cpu-hotplug: replace per-subsystem mutexes with get_online_cpus()
[linux-2.6/x86.git] / kernel / sched.c
blobc0e2db683e2944b3349c2405dc3665951d2124c4
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak)) sched_clock(void)
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
115 #ifdef CONFIG_SMP
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 #endif
136 static inline int rt_policy(int policy)
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
143 static inline int task_has_rt_policy(struct task_struct *p)
145 return rt_policy(p->policy);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
160 struct cfs_rq;
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
206 unsigned long shares;
208 struct rcu_head rcu;
211 /* Default task group's sched entity on each cpu */
212 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213 /* Default task group's cfs_rq on each cpu */
214 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
216 static struct sched_entity *init_sched_entity_p[NR_CPUS];
217 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
219 /* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
222 static DEFINE_MUTEX(task_group_mutex);
224 /* doms_cur_mutex serializes access to doms_cur[] array */
225 static DEFINE_MUTEX(doms_cur_mutex);
227 #ifdef CONFIG_SMP
228 /* kernel thread that runs rebalance_shares() periodically */
229 static struct task_struct *lb_monitor_task;
230 static int load_balance_monitor(void *unused);
231 #endif
233 static void set_se_shares(struct sched_entity *se, unsigned long shares);
235 /* Default task group.
236 * Every task in system belong to this group at bootup.
238 struct task_group init_task_group = {
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
243 #ifdef CONFIG_FAIR_USER_SCHED
244 # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
245 #else
246 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
247 #endif
249 #define MIN_GROUP_SHARES 2
251 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
253 /* return group to which a task belongs */
254 static inline struct task_group *task_group(struct task_struct *p)
256 struct task_group *tg;
258 #ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
260 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
263 #else
264 tg = &init_task_group;
265 #endif
266 return tg;
269 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
276 static inline void lock_task_group_list(void)
278 mutex_lock(&task_group_mutex);
281 static inline void unlock_task_group_list(void)
283 mutex_unlock(&task_group_mutex);
286 static inline void lock_doms_cur(void)
288 mutex_lock(&doms_cur_mutex);
291 static inline void unlock_doms_cur(void)
293 mutex_unlock(&doms_cur_mutex);
296 #else
298 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 static inline void lock_task_group_list(void) { }
300 static inline void unlock_task_group_list(void) { }
301 static inline void lock_doms_cur(void) { }
302 static inline void unlock_doms_cur(void) { }
304 #endif /* CONFIG_FAIR_GROUP_SCHED */
306 /* CFS-related fields in a runqueue */
307 struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
311 u64 exec_clock;
312 u64 min_vruntime;
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
320 struct sched_entity *curr;
322 unsigned long nr_spread_over;
324 #ifdef CONFIG_FAIR_GROUP_SCHED
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
337 #endif
340 /* Real-Time classes' related field in a runqueue: */
341 struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
348 * This is the main, per-CPU runqueue data structure.
350 * Locking rule: those places that want to lock multiple runqueues
351 * (such as the load balancing or the thread migration code), lock
352 * acquire operations must be ordered by ascending &runqueue.
354 struct rq {
355 /* runqueue lock: */
356 spinlock_t lock;
359 * nr_running and cpu_load should be in the same cacheline because
360 * remote CPUs use both these fields when doing load calculation.
362 unsigned long nr_running;
363 #define CPU_LOAD_IDX_MAX 5
364 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
365 unsigned char idle_at_tick;
366 #ifdef CONFIG_NO_HZ
367 unsigned char in_nohz_recently;
368 #endif
369 /* capture load from *all* tasks on this cpu: */
370 struct load_weight load;
371 unsigned long nr_load_updates;
372 u64 nr_switches;
374 struct cfs_rq cfs;
375 #ifdef CONFIG_FAIR_GROUP_SCHED
376 /* list of leaf cfs_rq on this cpu: */
377 struct list_head leaf_cfs_rq_list;
378 #endif
379 struct rt_rq rt;
382 * This is part of a global counter where only the total sum
383 * over all CPUs matters. A task can increase this counter on
384 * one CPU and if it got migrated afterwards it may decrease
385 * it on another CPU. Always updated under the runqueue lock:
387 unsigned long nr_uninterruptible;
389 struct task_struct *curr, *idle;
390 unsigned long next_balance;
391 struct mm_struct *prev_mm;
393 u64 clock, prev_clock_raw;
394 s64 clock_max_delta;
396 unsigned int clock_warps, clock_overflows;
397 u64 idle_clock;
398 unsigned int clock_deep_idle_events;
399 u64 tick_timestamp;
401 atomic_t nr_iowait;
403 #ifdef CONFIG_SMP
404 struct sched_domain *sd;
406 /* For active balancing */
407 int active_balance;
408 int push_cpu;
409 /* cpu of this runqueue: */
410 int cpu;
412 struct task_struct *migration_thread;
413 struct list_head migration_queue;
414 #endif
416 #ifdef CONFIG_SCHEDSTATS
417 /* latency stats */
418 struct sched_info rq_sched_info;
420 /* sys_sched_yield() stats */
421 unsigned int yld_exp_empty;
422 unsigned int yld_act_empty;
423 unsigned int yld_both_empty;
424 unsigned int yld_count;
426 /* schedule() stats */
427 unsigned int sched_switch;
428 unsigned int sched_count;
429 unsigned int sched_goidle;
431 /* try_to_wake_up() stats */
432 unsigned int ttwu_count;
433 unsigned int ttwu_local;
435 /* BKL stats */
436 unsigned int bkl_count;
437 #endif
438 struct lock_class_key rq_lock_key;
441 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
443 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
445 rq->curr->sched_class->check_preempt_curr(rq, p);
448 static inline int cpu_of(struct rq *rq)
450 #ifdef CONFIG_SMP
451 return rq->cpu;
452 #else
453 return 0;
454 #endif
458 * Update the per-runqueue clock, as finegrained as the platform can give
459 * us, but without assuming monotonicity, etc.:
461 static void __update_rq_clock(struct rq *rq)
463 u64 prev_raw = rq->prev_clock_raw;
464 u64 now = sched_clock();
465 s64 delta = now - prev_raw;
466 u64 clock = rq->clock;
468 #ifdef CONFIG_SCHED_DEBUG
469 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
470 #endif
472 * Protect against sched_clock() occasionally going backwards:
474 if (unlikely(delta < 0)) {
475 clock++;
476 rq->clock_warps++;
477 } else {
479 * Catch too large forward jumps too:
481 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
482 if (clock < rq->tick_timestamp + TICK_NSEC)
483 clock = rq->tick_timestamp + TICK_NSEC;
484 else
485 clock++;
486 rq->clock_overflows++;
487 } else {
488 if (unlikely(delta > rq->clock_max_delta))
489 rq->clock_max_delta = delta;
490 clock += delta;
494 rq->prev_clock_raw = now;
495 rq->clock = clock;
498 static void update_rq_clock(struct rq *rq)
500 if (likely(smp_processor_id() == cpu_of(rq)))
501 __update_rq_clock(rq);
505 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
506 * See detach_destroy_domains: synchronize_sched for details.
508 * The domain tree of any CPU may only be accessed from within
509 * preempt-disabled sections.
511 #define for_each_domain(cpu, __sd) \
512 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
514 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
515 #define this_rq() (&__get_cpu_var(runqueues))
516 #define task_rq(p) cpu_rq(task_cpu(p))
517 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
520 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
522 #ifdef CONFIG_SCHED_DEBUG
523 # define const_debug __read_mostly
524 #else
525 # define const_debug static const
526 #endif
529 * Debugging: various feature bits
531 enum {
532 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
533 SCHED_FEAT_WAKEUP_PREEMPT = 2,
534 SCHED_FEAT_START_DEBIT = 4,
535 SCHED_FEAT_TREE_AVG = 8,
536 SCHED_FEAT_APPROX_AVG = 16,
539 const_debug unsigned int sysctl_sched_features =
540 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
541 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
542 SCHED_FEAT_START_DEBIT * 1 |
543 SCHED_FEAT_TREE_AVG * 0 |
544 SCHED_FEAT_APPROX_AVG * 0;
546 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
549 * Number of tasks to iterate in a single balance run.
550 * Limited because this is done with IRQs disabled.
552 const_debug unsigned int sysctl_sched_nr_migrate = 32;
555 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
556 * clock constructed from sched_clock():
558 unsigned long long cpu_clock(int cpu)
560 unsigned long long now;
561 unsigned long flags;
562 struct rq *rq;
564 local_irq_save(flags);
565 rq = cpu_rq(cpu);
567 * Only call sched_clock() if the scheduler has already been
568 * initialized (some code might call cpu_clock() very early):
570 if (rq->idle)
571 update_rq_clock(rq);
572 now = rq->clock;
573 local_irq_restore(flags);
575 return now;
577 EXPORT_SYMBOL_GPL(cpu_clock);
579 #ifndef prepare_arch_switch
580 # define prepare_arch_switch(next) do { } while (0)
581 #endif
582 #ifndef finish_arch_switch
583 # define finish_arch_switch(prev) do { } while (0)
584 #endif
586 static inline int task_current(struct rq *rq, struct task_struct *p)
588 return rq->curr == p;
591 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
592 static inline int task_running(struct rq *rq, struct task_struct *p)
594 return task_current(rq, p);
597 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
601 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
603 #ifdef CONFIG_DEBUG_SPINLOCK
604 /* this is a valid case when another task releases the spinlock */
605 rq->lock.owner = current;
606 #endif
608 * If we are tracking spinlock dependencies then we have to
609 * fix up the runqueue lock - which gets 'carried over' from
610 * prev into current:
612 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
614 spin_unlock_irq(&rq->lock);
617 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
618 static inline int task_running(struct rq *rq, struct task_struct *p)
620 #ifdef CONFIG_SMP
621 return p->oncpu;
622 #else
623 return task_current(rq, p);
624 #endif
627 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
629 #ifdef CONFIG_SMP
631 * We can optimise this out completely for !SMP, because the
632 * SMP rebalancing from interrupt is the only thing that cares
633 * here.
635 next->oncpu = 1;
636 #endif
637 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
638 spin_unlock_irq(&rq->lock);
639 #else
640 spin_unlock(&rq->lock);
641 #endif
644 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
646 #ifdef CONFIG_SMP
648 * After ->oncpu is cleared, the task can be moved to a different CPU.
649 * We must ensure this doesn't happen until the switch is completely
650 * finished.
652 smp_wmb();
653 prev->oncpu = 0;
654 #endif
655 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
656 local_irq_enable();
657 #endif
659 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
662 * __task_rq_lock - lock the runqueue a given task resides on.
663 * Must be called interrupts disabled.
665 static inline struct rq *__task_rq_lock(struct task_struct *p)
666 __acquires(rq->lock)
668 for (;;) {
669 struct rq *rq = task_rq(p);
670 spin_lock(&rq->lock);
671 if (likely(rq == task_rq(p)))
672 return rq;
673 spin_unlock(&rq->lock);
678 * task_rq_lock - lock the runqueue a given task resides on and disable
679 * interrupts. Note the ordering: we can safely lookup the task_rq without
680 * explicitly disabling preemption.
682 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
683 __acquires(rq->lock)
685 struct rq *rq;
687 for (;;) {
688 local_irq_save(*flags);
689 rq = task_rq(p);
690 spin_lock(&rq->lock);
691 if (likely(rq == task_rq(p)))
692 return rq;
693 spin_unlock_irqrestore(&rq->lock, *flags);
697 static void __task_rq_unlock(struct rq *rq)
698 __releases(rq->lock)
700 spin_unlock(&rq->lock);
703 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
704 __releases(rq->lock)
706 spin_unlock_irqrestore(&rq->lock, *flags);
710 * this_rq_lock - lock this runqueue and disable interrupts.
