 kfree(nic->s2io_entries);
3715 nic->entries = NULL;
3716 nic->s2io_entries = NULL;
3717 nic->avail_msix_vectors = 0;
3718 return -ENOMEM;
3720 if (!nic->avail_msix_vectors)
3721 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3724 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3725 * in the herc NIC. (Temp change, needs to be removed later)
3727 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3728 msi_control |= 0x1; /* Enable MSI */
3729 pci_write_config_word(nic->pdev, 0x42, msi_control);
3731 return 0;
3734 /* ********************************************************* *
3735 * Functions defined below concern the OS part of the driver *
3736 * ********************************************************* */
3739 * s2io_open - open entry point of the driver
3740 * @dev : pointer to the device structure.
3741 * Description:
3742 * This function is the open entry point of the driver. It mainly calls a
3743 * function to allocate Rx buffers and inserts them into the buffer
3744 * descriptors and then enables the Rx part of the NIC.
3745 * Return value:
3746 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3747 * file on failure.
3750 static int s2io_open(struct net_device *dev)
3752 nic_t *sp = dev->priv;
3753 int err = 0;
3756 * Make sure you have link off by default every time
3757 * Nic is initialized
3759 netif_carrier_off(dev);
3760 sp->last_link_state = 0;
3762 /* Initialize H/W and enable interrupts */
3763 err = s2io_card_up(sp);
3764 if (err) {
3765 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3766 dev->name);
3767 goto hw_init_failed;
3770 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3771 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3772 s2io_card_down(sp);
3773 err = -ENODEV;
3774 goto hw_init_failed;
3777 netif_start_queue(dev);
3778 return 0;
3780 hw_init_failed:
3781 if (sp->intr_type == MSI_X) {
3782 if (sp->entries)
3783 kfree(sp->entries);
3784 if (sp->s2io_entries)
3785 kfree(sp->s2io_entries);
3787 return err;
3791 * s2io_close -close entry point of the driver
3792 * @dev : device pointer.
3793 * Description:
3794 * This is the stop entry point of the driver. It needs to undo exactly
3795 * whatever was done by the open entry point,thus it's usually referred to
3796 * as the close function.Among other things this function mainly stops the
3797 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3798 * Return value:
3799 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3800 * file on failure.
3803 static int s2io_close(struct net_device *dev)
3805 nic_t *sp = dev->priv;
3807 flush_scheduled_work();
3808 netif_stop_queue(dev);
3809 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3810 s2io_card_down(sp);
3812 sp->device_close_flag = TRUE; /* Device is shut down. */
3813 return 0;
3817 * s2io_xmit - Tx entry point of te driver
3818 * @skb : the socket buffer containing the Tx data.
3819 * @dev : device pointer.
3820 * Description :
3821 * This function is the Tx entry point of the driver. S2IO NIC supports
3822 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3823 * NOTE: when device cant queue the pkt,just the trans_start variable will
3824 * not be upadted.
3825 * Return value:
3826 * 0 on success & 1 on failure.
3829 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3831 nic_t *sp = dev->priv;
3832 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3833 register u64 val64;
3834 TxD_t *txdp;
3835 TxFIFO_element_t __iomem *tx_fifo;
3836 unsigned long flags;
3837 u16 vlan_tag = 0;
3838 int vlan_priority = 0;
3839 mac_info_t *mac_control;
3840 struct config_param *config;
3841 int offload_type;
3843 mac_control = &sp->mac_control;
3844 config = &sp->config;
3846 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3847 spin_lock_irqsave(&sp->tx_lock, flags);
3848 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3849 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3850 dev->name);
3851 spin_unlock_irqrestore(&sp->tx_lock, flags);
3852 dev_kfree_skb(skb);
3853 return 0;
3856 queue = 0;
3858 /* Get Fifo number to Transmit based on vlan priority */
3859 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3860 vlan_tag = vlan_tx_tag_get(skb);
3861 vlan_priority = vlan_tag >> 13;
3862 queue = config->fifo_mapping[vlan_priority];
3865 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3866 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3867 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3868 list_virt_addr;
3870 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3871 /* Avoid "put" pointer going beyond "get" pointer */
3872 if (txdp->Host_Control ||
3873 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3874 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3875 netif_stop_queue(dev);
3876 dev_kfree_skb(skb);
3877 spin_unlock_irqrestore(&sp->tx_lock, flags);
3878 return 0;
3881 /* A buffer with no data will be dropped */
3882 if (!skb->len) {
3883 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3884 dev_kfree_skb(skb);
3885 spin_unlock_irqrestore(&sp->tx_lock, flags);
3886 return 0;
3889 offload_type = s2io_offload_type(skb);
3890 #ifdef NETIF_F_TSO
3891 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3892 txdp->Control_1 |= TXD_TCP_LSO_EN;
3893 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3895 #endif
3896 if (skb->ip_summed == CHECKSUM_HW) {
3897 txdp->Control_2 |=
3898 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3899 TXD_TX_CKO_UDP_EN);
3901 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3902 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3903 txdp->Control_2 |= config->tx_intr_type;
3905 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3906 txdp->Control_2 |= TXD_VLAN_ENABLE;
3907 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3910 frg_len = skb->len - skb->data_len;
3911 if (offload_type == SKB_GSO_UDP) {
3912 int ufo_size;
3914 ufo_size = s2io_udp_mss(skb);
3915 ufo_size &= ~7;
3916 txdp->Control_1 |= TXD_UFO_EN;
3917 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3918 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3919 #ifdef __BIG_ENDIAN
3920 sp->ufo_in_band_v[put_off] =
3921 (u64)skb_shinfo(skb)->ip6_frag_id;
3922 #else
3923 sp->ufo_in_band_v[put_off] =
3924 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3925 #endif
3926 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3927 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3928 sp->ufo_in_band_v,
3929 sizeof(u64), PCI_DMA_TODEVICE);
3930 txdp++;
3933 txdp->Buffer_Pointer = pci_map_single
3934 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3935 txdp->Host_Control = (unsigned long) skb;
3936 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3937 if (offload_type == SKB_GSO_UDP)
3938 txdp->Control_1 |= TXD_UFO_EN;
3940 frg_cnt = skb_shinfo(skb)->nr_frags;
3941 /* For fragmented SKB. */
3942 for (i = 0; i < frg_cnt; i++) {
3943 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3944 /* A '0' length fragment will be ignored */
3945 if (!frag->size)
3946 continue;
3947 txdp++;
3948 txdp->Buffer_Pointer = (u64) pci_map_page
3949 (sp->pdev, frag->page, frag->page_offset,
3950 frag->size, PCI_DMA_TODEVICE);
3951 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3952 if (offload_type == SKB_GSO_UDP)
3953 txdp->Control_1 |= TXD_UFO_EN;
3955 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3957 if (offload_type == SKB_GSO_UDP)
3958 frg_cnt++; /* as Txd0 was used for inband header */
3960 tx_fifo = mac_control->tx_FIFO_start[queue];
3961 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3962 writeq(val64, &tx_fifo->TxDL_Pointer);
3964 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3965 TX_FIFO_LAST_LIST);
3966 if (offload_type)
3967 val64 |= TX_FIFO_SPECIAL_FUNC;
3969 writeq(val64, &tx_fifo->List_Control);
3971 mmiowb();
3973 put_off++;
3974 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3975 put_off = 0;
3976 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3978 /* Avoid "put" pointer going beyond "get" pointer */
3979 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3980 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3981 DBG_PRINT(TX_DBG,
3982 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3983 put_off, get_off);
3984 netif_stop_queue(dev);
3987 dev->trans_start = jiffies;
3988 spin_unlock_irqrestore(&sp->tx_lock, flags);
3990 return 0;
3993 static void
3994 s2io_alarm_handle(unsigned long data)
3996 nic_t *sp = (nic_t *)data;
3998 alarm_intr_handler(sp);
3999 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4002 static int s2io_chk_rx_buffers(nic_t *sp, int rng_n)
4004 int rxb_size, level;
4006 if (!sp->lro) {
4007 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4008 level = rx_buffer_level(sp, rxb_size, rng_n);
4010 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4011 int ret;
4012 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4013 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4014 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4015 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4016 __FUNCTION__);
4017 clear_bit(0, (&sp->tasklet_status));
4018 return -1;
4020 clear_bit(0, (&sp->tasklet_status));
4021 } else if (level == LOW)
4022 tasklet_schedule(&sp->task);
4024 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4025 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
4026 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4028 return 0;
4031 static irqreturn_t
4032 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
4034 struct net_device *dev = (struct net_device *) dev_id;
4035 nic_t *sp = dev->priv;
4036 int i;
4037 mac_info_t *mac_control;
4038 struct config_param *config;
4040 atomic_inc(&sp->isr_cnt);
4041 mac_control = &sp->mac_control;
4042 config = &sp->config;
4043 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4045 /* If Intr is because of Rx Traffic */
4046 for (i = 0; i < config->rx_ring_num; i++)
4047 rx_intr_handler(&mac_control->rings[i]);
4049 /* If Intr is because of Tx Traffic */
4050 for (i = 0; i < config->tx_fifo_num; i++)
4051 tx_intr_handler(&mac_control->fifos[i]);
4054 * If the Rx buffer count is below the panic threshold then
4055 * reallocate the buffers from the interrupt handler itself,
4056 * else schedule a tasklet to reallocate the buffers.
4058 for (i = 0; i < config->rx_ring_num; i++)
4059 s2io_chk_rx_buffers(sp, i);
4061 atomic_dec(&sp->isr_cnt);
4062 return IRQ_HANDLED;
4065 static irqreturn_t
4066 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4068 ring_info_t *ring = (ring_info_t *)dev_id;
4069 nic_t *sp = ring->nic;
4071 atomic_inc(&sp->isr_cnt);
4073 rx_intr_handler(ring);
4074 s2io_chk_rx_buffers(sp, ring->ring_no);
4076 atomic_dec(&sp->isr_cnt);
4077 return IRQ_HANDLED;
4080 static irqreturn_t
4081 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4083 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4084 nic_t *sp = fifo->nic;
4086 atomic_inc(&sp->isr_cnt);
4087 tx_intr_handler(fifo);
4088 atomic_dec(&sp->isr_cnt);
4089 return IRQ_HANDLED;
4091 static void s2io_txpic_intr_handle(nic_t *sp)
4093 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4094 u64 val64;
4096 val64 = readq(&bar0->pic_int_status);
4097 if (val64 & PIC_INT_GPIO) {
4098 val64 = readq(&bar0->gpio_int_reg);
4099 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4100 (val64 & GPIO_INT_REG_LINK_UP)) {
4102 * This is unstable state so clear both up/down
4103 * interrupt and adapter to re-evaluate the link state.
4105 val64 |= GPIO_INT_REG_LINK_DOWN;
4106 val64 |= GPIO_INT_REG_LINK_UP;
4107 writeq(val64, &bar0->gpio_int_reg);
4108 val64 = readq(&bar0->gpio_int_mask);
4109 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4110 GPIO_INT_MASK_LINK_DOWN);
4111 writeq(val64, &bar0->gpio_int_mask);
4113 else if (val64 & GPIO_INT_REG_LINK_UP) {
4114 val64 = readq(&bar0->adapter_status);
4115 if (verify_xena_quiescence(sp, val64,
4116 sp->device_enabled_once)) {
4117 /* Enable Adapter */
4118 val64 = readq(&bar0->adapter_control);
4119 val64 |= ADAPTER_CNTL_EN;
4120 writeq(val64, &bar0->adapter_control);
4121 val64 |= ADAPTER_LED_ON;
4122 writeq(val64, &bar0->adapter_control);
4123 if (!sp->device_enabled_once)
4124 sp->device_enabled_once = 1;
4126 s2io_link(sp, LINK_UP);
4128 * unmask link down interrupt and mask link-up
4129 * intr
4131 val64 = readq(&bar0->gpio_int_mask);
4132 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4133 val64 |= GPIO_INT_MASK_LINK_UP;
4134 writeq(val64, &bar0->gpio_int_mask);
4137 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4138 val64 = readq(&bar0->adapter_status);
4139 if (verify_xena_quiescence(sp, val64,
4140 sp->device_enabled_once)) {
4141 s2io_link(sp, LINK_DOWN);
4142 /* Link is down so unmaks link up interrupt */
4143 val64 = readq(&bar0->gpio_int_mask);
4144 val64 &= ~GPIO_INT_MASK_LINK_UP;
4145 val64 |= GPIO_INT_MASK_LINK_DOWN;
4146 writeq(val64, &bar0->gpio_int_mask);
4150 val64 = readq(&bar0->gpio_int_mask);
4154 * s2io_isr - ISR handler of the device .
4155 * @irq: the irq of the device.
4156 * @dev_id: a void pointer to the dev structure of the NIC.
4157 * @pt_regs: pointer to the registers pushed on the stack.
4158 * Description: This function is the ISR handler of the device. It
4159 * identifies the reason for the interrupt and calls the relevant
4160 * service routines. As a contongency measure, this ISR allocates the
4161 * recv buffers, if their numbers are below the panic value which is
4162 * presently set to 25% of the original number of rcv buffers allocated.
4163 * Return value:
4164 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4165 * IRQ_NONE: will be returned if interrupt is not from our device
4167 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4169 struct net_device *dev = (struct net_device *) dev_id;
4170 nic_t *sp = dev->priv;
4171 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4172 int i;
4173 u64 reason = 0, val64, org_mask;
4174 mac_info_t *mac_control;
4175 struct config_param *config;
4177 atomic_inc(&sp->isr_cnt);
4178 mac_control = &sp->mac_control;
4179 config = &sp->config;
4182 * Identify the cause for interrupt and call the appropriate
4183 * interrupt handler. Causes for the interrupt could be;
4184 * 1. Rx of packet.
4185 * 2. Tx complete.
4186 * 3. Link down.
4187 * 4. Error in any functional blocks of the NIC.
4189 reason = readq(&bar0->general_int_status);
4191 if (!reason) {
4192 /* The interrupt was not raised by Xena. */
4193 atomic_dec(&sp->isr_cnt);
4194 return IRQ_NONE;
4197 val64 = 0xFFFFFFFFFFFFFFFFULL;
4198 /* Store current mask before masking all interrupts */
4199 org_mask = readq(&bar0->general_int_mask);
4200 writeq(val64, &bar0->general_int_mask);
4202 #ifdef CONFIG_S2IO_NAPI
4203 if (reason & GEN_INTR_RXTRAFFIC) {
4204 if (netif_rx_schedule_prep(dev)) {
4205 writeq(val64, &bar0->rx_traffic_mask);
4206 __netif_rx_schedule(dev);
4209 #else
4211 * Rx handler is called by default, without checking for the
4212 * cause of interrupt.
4213 * rx_traffic_int reg is an R1 register, writing all 1's
4214 * will ensure that the actual interrupt causing bit get's
4215 * cleared and hence a read can be avoided.
4217 writeq(val64, &bar0->rx_traffic_int);
4218 for (i = 0; i < config->rx_ring_num; i++) {
4219 rx_intr_handler(&mac_control->rings[i]);
4221 #endif
4224 * tx_traffic_int reg is an R1 register, writing all 1's
4225 * will ensure that the actual interrupt causing bit get's
4226 * cleared and hence a read can be avoided.
4228 writeq(val64, &bar0->tx_traffic_int);
4230 for (i = 0; i < config->tx_fifo_num; i++)
4231 tx_intr_handler(&mac_control->fifos[i]);
4233 if (reason & GEN_INTR_TXPIC)
4234 s2io_txpic_intr_handle(sp);
4236 * If the Rx buffer count is below the panic threshold then
4237 * reallocate the buffers from the interrupt handler itself,
4238 * else schedule a tasklet to reallocate the buffers.
4240 #ifndef CONFIG_S2IO_NAPI
4241 for (i = 0; i < config->rx_ring_num; i++)
4242 s2io_chk_rx_buffers(sp, i);
4243 #endif
4244 writeq(org_mask, &bar0->general_int_mask);
4245 atomic_dec(&sp->isr_cnt);
4246 return IRQ_HANDLED;
4250 * s2io_updt_stats -
4252 static void s2io_updt_stats(nic_t *sp)
4254 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4255 u64 val64;
4256 int cnt = 0;
4258 if (atomic_read(&sp->card_state) == CARD_UP) {
4259 /* Apprx 30us on a 133 MHz bus */
4260 val64 = SET_UPDT_CLICKS(10) |
4261 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4262 writeq(val64, &bar0->stat_cfg);
4263 do {
4264 udelay(100);
4265 val64 = readq(&bar0->stat_cfg);
4266 if (!(val64 & BIT(0)))
4267 break;
4268 cnt++;
4269 if (cnt == 5)
4270 break; /* Updt failed */
4271 } while(1);
4272 } else {
4273 memset(sp->mac_control.stats_info, 0, sizeof(StatInfo_t));
4278 * s2io_get_stats - Updates the device statistics structure.
4279 * @dev : pointer to the device structure.
4280 * Description:
4281 * This function updates the device statistics structure in the s2io_nic
4282 * structure and returns a pointer to the same.
4283 * Return value:
4284 * pointer to the updated net_device_stats structure.
4287 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4289 nic_t *sp = dev->priv;
4290 mac_info_t *mac_control;
4291 struct config_param *config;
4294 mac_control = &sp->mac_control;
4295 config = &sp->config;
4297 /* Configure Stats for immediate updt */
4298 s2io_updt_stats(sp);
4300 sp->stats.tx_packets =
4301 le32_to_cpu(mac_control->stats_info->tmac_frms);
4302 sp->stats.tx_errors =
4303 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4304 sp->stats.rx_errors =
4305 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4306 sp->stats.multicast =
4307 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4308 sp->stats.rx_length_errors =
4309 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
4311 return (&sp->stats);
4315 * s2io_set_multicast - entry point for multicast address enable/disable.
4316 * @dev : pointer to the device structure
4317 * Description:
4318 * This function is a driver entry point which gets called by the kernel
4319 * whenever multicast addresses must be enabled/disabled. This also gets
4320 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4321 * determine, if multicast address must be enabled or if promiscuous mode
4322 * is to be disabled etc.
4323 * Return value:
4324 * void.
4327 static void s2io_set_multicast(struct net_device *dev)
4329 int i, j, prev_cnt;
4330 struct dev_mc_list *mclist;
4331 nic_t *sp = dev->priv;
4332 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4333 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4334 0xfeffffffffffULL;
4335 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4336 void __iomem *add;
4338 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4339 /* Enable all Multicast addresses */
4340 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4341 &bar0->rmac_addr_data0_mem);
4342 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4343 &bar0->rmac_addr_data1_mem);
4344 val64 = RMAC_ADDR_CMD_MEM_WE |
4345 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4346 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4347 writeq(val64, &bar0->rmac_addr_cmd_mem);
4348 /* Wait till command completes */
4349 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4350 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4352 sp->m_cast_flg = 1;
4353 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4354 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4355 /* Disable all Multicast addresses */
4356 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4357 &bar0->rmac_addr_data0_mem);
4358 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4359 &bar0->rmac_addr_data1_mem);
4360 val64 = RMAC_ADDR_CMD_MEM_WE |
4361 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4362 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4363 writeq(val64, &bar0->rmac_addr_cmd_mem);
4364 /* Wait till command completes */
4365 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4366 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4368 sp->m_cast_flg = 0;
4369 sp->all_multi_pos = 0;
4372 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4373 /* Put the NIC into promiscuous mode */
4374 add = &bar0->mac_cfg;
4375 val64 = readq(&bar0->mac_cfg);
4376 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4378 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4379 writel((u32) val64, add);
4380 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4381 writel((u32) (val64 >> 32), (add + 4));
4383 val64 = readq(&bar0->mac_cfg);
4384 sp->promisc_flg = 1;
4385 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4386 dev->name);
4387 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4388 /* Remove the NIC from promiscuous mode */
4389 add = &bar0->mac_cfg;
4390 val64 = readq(&bar0->mac_cfg);
4391 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4393 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4394 writel((u32) val64, add);
4395 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4396 writel((u32) (val64 >> 32), (add + 4));
4398 val64 = readq(&bar0->mac_cfg);
4399 sp->promisc_flg = 0;
4400 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4401 dev->name);
4404 /* Update individual M_CAST address list */
4405 if ((!sp->m_cast_flg) && dev->mc_count) {
4406 if (dev->mc_count >
4407 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4408 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4409 dev->name);
4410 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4411 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4412 return;
4415 prev_cnt = sp->mc_addr_count;
4416 sp->mc_addr_count = dev->mc_count;
4418 /* Clear out the previous list of Mc in the H/W. */
4419 for (i = 0; i < prev_cnt; i++) {
4420 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4421 &bar0->rmac_addr_data0_mem);
4422 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4423 &bar0->rmac_addr_data1_mem);
4424 val64 = RMAC_ADDR_CMD_MEM_WE |
4425 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4426 RMAC_ADDR_CMD_MEM_OFFSET
4427 (MAC_MC_ADDR_START_OFFSET + i);
4428 writeq(val64, &bar0->rmac_addr_cmd_mem);
4430 /* Wait for command completes */
4431 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4432 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4433 DBG_PRINT(ERR_DBG, "%s: Adding ",
4434 dev->name);
4435 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4436 return;
4440 /* Create the new Rx filter list and update the same in H/W. */
4441 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4442 i++, mclist = mclist->next) {
4443 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4444 ETH_ALEN);
4445 mac_addr = 0;
4446 for (j = 0; j < ETH_ALEN; j++) {
4447 mac_addr |= mclist->dmi_addr[j];
4448 mac_addr <<= 8;
4450 mac_addr >>= 8;
4451 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4452 &bar0->rmac_addr_data0_mem);
4453 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4454 &bar0->rmac_addr_data1_mem);
4455 val64 = RMAC_ADDR_CMD_MEM_WE |
4456 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4457 RMAC_ADDR_CMD_MEM_OFFSET
4458 (i + MAC_MC_ADDR_START_OFFSET);
4459 writeq(val64, &bar0->rmac_addr_cmd_mem);
4461 /* Wait for command completes */
4462 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4463 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4464 DBG_PRINT(ERR_DBG, "%s: Adding ",
4465 dev->name);
4466 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4467 return;
4474 * s2io_set_mac_addr - Programs the Xframe mac address
4475 * @dev : pointer to the device structure.
4476 * @addr: a uchar pointer to the new mac address which is to be set.
4477 * Description : This procedure will program the Xframe to receive
4478 * frames with new Mac Address
4479 * Return value: SUCCESS on success and an appropriate (-)ve integer
4480 * as defined in errno.h file on failure.
4483 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4485 nic_t *sp = dev->priv;
4486 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4487 register u64 val64, mac_addr = 0;
4488 int i;
4491 * Set the new MAC address as the new unicast filter and reflect this
4492 * change on the device address registered with the OS. It will be
4493 * at offset 0.
4495 for (i = 0; i < ETH_ALEN; i++) {
4496 mac_addr <<= 8;
4497 mac_addr |= addr[i];
4500 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4501 &bar0->rmac_addr_data0_mem);
4503 val64 =
4504 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4505 RMAC_ADDR_CMD_MEM_OFFSET(0);
4506 writeq(val64, &bar0->rmac_addr_cmd_mem);
4507 /* Wait till command completes */
4508 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4509 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4510 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4511 return FAILURE;
4514 return SUCCESS;
4518 * s2io_ethtool_sset - Sets different link parameters.
4519 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4520 * @info: pointer to the structure with parameters given by ethtool to set
4521 * link information.
4522 * Description:
4523 * The function sets different link parameters provided by the user onto
4524 * the NIC.
4525 * Return value:
4526 * 0 on success.
4529 static int s2io_ethtool_sset(struct net_device *dev,
4530 struct ethtool_cmd *info)
4532 nic_t *sp = dev->priv;
4533 if ((info->autoneg == AUTONEG_ENABLE) ||
4534 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4535 return -EINVAL;
4536 else {
4537 s2io_close(sp->dev);
4538 s2io_open(sp->dev);
4541 return 0;
4545 * s2io_ethtol_gset - Return link specific information.
4546 * @sp : private member of the device structure, pointer to the
4547 * s2io_nic structure.
4548 * @info : pointer to the structure with parameters given by ethtool
4549 * to return link information.
4550 * Description:
4551 * Returns link specific information like speed, duplex etc.. to ethtool.
4552 * Return value :
4553 * return 0 on success.
4556 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4558 nic_t *sp = dev->priv;
4559 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4560 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4561 info->port = PORT_FIBRE;
4562 /* info->transceiver?? TODO */
4564 if (netif_carrier_ok(sp->dev)) {
4565 info->speed = 10000;
4566 info->duplex = DUPLEX_FULL;
4567 } else {
4568 info->speed = -1;
4569 info->duplex = -1;
4572 info->autoneg = AUTONEG_DISABLE;
4573 return 0;
4577 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4578 * @sp : private member of the device structure, which is a pointer to the
4579 * s2io_nic structure.
4580 * @info : pointer to the structure with parameters given by ethtool to
4581 * return driver information.
4582 * Description:
4583 * Returns driver specefic information like name, version etc.. to ethtool.
4584 * Return value:
4585 * void
4588 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4589 struct ethtool_drvinfo *info)
4591 nic_t *sp = dev->priv;
4593 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4594 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4595 strncpy(info->fw_version, "", sizeof(info->fw_version));
4596 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4597 info->regdump_len = XENA_REG_SPACE;
4598 info->eedump_len = XENA_EEPROM_SPACE;
4599 info->testinfo_len = S2IO_TEST_LEN;
4600 info->n_stats = S2IO_STAT_LEN;
4604 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4605 * @sp: private member of the device structure, which is a pointer to the
4606 * s2io_nic structure.
4607 * @regs : pointer to the structure with parameters given by ethtool for
4608 * dumping the registers.
4609 * @reg_space: The input argumnet into which all the registers are dumped.
4610 * Description:
4611 * Dumps the entire register space of xFrame NIC into the user given
4612 * buffer area.
4613 * Return value :
4614 * void .
4617 static void s2io_ethtool_gregs(struct net_device *dev,
4618 struct ethtool_regs *regs, void *space)
4620 int i;
4621 u64 reg;
4622 u8 *reg_space = (u8 *) space;
4623 nic_t *sp = dev->priv;
4625 regs->len = XENA_REG_SPACE;
4626 regs->version = sp->pdev->subsystem_device;
4628 for (i = 0; i < regs->len; i += 8) {
4629 reg = readq(sp->bar0 + i);
4630 memcpy((reg_space + i), &reg, 8);
4635 * s2io_phy_id - timer function that alternates adapter LED.
4636 * @data : address of the private member of the device structure, which
4637 * is a pointer to the s2io_nic structure, provided as an u32.