712 static struct rq *this_rq_lock(void)
713 __acquires(rq->lock)
715 struct rq *rq;
717 local_irq_disable();
718 rq = this_rq();
719 spin_lock(&rq->lock);
721 return rq;
725 * We are going deep-idle (irqs are disabled):
727 void sched_clock_idle_sleep_event(void)
729 struct rq *rq = cpu_rq(smp_processor_id());
731 spin_lock(&rq->lock);
732 __update_rq_clock(rq);
733 spin_unlock(&rq->lock);
734 rq->clock_deep_idle_events++;
736 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
739 * We just idled delta nanoseconds (called with irqs disabled):
741 void sched_clock_idle_wakeup_event(u64 delta_ns)
743 struct rq *rq = cpu_rq(smp_processor_id());
744 u64 now = sched_clock();
746 touch_softlockup_watchdog();
747 rq->idle_clock += delta_ns;
749 * Override the previous timestamp and ignore all
750 * sched_clock() deltas that occured while we idled,
751 * and use the PM-provided delta_ns to advance the
752 * rq clock:
754 spin_lock(&rq->lock);
755 rq->prev_clock_raw = now;
756 rq->clock += delta_ns;
757 spin_unlock(&rq->lock);
759 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
762 * resched_task - mark a task 'to be rescheduled now'.
764 * On UP this means the setting of the need_resched flag, on SMP it
765 * might also involve a cross-CPU call to trigger the scheduler on
766 * the target CPU.
768 #ifdef CONFIG_SMP
770 #ifndef tsk_is_polling
771 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
772 #endif
774 static void resched_task(struct task_struct *p)
776 int cpu;
778 assert_spin_locked(&task_rq(p)->lock);
780 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
781 return;
783 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
785 cpu = task_cpu(p);
786 if (cpu == smp_processor_id())
787 return;
789 /* NEED_RESCHED must be visible before we test polling */
790 smp_mb();
791 if (!tsk_is_polling(p))
792 smp_send_reschedule(cpu);
795 static void resched_cpu(int cpu)
797 struct rq *rq = cpu_rq(cpu);
798 unsigned long flags;
800 if (!spin_trylock_irqsave(&rq->lock, flags))
801 return;
802 resched_task(cpu_curr(cpu));
803 spin_unlock_irqrestore(&rq->lock, flags);
805 #else
806 static inline void resched_task(struct task_struct *p)
808 assert_spin_locked(&task_rq(p)->lock);
809 set_tsk_need_resched(p);
811 #endif
813 #if BITS_PER_LONG == 32
814 # define WMULT_CONST (~0UL)
815 #else
816 # define WMULT_CONST (1UL << 32)
817 #endif
819 #define WMULT_SHIFT 32
822 * Shift right and round:
824 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
826 static unsigned long
827 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
828 struct load_weight *lw)
830 u64 tmp;
832 if (unlikely(!lw->inv_weight))
833 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
835 tmp = (u64)delta_exec * weight;
837 * Check whether we'd overflow the 64-bit multiplication:
839 if (unlikely(tmp > WMULT_CONST))
840 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
841 WMULT_SHIFT/2);
842 else
843 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
845 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
848 static inline unsigned long
849 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
851 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
854 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
856 lw->weight += inc;
859 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
861 lw->weight -= dec;
865 * To aid in avoiding the subversion of "niceness" due to uneven distribution
866 * of tasks with abnormal "nice" values across CPUs the contribution that
867 * each task makes to its run queue's load is weighted according to its
868 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
869 * scaled version of the new time slice allocation that they receive on time
870 * slice expiry etc.
873 #define WEIGHT_IDLEPRIO 2
874 #define WMULT_IDLEPRIO (1 << 31)
877 * Nice levels are multiplicative, with a gentle 10% change for every
878 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
879 * nice 1, it will get ~10% less CPU time than another CPU-bound task
880 * that remained on nice 0.
882 * The "10% effect" is relative and cumulative: from _any_ nice level,
883 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
884 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
885 * If a task goes up by ~10% and another task goes down by ~10% then
886 * the relative distance between them is ~25%.)
888 static const int prio_to_weight[40] = {
889 /* -20 */ 88761, 71755, 56483, 46273, 36291,
890 /* -15 */ 29154, 23254, 18705, 14949, 11916,
891 /* -10 */ 9548, 7620, 6100, 4904, 3906,
892 /* -5 */ 3121, 2501, 1991, 1586, 1277,
893 /* 0 */ 1024, 820, 655, 526, 423,
894 /* 5 */ 335, 272, 215, 172, 137,
895 /* 10 */ 110, 87, 70, 56, 45,
896 /* 15 */ 36, 29, 23, 18, 15,
900 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
902 * In cases where the weight does not change often, we can use the
903 * precalculated inverse to speed up arithmetics by turning divisions
904 * into multiplications:
906 static const u32 prio_to_wmult[40] = {
907 /* -20 */ 48388, 59856, 76040, 92818, 118348,
908 /* -15 */ 147320, 184698, 229616, 287308, 360437,
909 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
910 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
911 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
912 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
913 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
914 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
917 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
920 * runqueue iterator, to support SMP load-balancing between different
921 * scheduling classes, without having to expose their internal data
922 * structures to the load-balancing proper:
924 struct rq_iterator {
925 void *arg;
926 struct task_struct *(*start)(void *);
927 struct task_struct *(*next)(void *);
930 #ifdef CONFIG_SMP
931 static unsigned long
932 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
933 unsigned long max_load_move, struct sched_domain *sd,
934 enum cpu_idle_type idle, int *all_pinned,
935 int *this_best_prio, struct rq_iterator *iterator);
937 static int
938 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
939 struct sched_domain *sd, enum cpu_idle_type idle,
940 struct rq_iterator *iterator);
941 #endif
943 #ifdef CONFIG_CGROUP_CPUACCT
944 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
945 #else
946 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
947 #endif
949 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
951 update_load_add(&rq->load, load);
954 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
956 update_load_sub(&rq->load, load);
959 #include "sched_stats.h"
960 #include "sched_idletask.c"
961 #include "sched_fair.c"
962 #include "sched_rt.c"
963 #ifdef CONFIG_SCHED_DEBUG
964 # include "sched_debug.c"
965 #endif
967 #define sched_class_highest (&rt_sched_class)
969 static void inc_nr_running(struct task_struct *p, struct rq *rq)
971 rq->nr_running++;
974 static void dec_nr_running(struct task_struct *p, struct rq *rq)
976 rq->nr_running--;
979 static void set_load_weight(struct task_struct *p)
981 if (task_has_rt_policy(p)) {
982 p->se.load.weight = prio_to_weight[0] * 2;
983 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
984 return;
988 * SCHED_IDLE tasks get minimal weight:
990 if (p->policy == SCHED_IDLE) {
991 p->se.load.weight = WEIGHT_IDLEPRIO;
992 p->se.load.inv_weight = WMULT_IDLEPRIO;
993 return;
996 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
997 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1000 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1002 sched_info_queued(p);
1003 p->sched_class->enqueue_task(rq, p, wakeup);
1004 p->se.on_rq = 1;
1007 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1009 p->sched_class->dequeue_task(rq, p, sleep);
1010 p->se.on_rq = 0;
1014 * __normal_prio - return the priority that is based on the static prio
1016 static inline int __normal_prio(struct task_struct *p)
1018 return p->static_prio;
1022 * Calculate the expected normal priority: i.e. priority
1023 * without taking RT-inheritance into account. Might be
1024 * boosted by interactivity modifiers. Changes upon fork,
1025 * setprio syscalls, and whenever the interactivity
1026 * estimator recalculates.
1028 static inline int normal_prio(struct task_struct *p)
1030 int prio;
1032 if (task_has_rt_policy(p))
1033 prio = MAX_RT_PRIO-1 - p->rt_priority;
1034 else
1035 prio = __normal_prio(p);
1036 return prio;
1040 * Calculate the current priority, i.e. the priority
1041 * taken into account by the scheduler. This value might
1042 * be boosted by RT tasks, or might be boosted by
1043 * interactivity modifiers. Will be RT if the task got
1044 * RT-boosted. If not then it returns p->normal_prio.
1046 static int effective_prio(struct task_struct *p)
1048 p->normal_prio = normal_prio(p);
1050 * If we are RT tasks or we were boosted to RT priority,
1051 * keep the priority unchanged. Otherwise, update priority
1052 * to the normal priority:
1054 if (!rt_prio(p->prio))
1055 return p->normal_prio;
1056 return p->prio;
1060 * activate_task - move a task to the runqueue.
1062 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1064 if (p->state == TASK_UNINTERRUPTIBLE)
1065 rq->nr_uninterruptible--;
1067 enqueue_task(rq, p, wakeup);
1068 inc_nr_running(p, rq);
1072 * deactivate_task - remove a task from the runqueue.
1074 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1076 if (p->state == TASK_UNINTERRUPTIBLE)
1077 rq->nr_uninterruptible++;
1079 dequeue_task(rq, p, sleep);
1080 dec_nr_running(p, rq);
1084 * task_curr - is this task currently executing on a CPU?
1085 * @p: the task in question.
1087 inline int task_curr(const struct task_struct *p)
1089 return cpu_curr(task_cpu(p)) == p;
1092 /* Used instead of source_load when we know the type == 0 */
1093 unsigned long weighted_cpuload(const int cpu)
1095 return cpu_rq(cpu)->load.weight;
1098 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1100 set_task_cfs_rq(p, cpu);
1101 #ifdef CONFIG_SMP
1103 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1104 * successfuly executed on another CPU. We must ensure that updates of
1105 * per-task data have been completed by this moment.
1107 smp_wmb();
1108 task_thread_info(p)->cpu = cpu;
1109 #endif
1112 #ifdef CONFIG_SMP
1115 * Is this task likely cache-hot:
1117 static inline int
1118 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1120 s64 delta;
1122 if (p->sched_class != &fair_sched_class)
1123 return 0;
1125 if (sysctl_sched_migration_cost == -1)
1126 return 1;
1127 if (sysctl_sched_migration_cost == 0)
1128 return 0;
1130 delta = now - p->se.exec_start;
1132 return delta < (s64)sysctl_sched_migration_cost;
1136 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1138 int old_cpu = task_cpu(p);
1139 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1140 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1141 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1142 u64 clock_offset;
1144 clock_offset = old_rq->clock - new_rq->clock;
1146 #ifdef CONFIG_SCHEDSTATS
1147 if (p->se.wait_start)
1148 p->se.wait_start -= clock_offset;
1149 if (p->se.sleep_start)
1150 p->se.sleep_start -= clock_offset;
1151 if (p->se.block_start)
1152 p->se.block_start -= clock_offset;
1153 if (old_cpu != new_cpu) {
1154 schedstat_inc(p, se.nr_migrations);
1155 if (task_hot(p, old_rq->clock, NULL))
1156 schedstat_inc(p, se.nr_forced2_migrations);
1158 #endif
1159 p->se.vruntime -= old_cfsrq->min_vruntime -
1160 new_cfsrq->min_vruntime;
1162 __set_task_cpu(p, new_cpu);
1165 struct migration_req {
1166 struct list_head list;
1168 struct task_struct *task;
1169 int dest_cpu;
1171 struct completion done;
1175 * The task's runqueue lock must be held.
1176 * Returns true if you have to wait for migration thread.
1178 static int
1179 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1181 struct rq *rq = task_rq(p);
1184 * If the task is not on a runqueue (and not running), then
1185 * it is sufficient to simply update the task's cpu field.
1187 if (!p->se.on_rq && !task_running(rq, p)) {
1188 set_task_cpu(p, dest_cpu);
1189 return 0;
1192 init_completion(&req->done);
1193 req->task = p;
1194 req->dest_cpu = dest_cpu;
1195 list_add(&req->list, &rq->migration_queue);
1197 return 1;
1201 * wait_task_inactive - wait for a thread to unschedule.
1203 * The caller must ensure that the task *will* unschedule sometime soon,
1204 * else this function might spin for a *long* time. This function can't
1205 * be called with interrupts off, or it may introduce deadlock with
1206 * smp_call_function() if an IPI is sent by the same process we are
1207 * waiting to become inactive.
1209 void wait_task_inactive(struct task_struct *p)
1211 unsigned long flags;
1212 int running, on_rq;
1213 struct rq *rq;
1215 for (;;) {
1217 * We do the initial early heuristics without holding
1218 * any task-queue locks at all. We'll only try to get
1219 * the runqueue lock when things look like they will
1220 * work out!