4638 * Description: This is actually the timer function that alternates the
4639 * adapter LED bit of the adapter control bit to set/reset every time on
4640 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4641 * once every second.
4643 static void s2io_phy_id(unsigned long data)
4645 nic_t *sp = (nic_t *) data;
4646 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4647 u64 val64 = 0;
4648 u16 subid;
4650 subid = sp->pdev->subsystem_device;
4651 if ((sp->device_type == XFRAME_II_DEVICE) ||
4652 ((subid & 0xFF) >= 0x07)) {
4653 val64 = readq(&bar0->gpio_control);
4654 val64 ^= GPIO_CTRL_GPIO_0;
4655 writeq(val64, &bar0->gpio_control);
4656 } else {
4657 val64 = readq(&bar0->adapter_control);
4658 val64 ^= ADAPTER_LED_ON;
4659 writeq(val64, &bar0->adapter_control);
4662 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4666 * s2io_ethtool_idnic - To physically identify the nic on the system.
4667 * @sp : private member of the device structure, which is a pointer to the
4668 * s2io_nic structure.
4669 * @id : pointer to the structure with identification parameters given by
4670 * ethtool.
4671 * Description: Used to physically identify the NIC on the system.
4672 * The Link LED will blink for a time specified by the user for
4673 * identification.
4674 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4675 * identification is possible only if it's link is up.
4676 * Return value:
4677 * int , returns 0 on success
4680 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4682 u64 val64 = 0, last_gpio_ctrl_val;
4683 nic_t *sp = dev->priv;
4684 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4685 u16 subid;
4687 subid = sp->pdev->subsystem_device;
4688 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4689 if ((sp->device_type == XFRAME_I_DEVICE) &&
4690 ((subid & 0xFF) < 0x07)) {
4691 val64 = readq(&bar0->adapter_control);
4692 if (!(val64 & ADAPTER_CNTL_EN)) {
4693 printk(KERN_ERR
4694 "Adapter Link down, cannot blink LED\n");
4695 return -EFAULT;
4698 if (sp->id_timer.function == NULL) {
4699 init_timer(&sp->id_timer);
4700 sp->id_timer.function = s2io_phy_id;
4701 sp->id_timer.data = (unsigned long) sp;
4703 mod_timer(&sp->id_timer, jiffies);
4704 if (data)
4705 msleep_interruptible(data * HZ);
4706 else
4707 msleep_interruptible(MAX_FLICKER_TIME);
4708 del_timer_sync(&sp->id_timer);
4710 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4711 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4712 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4715 return 0;
4719 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4720 * @sp : private member of the device structure, which is a pointer to the
4721 * s2io_nic structure.
4722 * @ep : pointer to the structure with pause parameters given by ethtool.
4723 * Description:
4724 * Returns the Pause frame generation and reception capability of the NIC.
4725 * Return value:
4726 * void
4728 static void s2io_ethtool_getpause_data(struct net_device *dev,
4729 struct ethtool_pauseparam *ep)
4731 u64 val64;
4732 nic_t *sp = dev->priv;
4733 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4735 val64 = readq(&bar0->rmac_pause_cfg);
4736 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4737 ep->tx_pause = TRUE;
4738 if (val64 & RMAC_PAUSE_RX_ENABLE)
4739 ep->rx_pause = TRUE;
4740 ep->autoneg = FALSE;
4744 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4745 * @sp : private member of the device structure, which is a pointer to the
4746 * s2io_nic structure.
4747 * @ep : pointer to the structure with pause parameters given by ethtool.
4748 * Description:
4749 * It can be used to set or reset Pause frame generation or reception
4750 * support of the NIC.
4751 * Return value:
4752 * int, returns 0 on Success
4755 static int s2io_ethtool_setpause_data(struct net_device *dev,
4756 struct ethtool_pauseparam *ep)
4758 u64 val64;
4759 nic_t *sp = dev->priv;
4760 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4762 val64 = readq(&bar0->rmac_pause_cfg);
4763 if (ep->tx_pause)
4764 val64 |= RMAC_PAUSE_GEN_ENABLE;
4765 else
4766 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4767 if (ep->rx_pause)
4768 val64 |= RMAC_PAUSE_RX_ENABLE;
4769 else
4770 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4771 writeq(val64, &bar0->rmac_pause_cfg);
4772 return 0;
4776 * read_eeprom - reads 4 bytes of data from user given offset.
4777 * @sp : private member of the device structure, which is a pointer to the
4778 * s2io_nic structure.
4779 * @off : offset at which the data must be written
4780 * @data : Its an output parameter where the data read at the given
4781 * offset is stored.
4782 * Description:
4783 * Will read 4 bytes of data from the user given offset and return the
4784 * read data.
4785 * NOTE: Will allow to read only part of the EEPROM visible through the
4786 * I2C bus.
4787 * Return value:
4788 * -1 on failure and 0 on success.
4791 #define S2IO_DEV_ID 5
4792 static int read_eeprom(nic_t * sp, int off, u64 * data)
4794 int ret = -1;
4795 u32 exit_cnt = 0;
4796 u64 val64;
4797 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4799 if (sp->device_type == XFRAME_I_DEVICE) {
4800 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4801 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4802 I2C_CONTROL_CNTL_START;
4803 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4805 while (exit_cnt < 5) {
4806 val64 = readq(&bar0->i2c_control);
4807 if (I2C_CONTROL_CNTL_END(val64)) {
4808 *data = I2C_CONTROL_GET_DATA(val64);
4809 ret = 0;
4810 break;
4812 msleep(50);
4813 exit_cnt++;
4817 if (sp->device_type == XFRAME_II_DEVICE) {
4818 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4819 SPI_CONTROL_BYTECNT(0x3) |
4820 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4821 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4822 val64 |= SPI_CONTROL_REQ;
4823 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4824 while (exit_cnt < 5) {
4825 val64 = readq(&bar0->spi_control);
4826 if (val64 & SPI_CONTROL_NACK) {
4827 ret = 1;
4828 break;
4829 } else if (val64 & SPI_CONTROL_DONE) {
4830 *data = readq(&bar0->spi_data);
4831 *data &= 0xffffff;
4832 ret = 0;
4833 break;
4835 msleep(50);
4836 exit_cnt++;
4839 return ret;
4843 * write_eeprom - actually writes the relevant part of the data value.
4844 * @sp : private member of the device structure, which is a pointer to the
4845 * s2io_nic structure.
4846 * @off : offset at which the data must be written
4847 * @data : The data that is to be written
4848 * @cnt : Number of bytes of the data that are actually to be written into
4849 * the Eeprom. (max of 3)
4850 * Description:
4851 * Actually writes the relevant part of the data value into the Eeprom
4852 * through the I2C bus.
4853 * Return value:
4854 * 0 on success, -1 on failure.
4857 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4859 int exit_cnt = 0, ret = -1;
4860 u64 val64;
4861 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4863 if (sp->device_type == XFRAME_I_DEVICE) {
4864 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4865 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4866 I2C_CONTROL_CNTL_START;
4867 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4869 while (exit_cnt < 5) {
4870 val64 = readq(&bar0->i2c_control);
4871 if (I2C_CONTROL_CNTL_END(val64)) {
4872 if (!(val64 & I2C_CONTROL_NACK))
4873 ret = 0;
4874 break;
4876 msleep(50);
4877 exit_cnt++;
4881 if (sp->device_type == XFRAME_II_DEVICE) {
4882 int write_cnt = (cnt == 8) ? 0 : cnt;
4883 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4885 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4886 SPI_CONTROL_BYTECNT(write_cnt) |
4887 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4888 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4889 val64 |= SPI_CONTROL_REQ;
4890 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4891 while (exit_cnt < 5) {
4892 val64 = readq(&bar0->spi_control);
4893 if (val64 & SPI_CONTROL_NACK) {
4894 ret = 1;
4895 break;
4896 } else if (val64 & SPI_CONTROL_DONE) {
4897 ret = 0;
4898 break;
4900 msleep(50);
4901 exit_cnt++;
4904 return ret;
4906 static void s2io_vpd_read(nic_t *nic)
4908 u8 *vpd_data;
4909 u8 data;
4910 int i=0, cnt, fail = 0;
4911 int vpd_addr = 0x80;
4913 if (nic->device_type == XFRAME_II_DEVICE) {
4914 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4915 vpd_addr = 0x80;
4917 else {
4918 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4919 vpd_addr = 0x50;
4922 vpd_data = kmalloc(256, GFP_KERNEL);
4923 if (!vpd_data)
4924 return;
4926 for (i = 0; i < 256; i +=4 ) {
4927 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4928 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4929 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4930 for (cnt = 0; cnt <5; cnt++) {
4931 msleep(2);
4932 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4933 if (data == 0x80)
4934 break;
4936 if (cnt >= 5) {
4937 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4938 fail = 1;
4939 break;
4941 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4942 (u32 *)&vpd_data[i]);
4944 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
4945 memset(nic->product_name, 0, vpd_data[1]);
4946 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4948 kfree(vpd_data);
4952 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4953 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4954 * @eeprom : pointer to the user level structure provided by ethtool,
4955 * containing all relevant information.
4956 * @data_buf : user defined value to be written into Eeprom.
4957 * Description: Reads the values stored in the Eeprom at given offset
4958 * for a given length. Stores these values int the input argument data
4959 * buffer 'data_buf' and returns these to the caller (ethtool.)
4960 * Return value:
4961 * int 0 on success
4964 static int s2io_ethtool_geeprom(struct net_device *dev,
4965 struct ethtool_eeprom *eeprom, u8 * data_buf)
4967 u32 i, valid;
4968 u64 data;
4969 nic_t *sp = dev->priv;
4971 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4973 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4974 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4976 for (i = 0; i < eeprom->len; i += 4) {
4977 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4978 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4979 return -EFAULT;
4981 valid = INV(data);
4982 memcpy((data_buf + i), &valid, 4);
4984 return 0;
4988 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4989 * @sp : private member of the device structure, which is a pointer to the
4990 * s2io_nic structure.
4991 * @eeprom : pointer to the user level structure provided by ethtool,
4992 * containing all relevant information.
4993 * @data_buf ; user defined value to be written into Eeprom.
4994 * Description:
4995 * Tries to write the user provided value in the Eeprom, at the offset
4996 * given by the user.
4997 * Return value:
4998 * 0 on success, -EFAULT on failure.
5001 static int s2io_ethtool_seeprom(struct net_device *dev,
5002 struct ethtool_eeprom *eeprom,
5003 u8 * data_buf)
5005 int len = eeprom->len, cnt = 0;
5006 u64 valid = 0, data;
5007 nic_t *sp = dev->priv;
5009 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5010 DBG_PRINT(ERR_DBG,
5011 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5012 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5013 eeprom->magic);
5014 return -EFAULT;
5017 while (len) {
5018 data = (u32) data_buf[cnt] & 0x000000FF;
5019 if (data) {
5020 valid = (u32) (data << 24);
5021 } else
5022 valid = data;
5024 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5025 DBG_PRINT(ERR_DBG,
5026 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5027 DBG_PRINT(ERR_DBG,
5028 "write into the specified offset\n");
5029 return -EFAULT;
5031 cnt++;
5032 len--;
5035 return 0;
5039 * s2io_register_test - reads and writes into all clock domains.
5040 * @sp : private member of the device structure, which is a pointer to the
5041 * s2io_nic structure.
5042 * @data : variable that returns the result of each of the test conducted b
5043 * by the driver.
5044 * Description:
5045 * Read and write into all clock domains. The NIC has 3 clock domains,
5046 * see that registers in all the three regions are accessible.
5047 * Return value:
5048 * 0 on success.
5051 static int s2io_register_test(nic_t * sp, uint64_t * data)
5053 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5054 u64 val64 = 0, exp_val;
5055 int fail = 0;
5057 val64 = readq(&bar0->pif_rd_swapper_fb);
5058 if (val64 != 0x123456789abcdefULL) {
5059 fail = 1;
5060 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5063 val64 = readq(&bar0->rmac_pause_cfg);
5064 if (val64 != 0xc000ffff00000000ULL) {
5065 fail = 1;
5066 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5069 val64 = readq(&bar0->rx_queue_cfg);
5070 if (sp->device_type == XFRAME_II_DEVICE)
5071 exp_val = 0x0404040404040404ULL;
5072 else
5073 exp_val = 0x0808080808080808ULL;
5074 if (val64 != exp_val) {
5075 fail = 1;
5076 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5079 val64 = readq(&bar0->xgxs_efifo_cfg);
5080 if (val64 != 0x000000001923141EULL) {
5081 fail = 1;
5082 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5085 val64 = 0x5A5A5A5A5A5A5A5AULL;
5086 writeq(val64, &bar0->xmsi_data);
5087 val64 = readq(&bar0->xmsi_data);
5088 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5089 fail = 1;
5090 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5093 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5094 writeq(val64, &bar0->xmsi_data);
5095 val64 = readq(&bar0->xmsi_data);
5096 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5097 fail = 1;
5098 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5101 *data = fail;
5102 return fail;
5106 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5107 * @sp : private member of the device structure, which is a pointer to the
5108 * s2io_nic structure.
5109 * @data:variable that returns the result of each of the test conducted by
5110 * the driver.
5111 * Description:
5112 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5113 * register.
5114 * Return value:
5115 * 0 on success.
5118 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5120 int fail = 0;
5121 u64 ret_data, org_4F0, org_7F0;
5122 u8 saved_4F0 = 0, saved_7F0 = 0;
5123 struct net_device *dev = sp->dev;
5125 /* Test Write Error at offset 0 */
5126 /* Note that SPI interface allows write access to all areas
5127 * of EEPROM. Hence doing all negative testing only for Xframe I.
5129 if (sp->device_type == XFRAME_I_DEVICE)
5130 if (!write_eeprom(sp, 0, 0, 3))
5131 fail = 1;
5133 /* Save current values at offsets 0x4F0 and 0x7F0 */
5134 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5135 saved_4F0 = 1;
5136 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5137 saved_7F0 = 1;
5139 /* Test Write at offset 4f0 */
5140 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5141 fail = 1;
5142 if (read_eeprom(sp, 0x4F0, &ret_data))
5143 fail = 1;
5145 if (ret_data != 0x012345) {
5146 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5147 "Data written %llx Data read %llx\n",
5148 dev->name, (unsigned long long)0x12345,
5149 (unsigned long long)ret_data);
5150 fail = 1;
5153 /* Reset the EEPROM data go FFFF */
5154 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5156 /* Test Write Request Error at offset 0x7c */
5157 if (sp->device_type == XFRAME_I_DEVICE)
5158 if (!write_eeprom(sp, 0x07C, 0, 3))
5159 fail = 1;
5161 /* Test Write Request at offset 0x7f0 */
5162 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5163 fail = 1;
5164 if (read_eeprom(sp, 0x7F0, &ret_data))
5165 fail = 1;
5167 if (ret_data != 0x012345) {
5168 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5169 "Data written %llx Data read %llx\n",
5170 dev->name, (unsigned long long)0x12345,
5171 (unsigned long long)ret_data);
5172 fail = 1;
5175 /* Reset the EEPROM data go FFFF */
5176 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5178 if (sp->device_type == XFRAME_I_DEVICE) {
5179 /* Test Write Error at offset 0x80 */
5180 if (!write_eeprom(sp, 0x080, 0, 3))
5181 fail = 1;
5183 /* Test Write Error at offset 0xfc */
5184 if (!write_eeprom(sp, 0x0FC, 0, 3))
5185 fail = 1;
5187 /* Test Write Error at offset 0x100 */
5188 if (!write_eeprom(sp, 0x100, 0, 3))
5189 fail = 1;
5191 /* Test Write Error at offset 4ec */
5192 if (!write_eeprom(sp, 0x4EC, 0, 3))
5193 fail = 1;
5196 /* Restore values at offsets 0x4F0 and 0x7F0 */
5197 if (saved_4F0)
5198 write_eeprom(sp, 0x4F0, org_4F0, 3);
5199 if (saved_7F0)
5200 write_eeprom(sp, 0x7F0, org_7F0, 3);
5202 *data = fail;
5203 return fail;
5207 * s2io_bist_test - invokes the MemBist test of the card .
5208 * @sp : private member of the device structure, which is a pointer to the
5209 * s2io_nic structure.
5210 * @data:variable that returns the result of each of the test conducted by
5211 * the driver.
5212 * Description:
5213 * This invokes the MemBist test of the card. We give around
5214 * 2 secs time for the Test to complete. If it's still not complete
5215 * within this peiod, we consider that the test failed.
5216 * Return value:
5217 * 0 on success and -1 on failure.
5220 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5222 u8 bist = 0;
5223 int cnt = 0, ret = -1;
5225 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5226 bist |= PCI_BIST_START;
5227 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5229 while (cnt < 20) {
5230 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5231 if (!(bist & PCI_BIST_START)) {
5232 *data = (bist & PCI_BIST_CODE_MASK);
5233 ret = 0;
5234 break;
5236 msleep(100);
5237 cnt++;
5240 return ret;
5244 * s2io-link_test - verifies the link state of the nic
5245 * @sp ; private member of the device structure, which is a pointer to the
5246 * s2io_nic structure.
5247 * @data: variable that returns the result of each of the test conducted by
5248 * the driver.
5249 * Description:
5250 * The function verifies the link state of the NIC and updates the input
5251 * argument 'data' appropriately.
5252 * Return value:
5253 * 0 on success.
5256 static int s2io_link_test(nic_t * sp, uint64_t * data)
5258 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5259 u64 val64;
5261 val64 = readq(&bar0->adapter_status);
5262 if(!(LINK_IS_UP(val64)))
5263 *data = 1;
5264 else
5265 *data = 0;
5267 return *data;
5271 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5272 * @sp - private member of the device structure, which is a pointer to the
5273 * s2io_nic structure.
5274 * @data - variable that returns the result of each of the test
5275 * conducted by the driver.
5276 * Description:
5277 * This is one of the offline test that tests the read and write
5278 * access to the RldRam chip on the NIC.
5279 * Return value:
5280 * 0 on success.
5283 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5285 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5286 u64 val64;
5287 int cnt, iteration = 0, test_fail = 0;
5289 val64 = readq(&bar0->adapter_control);
5290 val64 &= ~ADAPTER_ECC_EN;
5291 writeq(val64, &bar0->adapter_control);
5293 val64 = readq(&bar0->mc_rldram_test_ctrl);
5294 val64 |= MC_RLDRAM_TEST_MODE;
5295 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5297 val64 = readq(&bar0->mc_rldram_mrs);
5298 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5299 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5301 val64 |= MC_RLDRAM_MRS_ENABLE;
5302 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5304 while (iteration < 2) {
5305 val64 = 0x55555555aaaa0000ULL;
5306 if (iteration == 1) {
5307 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5309 writeq(val64, &bar0->mc_rldram_test_d0);
5311 val64 = 0xaaaa5a5555550000ULL;
5312 if (iteration == 1) {
5313 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5315 writeq(val64, &bar0->mc_rldram_test_d1);
5317 val64 = 0x55aaaaaaaa5a0000ULL;
5318 if (iteration == 1) {
5319 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5321 writeq(val64, &bar0->mc_rldram_test_d2);
5323 val64 = (u64) (0x0000003ffffe0100ULL);
5324 writeq(val64, &bar0->mc_rldram_test_add);
5326 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5327 MC_RLDRAM_TEST_GO;
5328 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5330 for (cnt = 0; cnt < 5; cnt++) {
5331 val64 = readq(&bar0->mc_rldram_test_ctrl);
5332 if (val64 & MC_RLDRAM_TEST_DONE)
5333 break;
5334 msleep(200);
5337 if (cnt == 5)
5338 break;
5340 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5341 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5343 for (cnt = 0; cnt < 5; cnt++) {
5344 val64 = readq(&bar0->mc_rldram_test_ctrl);
5345 if (val64 & MC_RLDRAM_TEST_DONE)
5346 break;
5347 msleep(500);
5350 if (cnt == 5)
5351 break;
5353 val64 = readq(&bar0->mc_rldram_test_ctrl);
5354 if (!(val64 & MC_RLDRAM_TEST_PASS))
5355 test_fail = 1;
5357 iteration++;
5360 *data = test_fail;
5362 /* Bring the adapter out of test mode */
5363 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5365 return test_fail;
5369 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5370 * @sp : private member of the device structure, which is a pointer to the
5371 * s2io_nic structure.
5372 * @ethtest : pointer to a ethtool command specific structure that will be
5373 * returned to the user.
5374 * @data : variable that returns the result of each of the test
5375 * conducted by the driver.
5376 * Description:
5377 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5378 * the health of the card.
5379 * Return value:
5380 * void
5383 static void s2io_ethtool_test(struct net_device *dev,
5384 struct ethtool_test *ethtest,
5385 uint64_t * data)
5387 nic_t *sp = dev->priv;
5388 int orig_state = netif_running(sp->dev);
5390 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5391 /* Offline Tests. */
5392 if (orig_state)
5393 s2io_close(sp->dev);
5395 if (s2io_register_test(sp, &data[0]))
5396 ethtest->flags |= ETH_TEST_FL_FAILED;
5398 s2io_reset(sp);
5400 if (s2io_rldram_test(sp, &data[3]))
5401 ethtest->flags |= ETH_TEST_FL_FAILED;
5403 s2io_reset(sp);
5405 if (s2io_eeprom_test(sp, &data[1]))
5406 ethtest->flags |= ETH_TEST_FL_FAILED;
5408 if (s2io_bist_test(sp, &data[4]))
5409 ethtest->flags |= ETH_TEST_FL_FAILED;
5411 if (orig_state)
5412 s2io_open(sp->dev);
5414 data[2] = 0;
5415 } else {
5416 /* Online Tests. */
5417 if (!orig_state) {
5418 DBG_PRINT(ERR_DBG,
5419 "%s: is not up, cannot run test\n",
5420 dev->name);
5421 data[0] = -1;
5422 data[1] = -1;
5423 data[2] = -1;
5424 data[3] = -1;
5425 data[4] = -1;
5428 if (s2io_link_test(sp, &data[2]))
5429 ethtest->flags |= ETH_TEST_FL_FAILED;
5431 data[0] = 0;
5432 data[1] = 0;
5433 data[3] = 0;
5434 data[4] = 0;
5438 static void s2io_get_ethtool_stats(struct net_device *dev,
5439 struct ethtool_stats *estats,
5440 u64 * tmp_stats)
5442 int i = 0;
5443 nic_t *sp = dev->priv;
5444 StatInfo_t *stat_info = sp->mac_control.stats_info;
5446 s2io_updt_stats(sp);
5447 tmp_stats[i++] =
5448 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5449 le32_to_cpu(stat_info->tmac_frms);
5450 tmp_stats[i++] =
5451 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5452 le32_to_cpu(stat_info->tmac_data_octets);
5453 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5454 tmp_stats[i++] =
5455 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5456 le32_to_cpu(stat_info->tmac_mcst_frms);
5457 tmp_stats[i++] =
5458 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5459 le32_to_cpu(stat_info->tmac_bcst_frms);
5460 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5461 tmp_stats[i++] =
5462 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5463 le32_to_cpu(stat_info->tmac_ttl_octets);
5464 tmp_stats[i++] =
5465 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5466 le32_to_cpu(stat_info->tmac_ucst_frms);
5467 tmp_stats[i++] =
5468 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5469 le32_to_cpu(stat_info->tmac_nucst_frms);
5470 tmp_stats[i++] =
5471 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5472 le32_to_cpu(stat_info->tmac_any_err_frms);
5473 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5474 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5475 tmp_stats[i++] =
5476 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5477 le32_to_cpu(stat_info->tmac_vld_ip);
5478 tmp_stats[i++] =
5479 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5480 le32_to_cpu(stat_info->tmac_drop_ip);
5481 tmp_stats[i++] =
5482 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5483 le32_to_cpu(stat_info->tmac_icmp);
5484 tmp_stats[i++] =
5485 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5486 le32_to_cpu(stat_info->tmac_rst_tcp);
5487 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5488 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5489 le32_to_cpu(stat_info->tmac_udp);
5490 tmp_stats[i++] =
5491 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5492 le32_to_cpu(stat_info->rmac_vld_frms);
5493 tmp_stats[i++] =
5494 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5495 le32_to_cpu(stat_info->rmac_data_octets);
5496 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5497 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5498 tmp_stats[i++] =
5499 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5500 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5501 tmp_stats[i++] =
5502 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5503 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5504 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5505 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5506 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5507 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5508 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5509 tmp_stats[i++] =
5510 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5511 le32_to_cpu(stat_info->rmac_ttl_octets);
5512 tmp_stats[i++] =
5513 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5514 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5515 tmp_stats[i++] =
5516 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5517 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5518 tmp_stats[i++] =
5519 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5520 le32_to_cpu(stat_info->rmac_discarded_frms);
5521 tmp_stats[i++] =
5522 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5523 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5524 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5525 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5526 tmp_stats[i++] =
5527 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5528 le32_to_cpu(stat_info->rmac_usized_frms);
5529 tmp_stats[i++] =
5530 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5531 le32_to_cpu(stat_info->rmac_osized_frms);
5532 tmp_stats[i++] =
5533 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5534 le32_to_cpu(stat_info->rmac_frag_frms);
5535 tmp_stats[i++] =
5536 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5537 le32_to_cpu(stat_info->rmac_jabber_frms);
5538 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5539 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5540 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5541 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5542 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5543 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5544 tmp_stats[i++] =
5545 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5546 le32_to_cpu(stat_info->rmac_ip);
5547 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5548 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5549 tmp_stats[i++] =
5550 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5551 le32_to_cpu(stat_info->rmac_drop_ip);
5552 tmp_stats[i++] =
5553 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5554 le32_to_cpu(stat_info->rmac_icmp);
5555 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5556 tmp_stats[i++] =
5557 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5558 le32_to_cpu(stat_info->rmac_udp);
5559 tmp_stats[i++] =
5560 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5561 le32_to_cpu(stat_info->rmac_err_drp_udp);
5562 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5563 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5564 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5565 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5566 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5567 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5568 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5569 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5570 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5571 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5572 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5573 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5574 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5575 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5576 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5577 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5578 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5579 tmp_stats[i++] =
5580 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5581 le32_to_cpu(stat_info->rmac_pause_cnt);
5582 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5583 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5584 tmp_stats[i++] =
5585 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5586 le32_to_cpu(stat_info->rmac_accepted_ip);
5587 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5588 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5589 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5590 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5591 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5592 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5593 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5594 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5595 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5596 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5597 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5598 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5599 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5600 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5601 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5602 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5603 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5604 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5605 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5606 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5607 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5608 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5609 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5610 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5611 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5612 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5613 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5614 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5615 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5616 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5617 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5618 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5619 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5620 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5621 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5622 tmp_stats[i++] = 0;
5623 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5624 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5625 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5626 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5627 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5628 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5629 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5630 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5631 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5632 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5633 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5634 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5635 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5636 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5637 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5638 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5639 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5640 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5641 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5642 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5643 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5644 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5645 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5646 if (stat_info->sw_stat.num_aggregations) {
5647 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5648 int count = 0;
5650 * Since 64-bit divide does not work on all platforms,
5651 * do repeated subtraction.