1222 rq = task_rq(p);
1225 * If the task is actively running on another CPU
1226 * still, just relax and busy-wait without holding
1227 * any locks.
1229 * NOTE! Since we don't hold any locks, it's not
1230 * even sure that "rq" stays as the right runqueue!
1231 * But we don't care, since "task_running()" will
1232 * return false if the runqueue has changed and p
1233 * is actually now running somewhere else!
1235 while (task_running(rq, p))
1236 cpu_relax();
1239 * Ok, time to look more closely! We need the rq
1240 * lock now, to be *sure*. If we're wrong, we'll
1241 * just go back and repeat.
1243 rq = task_rq_lock(p, &flags);
1244 running = task_running(rq, p);
1245 on_rq = p->se.on_rq;
1246 task_rq_unlock(rq, &flags);
1249 * Was it really running after all now that we
1250 * checked with the proper locks actually held?
1252 * Oops. Go back and try again..
1254 if (unlikely(running)) {
1255 cpu_relax();
1256 continue;
1260 * It's not enough that it's not actively running,
1261 * it must be off the runqueue _entirely_, and not
1262 * preempted!
1264 * So if it wa still runnable (but just not actively
1265 * running right now), it's preempted, and we should
1266 * yield - it could be a while.
1268 if (unlikely(on_rq)) {
1269 schedule_timeout_uninterruptible(1);
1270 continue;
1274 * Ahh, all good. It wasn't running, and it wasn't
1275 * runnable, which means that it will never become
1276 * running in the future either. We're all done!
1278 break;
1282 /***
1283 * kick_process - kick a running thread to enter/exit the kernel
1284 * @p: the to-be-kicked thread
1286 * Cause a process which is running on another CPU to enter
1287 * kernel-mode, without any delay. (to get signals handled.)
1289 * NOTE: this function doesnt have to take the runqueue lock,
1290 * because all it wants to ensure is that the remote task enters
1291 * the kernel. If the IPI races and the task has been migrated
1292 * to another CPU then no harm is done and the purpose has been
1293 * achieved as well.
1295 void kick_process(struct task_struct *p)
1297 int cpu;
1299 preempt_disable();
1300 cpu = task_cpu(p);
1301 if ((cpu != smp_processor_id()) && task_curr(p))
1302 smp_send_reschedule(cpu);
1303 preempt_enable();
1307 * Return a low guess at the load of a migration-source cpu weighted
1308 * according to the scheduling class and "nice" value.
1310 * We want to under-estimate the load of migration sources, to
1311 * balance conservatively.
1313 static unsigned long source_load(int cpu, int type)
1315 struct rq *rq = cpu_rq(cpu);
1316 unsigned long total = weighted_cpuload(cpu);
1318 if (type == 0)
1319 return total;
1321 return min(rq->cpu_load[type-1], total);
1325 * Return a high guess at the load of a migration-target cpu weighted
1326 * according to the scheduling class and "nice" value.
1328 static unsigned long target_load(int cpu, int type)
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long total = weighted_cpuload(cpu);
1333 if (type == 0)
1334 return total;
1336 return max(rq->cpu_load[type-1], total);
1340 * Return the average load per task on the cpu's run queue
1342 static inline unsigned long cpu_avg_load_per_task(int cpu)
1344 struct rq *rq = cpu_rq(cpu);
1345 unsigned long total = weighted_cpuload(cpu);
1346 unsigned long n = rq->nr_running;
1348 return n ? total / n : SCHED_LOAD_SCALE;
1352 * find_idlest_group finds and returns the least busy CPU group within the
1353 * domain.
1355 static struct sched_group *
1356 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1358 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1359 unsigned long min_load = ULONG_MAX, this_load = 0;
1360 int load_idx = sd->forkexec_idx;
1361 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1363 do {
1364 unsigned long load, avg_load;
1365 int local_group;
1366 int i;
1368 /* Skip over this group if it has no CPUs allowed */
1369 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1370 continue;
1372 local_group = cpu_isset(this_cpu, group->cpumask);
1374 /* Tally up the load of all CPUs in the group */
1375 avg_load = 0;
1377 for_each_cpu_mask(i, group->cpumask) {
1378 /* Bias balancing toward cpus of our domain */
1379 if (local_group)
1380 load = source_load(i, load_idx);
1381 else
1382 load = target_load(i, load_idx);
1384 avg_load += load;
1387 /* Adjust by relative CPU power of the group */
1388 avg_load = sg_div_cpu_power(group,
1389 avg_load * SCHED_LOAD_SCALE);
1391 if (local_group) {
1392 this_load = avg_load;
1393 this = group;
1394 } else if (avg_load < min_load) {
1395 min_load = avg_load;
1396 idlest = group;
1398 } while (group = group->next, group != sd->groups);
1400 if (!idlest || 100*this_load < imbalance*min_load)
1401 return NULL;
1402 return idlest;
1406 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1408 static int
1409 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1411 cpumask_t tmp;
1412 unsigned long load, min_load = ULONG_MAX;
1413 int idlest = -1;
1414 int i;
1416 /* Traverse only the allowed CPUs */
1417 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1419 for_each_cpu_mask(i, tmp) {
1420 load = weighted_cpuload(i);
1422 if (load < min_load || (load == min_load && i == this_cpu)) {
1423 min_load = load;
1424 idlest = i;
1428 return idlest;
1432 * sched_balance_self: balance the current task (running on cpu) in domains
1433 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1434 * SD_BALANCE_EXEC.
1436 * Balance, ie. select the least loaded group.
1438 * Returns the target CPU number, or the same CPU if no balancing is needed.
1440 * preempt must be disabled.
1442 static int sched_balance_self(int cpu, int flag)
1444 struct task_struct *t = current;
1445 struct sched_domain *tmp, *sd = NULL;
1447 for_each_domain(cpu, tmp) {
1449 * If power savings logic is enabled for a domain, stop there.
1451 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1452 break;
1453 if (tmp->flags & flag)
1454 sd = tmp;
1457 while (sd) {
1458 cpumask_t span;
1459 struct sched_group *group;
1460 int new_cpu, weight;
1462 if (!(sd->flags & flag)) {
1463 sd = sd->child;
1464 continue;
1467 span = sd->span;
1468 group = find_idlest_group(sd, t, cpu);
1469 if (!group) {
1470 sd = sd->child;
1471 continue;
1474 new_cpu = find_idlest_cpu(group, t, cpu);
1475 if (new_cpu == -1 || new_cpu == cpu) {
1476 /* Now try balancing at a lower domain level of cpu */
1477 sd = sd->child;
1478 continue;
1481 /* Now try balancing at a lower domain level of new_cpu */
1482 cpu = new_cpu;
1483 sd = NULL;
1484 weight = cpus_weight(span);
1485 for_each_domain(cpu, tmp) {
1486 if (weight <= cpus_weight(tmp->span))
1487 break;
1488 if (tmp->flags & flag)
1489 sd = tmp;
1491 /* while loop will break here if sd == NULL */
1494 return cpu;
1497 #endif /* CONFIG_SMP */
1500 * wake_idle() will wake a task on an idle cpu if task->cpu is
1501 * not idle and an idle cpu is available. The span of cpus to
1502 * search starts with cpus closest then further out as needed,
1503 * so we always favor a closer, idle cpu.
1505 * Returns the CPU we should wake onto.
1507 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1508 static int wake_idle(int cpu, struct task_struct *p)
1510 cpumask_t tmp;
1511 struct sched_domain *sd;
1512 int i;
1515 * If it is idle, then it is the best cpu to run this task.
1517 * This cpu is also the best, if it has more than one task already.
1518 * Siblings must be also busy(in most cases) as they didn't already
1519 * pickup the extra load from this cpu and hence we need not check
1520 * sibling runqueue info. This will avoid the checks and cache miss
1521 * penalities associated with that.
1523 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1524 return cpu;
1526 for_each_domain(cpu, sd) {
1527 if (sd->flags & SD_WAKE_IDLE) {
1528 cpus_and(tmp, sd->span, p->cpus_allowed);
1529 for_each_cpu_mask(i, tmp) {
1530 if (idle_cpu(i)) {
1531 if (i != task_cpu(p)) {
1532 schedstat_inc(p,
1533 se.nr_wakeups_idle);
1535 return i;
1538 } else {
1539 break;
1542 return cpu;
1544 #else
1545 static inline int wake_idle(int cpu, struct task_struct *p)
1547 return cpu;
1549 #endif
1551 /***
1552 * try_to_wake_up - wake up a thread
1553 * @p: the to-be-woken-up thread
1554 * @state: the mask of task states that can be woken
1555 * @sync: do a synchronous wakeup?
1557 * Put it on the run-queue if it's not already there. The "current"
1558 * thread is always on the run-queue (except when the actual
1559 * re-schedule is in progress), and as such you're allowed to do
1560 * the simpler "current->state = TASK_RUNNING" to mark yourself
1561 * runnable without the overhead of this.
1563 * returns failure only if the task is already active.
1565 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1567 int cpu, orig_cpu, this_cpu, success = 0;
1568 unsigned long flags;
1569 long old_state;
1570 struct rq *rq;
1571 #ifdef CONFIG_SMP
1572 struct sched_domain *sd, *this_sd = NULL;
1573 unsigned long load, this_load;
1574 int new_cpu;
1575 #endif
1577 rq = task_rq_lock(p, &flags);
1578 old_state = p->state;
1579 if (!(old_state & state))
1580 goto out;
1582 if (p->se.on_rq)
1583 goto out_running;
1585 cpu = task_cpu(p);
1586 orig_cpu = cpu;
1587 this_cpu = smp_processor_id();
1589 #ifdef CONFIG_SMP
1590 if (unlikely(task_running(rq, p)))
1591 goto out_activate;
1593 new_cpu = cpu;
1595 schedstat_inc(rq, ttwu_count);
1596 if (cpu == this_cpu) {
1597 schedstat_inc(rq, ttwu_local);
1598 goto out_set_cpu;
1601 for_each_domain(this_cpu, sd) {
1602 if (cpu_isset(cpu, sd->span)) {
1603 schedstat_inc(sd, ttwu_wake_remote);
1604 this_sd = sd;
1605 break;
1609 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1610 goto out_set_cpu;
1613 * Check for affine wakeup and passive balancing possibilities.
1615 if (this_sd) {
1616 int idx = this_sd->wake_idx;
1617 unsigned int imbalance;
1619 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1621 load = source_load(cpu, idx);
1622 this_load = target_load(this_cpu, idx);
1624 new_cpu = this_cpu; /* Wake to this CPU if we can */
1626 if (this_sd->flags & SD_WAKE_AFFINE) {
1627 unsigned long tl = this_load;
1628 unsigned long tl_per_task;
1631 * Attract cache-cold tasks on sync wakeups:
1633 if (sync && !task_hot(p, rq->clock, this_sd))
1634 goto out_set_cpu;
1636 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1637 tl_per_task = cpu_avg_load_per_task(this_cpu);
1640 * If sync wakeup then subtract the (maximum possible)
1641 * effect of the currently running task from the load
1642 * of the current CPU:
1644 if (sync)
1645 tl -= current->se.load.weight;
1647 if ((tl <= load &&
1648 tl + target_load(cpu, idx) <= tl_per_task) ||
1649 100*(tl + p->se.load.weight) <= imbalance*load) {
1651 * This domain has SD_WAKE_AFFINE and
1652 * p is cache cold in this domain, and
1653 * there is no bad imbalance.
1655 schedstat_inc(this_sd, ttwu_move_affine);
1656 schedstat_inc(p, se.nr_wakeups_affine);
1657 goto out_set_cpu;
1662 * Start passive balancing when half the imbalance_pct
1663 * limit is reached.