5653 while (tmp >= stat_info->sw_stat.num_aggregations) {
5654 tmp -= stat_info->sw_stat.num_aggregations;
5655 count++;
5657 tmp_stats[i++] = count;
5659 else
5660 tmp_stats[i++] = 0;
5663 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5665 return (XENA_REG_SPACE);
5669 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5671 nic_t *sp = dev->priv;
5673 return (sp->rx_csum);
5676 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5678 nic_t *sp = dev->priv;
5680 if (data)
5681 sp->rx_csum = 1;
5682 else
5683 sp->rx_csum = 0;
5685 return 0;
5688 static int s2io_get_eeprom_len(struct net_device *dev)
5690 return (XENA_EEPROM_SPACE);
5693 static int s2io_ethtool_self_test_count(struct net_device *dev)
5695 return (S2IO_TEST_LEN);
5698 static void s2io_ethtool_get_strings(struct net_device *dev,
5699 u32 stringset, u8 * data)
5701 switch (stringset) {
5702 case ETH_SS_TEST:
5703 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5704 break;
5705 case ETH_SS_STATS:
5706 memcpy(data, &ethtool_stats_keys,
5707 sizeof(ethtool_stats_keys));
5710 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5712 return (S2IO_STAT_LEN);
5715 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5717 if (data)
5718 dev->features |= NETIF_F_IP_CSUM;
5719 else
5720 dev->features &= ~NETIF_F_IP_CSUM;
5722 return 0;
5725 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5727 return (dev->features & NETIF_F_TSO) != 0;
5729 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5731 if (data)
5732 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5733 else
5734 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5736 return 0;
5739 static struct ethtool_ops netdev_ethtool_ops = {
5740 .get_settings = s2io_ethtool_gset,
5741 .set_settings = s2io_ethtool_sset,
5742 .get_drvinfo = s2io_ethtool_gdrvinfo,
5743 .get_regs_len = s2io_ethtool_get_regs_len,
5744 .get_regs = s2io_ethtool_gregs,
5745 .get_link = ethtool_op_get_link,
5746 .get_eeprom_len = s2io_get_eeprom_len,
5747 .get_eeprom = s2io_ethtool_geeprom,
5748 .set_eeprom = s2io_ethtool_seeprom,
5749 .get_pauseparam = s2io_ethtool_getpause_data,
5750 .set_pauseparam = s2io_ethtool_setpause_data,
5751 .get_rx_csum = s2io_ethtool_get_rx_csum,
5752 .set_rx_csum = s2io_ethtool_set_rx_csum,
5753 .get_tx_csum = ethtool_op_get_tx_csum,
5754 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5755 .get_sg = ethtool_op_get_sg,
5756 .set_sg = ethtool_op_set_sg,
5757 #ifdef NETIF_F_TSO
5758 .get_tso = s2io_ethtool_op_get_tso,
5759 .set_tso = s2io_ethtool_op_set_tso,
5760 #endif
5761 .get_ufo = ethtool_op_get_ufo,
5762 .set_ufo = ethtool_op_set_ufo,
5763 .self_test_count = s2io_ethtool_self_test_count,
5764 .self_test = s2io_ethtool_test,
5765 .get_strings = s2io_ethtool_get_strings,
5766 .phys_id = s2io_ethtool_idnic,
5767 .get_stats_count = s2io_ethtool_get_stats_count,
5768 .get_ethtool_stats = s2io_get_ethtool_stats
5772 * s2io_ioctl - Entry point for the Ioctl
5773 * @dev : Device pointer.
5774 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5775 * a proprietary structure used to pass information to the driver.
5776 * @cmd : This is used to distinguish between the different commands that
5777 * can be passed to the IOCTL functions.
5778 * Description:
5779 * Currently there are no special functionality supported in IOCTL, hence
5780 * function always return EOPNOTSUPPORTED
5783 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5785 return -EOPNOTSUPP;
5789 * s2io_change_mtu - entry point to change MTU size for the device.
5790 * @dev : device pointer.
5791 * @new_mtu : the new MTU size for the device.
5792 * Description: A driver entry point to change MTU size for the device.
5793 * Before changing the MTU the device must be stopped.
5794 * Return value:
5795 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5796 * file on failure.
5799 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5801 nic_t *sp = dev->priv;
5803 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5804 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5805 dev->name);
5806 return -EPERM;
5809 dev->mtu = new_mtu;
5810 if (netif_running(dev)) {
5811 s2io_card_down(sp);
5812 netif_stop_queue(dev);
5813 if (s2io_card_up(sp)) {
5814 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5815 __FUNCTION__);
5817 if (netif_queue_stopped(dev))
5818 netif_wake_queue(dev);
5819 } else { /* Device is down */
5820 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5821 u64 val64 = new_mtu;
5823 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5826 return 0;
5830 * s2io_tasklet - Bottom half of the ISR.
5831 * @dev_adr : address of the device structure in dma_addr_t format.
5832 * Description:
5833 * This is the tasklet or the bottom half of the ISR. This is
5834 * an extension of the ISR which is scheduled by the scheduler to be run
5835 * when the load on the CPU is low. All low priority tasks of the ISR can
5836 * be pushed into the tasklet. For now the tasklet is used only to
5837 * replenish the Rx buffers in the Rx buffer descriptors.
5838 * Return value:
5839 * void.
5842 static void s2io_tasklet(unsigned long dev_addr)
5844 struct net_device *dev = (struct net_device *) dev_addr;
5845 nic_t *sp = dev->priv;
5846 int i, ret;
5847 mac_info_t *mac_control;
5848 struct config_param *config;
5850 mac_control = &sp->mac_control;
5851 config = &sp->config;
5853 if (!TASKLET_IN_USE) {
5854 for (i = 0; i < config->rx_ring_num; i++) {
5855 ret = fill_rx_buffers(sp, i);
5856 if (ret == -ENOMEM) {
5857 DBG_PRINT(ERR_DBG, "%s: Out of ",
5858 dev->name);
5859 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5860 break;
5861 } else if (ret == -EFILL) {
5862 DBG_PRINT(ERR_DBG,
5863 "%s: Rx Ring %d is full\n",
5864 dev->name, i);
5865 break;
5868 clear_bit(0, (&sp->tasklet_status));
5873 * s2io_set_link - Set the LInk status
5874 * @data: long pointer to device private structue
5875 * Description: Sets the link status for the adapter
5878 static void s2io_set_link(unsigned long data)
5880 nic_t *nic = (nic_t *) data;
5881 struct net_device *dev = nic->dev;
5882 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5883 register u64 val64;
5884 u16 subid;
5886 if (test_and_set_bit(0, &(nic->link_state))) {
5887 /* The card is being reset, no point doing anything */
5888 return;
5891 subid = nic->pdev->subsystem_device;
5892 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5894 * Allow a small delay for the NICs self initiated
5895 * cleanup to complete.
5897 msleep(100);
5900 val64 = readq(&bar0->adapter_status);
5901 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5902 if (LINK_IS_UP(val64)) {
5903 val64 = readq(&bar0->adapter_control);
5904 val64 |= ADAPTER_CNTL_EN;
5905 writeq(val64, &bar0->adapter_control);
5906 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5907 subid)) {
5908 val64 = readq(&bar0->gpio_control);
5909 val64 |= GPIO_CTRL_GPIO_0;
5910 writeq(val64, &bar0->gpio_control);
5911 val64 = readq(&bar0->gpio_control);
5912 } else {
5913 val64 |= ADAPTER_LED_ON;
5914 writeq(val64, &bar0->adapter_control);
5916 if (s2io_link_fault_indication(nic) ==
5917 MAC_RMAC_ERR_TIMER) {
5918 val64 = readq(&bar0->adapter_status);
5919 if (!LINK_IS_UP(val64)) {
5920 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5921 DBG_PRINT(ERR_DBG, " Link down");
5922 DBG_PRINT(ERR_DBG, "after ");
5923 DBG_PRINT(ERR_DBG, "enabling ");
5924 DBG_PRINT(ERR_DBG, "device \n");
5927 if (nic->device_enabled_once == FALSE) {
5928 nic->device_enabled_once = TRUE;
5930 s2io_link(nic, LINK_UP);
5931 } else {
5932 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5933 subid)) {
5934 val64 = readq(&bar0->gpio_control);
5935 val64 &= ~GPIO_CTRL_GPIO_0;
5936 writeq(val64, &bar0->gpio_control);
5937 val64 = readq(&bar0->gpio_control);
5939 s2io_link(nic, LINK_DOWN);
5941 } else { /* NIC is not Quiescent. */
5942 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5943 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5944 netif_stop_queue(dev);
5946 clear_bit(0, &(nic->link_state));
5949 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
5950 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5951 u64 *temp2, int size)
5953 struct net_device *dev = sp->dev;
5954 struct sk_buff *frag_list;
5956 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5957 /* allocate skb */
5958 if (*skb) {
5959 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5961 * As Rx frame are not going to be processed,
5962 * using same mapped address for the Rxd
5963 * buffer pointer
5965 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
5966 } else {
5967 *skb = dev_alloc_skb(size);
5968 if (!(*skb)) {
5969 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5970 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5971 return -ENOMEM ;
5973 /* storing the mapped addr in a temp variable
5974 * such it will be used for next rxd whose
5975 * Host Control is NULL
5977 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
5978 pci_map_single( sp->pdev, (*skb)->data,
5979 size - NET_IP_ALIGN,
5980 PCI_DMA_FROMDEVICE);
5981 rxdp->Host_Control = (unsigned long) (*skb);
5983 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5984 /* Two buffer Mode */
5985 if (*skb) {
5986 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
5987 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
5988 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
5989 } else {
5990 *skb = dev_alloc_skb(size);
5991 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
5992 pci_map_single(sp->pdev, (*skb)->data,
5993 dev->mtu + 4,
5994 PCI_DMA_FROMDEVICE);
5995 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
5996 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5997 PCI_DMA_FROMDEVICE);
5998 rxdp->Host_Control = (unsigned long) (*skb);
6000 /* Buffer-1 will be dummy buffer not used */
6001 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6002 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6003 PCI_DMA_FROMDEVICE);
6005 } else if ((rxdp->Host_Control == 0)) {
6006 /* Three buffer mode */
6007 if (*skb) {
6008 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6009 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6010 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6011 } else {
6012 *skb = dev_alloc_skb(size);
6014 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6015 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6016 PCI_DMA_FROMDEVICE);
6017 /* Buffer-1 receives L3/L4 headers */
6018 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6019 pci_map_single( sp->pdev, (*skb)->data,
6020 l3l4hdr_size + 4,
6021 PCI_DMA_FROMDEVICE);
6023 * skb_shinfo(skb)->frag_list will have L4
6024 * data payload
6026 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6027 ALIGN_SIZE);
6028 if (skb_shinfo(*skb)->frag_list == NULL) {
6029 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6030 failed\n ", dev->name);
6031 return -ENOMEM ;
6033 frag_list = skb_shinfo(*skb)->frag_list;
6034 frag_list->next = NULL;
6036 * Buffer-2 receives L4 data payload
6038 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6039 pci_map_single( sp->pdev, frag_list->data,
6040 dev->mtu, PCI_DMA_FROMDEVICE);
6043 return 0;
6045 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6047 struct net_device *dev = sp->dev;
6048 if (sp->rxd_mode == RXD_MODE_1) {
6049 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6050 } else if (sp->rxd_mode == RXD_MODE_3B) {
6051 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6052 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6053 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6054 } else {
6055 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6056 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6057 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6061 static int rxd_owner_bit_reset(nic_t *sp)
6063 int i, j, k, blk_cnt = 0, size;
6064 mac_info_t * mac_control = &sp->mac_control;
6065 struct config_param *config = &sp->config;
6066 struct net_device *dev = sp->dev;
6067 RxD_t *rxdp = NULL;
6068 struct sk_buff *skb = NULL;
6069 buffAdd_t *ba = NULL;
6070 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6072 /* Calculate the size based on ring mode */
6073 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6074 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6075 if (sp->rxd_mode == RXD_MODE_1)
6076 size += NET_IP_ALIGN;
6077 else if (sp->rxd_mode == RXD_MODE_3B)
6078 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6079 else
6080 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6082 for (i = 0; i < config->rx_ring_num; i++) {
6083 blk_cnt = config->rx_cfg[i].num_rxd /
6084 (rxd_count[sp->rxd_mode] +1);
6086 for (j = 0; j < blk_cnt; j++) {
6087 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6088 rxdp = mac_control->rings[i].
6089 rx_blocks[j].rxds[k].virt_addr;
6090 if(sp->rxd_mode >= RXD_MODE_3A)
6091 ba = &mac_control->rings[i].ba[j][k];
6092 set_rxd_buffer_pointer(sp, rxdp, ba,
6093 &skb,(u64 *)&temp0_64,
6094 (u64 *)&temp1_64,
6095 (u64 *)&temp2_64, size);
6097 set_rxd_buffer_size(sp, rxdp, size);
6098 wmb();
6099 /* flip the Ownership bit to Hardware */
6100 rxdp->Control_1 |= RXD_OWN_XENA;
6104 return 0;
6108 static int s2io_add_isr(nic_t * sp)
6110 int ret = 0;
6111 struct net_device *dev = sp->dev;
6112 int err = 0;
6114 if (sp->intr_type == MSI)
6115 ret = s2io_enable_msi(sp);
6116 else if (sp->intr_type == MSI_X)
6117 ret = s2io_enable_msi_x(sp);
6118 if (ret) {
6119 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6120 sp->intr_type = INTA;
6123 /* Store the values of the MSIX table in the nic_t structure */
6124 store_xmsi_data(sp);
6126 /* After proper initialization of H/W, register ISR */
6127 if (sp->intr_type == MSI) {
6128 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6129 IRQF_SHARED, sp->name, dev);
6130 if (err) {
6131 pci_disable_msi(sp->pdev);
6132 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6133 dev->name);
6134 return -1;
6137 if (sp->intr_type == MSI_X) {
6138 int i;
6140 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6141 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6142 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6143 dev->name, i);
6144 err = request_irq(sp->entries[i].vector,
6145 s2io_msix_fifo_handle, 0, sp->desc[i],
6146 sp->s2io_entries[i].arg);
6147 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6148 (unsigned long long)sp->msix_info[i].addr);
6149 } else {
6150 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6151 dev->name, i);
6152 err = request_irq(sp->entries[i].vector,
6153 s2io_msix_ring_handle, 0, sp->desc[i],
6154 sp->s2io_entries[i].arg);
6155 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6156 (unsigned long long)sp->msix_info[i].addr);
6158 if (err) {
6159 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6160 "failed\n", dev->name, i);
6161 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6162 return -1;
6164 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6167 if (sp->intr_type == INTA) {
6168 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6169 sp->name, dev);
6170 if (err) {
6171 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6172 dev->name);
6173 return -1;
6176 return 0;
6178 static void s2io_rem_isr(nic_t * sp)
6180 int cnt = 0;
6181 struct net_device *dev = sp->dev;
6183 if (sp->intr_type == MSI_X) {
6184 int i;
6185 u16 msi_control;
6187 for (i=1; (sp->s2io_entries[i].in_use ==
6188 MSIX_REGISTERED_SUCCESS); i++) {
6189 int vector = sp->entries[i].vector;
6190 void *arg = sp->s2io_entries[i].arg;
6192 free_irq(vector, arg);
6194 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6195 msi_control &= 0xFFFE; /* Disable MSI */
6196 pci_write_config_word(sp->pdev, 0x42, msi_control);
6198 pci_disable_msix(sp->pdev);
6199 } else {
6200 free_irq(sp->pdev->irq, dev);
6201 if (sp->intr_type == MSI) {
6202 u16 val;
6204 pci_disable_msi(sp->pdev);
6205 pci_read_config_word(sp->pdev, 0x4c, &val);
6206 val ^= 0x1;
6207 pci_write_config_word(sp->pdev, 0x4c, val);
6210 /* Waiting till all Interrupt handlers are complete */
6211 cnt = 0;
6212 do {
6213 msleep(10);
6214 if (!atomic_read(&sp->isr_cnt))
6215 break;
6216 cnt++;
6217 } while(cnt < 5);
6220 static void s2io_card_down(nic_t * sp)
6222 int cnt = 0;
6223 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6224 unsigned long flags;
6225 register u64 val64 = 0;
6227 del_timer_sync(&sp->alarm_timer);
6228 /* If s2io_set_link task is executing, wait till it completes. */
6229 while (test_and_set_bit(0, &(sp->link_state))) {
6230 msleep(50);
6232 atomic_set(&sp->card_state, CARD_DOWN);
6234 /* disable Tx and Rx traffic on the NIC */
6235 stop_nic(sp);
6237 s2io_rem_isr(sp);
6239 /* Kill tasklet. */
6240 tasklet_kill(&sp->task);
6242 /* Check if the device is Quiescent and then Reset the NIC */
6243 do {
6244 /* As per the HW requirement we need to replenish the
6245 * receive buffer to avoid the ring bump. Since there is
6246 * no intention of processing the Rx frame at this pointwe are
6247 * just settting the ownership bit of rxd in Each Rx
6248 * ring to HW and set the appropriate buffer size
6249 * based on the ring mode
6251 rxd_owner_bit_reset(sp);
6253 val64 = readq(&bar0->adapter_status);
6254 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6255 break;
6258 msleep(50);
6259 cnt++;
6260 if (cnt == 10) {
6261 DBG_PRINT(ERR_DBG,
6262 "s2io_close:Device not Quiescent ");
6263 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6264 (unsigned long long) val64);
6265 break;
6267 } while (1);
6268 s2io_reset(sp);
6270 spin_lock_irqsave(&sp->tx_lock, flags);
6271 /* Free all Tx buffers */
6272 free_tx_buffers(sp);
6273 spin_unlock_irqrestore(&sp->tx_lock, flags);
6275 /* Free all Rx buffers */
6276 spin_lock_irqsave(&sp->rx_lock, flags);
6277 free_rx_buffers(sp);
6278 spin_unlock_irqrestore(&sp->rx_lock, flags);
6280 clear_bit(0, &(sp->link_state));
6283 static int s2io_card_up(nic_t * sp)
6285 int i, ret = 0;
6286 mac_info_t *mac_control;
6287 struct config_param *config;
6288 struct net_device *dev = (struct net_device *) sp->dev;
6289 u16 interruptible;
6291 /* Initialize the H/W I/O registers */
6292 if (init_nic(sp) != 0) {
6293 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6294 dev->name);
6295 s2io_reset(sp);
6296 return -ENODEV;
6300 * Initializing the Rx buffers. For now we are considering only 1
6301 * Rx ring and initializing buffers into 30 Rx blocks
6303 mac_control = &sp->mac_control;
6304 config = &sp->config;
6306 for (i = 0; i < config->rx_ring_num; i++) {
6307 if ((ret = fill_rx_buffers(sp, i))) {
6308 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6309 dev->name);
6310 s2io_reset(sp);
6311 free_rx_buffers(sp);
6312 return -ENOMEM;
6314 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6315 atomic_read(&sp->rx_bufs_left[i]));
6318 /* Setting its receive mode */
6319 s2io_set_multicast(dev);
6321 if (sp->lro) {
6322 /* Initialize max aggregatable pkts per session based on MTU */
6323 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6324 /* Check if we can use(if specified) user provided value */
6325 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6326 sp->lro_max_aggr_per_sess = lro_max_pkts;
6329 /* Enable Rx Traffic and interrupts on the NIC */
6330 if (start_nic(sp)) {
6331 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6332 s2io_reset(sp);
6333 free_rx_buffers(sp);
6334 return -ENODEV;
6337 /* Add interrupt service routine */
6338 if (s2io_add_isr(sp) != 0) {
6339 if (sp->intr_type == MSI_X)
6340 s2io_rem_isr(sp);
6341 s2io_reset(sp);
6342 free_rx_buffers(sp);
6343 return -ENODEV;
6346 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6348 /* Enable tasklet for the device */
6349 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6351 /* Enable select interrupts */
6352 if (sp->intr_type != INTA)
6353 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6354 else {
6355 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6356 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6357 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6358 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6362 atomic_set(&sp->card_state, CARD_UP);
6363 return 0;
6367 * s2io_restart_nic - Resets the NIC.
6368 * @data : long pointer to the device private structure
6369 * Description:
6370 * This function is scheduled to be run by the s2io_tx_watchdog
6371 * function after 0.5 secs to reset the NIC. The idea is to reduce
6372 * the run time of the watch dog routine which is run holding a
6373 * spin lock.
6376 static void s2io_restart_nic(unsigned long data)
6378 struct net_device *dev = (struct net_device *) data;
6379 nic_t *sp = dev->priv;
6381 s2io_card_down(sp);
6382 if (s2io_card_up(sp)) {
6383 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6384 dev->name);
6386 netif_wake_queue(dev);
6387 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6388 dev->name);
6393 * s2io_tx_watchdog - Watchdog for transmit side.
6394 * @dev : Pointer to net device structure
6395 * Description:
6396 * This function is triggered if the Tx Queue is stopped
6397 * for a pre-defined amount of time when the Interface is still up.
6398 * If the Interface is jammed in such a situation, the hardware is
6399 * reset (by s2io_close) and restarted again (by s2io_open) to
6400 * overcome any problem that might have been caused in the hardware.
6401 * Return value:
6402 * void
6405 static void s2io_tx_watchdog(struct net_device *dev)
6407 nic_t *sp = dev->priv;
6409 if (netif_carrier_ok(dev)) {
6410 schedule_work(&sp->rst_timer_task);
6411 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6416 * rx_osm_handler - To perform some OS related operations on SKB.
6417 * @sp: private member of the device structure,pointer to s2io_nic structure.
6418 * @skb : the socket buffer pointer.
6419 * @len : length of the packet
6420 * @cksum : FCS checksum of the frame.
6421 * @ring_no : the ring from which this RxD was extracted.
6422 * Description:
6423 * This function is called by the Rx interrupt serivce routine to perform
6424 * some OS related operations on the SKB before passing it to the upper
6425 * layers. It mainly checks if the checksum is OK, if so adds it to the
6426 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6427 * to the upper layer. If the checksum is wrong, it increments the Rx
6428 * packet error count, frees the SKB and returns error.
6429 * Return value:
6430 * SUCCESS on success and -1 on failure.
6432 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6434 nic_t *sp = ring_data->nic;
6435 struct net_device *dev = (struct net_device *) sp->dev;
6436 struct sk_buff *skb = (struct sk_buff *)
6437 ((unsigned long) rxdp->Host_Control);
6438 int ring_no = ring_data->ring_no;
6439 u16 l3_csum, l4_csum;
6440 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6441 lro_t *lro;
6443 skb->dev = dev;
6445 if (err) {
6446 /* Check for parity error */
6447 if (err & 0x1) {
6448 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6452 * Drop the packet if bad transfer code. Exception being
6453 * 0x5, which could be due to unsupported IPv6 extension header.
6454 * In this case, we let stack handle the packet.
6455 * Note that in this case, since checksum will be incorrect,
6456 * stack will validate the same.
6458 if (err && ((err >> 48) != 0x5)) {
6459 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6460 dev->name, err);
6461 sp->stats.rx_crc_errors++;
6462 dev_kfree_skb(skb);
6463 atomic_dec(&sp->rx_bufs_left[ring_no]);
6464 rxdp->Host_Control = 0;
6465 return 0;
6469 /* Updating statistics */
6470 rxdp->Host_Control = 0;
6471 sp->rx_pkt_count++;
6472 sp->stats.rx_packets++;
6473 if (sp->rxd_mode == RXD_MODE_1) {
6474 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6476 sp->stats.rx_bytes += len;
6477 skb_put(skb, len);
6479 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6480 int get_block = ring_data->rx_curr_get_info.block_index;
6481 int get_off = ring_data->rx_curr_get_info.offset;
6482 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6483 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6484 unsigned char *buff = skb_push(skb, buf0_len);
6486 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6487 sp->stats.rx_bytes += buf0_len + buf2_len;
6488 memcpy(buff, ba->ba_0, buf0_len);
6490 if (sp->rxd_mode == RXD_MODE_3A) {
6491 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6493 skb_put(skb, buf1_len);
6494 skb->len += buf2_len;
6495 skb->data_len += buf2_len;
6496 skb->truesize += buf2_len;
6497 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6498 sp->stats.rx_bytes += buf1_len;
6500 } else
6501 skb_put(skb, buf2_len);
6504 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6505 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6506 (sp->rx_csum)) {
6507 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6508 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6509 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6511 * NIC verifies if the Checksum of the received
6512 * frame is Ok or not and accordingly returns
6513 * a flag in the RxD.
6515 skb->ip_summed = CHECKSUM_UNNECESSARY;
6516 if (sp->lro) {
6517 u32 tcp_len;
6518 u8 *tcp;
6519 int ret = 0;
6521 ret = s2io_club_tcp_session(skb->data, &tcp,
6522 &tcp_len, &lro, rxdp, sp);
6523 switch (ret) {
6524 case 3: /* Begin anew */
6525 lro->parent = skb;
6526 goto aggregate;
6527 case 1: /* Aggregate */
6529 lro_append_pkt(sp, lro,
6530 skb, tcp_len);
6531 goto aggregate;
6533 case 4: /* Flush session */
6535 lro_append_pkt(sp, lro,
6536 skb, tcp_len);
6537 queue_rx_frame(lro->parent);
6538 clear_lro_session(lro);
6539 sp->mac_control.stats_info->
6540 sw_stat.flush_max_pkts++;
6541 goto aggregate;
6543 case 2: /* Flush both */
6544 lro->parent->data_len =
6545 lro->frags_len;
6546 sp->mac_control.stats_info->
6547 sw_stat.sending_both++;
6548 queue_rx_frame(lro->parent);
6549 clear_lro_session(lro);
6550 goto send_up;
6551 case 0: /* sessions exceeded */
6552 case -1: /* non-TCP or not
6553 * L2 aggregatable
6555 case 5: /*
6556 * First pkt in session not
6557 * L3/L4 aggregatable
6559 break;
6560 default:
6561 DBG_PRINT(ERR_DBG,
6562 "%s: Samadhana!!\n",
6563 __FUNCTION__);
6564 BUG();
6567 } else {
6569 * Packet with erroneous checksum, let the
6570 * upper layers deal with it.