1665 if (this_sd->flags & SD_WAKE_BALANCE) {
1666 if (imbalance*this_load <= 100*load) {
1667 schedstat_inc(this_sd, ttwu_move_balance);
1668 schedstat_inc(p, se.nr_wakeups_passive);
1669 goto out_set_cpu;
1674 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1675 out_set_cpu:
1676 new_cpu = wake_idle(new_cpu, p);
1677 if (new_cpu != cpu) {
1678 set_task_cpu(p, new_cpu);
1679 task_rq_unlock(rq, &flags);
1680 /* might preempt at this point */
1681 rq = task_rq_lock(p, &flags);
1682 old_state = p->state;
1683 if (!(old_state & state))
1684 goto out;
1685 if (p->se.on_rq)
1686 goto out_running;
1688 this_cpu = smp_processor_id();
1689 cpu = task_cpu(p);
1692 out_activate:
1693 #endif /* CONFIG_SMP */
1694 schedstat_inc(p, se.nr_wakeups);
1695 if (sync)
1696 schedstat_inc(p, se.nr_wakeups_sync);
1697 if (orig_cpu != cpu)
1698 schedstat_inc(p, se.nr_wakeups_migrate);
1699 if (cpu == this_cpu)
1700 schedstat_inc(p, se.nr_wakeups_local);
1701 else
1702 schedstat_inc(p, se.nr_wakeups_remote);
1703 update_rq_clock(rq);
1704 activate_task(rq, p, 1);
1705 check_preempt_curr(rq, p);
1706 success = 1;
1708 out_running:
1709 p->state = TASK_RUNNING;
1710 out:
1711 task_rq_unlock(rq, &flags);
1713 return success;
1716 int fastcall wake_up_process(struct task_struct *p)
1718 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1719 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1721 EXPORT_SYMBOL(wake_up_process);
1723 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1725 return try_to_wake_up(p, state, 0);
1729 * Perform scheduler related setup for a newly forked process p.
1730 * p is forked by current.
1732 * __sched_fork() is basic setup used by init_idle() too:
1734 static void __sched_fork(struct task_struct *p)
1736 p->se.exec_start = 0;
1737 p->se.sum_exec_runtime = 0;
1738 p->se.prev_sum_exec_runtime = 0;
1740 #ifdef CONFIG_SCHEDSTATS
1741 p->se.wait_start = 0;
1742 p->se.sum_sleep_runtime = 0;
1743 p->se.sleep_start = 0;
1744 p->se.block_start = 0;
1745 p->se.sleep_max = 0;
1746 p->se.block_max = 0;
1747 p->se.exec_max = 0;
1748 p->se.slice_max = 0;
1749 p->se.wait_max = 0;
1750 #endif
1752 INIT_LIST_HEAD(&p->run_list);
1753 p->se.on_rq = 0;
1755 #ifdef CONFIG_PREEMPT_NOTIFIERS
1756 INIT_HLIST_HEAD(&p->preempt_notifiers);
1757 #endif
1760 * We mark the process as running here, but have not actually
1761 * inserted it onto the runqueue yet. This guarantees that
1762 * nobody will actually run it, and a signal or other external
1763 * event cannot wake it up and insert it on the runqueue either.
1765 p->state = TASK_RUNNING;
1769 * fork()/clone()-time setup:
1771 void sched_fork(struct task_struct *p, int clone_flags)
1773 int cpu = get_cpu();
1775 __sched_fork(p);
1777 #ifdef CONFIG_SMP
1778 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1779 #endif
1780 set_task_cpu(p, cpu);
1783 * Make sure we do not leak PI boosting priority to the child:
1785 p->prio = current->normal_prio;
1786 if (!rt_prio(p->prio))
1787 p->sched_class = &fair_sched_class;
1789 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1790 if (likely(sched_info_on()))
1791 memset(&p->sched_info, 0, sizeof(p->sched_info));
1792 #endif
1793 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1794 p->oncpu = 0;
1795 #endif
1796 #ifdef CONFIG_PREEMPT
1797 /* Want to start with kernel preemption disabled. */
1798 task_thread_info(p)->preempt_count = 1;
1799 #endif
1800 put_cpu();
1804 * wake_up_new_task - wake up a newly created task for the first time.
1806 * This function will do some initial scheduler statistics housekeeping
1807 * that must be done for every newly created context, then puts the task
1808 * on the runqueue and wakes it.
1810 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1812 unsigned long flags;
1813 struct rq *rq;
1815 rq = task_rq_lock(p, &flags);
1816 BUG_ON(p->state != TASK_RUNNING);
1817 update_rq_clock(rq);
1819 p->prio = effective_prio(p);
1821 if (!p->sched_class->task_new || !current->se.on_rq) {
1822 activate_task(rq, p, 0);
1823 } else {
1825 * Let the scheduling class do new task startup
1826 * management (if any):
1828 p->sched_class->task_new(rq, p);
1829 inc_nr_running(p, rq);
1831 check_preempt_curr(rq, p);
1832 task_rq_unlock(rq, &flags);
1835 #ifdef CONFIG_PREEMPT_NOTIFIERS
1838 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1839 * @notifier: notifier struct to register
1841 void preempt_notifier_register(struct preempt_notifier *notifier)
1843 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1845 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1848 * preempt_notifier_unregister - no longer interested in preemption notifications
1849 * @notifier: notifier struct to unregister
1851 * This is safe to call from within a preemption notifier.
1853 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1855 hlist_del(&notifier->link);
1857 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1859 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1861 struct preempt_notifier *notifier;
1862 struct hlist_node *node;
1864 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1865 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1868 static void
1869 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1870 struct task_struct *next)
1872 struct preempt_notifier *notifier;
1873 struct hlist_node *node;
1875 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1876 notifier->ops->sched_out(notifier, next);
1879 #else
1881 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885 static void
1886 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1887 struct task_struct *next)
1891 #endif
1894 * prepare_task_switch - prepare to switch tasks
1895 * @rq: the runqueue preparing to switch
1896 * @prev: the current task that is being switched out
1897 * @next: the task we are going to switch to.
1899 * This is called with the rq lock held and interrupts off. It must
1900 * be paired with a subsequent finish_task_switch after the context
1901 * switch.
1903 * prepare_task_switch sets up locking and calls architecture specific
1904 * hooks.
1906 static inline void
1907 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1908 struct task_struct *next)
1910 fire_sched_out_preempt_notifiers(prev, next);
1911 prepare_lock_switch(rq, next);
1912 prepare_arch_switch(next);
1916 * finish_task_switch - clean up after a task-switch
1917 * @rq: runqueue associated with task-switch
1918 * @prev: the thread we just switched away from.
1920 * finish_task_switch must be called after the context switch, paired
1921 * with a prepare_task_switch call before the context switch.
1922 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1923 * and do any other architecture-specific cleanup actions.
1925 * Note that we may have delayed dropping an mm in context_switch(). If
1926 * so, we finish that here outside of the runqueue lock. (Doing it
1927 * with the lock held can cause deadlocks; see schedule() for
1928 * details.)
1930 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1931 __releases(rq->lock)
1933 struct mm_struct *mm = rq->prev_mm;
1934 long prev_state;
1936 rq->prev_mm = NULL;
1939 * A task struct has one reference for the use as "current".
1940 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1941 * schedule one last time. The schedule call will never return, and
1942 * the scheduled task must drop that reference.
1943 * The test for TASK_DEAD must occur while the runqueue locks are
1944 * still held, otherwise prev could be scheduled on another cpu, die
1945 * there before we look at prev->state, and then the reference would
1946 * be dropped twice.
1947 * Manfred Spraul <manfred@colorfullife.com>
1949 prev_state = prev->state;
1950 finish_arch_switch(prev);
1951 finish_lock_switch(rq, prev);
1952 fire_sched_in_preempt_notifiers(current);
1953 if (mm)
1954 mmdrop(mm);
1955 if (unlikely(prev_state == TASK_DEAD)) {
1957 * Remove function-return probe instances associated with this
1958 * task and put them back on the free list.
1960 kprobe_flush_task(prev);
1961 put_task_struct(prev);
1966 * schedule_tail - first thing a freshly forked thread must call.
1967 * @prev: the thread we just switched away from.
1969 asmlinkage void schedule_tail(struct task_struct *prev)
1970 __releases(rq->lock)
1972 struct rq *rq = this_rq();
1974 finish_task_switch(rq, prev);
1975 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1976 /* In this case, finish_task_switch does not reenable preemption */
1977 preempt_enable();
1978 #endif
1979 if (current->set_child_tid)
1980 put_user(task_pid_vnr(current), current->set_child_tid);
1984 * context_switch - switch to the new MM and the new
1985 * thread's register state.
1987 static inline void
1988 context_switch(struct rq *rq, struct task_struct *prev,
1989 struct task_struct *next)
1991 struct mm_struct *mm, *oldmm;
1993 prepare_task_switch(rq, prev, next);
1994 mm = next->mm;
1995 oldmm = prev->active_mm;
1997 * For paravirt, this is coupled with an exit in switch_to to
1998 * combine the page table reload and the switch backend into
1999 * one hypercall.
2001 arch_enter_lazy_cpu_mode();
2003 if (unlikely(!mm)) {
2004 next->active_mm = oldmm;
2005 atomic_inc(&oldmm->mm_count);
2006 enter_lazy_tlb(oldmm, next);
2007 } else
2008 switch_mm(oldmm, mm, next);
2010 if (unlikely(!prev->mm)) {
2011 prev->active_mm = NULL;
2012 rq->prev_mm = oldmm;
2015 * Since the runqueue lock will be released by the next
2016 * task (which is an invalid locking op but in the case
2017 * of the scheduler it's an obvious special-case), so we
2018 * do an early lockdep release here:
2020 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2021 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2022 #endif
2024 /* Here we just switch the register state and the stack. */
2025 switch_to(prev, next, prev);
2027 barrier();
2029 * this_rq must be evaluated again because prev may have moved
2030 * CPUs since it called schedule(), thus the 'rq' on its stack
2031 * frame will be invalid.
2033 finish_task_switch(this_rq(), prev);
2037 * nr_running, nr_uninterruptible and nr_context_switches:
2039 * externally visible scheduler statistics: current number of runnable
2040 * threads, current number of uninterruptible-sleeping threads, total
2041 * number of context switches performed since bootup.
2043 unsigned long nr_running(void)
2045 unsigned long i, sum = 0;
2047 for_each_online_cpu(i)
2048 sum += cpu_rq(i)->nr_running;
2050 return sum;
2053 unsigned long nr_uninterruptible(void)
2055 unsigned long i, sum = 0;
2057 for_each_possible_cpu(i)
2058 sum += cpu_rq(i)->nr_uninterruptible;
2061 * Since we read the counters lockless, it might be slightly
2062 * inaccurate. Do not allow it to go below zero though:
2064 if (unlikely((long)sum < 0))
2065 sum = 0;
2067 return sum;
2070 unsigned long long nr_context_switches(void)
2072 int i;
2073 unsigned long long sum = 0;
2075 for_each_possible_cpu(i)
2076 sum += cpu_rq(i)->nr_switches;
2078 return sum;
2081 unsigned long nr_iowait(void)
2083 unsigned long i, sum = 0;
2085 for_each_possible_cpu(i)
2086 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2088 return sum;
2091 unsigned long nr_active(void)
2093 unsigned long i, running = 0, uninterruptible = 0;
2095 for_each_online_cpu(i) {
2096 running += cpu_rq(i)->nr_running;
2097 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2100 if (unlikely((long)uninterruptible < 0))
2101 uninterruptible = 0;
2103 return running + uninterruptible;
2107 * Update rq->cpu_load[] statistics. This function is usually called every
2108 * scheduler tick (TICK_NSEC).
2110 static void update_cpu_load(struct rq *this_rq)
2112 unsigned long this_load = this_rq->load.weight;
2113 int i, scale;
2115 this_rq->nr_load_updates++;
2117 /* Update our load: */
2118 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2119 unsigned long old_load, new_load;
2121 /* scale is effectively 1 << i now, and >> i divides by scale */
2123 old_load = this_rq->cpu_load[i];
2124 new_load = this_load;
2126 * Round up the averaging division if load is increasing. This
2127 * prevents us from getting stuck on 9 if the load is 10, for
2128 * example.