6572 skb->ip_summed = CHECKSUM_NONE;
6574 } else {
6575 skb->ip_summed = CHECKSUM_NONE;
6578 if (!sp->lro) {
6579 skb->protocol = eth_type_trans(skb, dev);
6580 #ifdef CONFIG_S2IO_NAPI
6581 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6582 /* Queueing the vlan frame to the upper layer */
6583 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6584 RXD_GET_VLAN_TAG(rxdp->Control_2));
6585 } else {
6586 netif_receive_skb(skb);
6588 #else
6589 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6590 /* Queueing the vlan frame to the upper layer */
6591 vlan_hwaccel_rx(skb, sp->vlgrp,
6592 RXD_GET_VLAN_TAG(rxdp->Control_2));
6593 } else {
6594 netif_rx(skb);
6596 #endif
6597 } else {
6598 send_up:
6599 queue_rx_frame(skb);
6601 dev->last_rx = jiffies;
6602 aggregate:
6603 atomic_dec(&sp->rx_bufs_left[ring_no]);
6604 return SUCCESS;
6608 * s2io_link - stops/starts the Tx queue.
6609 * @sp : private member of the device structure, which is a pointer to the
6610 * s2io_nic structure.
6611 * @link : inidicates whether link is UP/DOWN.
6612 * Description:
6613 * This function stops/starts the Tx queue depending on whether the link
6614 * status of the NIC is is down or up. This is called by the Alarm
6615 * interrupt handler whenever a link change interrupt comes up.
6616 * Return value:
6617 * void.
6620 static void s2io_link(nic_t * sp, int link)
6622 struct net_device *dev = (struct net_device *) sp->dev;
6624 if (link != sp->last_link_state) {
6625 if (link == LINK_DOWN) {
6626 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6627 netif_carrier_off(dev);
6628 } else {
6629 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6630 netif_carrier_on(dev);
6633 sp->last_link_state = link;
6637 * get_xena_rev_id - to identify revision ID of xena.
6638 * @pdev : PCI Dev structure
6639 * Description:
6640 * Function to identify the Revision ID of xena.
6641 * Return value:
6642 * returns the revision ID of the device.
6645 static int get_xena_rev_id(struct pci_dev *pdev)
6647 u8 id = 0;
6648 int ret;
6649 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6650 return id;
6654 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6655 * @sp : private member of the device structure, which is a pointer to the
6656 * s2io_nic structure.
6657 * Description:
6658 * This function initializes a few of the PCI and PCI-X configuration registers
6659 * with recommended values.
6660 * Return value:
6661 * void
6664 static void s2io_init_pci(nic_t * sp)
6666 u16 pci_cmd = 0, pcix_cmd = 0;
6668 /* Enable Data Parity Error Recovery in PCI-X command register. */
6669 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6670 &(pcix_cmd));
6671 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6672 (pcix_cmd | 1));
6673 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6674 &(pcix_cmd));
6676 /* Set the PErr Response bit in PCI command register. */
6677 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6678 pci_write_config_word(sp->pdev, PCI_COMMAND,
6679 (pci_cmd | PCI_COMMAND_PARITY));
6680 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6683 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6685 if ( tx_fifo_num > 8) {
6686 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6687 "supported\n");
6688 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6689 tx_fifo_num = 8;
6691 if ( rx_ring_num > 8) {
6692 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6693 "supported\n");
6694 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6695 rx_ring_num = 8;
6697 #ifdef CONFIG_S2IO_NAPI
6698 if (*dev_intr_type != INTA) {
6699 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6700 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6701 *dev_intr_type = INTA;
6703 #endif
6704 #ifndef CONFIG_PCI_MSI
6705 if (*dev_intr_type != INTA) {
6706 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6707 "MSI/MSI-X. Defaulting to INTA\n");
6708 *dev_intr_type = INTA;
6710 #else
6711 if (*dev_intr_type > MSI_X) {
6712 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6713 "Defaulting to INTA\n");
6714 *dev_intr_type = INTA;
6716 #endif
6717 if ((*dev_intr_type == MSI_X) &&
6718 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6719 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6720 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6721 "Defaulting to INTA\n");
6722 *dev_intr_type = INTA;
6724 if (rx_ring_mode > 3) {
6725 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6726 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6727 rx_ring_mode = 3;
6729 return SUCCESS;
6733 * s2io_init_nic - Initialization of the adapter .
6734 * @pdev : structure containing the PCI related information of the device.
6735 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6736 * Description:
6737 * The function initializes an adapter identified by the pci_dec structure.
6738 * All OS related initialization including memory and device structure and
6739 * initlaization of the device private variable is done. Also the swapper
6740 * control register is initialized to enable read and write into the I/O
6741 * registers of the device.
6742 * Return value:
6743 * returns 0 on success and negative on failure.
6746 static int __devinit
6747 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6749 nic_t *sp;
6750 struct net_device *dev;
6751 int i, j, ret;
6752 int dma_flag = FALSE;
6753 u32 mac_up, mac_down;
6754 u64 val64 = 0, tmp64 = 0;
6755 XENA_dev_config_t __iomem *bar0 = NULL;
6756 u16 subid;
6757 mac_info_t *mac_control;
6758 struct config_param *config;
6759 int mode;
6760 u8 dev_intr_type = intr_type;
6762 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6763 return ret;
6765 if ((ret = pci_enable_device(pdev))) {
6766 DBG_PRINT(ERR_DBG,
6767 "s2io_init_nic: pci_enable_device failed\n");
6768 return ret;
6771 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6772 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6773 dma_flag = TRUE;
6774 if (pci_set_consistent_dma_mask
6775 (pdev, DMA_64BIT_MASK)) {
6776 DBG_PRINT(ERR_DBG,
6777 "Unable to obtain 64bit DMA for \
6778 consistent allocations\n");
6779 pci_disable_device(pdev);
6780 return -ENOMEM;
6782 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6783 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6784 } else {
6785 pci_disable_device(pdev);
6786 return -ENOMEM;
6788 if (dev_intr_type != MSI_X) {
6789 if (pci_request_regions(pdev, s2io_driver_name)) {
6790 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6791 pci_disable_device(pdev);
6792 return -ENODEV;
6795 else {
6796 if (!(request_mem_region(pci_resource_start(pdev, 0),
6797 pci_resource_len(pdev, 0), s2io_driver_name))) {
6798 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6799 pci_disable_device(pdev);
6800 return -ENODEV;
6802 if (!(request_mem_region(pci_resource_start(pdev, 2),
6803 pci_resource_len(pdev, 2), s2io_driver_name))) {
6804 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6805 release_mem_region(pci_resource_start(pdev, 0),
6806 pci_resource_len(pdev, 0));
6807 pci_disable_device(pdev);
6808 return -ENODEV;
6812 dev = alloc_etherdev(sizeof(nic_t));
6813 if (dev == NULL) {
6814 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6815 pci_disable_device(pdev);
6816 pci_release_regions(pdev);
6817 return -ENODEV;
6820 pci_set_master(pdev);
6821 pci_set_drvdata(pdev, dev);
6822 SET_MODULE_OWNER(dev);
6823 SET_NETDEV_DEV(dev, &pdev->dev);
6825 /* Private member variable initialized to s2io NIC structure */
6826 sp = dev->priv;
6827 memset(sp, 0, sizeof(nic_t));
6828 sp->dev = dev;
6829 sp->pdev = pdev;
6830 sp->high_dma_flag = dma_flag;
6831 sp->device_enabled_once = FALSE;
6832 if (rx_ring_mode == 1)
6833 sp->rxd_mode = RXD_MODE_1;
6834 if (rx_ring_mode == 2)
6835 sp->rxd_mode = RXD_MODE_3B;
6836 if (rx_ring_mode == 3)
6837 sp->rxd_mode = RXD_MODE_3A;
6839 sp->intr_type = dev_intr_type;
6841 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6842 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6843 sp->device_type = XFRAME_II_DEVICE;
6844 else
6845 sp->device_type = XFRAME_I_DEVICE;
6847 sp->lro = lro;
6849 /* Initialize some PCI/PCI-X fields of the NIC. */
6850 s2io_init_pci(sp);
6853 * Setting the device configuration parameters.
6854 * Most of these parameters can be specified by the user during
6855 * module insertion as they are module loadable parameters. If
6856 * these parameters are not not specified during load time, they
6857 * are initialized with default values.
6859 mac_control = &sp->mac_control;
6860 config = &sp->config;
6862 /* Tx side parameters. */
6863 config->tx_fifo_num = tx_fifo_num;
6864 for (i = 0; i < MAX_TX_FIFOS; i++) {
6865 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6866 config->tx_cfg[i].fifo_priority = i;
6869 /* mapping the QoS priority to the configured fifos */
6870 for (i = 0; i < MAX_TX_FIFOS; i++)
6871 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6873 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6874 for (i = 0; i < config->tx_fifo_num; i++) {
6875 config->tx_cfg[i].f_no_snoop =
6876 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6877 if (config->tx_cfg[i].fifo_len < 65) {
6878 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6879 break;
6882 /* + 2 because one Txd for skb->data and one Txd for UFO */
6883 config->max_txds = MAX_SKB_FRAGS + 2;
6885 /* Rx side parameters. */
6886 config->rx_ring_num = rx_ring_num;
6887 for (i = 0; i < MAX_RX_RINGS; i++) {
6888 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6889 (rxd_count[sp->rxd_mode] + 1);
6890 config->rx_cfg[i].ring_priority = i;
6893 for (i = 0; i < rx_ring_num; i++) {
6894 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6895 config->rx_cfg[i].f_no_snoop =
6896 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6899 /* Setting Mac Control parameters */
6900 mac_control->rmac_pause_time = rmac_pause_time;
6901 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6902 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6905 /* Initialize Ring buffer parameters. */
6906 for (i = 0; i < config->rx_ring_num; i++)
6907 atomic_set(&sp->rx_bufs_left[i], 0);
6909 /* Initialize the number of ISRs currently running */
6910 atomic_set(&sp->isr_cnt, 0);
6912 /* initialize the shared memory used by the NIC and the host */
6913 if (init_shared_mem(sp)) {
6914 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6915 dev->name);
6916 ret = -ENOMEM;
6917 goto mem_alloc_failed;
6920 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6921 pci_resource_len(pdev, 0));
6922 if (!sp->bar0) {
6923 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6924 dev->name);
6925 ret = -ENOMEM;
6926 goto bar0_remap_failed;
6929 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6930 pci_resource_len(pdev, 2));
6931 if (!sp->bar1) {
6932 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6933 dev->name);
6934 ret = -ENOMEM;
6935 goto bar1_remap_failed;
6938 dev->irq = pdev->irq;
6939 dev->base_addr = (unsigned long) sp->bar0;
6941 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6942 for (j = 0; j < MAX_TX_FIFOS; j++) {
6943 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6944 (sp->bar1 + (j * 0x00020000));
6947 /* Driver entry points */
6948 dev->open = &s2io_open;
6949 dev->stop = &s2io_close;
6950 dev->hard_start_xmit = &s2io_xmit;
6951 dev->get_stats = &s2io_get_stats;
6952 dev->set_multicast_list = &s2io_set_multicast;
6953 dev->do_ioctl = &s2io_ioctl;
6954 dev->change_mtu = &s2io_change_mtu;
6955 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6956 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6957 dev->vlan_rx_register = s2io_vlan_rx_register;
6958 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6961 * will use eth_mac_addr() for dev->set_mac_address
6962 * mac address will be set every time dev->open() is called
6964 #if defined(CONFIG_S2IO_NAPI)
6965 dev->poll = s2io_poll;
6966 dev->weight = 32;
6967 #endif
6969 #ifdef CONFIG_NET_POLL_CONTROLLER
6970 dev->poll_controller = s2io_netpoll;
6971 #endif
6973 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6974 if (sp->high_dma_flag == TRUE)
6975 dev->features |= NETIF_F_HIGHDMA;
6976 #ifdef NETIF_F_TSO
6977 dev->features |= NETIF_F_TSO;
6978 #endif
6979 #ifdef NETIF_F_TSO6
6980 dev->features |= NETIF_F_TSO6;
6981 #endif
6982 if (sp->device_type & XFRAME_II_DEVICE) {
6983 dev->features |= NETIF_F_UFO;
6984 dev->features |= NETIF_F_HW_CSUM;
6987 dev->tx_timeout = &s2io_tx_watchdog;
6988 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6989 INIT_WORK(&sp->rst_timer_task,
6990 (void (*)(void *)) s2io_restart_nic, dev);
6991 INIT_WORK(&sp->set_link_task,
6992 (void (*)(void *)) s2io_set_link, sp);
6994 pci_save_state(sp->pdev);
6996 /* Setting swapper control on the NIC, for proper reset operation */
6997 if (s2io_set_swapper(sp)) {
6998 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6999 dev->name);
7000 ret = -EAGAIN;
7001 goto set_swap_failed;
7004 /* Verify if the Herc works on the slot its placed into */
7005 if (sp->device_type & XFRAME_II_DEVICE) {
7006 mode = s2io_verify_pci_mode(sp);
7007 if (mode < 0) {
7008 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7009 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7010 ret = -EBADSLT;
7011 goto set_swap_failed;
7015 /* Not needed for Herc */
7016 if (sp->device_type & XFRAME_I_DEVICE) {
7018 * Fix for all "FFs" MAC address problems observed on
7019 * Alpha platforms
7021 fix_mac_address(sp);
7022 s2io_reset(sp);
7026 * MAC address initialization.
7027 * For now only one mac address will be read and used.