2130 if (new_load > old_load)
2131 new_load += scale-1;
2132 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2136 #ifdef CONFIG_SMP
2139 * double_rq_lock - safely lock two runqueues
2141 * Note this does not disable interrupts like task_rq_lock,
2142 * you need to do so manually before calling.
2144 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2145 __acquires(rq1->lock)
2146 __acquires(rq2->lock)
2148 BUG_ON(!irqs_disabled());
2149 if (rq1 == rq2) {
2150 spin_lock(&rq1->lock);
2151 __acquire(rq2->lock); /* Fake it out ;) */
2152 } else {
2153 if (rq1 < rq2) {
2154 spin_lock(&rq1->lock);
2155 spin_lock(&rq2->lock);
2156 } else {
2157 spin_lock(&rq2->lock);
2158 spin_lock(&rq1->lock);
2161 update_rq_clock(rq1);
2162 update_rq_clock(rq2);
2166 * double_rq_unlock - safely unlock two runqueues
2168 * Note this does not restore interrupts like task_rq_unlock,
2169 * you need to do so manually after calling.
2171 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2172 __releases(rq1->lock)
2173 __releases(rq2->lock)
2175 spin_unlock(&rq1->lock);
2176 if (rq1 != rq2)
2177 spin_unlock(&rq2->lock);
2178 else
2179 __release(rq2->lock);
2183 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2185 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2186 __releases(this_rq->lock)
2187 __acquires(busiest->lock)
2188 __acquires(this_rq->lock)
2190 if (unlikely(!irqs_disabled())) {
2191 /* printk() doesn't work good under rq->lock */
2192 spin_unlock(&this_rq->lock);
2193 BUG_ON(1);
2195 if (unlikely(!spin_trylock(&busiest->lock))) {
2196 if (busiest < this_rq) {
2197 spin_unlock(&this_rq->lock);
2198 spin_lock(&busiest->lock);
2199 spin_lock(&this_rq->lock);
2200 } else
2201 spin_lock(&busiest->lock);
2206 * If dest_cpu is allowed for this process, migrate the task to it.
2207 * This is accomplished by forcing the cpu_allowed mask to only
2208 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2209 * the cpu_allowed mask is restored.
2211 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2213 struct migration_req req;
2214 unsigned long flags;
2215 struct rq *rq;
2217 rq = task_rq_lock(p, &flags);
2218 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2219 || unlikely(cpu_is_offline(dest_cpu)))
2220 goto out;
2222 /* force the process onto the specified CPU */
2223 if (migrate_task(p, dest_cpu, &req)) {
2224 /* Need to wait for migration thread (might exit: take ref). */
2225 struct task_struct *mt = rq->migration_thread;
2227 get_task_struct(mt);
2228 task_rq_unlock(rq, &flags);
2229 wake_up_process(mt);
2230 put_task_struct(mt);
2231 wait_for_completion(&req.done);
2233 return;
2235 out:
2236 task_rq_unlock(rq, &flags);
2240 * sched_exec - execve() is a valuable balancing opportunity, because at
2241 * this point the task has the smallest effective memory and cache footprint.
2243 void sched_exec(void)
2245 int new_cpu, this_cpu = get_cpu();
2246 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2247 put_cpu();
2248 if (new_cpu != this_cpu)
2249 sched_migrate_task(current, new_cpu);
2253 * pull_task - move a task from a remote runqueue to the local runqueue.
2254 * Both runqueues must be locked.
2256 static void pull_task(struct rq *src_rq, struct task_struct *p,
2257 struct rq *this_rq, int this_cpu)
2259 deactivate_task(src_rq, p, 0);
2260 set_task_cpu(p, this_cpu);
2261 activate_task(this_rq, p, 0);
2263 * Note that idle threads have a prio of MAX_PRIO, for this test
2264 * to be always true for them.
2266 check_preempt_curr(this_rq, p);
2270 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2272 static
2273 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2274 struct sched_domain *sd, enum cpu_idle_type idle,
2275 int *all_pinned)
2278 * We do not migrate tasks that are:
2279 * 1) running (obviously), or
2280 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2281 * 3) are cache-hot on their current CPU.
2283 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2284 schedstat_inc(p, se.nr_failed_migrations_affine);
2285 return 0;
2287 *all_pinned = 0;
2289 if (task_running(rq, p)) {
2290 schedstat_inc(p, se.nr_failed_migrations_running);
2291 return 0;
2295 * Aggressive migration if:
2296 * 1) task is cache cold, or
2297 * 2) too many balance attempts have failed.
2300 if (!task_hot(p, rq->clock, sd) ||
2301 sd->nr_balance_failed > sd->cache_nice_tries) {
2302 #ifdef CONFIG_SCHEDSTATS
2303 if (task_hot(p, rq->clock, sd)) {
2304 schedstat_inc(sd, lb_hot_gained[idle]);
2305 schedstat_inc(p, se.nr_forced_migrations);
2307 #endif
2308 return 1;
2311 if (task_hot(p, rq->clock, sd)) {
2312 schedstat_inc(p, se.nr_failed_migrations_hot);
2313 return 0;
2315 return 1;
2318 static unsigned long
2319 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2320 unsigned long max_load_move, struct sched_domain *sd,
2321 enum cpu_idle_type idle, int *all_pinned,
2322 int *this_best_prio, struct rq_iterator *iterator)
2324 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2325 struct task_struct *p;
2326 long rem_load_move = max_load_move;
2328 if (max_load_move == 0)
2329 goto out;
2331 pinned = 1;
2334 * Start the load-balancing iterator:
2336 p = iterator->start(iterator->arg);
2337 next:
2338 if (!p || loops++ > sysctl_sched_nr_migrate)
2339 goto out;
2341 * To help distribute high priority tasks across CPUs we don't
2342 * skip a task if it will be the highest priority task (i.e. smallest
2343 * prio value) on its new queue regardless of its load weight
2345 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2346 SCHED_LOAD_SCALE_FUZZ;
2347 if ((skip_for_load && p->prio >= *this_best_prio) ||
2348 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2349 p = iterator->next(iterator->arg);
2350 goto next;
2353 pull_task(busiest, p, this_rq, this_cpu);
2354 pulled++;
2355 rem_load_move -= p->se.load.weight;
2358 * We only want to steal up to the prescribed amount of weighted load.
2360 if (rem_load_move > 0) {
2361 if (p->prio < *this_best_prio)
2362 *this_best_prio = p->prio;
2363 p = iterator->next(iterator->arg);
2364 goto next;
2366 out:
2368 * Right now, this is one of only two places pull_task() is called,
2369 * so we can safely collect pull_task() stats here rather than
2370 * inside pull_task().
2372 schedstat_add(sd, lb_gained[idle], pulled);
2374 if (all_pinned)
2375 *all_pinned = pinned;
2377 return max_load_move - rem_load_move;
2381 * move_tasks tries to move up to max_load_move weighted load from busiest to
2382 * this_rq, as part of a balancing operation within domain "sd".
2383 * Returns 1 if successful and 0 otherwise.
2385 * Called with both runqueues locked.
2387 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2388 unsigned long max_load_move,
2389 struct sched_domain *sd, enum cpu_idle_type idle,
2390 int *all_pinned)
2392 const struct sched_class *class = sched_class_highest;
2393 unsigned long total_load_moved = 0;
2394 int this_best_prio = this_rq->curr->prio;
2396 do {
2397 total_load_moved +=
2398 class->load_balance(this_rq, this_cpu, busiest,
2399 max_load_move - total_load_moved,
2400 sd, idle, all_pinned, &this_best_prio);
2401 class = class->next;
2402 } while (class && max_load_move > total_load_moved);
2404 return total_load_moved > 0;
2407 static int
2408 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2409 struct sched_domain *sd, enum cpu_idle_type idle,
2410 struct rq_iterator *iterator)
2412 struct task_struct *p = iterator->start(iterator->arg);
2413 int pinned = 0;
2415 while (p) {
2416 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2417 pull_task(busiest, p, this_rq, this_cpu);
2419 * Right now, this is only the second place pull_task()
2420 * is called, so we can safely collect pull_task()
2421 * stats here rather than inside pull_task().
2423 schedstat_inc(sd, lb_gained[idle]);
2425 return 1;
2427 p = iterator->next(iterator->arg);
2430 return 0;
2434 * move_one_task tries to move exactly one task from busiest to this_rq, as
2435 * part of active balancing operations within "domain".
2436 * Returns 1 if successful and 0 otherwise.
2438 * Called with both runqueues locked.
2440 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2441 struct sched_domain *sd, enum cpu_idle_type idle)
2443 const struct sched_class *class;
2445 for (class = sched_class_highest; class; class = class->next)
2446 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2447 return 1;
2449 return 0;
2453 * find_busiest_group finds and returns the busiest CPU group within the
2454 * domain. It calculates and returns the amount of weighted load which
2455 * should be moved to restore balance via the imbalance parameter.
2457 static struct sched_group *
2458 find_busiest_group(struct sched_domain *sd, int this_cpu,
2459 unsigned long *imbalance, enum cpu_idle_type idle,
2460 int *sd_idle, cpumask_t *cpus, int *balance)
2462 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2463 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2464 unsigned long max_pull;
2465 unsigned long busiest_load_per_task, busiest_nr_running;
2466 unsigned long this_load_per_task, this_nr_running;
2467 int load_idx, group_imb = 0;
2468 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2469 int power_savings_balance = 1;
2470 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2471 unsigned long min_nr_running = ULONG_MAX;
2472 struct sched_group *group_min = NULL, *group_leader = NULL;
2473 #endif
2475 max_load = this_load = total_load = total_pwr = 0;
2476 busiest_load_per_task = busiest_nr_running = 0;
2477 this_load_per_task = this_nr_running = 0;
2478 if (idle == CPU_NOT_IDLE)
2479 load_idx = sd->busy_idx;
2480 else if (idle == CPU_NEWLY_IDLE)
2481 load_idx = sd->newidle_idx;
2482 else
2483 load_idx = sd->idle_idx;
2485 do {
2486 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2487 int local_group;
2488 int i;
2489 int __group_imb = 0;
2490 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2491 unsigned long sum_nr_running, sum_weighted_load;
2493 local_group = cpu_isset(this_cpu, group->cpumask);
2495 if (local_group)
2496 balance_cpu = first_cpu(group->cpumask);
2498 /* Tally up the load of all CPUs in the group */
2499 sum_weighted_load = sum_nr_running = avg_load = 0;
2500 max_cpu_load = 0;
2501 min_cpu_load = ~0UL;
2503 for_each_cpu_mask(i, group->cpumask) {
2504 struct rq *rq;
2506 if (!cpu_isset(i, *cpus))
2507 continue;
2509 rq = cpu_rq(i);
2511 if (*sd_idle && rq->nr_running)
2512 *sd_idle = 0;
2514 /* Bias balancing toward cpus of our domain */
2515 if (local_group) {
2516 if (idle_cpu(i) && !first_idle_cpu) {
2517 first_idle_cpu = 1;
2518 balance_cpu = i;
2521 load = target_load(i, load_idx);
2522 } else {
2523 load = source_load(i, load_idx);
2524 if (load > max_cpu_load)
2525 max_cpu_load = load;
2526 if (min_cpu_load > load)
2527 min_cpu_load = load;
2530 avg_load += load;
2531 sum_nr_running += rq->nr_running;
2532 sum_weighted_load += weighted_cpuload(i);
2536 * First idle cpu or the first cpu(busiest) in this sched group
2537 * is eligible for doing load balancing at this and above
2538 * domains. In the newly idle case, we will allow all the cpu's
2539 * to do the newly idle load balance.
2541 if (idle != CPU_NEWLY_IDLE && local_group &&
2542 balance_cpu != this_cpu && balance) {
2543 *balance = 0;
2544 goto ret;
2547 total_load += avg_load;
2548 total_pwr += group->__cpu_power;
2550 /* Adjust by relative CPU power of the group */
2551 avg_load = sg_div_cpu_power(group,
2552 avg_load * SCHED_LOAD_SCALE);
2554 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2555 __group_imb = 1;
2557 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2559 if (local_group) {
2560 this_load = avg_load;
2561 this = group;
2562 this_nr_running = sum_nr_running;
2563 this_load_per_task = sum_weighted_load;
2564 } else if (avg_load > max_load &&
2565 (sum_nr_running > group_capacity || __group_imb)) {
2566 max_load = avg_load;
2567 busiest = group;
2568 busiest_nr_running = sum_nr_running;
2569 busiest_load_per_task = sum_weighted_load;
2570 group_imb = __group_imb;
2573 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2575 * Busy processors will not participate in power savings
2576 * balance.
2578 if (idle == CPU_NOT_IDLE ||
2579 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2580 goto group_next;
2583 * If the local group is idle or completely loaded
2584 * no need to do power savings balance at this domain
2586 if (local_group && (this_nr_running >= group_capacity ||
2587 !this_nr_running))
2588 power_savings_balance = 0;
2591 * If a group is already running at full capacity or idle,
2592 * don't include that group in power savings calculations
2594 if (!power_savings_balance || sum_nr_running >= group_capacity
2595 || !sum_nr_running)
2596 goto group_next;
2599 * Calculate the group which has the least non-idle load.
2600 * This is the group from where we need to pick up the load
2601 * for saving power
2603 if ((sum_nr_running < min_nr_running) ||
2604 (sum_nr_running == min_nr_running &&
2605 first_cpu(group->cpumask) <
2606 first_cpu(group_min->cpumask))) {
2607 group_min = group;
2608 min_nr_running = sum_nr_running;
2609 min_load_per_task = sum_weighted_load /
2610 sum_nr_running;
2614 * Calculate the group which is almost near its
2615 * capacity but still has some space to pick up some load
2616 * from other group and save more power
2618 if (sum_nr_running <= group_capacity - 1) {
2619 if (sum_nr_running > leader_nr_running ||
2620 (sum_nr_running == leader_nr_running &&
2621 first_cpu(group->cpumask) >
2622 first_cpu(group_leader->cpumask))) {
2623 group_leader = group;
2624 leader_nr_running = sum_nr_running;
2627 group_next:
2628 #endif
2629 group = group->next;
2630 } while (group != sd->groups);
2632 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2633 goto out_balanced;
2635 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2637 if (this_load >= avg_load ||
2638 100*max_load <= sd->imbalance_pct*this_load)
2639 goto out_balanced;
2641 busiest_load_per_task /= busiest_nr_running;
2642 if (group_imb)
2643 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2646 * We're trying to get all the cpus to the average_load, so we don't
2647 * want to push ourselves above the average load, nor do we wish to
2648 * reduce the max loaded cpu below the average load, as either of these
2649 * actions would just result in more rebalancing later, and ping-pong
2650 * tasks around. Thus we look for the minimum possible imbalance.
2651 * Negative imbalances (*we* are more loaded than anyone else) will
2652 * be counted as no imbalance for these purposes -- we can't fix that
2653 * by pulling tasks to us. Be careful of negative numbers as they'll
2654 * appear as very large values with unsigned longs.
2656 if (max_load <= busiest_load_per_task)
2657 goto out_balanced;
2660 * In the presence of smp nice balancing, certain scenarios can have
2661 * max load less than avg load(as we skip the groups at or below
2662 * its cpu_power, while calculating max_load..)
2664 if (max_load < avg_load) {
2665 *imbalance = 0;
2666 goto small_imbalance;
2669 /* Don't want to pull so many tasks that a group would go idle */
2670 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2672 /* How much load to actually move to equalise the imbalance */
2673 *imbalance = min(max_pull * busiest->__cpu_power,
2674 (avg_load - this_load) * this->__cpu_power)
2675 / SCHED_LOAD_SCALE;
2678 * if *imbalance is less than the average load per runnable task
2679 * there is no gaurantee that any tasks will be moved so we'll have
2680 * a think about bumping its value to force at least one task to be
2681 * moved
2683 if (*imbalance < busiest_load_per_task) {
2684 unsigned long tmp, pwr_now, pwr_move;
2685 unsigned int imbn;
2687 small_imbalance:
2688 pwr_move = pwr_now = 0;
2689 imbn = 2;
2690 if (this_nr_running) {
2691 this_load_per_task /= this_nr_running;
2692 if (busiest_load_per_task > this_load_per_task)
2693 imbn = 1;
2694 } else
2695 this_load_per_task = SCHED_LOAD_SCALE;
2697 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2698 busiest_load_per_task * imbn) {
2699 *imbalance = busiest_load_per_task;
2700 return busiest;
2704 * OK, we don't have enough imbalance to justify moving tasks,
2705 * however we may be able to increase total CPU power used by
2706 * moving them.
2709 pwr_now += busiest->__cpu_power *
2710 min(busiest_load_per_task, max_load);
2711 pwr_now += this->__cpu_power *
2712 min(this_load_per_task, this_load);
2713 pwr_now /= SCHED_LOAD_SCALE;
2715 /* Amount of load we'd subtract */
2716 tmp = sg_div_cpu_power(busiest,
2717 busiest_load_per_task * SCHED_LOAD_SCALE);
2718 if (max_load > tmp)
2719 pwr_move += busiest->__cpu_power *
2720 min(busiest_load_per_task, max_load - tmp);
2722 /* Amount of load we'd add */
2723 if (max_load * busiest->__cpu_power <
2724 busiest_load_per_task * SCHED_LOAD_SCALE)
2725 tmp = sg_div_cpu_power(this,
2726 max_load * busiest->__cpu_power);
2727 else
2728 tmp = sg_div_cpu_power(this,
2729 busiest_load_per_task * SCHED_LOAD_SCALE);
2730 pwr_move += this->__cpu_power *
2731 min(this_load_per_task, this_load + tmp);
2732 pwr_move /= SCHED_LOAD_SCALE;
2734 /* Move if we gain throughput */
2735 if (pwr_move > pwr_now)
2736 *imbalance = busiest_load_per_task;
2739 return busiest;
2741 out_balanced:
2742 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2743 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2744 goto ret;
2746 if (this == group_leader && group_leader != group_min) {
2747 *imbalance = min_load_per_task;
2748 return group_min;
2750 #endif
2751 ret:
2752 *imbalance = 0;
2753 return NULL;
2757 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2759 static struct rq *
2760 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2761 unsigned long imbalance, cpumask_t *cpus)
2763 struct rq *busiest = NULL, *rq;
2764 unsigned long max_load = 0;
2765 int i;
2767 for_each_cpu_mask(i, group->cpumask) {
2768 unsigned long wl;
2770 if (!cpu_isset(i, *cpus))
2771 continue;
2773 rq = cpu_rq(i);
2774 wl = weighted_cpuload(i);
2776 if (rq->nr_running == 1 && wl > imbalance)
2777 continue;
2779 if (wl > max_load) {
2780 max_load = wl;
2781 busiest = rq;
2785 return busiest;
2789 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2790 * so long as it is large enough.
2792 #define MAX_PINNED_INTERVAL 512
2795 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2796 * tasks if there is an imbalance.
2798 static int load_balance(int this_cpu, struct rq *this_rq,
2799 struct sched_domain *sd, enum cpu_idle_type idle,
2800 int *balance)
2802 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2803 struct sched_group *group;
2804 unsigned long imbalance;
2805 struct rq *busiest;
2806 cpumask_t cpus = CPU_MASK_ALL;
2807 unsigned long flags;
2810 * When power savings policy is enabled for the parent domain, idle
2811 * sibling can pick up load irrespective of busy siblings. In this case,
2812 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2813 * portraying it as CPU_NOT_IDLE.
2815 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2816 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2817 sd_idle = 1;
2819 schedstat_inc(sd, lb_count[idle]);
2821 redo:
2822 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2823 &cpus, balance);
2825 if (*balance == 0)
2826 goto out_balanced;
2828 if (!group) {
2829 schedstat_inc(sd, lb_nobusyg[idle]);
2830 goto out_balanced;
2833 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2834 if (!busiest) {
2835 schedstat_inc(sd, lb_nobusyq[idle]);
2836 goto out_balanced;
2839 BUG_ON(busiest == this_rq);
2841 schedstat_add(sd, lb_imbalance[idle], imbalance);
2843 ld_moved = 0;
2844 if (busiest->nr_running > 1) {
2846 * Attempt to move tasks. If find_busiest_group has found
2847 * an imbalance but busiest->nr_running <= 1, the group is
2848 * still unbalanced. ld_moved simply stays zero, so it is
2849 * correctly treated as an imbalance.
2851 local_irq_save(flags);
2852 double_rq_lock(this_rq, busiest);
2853 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2854 imbalance, sd, idle, &all_pinned);
2855 double_rq_unlock(this_rq, busiest);
2856 local_irq_restore(flags);
2859 * some other cpu did the load balance for us.
2861 if (ld_moved && this_cpu != smp_processor_id())
2862 resched_cpu(this_cpu);
2864 /* All tasks on this runqueue were pinned by CPU affinity */
2865 if (unlikely(all_pinned)) {
2866 cpu_clear(cpu_of(busiest), cpus);
2867 if (!cpus_empty(cpus))
2868 goto redo;
2869 goto out_balanced;
2873 if (!ld_moved) {
2874 schedstat_inc(sd, lb_failed[idle]);
2875 sd->nr_balance_failed++;
2877 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2879 spin_lock_irqsave(&busiest->lock, flags);
2881 /* don't kick the migration_thread, if the curr
2882 * task on busiest cpu can't be moved to this_cpu
2884 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2885 spin_unlock_irqrestore(&busiest->lock, flags);
2886 all_pinned = 1;
2887 goto out_one_pinned;
2890 if (!busiest->active_balance) {
2891 busiest->active_balance = 1;
2892 busiest->push_cpu = this_cpu;
2893 active_balance = 1;
2895 spin_unlock_irqrestore(&busiest->lock, flags);
2896 if (active_balance)
2897 wake_up_process(busiest->migration_thread);
2900 * We've kicked active balancing, reset the failure
2901 * counter.
2903 sd->nr_balance_failed = sd->cache_nice_tries+1;
2905 } else
2906 sd->nr_balance_failed = 0;
2908 if (likely(!active_balance)) {
2909 /* We were unbalanced, so reset the balancing interval */
2910 sd->balance_interval = sd->min_interval;
2911 } else {
2913 * If we've begun active balancing, start to back off. This
2914 * case may not be covered by the all_pinned logic if there
2915 * is only 1 task on the busy runqueue (because we don't call
2916 * move_tasks).
2918 if (sd->balance_interval < sd->max_interval)
2919 sd->balance_interval *= 2;
2922 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2923 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2924 return -1;
2925 return ld_moved;
2927 out_balanced:
2928 schedstat_inc(sd, lb_balanced[idle]);
2930 sd->nr_balance_failed = 0;
2932 out_one_pinned:
2933 /* tune up the balancing interval */
2934 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2935 (sd->balance_interval < sd->max_interval))
2936 sd->balance_interval *= 2;
2938 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2939 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2940 return -1;
2941 return 0;
2945 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2946 * tasks if there is an imbalance.
2948 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2949 * this_rq is locked.
2951 static int
2952 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2954 struct sched_group *group;
2955 struct rq *busiest = NULL;
2956 unsigned long imbalance;
2957 int ld_moved = 0;
2958 int sd_idle = 0;
2959 int all_pinned = 0;
2960 cpumask_t cpus = CPU_MASK_ALL;
2963 * When power savings policy is enabled for the parent domain, idle
2964 * sibling can pick up load irrespective of busy siblings. In this case,
2965 * let the state of idle sibling percolate up as IDLE, instead of
2966 * portraying it as CPU_NOT_IDLE.