7029 bar0 = sp->bar0;
7030 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7031 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7032 writeq(val64, &bar0->rmac_addr_cmd_mem);
7033 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7034 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7035 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7036 mac_down = (u32) tmp64;
7037 mac_up = (u32) (tmp64 >> 32);
7039 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7041 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7042 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7043 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7044 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7045 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7046 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7048 /* Set the factory defined MAC address initially */
7049 dev->addr_len = ETH_ALEN;
7050 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7052 /* reset Nic and bring it to known state */
7053 s2io_reset(sp);
7056 * Initialize the tasklet status and link state flags
7057 * and the card state parameter
7059 atomic_set(&(sp->card_state), 0);
7060 sp->tasklet_status = 0;
7061 sp->link_state = 0;
7063 /* Initialize spinlocks */
7064 spin_lock_init(&sp->tx_lock);
7065 #ifndef CONFIG_S2IO_NAPI
7066 spin_lock_init(&sp->put_lock);
7067 #endif
7068 spin_lock_init(&sp->rx_lock);
7071 * SXE-002: Configure link and activity LED to init state
7072 * on driver load.
7074 subid = sp->pdev->subsystem_device;
7075 if ((subid & 0xFF) >= 0x07) {
7076 val64 = readq(&bar0->gpio_control);
7077 val64 |= 0x0000800000000000ULL;
7078 writeq(val64, &bar0->gpio_control);
7079 val64 = 0x0411040400000000ULL;
7080 writeq(val64, (void __iomem *) bar0 + 0x2700);
7081 val64 = readq(&bar0->gpio_control);
7084 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7086 if (register_netdev(dev)) {
7087 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7088 ret = -ENODEV;
7089 goto register_failed;
7091 s2io_vpd_read(sp);
7092 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7093 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7094 sp->product_name, get_xena_rev_id(sp->pdev));
7095 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7096 s2io_driver_version);
7097 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7098 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7099 sp->def_mac_addr[0].mac_addr[0],
7100 sp->def_mac_addr[0].mac_addr[1],
7101 sp->def_mac_addr[0].mac_addr[2],
7102 sp->def_mac_addr[0].mac_addr[3],
7103 sp->def_mac_addr[0].mac_addr[4],
7104 sp->def_mac_addr[0].mac_addr[5]);
7105 if (sp->device_type & XFRAME_II_DEVICE) {
7106 mode = s2io_print_pci_mode(sp);
7107 if (mode < 0) {
7108 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7109 ret = -EBADSLT;
7110 unregister_netdev(dev);
7111 goto set_swap_failed;
7114 switch(sp->rxd_mode) {
7115 case RXD_MODE_1:
7116 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7117 dev->name);
7118 break;
7119 case RXD_MODE_3B:
7120 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7121 dev->name);
7122 break;
7123 case RXD_MODE_3A:
7124 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7125 dev->name);
7126 break;
7128 #ifdef CONFIG_S2IO_NAPI
7129 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7130 #endif
7131 switch(sp->intr_type) {
7132 case INTA:
7133 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7134 break;
7135 case MSI:
7136 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7137 break;
7138 case MSI_X:
7139 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7140 break;
7142 if (sp->lro)
7143 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7144 dev->name);
7146 /* Initialize device name */
7147 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7149 /* Initialize bimodal Interrupts */
7150 sp->config.bimodal = bimodal;
7151 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7152 sp->config.bimodal = 0;
7153 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7154 dev->name);
7158 * Make Link state as off at this point, when the Link change
7159 * interrupt comes the state will be automatically changed to
7160 * the right state.
7162 netif_carrier_off(dev);
7164 return 0;
7166 register_failed:
7167 set_swap_failed:
7168 iounmap(sp->bar1);
7169 bar1_remap_failed:
7170 iounmap(sp->bar0);
7171 bar0_remap_failed:
7172 mem_alloc_failed:
7173 free_shared_mem(sp);
7174 pci_disable_device(pdev);
7175 if (dev_intr_type != MSI_X)
7176 pci_release_regions(pdev);
7177 else {
7178 release_mem_region(pci_resource_start(pdev, 0),
7179 pci_resource_len(pdev, 0));
7180 release_mem_region(pci_resource_start(pdev, 2),
7181 pci_resource_len(pdev, 2));
7183 pci_set_drvdata(pdev, NULL);
7184 free_netdev(dev);
7186 return ret;
7190 * s2io_rem_nic - Free the PCI device
7191 * @pdev: structure containing the PCI related information of the device.
7192 * Description: This function is called by the Pci subsystem to release a
7193 * PCI device and free up all resource held up by the device. This could
7194 * be in response to a Hot plug event or when the driver is to be removed
7195 * from memory.
7198 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7200 struct net_device *dev =
7201 (struct net_device *) pci_get_drvdata(pdev);
7202 nic_t *sp;
7204 if (dev == NULL) {
7205 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7206 return;
7209 sp = dev->priv;
7210 unregister_netdev(dev);
7212 free_shared_mem(sp);
7213 iounmap(sp->bar0);
7214 iounmap(sp->bar1);
7215 pci_disable_device(pdev);
7216 if (sp->intr_type != MSI_X)
7217 pci_release_regions(pdev);
7218 else {
7219 release_mem_region(pci_resource_start(pdev, 0),
7220 pci_resource_len(pdev, 0));
7221 release_mem_region(pci_resource_start(pdev, 2),
7222 pci_resource_len(pdev, 2));
7224 pci_set_drvdata(pdev, NULL);
7225 free_netdev(dev);
7229 * s2io_starter - Entry point for the driver
7230 * Description: This function is the entry point for the driver. It verifies
7231 * the module loadable parameters and initializes PCI configuration space.
7234 int __init s2io_starter(void)
7236 return pci_module_init(&s2io_driver);
7240 * s2io_closer - Cleanup routine for the driver
7241 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7244 static void s2io_closer(void)
7246 pci_unregister_driver(&s2io_driver);
7247 DBG_PRINT(INIT_DBG, "cleanup done\n");
7250 module_init(s2io_starter);
7251 module_exit(s2io_closer);
7253 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7254 struct tcphdr **tcp, RxD_t *rxdp)
7256 int ip_off;
7257 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7259 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7260 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7261 __FUNCTION__);
7262 return -1;
7265 /* TODO:
7266 * By default the VLAN field in the MAC is stripped by the card, if this
7267 * feature is turned off in rx_pa_cfg register, then the ip_off field
7268 * has to be shifted by a further 2 bytes
7270 switch (l2_type) {
7271 case 0: /* DIX type */
7272 case 4: /* DIX type with VLAN */
7273 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7274 break;
7275 /* LLC, SNAP etc are considered non-mergeable */
7276 default:
7277 return -1;
7280 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7281 ip_len = (u8)((*ip)->ihl);
7282 ip_len <<= 2;
7283 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7285 return 0;
7288 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7289 struct tcphdr *tcp)
7291 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7292 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7293 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7294 return -1;
7295 return 0;
7298 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7300 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7303 static void initiate_new_session(lro_t *lro, u8 *l2h,
7304 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7306 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7307 lro->l2h = l2h;
7308 lro->iph = ip;
7309 lro->tcph = tcp;
7310 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7311 lro->tcp_ack = ntohl(tcp->ack_seq);
7312 lro->sg_num = 1;
7313 lro->total_len = ntohs(ip->tot_len);
7314 lro->frags_len = 0;
7316 * check if we saw TCP timestamp. Other consistency checks have
7317 * already been done.
7319 if (tcp->doff == 8) {
7320 u32 *ptr;
7321 ptr = (u32 *)(tcp+1);
7322 lro->saw_ts = 1;
7323 lro->cur_tsval = *(ptr+1);
7324 lro->cur_tsecr = *(ptr+2);
7326 lro->in_use = 1;
7329 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7331 struct iphdr *ip = lro->iph;
7332 struct tcphdr *tcp = lro->tcph;
7333 u16 nchk;
7334 StatInfo_t *statinfo = sp->mac_control.stats_info;
7335 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7337 /* Update L3 header */
7338 ip->tot_len = htons(lro->total_len);
7339 ip->check = 0;
7340 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7341 ip->check = nchk;
7343 /* Update L4 header */
7344 tcp->ack_seq = lro->tcp_ack;
7345 tcp->window = lro->window;
7347 /* Update tsecr field if this session has timestamps enabled */
7348 if (lro->saw_ts) {
7349 u32 *ptr = (u32 *)(tcp + 1);
7350 *(ptr+2) = lro->cur_tsecr;
7353 /* Update counters required for calculation of
7354 * average no. of packets aggregated.
7356 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7357 statinfo->sw_stat.num_aggregations++;
7360 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7361 struct tcphdr *tcp, u32 l4_pyld)
7363 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7364 lro->total_len += l4_pyld;
7365 lro->frags_len += l4_pyld;
7366 lro->tcp_next_seq += l4_pyld;
7367 lro->sg_num++;
7369 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7370 lro->tcp_ack = tcp->ack_seq;
7371 lro->window = tcp->window;
7373 if (lro->saw_ts) {
7374 u32 *ptr;
7375 /* Update tsecr and tsval from this packet */
7376 ptr = (u32 *) (tcp + 1);
7377 lro->cur_tsval = *(ptr + 1);
7378 lro->cur_tsecr = *(ptr + 2);
7382 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7383 struct tcphdr *tcp, u32 tcp_pyld_len)
7385 u8 *ptr;
7387 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7389 if (!tcp_pyld_len) {
7390 /* Runt frame or a pure ack */
7391 return -1;
7394 if (ip->ihl != 5) /* IP has options */
7395 return -1;
7397 /* If we see CE codepoint in IP header, packet is not mergeable */
7398 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7399 return -1;
7401 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7402 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7403 tcp->ece || tcp->cwr || !tcp->ack) {
7405 * Currently recognize only the ack control word and
7406 * any other control field being set would result in
7407 * flushing the LRO session
7409 return -1;
7413 * Allow only one TCP timestamp option. Don't aggregate if
7414 * any other options are detected.
7416 if (tcp->doff != 5 && tcp->doff != 8)
7417 return -1;
7419 if (tcp->doff == 8) {
7420 ptr = (u8 *)(tcp + 1);
7421 while (*ptr == TCPOPT_NOP)
7422 ptr++;
7423 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7424 return -1;
7426 /* Ensure timestamp value increases monotonically */
7427 if (l_lro)
7428 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7429 return -1;
7431 /* timestamp echo reply should be non-zero */
7432 if (*((u32 *)(ptr+6)) == 0)
7433 return -1;
7436 return 0;
7439 static int
7440 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7441 RxD_t *rxdp, nic_t *sp)
7443 struct iphdr *ip;
7444 struct tcphdr *tcph;
7445 int ret = 0, i;
7447 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7448 rxdp))) {
7449 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7450 ip->saddr, ip->daddr);
7451 } else {
7452 return ret;
7455 tcph = (struct tcphdr *)*tcp;
7456 *tcp_len = get_l4_pyld_length(ip, tcph);
7457 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7458 lro_t *l_lro = &sp->lro0_n[i];
7459 if (l_lro->in_use) {
7460 if (check_for_socket_match(l_lro, ip, tcph))
7461 continue;
7462 /* Sock pair matched */
7463 *lro = l_lro;
7465 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7466 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7467 "0x%x, actual 0x%x\n", __FUNCTION__,
7468 (*lro)->tcp_next_seq,
7469 ntohl(tcph->seq));
7471 sp->mac_control.stats_info->
7472 sw_stat.outof_sequence_pkts++;
7473 ret = 2;
7474 break;
7477 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7478 ret = 1; /* Aggregate */
7479 else
7480 ret = 2; /* Flush both */
7481 break;
7485 if (ret == 0) {
7486 /* Before searching for available LRO objects,
7487 * check if the pkt is L3/L4 aggregatable. If not
7488 * don't create new LRO session. Just send this
7489 * packet up.
7491 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7492 return 5;
7495 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7496 lro_t *l_lro = &sp->lro0_n[i];
7497 if (!(l_lro->in_use)) {
7498 *lro = l_lro;
7499 ret = 3; /* Begin anew */
7500 break;
7505 if (ret == 0) { /* sessions exceeded */
7506 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7507 __FUNCTION__);
7508 *lro = NULL;
7509 return ret;
7512 switch (ret) {
7513 case 3:
7514 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7515 break;
7516 case 2:
7517 update_L3L4_header(sp, *lro);
7518 break;
7519 case 1:
7520 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7521 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7522 update_L3L4_header(sp, *lro);
7523 ret = 4; /* Flush the LRO */
7525 break;
7526 default:
7527 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7528 __FUNCTION__);
7529 break;
7532 return ret;
7535 static void clear_lro_session(lro_t *lro)
7537 static u16 lro_struct_size = sizeof(lro_t);
7539 memset(lro, 0, lro_struct_size);
7542 static void queue_rx_frame(struct sk_buff *skb)
7544 struct net_device *dev = skb->dev;
7546 skb->protocol = eth_type_trans(skb, dev);
7547 #ifdef CONFIG_S2IO_NAPI
7548 netif_receive_skb(skb);
7549 #else
7550 netif_rx(skb);
7551 #endif
7554 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7555 u32 tcp_len)
7557 struct sk_buff *first = lro->parent;
7559 first->len += tcp_len;
7560 first->data_len = lro->frags_len;
7561 skb_pull(skb, (skb->len - tcp_len));
7562 if (skb_shinfo(first)->frag_list)
7563 lro->last_frag->next = skb;
7564 else
7565 skb_shinfo(first)->frag_list = skb;
7566 lro->last_frag = skb;
7567 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7568 return;