2968 if (sd->flags & SD_SHARE_CPUPOWER &&
2969 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2970 sd_idle = 1;
2972 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2973 redo:
2974 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2975 &sd_idle, &cpus, NULL);
2976 if (!group) {
2977 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2978 goto out_balanced;
2981 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2982 &cpus);
2983 if (!busiest) {
2984 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2985 goto out_balanced;
2988 BUG_ON(busiest == this_rq);
2990 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2992 ld_moved = 0;
2993 if (busiest->nr_running > 1) {
2994 /* Attempt to move tasks */
2995 double_lock_balance(this_rq, busiest);
2996 /* this_rq->clock is already updated */
2997 update_rq_clock(busiest);
2998 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2999 imbalance, sd, CPU_NEWLY_IDLE,
3000 &all_pinned);
3001 spin_unlock(&busiest->lock);
3003 if (unlikely(all_pinned)) {
3004 cpu_clear(cpu_of(busiest), cpus);
3005 if (!cpus_empty(cpus))
3006 goto redo;
3010 if (!ld_moved) {
3011 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3012 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3013 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3014 return -1;
3015 } else
3016 sd->nr_balance_failed = 0;
3018 return ld_moved;
3020 out_balanced:
3021 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3022 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3023 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3024 return -1;
3025 sd->nr_balance_failed = 0;
3027 return 0;
3031 * idle_balance is called by schedule() if this_cpu is about to become
3032 * idle. Attempts to pull tasks from other CPUs.
3034 static void idle_balance(int this_cpu, struct rq *this_rq)
3036 struct sched_domain *sd;
3037 int pulled_task = -1;
3038 unsigned long next_balance = jiffies + HZ;
3040 for_each_domain(this_cpu, sd) {
3041 unsigned long interval;
3043 if (!(sd->flags & SD_LOAD_BALANCE))
3044 continue;
3046 if (sd->flags & SD_BALANCE_NEWIDLE)
3047 /* If we've pulled tasks over stop searching: */
3048 pulled_task = load_balance_newidle(this_cpu,
3049 this_rq, sd);
3051 interval = msecs_to_jiffies(sd->balance_interval);
3052 if (time_after(next_balance, sd->last_balance + interval))
3053 next_balance = sd->last_balance + interval;
3054 if (pulled_task)
3055 break;
3057 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3059 * We are going idle. next_balance may be set based on
3060 * a busy processor. So reset next_balance.
3062 this_rq->next_balance = next_balance;
3067 * active_load_balance is run by migration threads. It pushes running tasks
3068 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3069 * running on each physical CPU where possible, and avoids physical /
3070 * logical imbalances.
3072 * Called with busiest_rq locked.
3074 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3076 int target_cpu = busiest_rq->push_cpu;
3077 struct sched_domain *sd;
3078 struct rq *target_rq;
3080 /* Is there any task to move? */
3081 if (busiest_rq->nr_running <= 1)
3082 return;
3084 target_rq = cpu_rq(target_cpu);
3087 * This condition is "impossible", if it occurs
3088 * we need to fix it. Originally reported by
3089 * Bjorn Helgaas on a 128-cpu setup.
3091 BUG_ON(busiest_rq == target_rq);
3093 /* move a task from busiest_rq to target_rq */
3094 double_lock_balance(busiest_rq, target_rq);
3095 update_rq_clock(busiest_rq);
3096 update_rq_clock(target_rq);
3098 /* Search for an sd spanning us and the target CPU. */
3099 for_each_domain(target_cpu, sd) {
3100 if ((sd->flags & SD_LOAD_BALANCE) &&
3101 cpu_isset(busiest_cpu, sd->span))
3102 break;
3105 if (likely(sd)) {
3106 schedstat_inc(sd, alb_count);
3108 if (move_one_task(target_rq, target_cpu, busiest_rq,
3109 sd, CPU_IDLE))
3110 schedstat_inc(sd, alb_pushed);
3111 else
3112 schedstat_inc(sd, alb_failed);
3114 spin_unlock(&target_rq->lock);
3117 #ifdef CONFIG_NO_HZ
3118 static struct {
3119 atomic_t load_balancer;
3120 cpumask_t cpu_mask;
3121 } nohz ____cacheline_aligned = {
3122 .load_balancer = ATOMIC_INIT(-1),
3123 .cpu_mask = CPU_MASK_NONE,
3127 * This routine will try to nominate the ilb (idle load balancing)
3128 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3129 * load balancing on behalf of all those cpus. If all the cpus in the system
3130 * go into this tickless mode, then there will be no ilb owner (as there is
3131 * no need for one) and all the cpus will sleep till the next wakeup event
3132 * arrives...
3134 * For the ilb owner, tick is not stopped. And this tick will be used
3135 * for idle load balancing. ilb owner will still be part of
3136 * nohz.cpu_mask..
3138 * While stopping the tick, this cpu will become the ilb owner if there
3139 * is no other owner. And will be the owner till that cpu becomes busy
3140 * or if all cpus in the system stop their ticks at which point
3141 * there is no need for ilb owner.
3143 * When the ilb owner becomes busy, it nominates another owner, during the
3144 * next busy scheduler_tick()
3146 int select_nohz_load_balancer(int stop_tick)
3148 int cpu = smp_processor_id();
3150 if (stop_tick) {
3151 cpu_set(cpu, nohz.cpu_mask);
3152 cpu_rq(cpu)->in_nohz_recently = 1;
3155 * If we are going offline and still the leader, give up!
3157 if (cpu_is_offline(cpu) &&
3158 atomic_read(&nohz.load_balancer) == cpu) {
3159 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3160 BUG();
3161 return 0;
3164 /* time for ilb owner also to sleep */
3165 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3166 if (atomic_read(&nohz.load_balancer) == cpu)
3167 atomic_set(&nohz.load_balancer, -1);
3168 return 0;
3171 if (atomic_read(&nohz.load_balancer) == -1) {
3172 /* make me the ilb owner */
3173 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3174 return 1;
3175 } else if (atomic_read(&nohz.load_balancer) == cpu)
3176 return 1;
3177 } else {
3178 if (!cpu_isset(cpu, nohz.cpu_mask))
3179 return 0;
3181 cpu_clear(cpu, nohz.cpu_mask);
3183 if (atomic_read(&nohz.load_balancer) == cpu)
3184 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3185 BUG();
3187 return 0;
3189 #endif
3191 static DEFINE_SPINLOCK(balancing);
3194 * It checks each scheduling domain to see if it is due to be balanced,
3195 * and initiates a balancing operation if so.
3197 * Balancing parameters are set up in arch_init_sched_domains.
3199 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3201 int balance = 1;
3202 struct rq *rq = cpu_rq(cpu);
3203 unsigned long interval;
3204 struct sched_domain *sd;
3205 /* Earliest time when we have to do rebalance again */
3206 unsigned long next_balance = jiffies + 60*HZ;
3207 int update_next_balance = 0;
3209 for_each_domain(cpu, sd) {
3210 if (!(sd->flags & SD_LOAD_BALANCE))
3211 continue;
3213 interval = sd->balance_interval;
3214 if (idle != CPU_IDLE)
3215 interval *= sd->busy_factor;
3217 /* scale ms to jiffies */
3218 interval = msecs_to_jiffies(interval);
3219 if (unlikely(!interval))
3220 interval = 1;
3221 if (interval > HZ*NR_CPUS/10)
3222 interval = HZ*NR_CPUS/10;
3225 if (sd->flags & SD_SERIALIZE) {
3226 if (!spin_trylock(&balancing))
3227 goto out;
3230 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3231 if (load_balance(cpu, rq, sd, idle, &balance)) {
3233 * We've pulled tasks over so either we're no
3234 * longer idle, or one of our SMT siblings is
3235 * not idle.
3237 idle = CPU_NOT_IDLE;
3239 sd->last_balance = jiffies;
3241 if (sd->flags & SD_SERIALIZE)
3242 spin_unlock(&balancing);
3243 out:
3244 if (time_after(next_balance, sd->last_balance + interval)) {
3245 next_balance = sd->last_balance + interval;
3246 update_next_balance = 1;
3250 * Stop the load balance at this level. There is another
3251 * CPU in our sched group which is doing load balancing more
3252 * actively.
3254 if (!balance)
3255 break;
3259 * next_balance will be updated only when there is a need.
3260 * When the cpu is attached to null domain for ex, it will not be
3261 * updated.
3263 if (likely(update_next_balance))
3264 rq->next_balance = next_balance;
3268 * run_rebalance_domains is triggered when needed from the scheduler tick.
3269 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3270 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3272 static void run_rebalance_domains(struct softirq_action *h)
3274 int this_cpu = smp_processor_id();
3275 struct rq *this_rq = cpu_rq(this_cpu);
3276 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3277 CPU_IDLE : CPU_NOT_IDLE;
3279 rebalance_domains(this_cpu, idle);
3281 #ifdef CONFIG_NO_HZ
3283 * If this cpu is the owner for idle load balancing, then do the
3284 * balancing on behalf of the other idle cpus whose ticks are
3285 * stopped.
3287 if (this_rq->idle_at_tick &&
3288 atomic_read(&nohz.load_balancer) == this_cpu) {
3289 cpumask_t cpus = nohz.cpu_mask;
3290 struct rq *rq;
3291 int balance_cpu;
3293 cpu_clear(this_cpu, cpus);
3294 for_each_cpu_mask(balance_cpu, cpus) {
3296 * If this cpu gets work to do, stop the load balancing
3297 * work being done for other cpus. Next load
3298 * balancing owner will pick it up.
3300 if (need_resched())
3301 break;
3303 rebalance_domains(balance_cpu, CPU_IDLE);
3305 rq = cpu_rq(balance_cpu);
3306 if (time_after(this_rq->next_balance, rq->next_balance))
3307 this_rq->next_balance = rq->next_balance;
3310 #endif
3314 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3316 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3317 * idle load balancing owner or decide to stop the periodic load balancing,
3318 * if the whole system is idle.
3320 static inline void trigger_load_balance(struct rq *rq, int cpu)
3322 #ifdef CONFIG_NO_HZ
3324 * If we were in the nohz mode recently and busy at the current
3325 * scheduler tick, then check if we need to nominate new idle
3326 * load balancer.
3328 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3329 rq->in_nohz_recently = 0;
3331 if (atomic_read(&nohz.load_balancer) == cpu) {
3332 cpu_clear(cpu, nohz.cpu_mask);
3333 atomic_set(&nohz.load_balancer, -1);
3336 if (atomic_read(&nohz.load_balancer) == -1) {
3338 * simple selection for now: Nominate the
3339 * first cpu in the nohz list to be the next
3340 * ilb owner.
3342 * TBD: Traverse the sched domains and nominate
3343 * the nearest cpu in the nohz.cpu_mask.
3345 int ilb = first_cpu(nohz.cpu_mask);
3347 if (ilb != NR_CPUS)
3348 resched_cpu(ilb);
3353 * If this cpu is idle and doing idle load balancing for all the
3354 * cpus with ticks stopped, is it time for that to stop?
3356 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3357 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3358 resched_cpu(cpu);
3359 return;
3363 * If this cpu is idle and the idle load balancing is done by
3364 * someone else, then no need raise the SCHED_SOFTIRQ
3366 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3367 cpu_isset(cpu, nohz.cpu_mask))
3368 return;
3369 #endif
3370 if (time_after_eq(jiffies, rq->next_balance))
3371 raise_softirq(SCHED_SOFTIRQ);
3374 #else /* CONFIG_SMP */
3377 * on UP we do not need to balance between CPUs:
3379 static inline void idle_balance(int cpu, struct rq *rq)
3383 #endif
3385 DEFINE_PER_CPU(struct kernel_stat, kstat);
3387 EXPORT_PER_CPU_SYMBOL(kstat);
3390 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3391 * that have not yet been banked in case the task is currently running.
3393 unsigned long long task_sched_runtime(struct task_struct *p)
3395 unsigned long flags;
3396 u64 ns, delta_exec;
3397 struct rq *rq;
3399 rq = task_rq_lock(p, &flags);
3400 ns = p->se.sum_exec_runtime;
3401 if (task_current(rq, p)) {
3402 update_rq_clock(rq);
3403 delta_exec = rq->clock - p->se.exec_start;
3404 if ((s64)delta_exec > 0)
3405 ns += delta_exec;
3407 task_rq_unlock(rq, &flags);
3409 return ns;
3413 * Account user cpu time to a process.
3414 * @p: the process that the cpu time gets accounted to
3415 * @cputime: the cpu time spent in user space since the last update
3417 void account_user_time(struct task_struct *p, cputime_t cputime)
3419 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3420 cputime64_t tmp;
3422 p->utime = cputime_add(p->utime, cputime);
3424 /* Add user time to cpustat. */
3425 tmp = cputime_to_cputime64(cputime);
3426 if (TASK_NICE(p) > 0)
3427 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3428 else
3429 cpustat->user = cputime64_add(cpustat->user, tmp);
3433 * Account guest cpu time to a process.
3434 * @p: the process that the cpu time gets accounted to
3435 * @cputime: the cpu time spent in virtual machine since the last update
3437 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3439 cputime64_t tmp;
3440 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3442 tmp = cputime_to_cputime64(cputime);
3444 p->utime = cputime_add(p->utime, cputime);
3445 p->gtime = cputime_add(p->gtime, cputime);
3447 cpustat->user = cputime64_add(cpustat->user, tmp);
3448 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3452 * Account scaled user cpu time to a process.
3453 * @p: the process that the cpu time gets accounted to
3454 * @cputime: the cpu time spent in user space since the last update
3456 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3458 p->utimescaled = cputime_add(p->utimescaled, cputime);
3462 * Account system cpu time to a process.
3463 * @p: the process that the cpu time gets accounted to
3464 * @hardirq_offset: the offset to subtract from hardirq_count()
3465 * @cputime: the cpu time spent in kernel space since the last update
3467 void account_system_time(struct task_struct *p, int hardirq_offset,
3468 cputime_t cputime)
3470 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3471 struct rq *rq = this_rq();
3472 cputime64_t tmp;
3474 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3475 return account_guest_time(p, cputime);
3477 p->stime = cputime_add(p->stime, cputime);
3479 /* Add system time to cpustat. */
3480 tmp = cputime_to_cputime64(cputime);
3481 if (hardirq_count() - hardirq_offset)
3482 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3483 else if (softirq_count())
3484 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3485 else if (p != rq->idle)
3486 cpustat->system = cputime64_add(cpustat->system, tmp);
3487 else if (atomic_read(&rq->nr_iowait) > 0)
3488 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3489 else
3490 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3491 /* Account for system time used */
3492 acct_update_integrals(p);
3496 * Account scaled system cpu time to a process.
3497 * @p: the process that the cpu time gets accounted to
3498 * @hardirq_offset: the offset to subtract from hardirq_count()
3499 * @cputime: the cpu time spent in kernel space since the last update
3501 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3503 p->stimescaled = cputime_add(p->stimescaled, cputime);
3507 * Account for involuntary wait time.
3508 * @p: the process from which the cpu time has been stolen
3509 * @steal: the cpu time spent in involuntary wait
3511 void account_steal_time(struct task_struct *p, cputime_t steal)
3513 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3514 cputime64_t tmp = cputime_to_cputime64(steal);
3515 struct rq *rq = this_rq();
3517 if (p == rq->idle) {
3518 p->stime = cputime_add(p->stime, steal);
3519 if (atomic_read(&rq->nr_iowait) > 0)
3520 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3521 else
3522 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3523 } else
3524 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3528 * This function gets called by the timer code, with HZ frequency.
3529 * We call it with interrupts disabled.
3531 * It also gets called by the fork code, when changing the parent's
3532 * timeslices.
3534 void scheduler_tick(void)
3536 int cpu = smp_processor_id();
3537 struct rq *rq = cpu_rq(cpu);
3538 struct task_struct *curr = rq->curr;
3539 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3541 spin_lock(&rq->lock);
3542 __update_rq_clock(rq);
3544 * Let rq->clock advance by at least TICK_NSEC:
3546 if (unlikely(rq->clock < next_tick))
3547 rq->clock = next_tick;
3548 rq->tick_timestamp = rq->clock;
3549 update_cpu_load(rq);
3550 if (curr != rq->idle) /* FIXME: needed? */
3551 curr->sched_class->task_tick(rq, curr);
3552 spin_unlock(&rq->lock);
3554 #ifdef CONFIG_SMP
3555 rq->idle_at_tick = idle_cpu(cpu);
3556 trigger_load_balance(rq, cpu);
3557 #endif
3560 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3562 void fastcall add_preempt_count(int val)
3565 * Underflow?
3567 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3568 return;
3569 preempt_count() += val;
3571 * Spinlock count overflowing soon?
3573 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3574 PREEMPT_MASK - 10);
3576 EXPORT_SYMBOL(add_preempt_count);
3578 void fastcall sub_preempt_count(int val)
3581 * Underflow?
3583 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3584 return;
3586 * Is the spinlock portion underflowing?
3588 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3589 !(preempt_count() & PREEMPT_MASK)))
3590 return;
3592 preempt_count() -= val;
3594 EXPORT_SYMBOL(sub_preempt_count);
3596 #endif
3599 * Print scheduling while atomic bug:
3601 static noinline void __schedule_bug(struct task_struct *prev)
3603 struct pt_regs *regs = get_irq_regs();
3605 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3606 prev->comm, prev->pid, preempt_count());
3608 debug_show_held_locks(prev);
3609 if (irqs_disabled())
3610 print_irqtrace_events(prev);
3612 if (regs)
3613 show_regs(regs);
3614 else
3615 dump_stack();
3619 * Various schedule()-time debugging checks and statistics:
3621 static inline void schedule_debug(struct task_struct *prev)
3624 * Test if we are atomic. Since do_exit() needs to call into
3625 * schedule() atomically, we ignore that path for now.
3626 * Otherwise, whine if we are scheduling when we should not be.
3628 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3629 __schedule_bug(prev);
3631 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3633 schedstat_inc(this_rq(), sched_count);
3634 #ifdef CONFIG_SCHEDSTATS
3635 if (unlikely(prev->lock_depth >= 0)) {
3636 schedstat_inc(this_rq(), bkl_count);
3637 schedstat_inc(prev, sched_info.bkl_count);
3639 #endif
3643 * Pick up the highest-prio task:
3645 static inline struct task_struct *
3646 pick_next_task(struct rq *rq, struct task_struct *prev)
3648 const struct sched_class *class;
3649 struct task_struct *p;
3652 * Optimization: we know that if all tasks are in
3653 * the fair class we can call that function directly:
3655 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3656 p = fair_sched_class.pick_next_task(rq);
3657 if (likely(p))
3658 return p;
3661 class = sched_class_highest;
3662 for ( ; ; ) {
3663 p = class->pick_next_task(rq);
3664 if (p)
3665 return p;
3667 * Will never be NULL as the idle class always
3668 * returns a non-NULL p:
3670 class = class->next;
3675 * schedule() is the main scheduler function.
3677 asmlinkage void __sched schedule(void)
3679 struct task_struct *prev, *next;
3680 long *switch_count;
3681 struct rq *rq;
3682 int cpu;
3684 need_resched:
3685 preempt_disable();
3686 cpu = smp_processor_id();
3687 rq = cpu_rq(cpu);
3688 rcu_qsctr_inc(cpu);
3689 prev = rq->curr;
3690 switch_count = &prev->nivcsw;
3692 release_kernel_lock(prev);
3693 need_resched_nonpreemptible:
3695 schedule_debug(prev);
3698 * Do the rq-clock update outside the rq lock:
3700 local_irq_disable();
3701 __update_rq_clock(rq);
3702 spin_lock(&rq->lock);
3703 clear_tsk_need_resched(prev);
3705 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3706 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3707 unlikely(signal_pending(prev)))) {
3708 prev->state = TASK_RUNNING;
3709 } else {
3710 deactivate_task(rq, prev, 1);
3712 switch_count = &prev->nvcsw;
3715 if (unlikely(!rq->nr_running))
3716 idle_balance(cpu, rq);
3718 prev->sched_class->put_prev_task(rq, prev);
3719 next = pick_next_task(rq, prev);
3721 sched_info_switch(prev, next);
3723 if (likely(prev != next)) {
3724 rq->nr_switches++;
3725 rq->curr = next;
3726 ++*switch_count;
3728 context_switch(rq, prev, next); /* unlocks the rq */
3729 } else
3730 spin_unlock_irq(&rq->lock);
3732 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3733 cpu = smp_processor_id();
3734 rq = cpu_rq(cpu);
3735 goto need_resched_nonpreemptible;
3737 preempt_enable_no_resched();
3738 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3739 goto need_resched;
3741 EXPORT_SYMBOL(schedule);
3743 #ifdef CONFIG_PREEMPT
3745 * this is the entry point to schedule() from in-kernel preemption
3746 * off of preempt_enable. Kernel preemptions off return from interrupt
3747 * occur there and call schedule directly.
3749 asmlinkage void __sched preempt_schedule(void)
3751 struct thread_info *ti = current_thread_info();
3752 #ifdef CONFIG_PREEMPT_BKL
3753 struct task_struct *task = current;
3754 int saved_lock_depth;
3755 #endif
3757 * If there is a non-zero preempt_count or interrupts are disabled,
3758 * we do not want to preempt the current task. Just return..
3760 if (likely(ti->preempt_count || irqs_disabled()))
3761 return;
3763 do {
3764 add_preempt_count(PREEMPT_ACTIVE);
3767 * We keep the big kernel semaphore locked, but we
3768 * clear ->lock_depth so that schedule() doesnt
3769 * auto-release the semaphore:
3771 #ifdef CONFIG_PREEMPT_BKL
3772 saved_lock_depth = task->lock_depth;
3773 task->lock_depth = -1;
3774 #endif
3775 schedule();
3776 #ifdef CONFIG_PREEMPT_BKL
3777 task->lock_depth = saved_lock_depth;
3778 #endif
3779 sub_preempt_count(PREEMPT_ACTIVE);
3782 * Check again in case we missed a preemption opportunity
3783 * between schedule and now.
3785 barrier();
3786 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3788 EXPORT_SYMBOL(preempt_schedule);
3791 * this is the entry point to schedule() from kernel preemption
3792 * off of irq context.
3793 * Note, that this is called and return with irqs disabled. This will
3794 * protect us against recursive calling from irq.
3796 asmlinkage void __sched preempt_schedule_irq(void)
3798 struct thread_info *ti = current_thread_info();
3799 #ifdef CONFIG_PREEMPT_BKL
3800 struct task_struct *task = current;
3801 int saved_lock_depth;
3802 #endif
3803 /* Catch callers which need to be fixed */
3804 BUG_ON(ti->preempt_count || !irqs_disabled());
3806 do {
3807 add_preempt_count(PREEMPT_ACTIVE);
3810 * We keep the big kernel semaphore locked, but we
3811 * clear ->lock_depth so that schedule() doesnt
3812 * auto-release the semaphore:
3814 #ifdef CONFIG_PREEMPT_BKL
3815 saved_lock_depth = task->lock_depth;
3816 task->lock_depth = -1;
3817 #endif
3818 local_irq_enable();
3819 schedule();
3820 local_irq_disable();
3821 #ifdef CONFIG_PREEMPT_BKL
3822 task->lock_depth = saved_lock_depth;
3823 #endif
3824 sub_preempt_count(PREEMPT_ACTIVE);
3827 * Check again in case we missed a preemption opportunity
3828 * between schedule and now.
3830 barrier();
3831 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3834 #endif /* CONFIG_PREEMPT */
3836 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3837 void *key)
3839 return try_to_wake_up(curr->private, mode, sync);
3841 EXPORT_SYMBOL(default_wake_function);
3844 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3845 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3846 * number) then we wake all the non-exclusive tasks and one exclusive task.
3848 * There are circumstances in which we can try to wake a task which has already
3849 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3850 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3852 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3853 int nr_exclusive, int sync, void *key)
3855 wait_queue_t *curr, *next;
3857 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3858 unsigned flags = curr->flags;
3860 if (curr->func(curr, mode, sync, key) &&
3861 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3862 break;
3867 * __wake_up - wake up threads blocked on a waitqueue.
3868 * @q: the waitqueue
3869 * @mode: which threads
3870 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3871 * @key: is directly passed to the wakeup function
3873 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3874 int nr_exclusive, void *key)
3876 unsigned long flags;
3878 spin_lock_irqsave(&q->lock, flags);
3879 __wake_up_common(q, mode, nr_exclusive, 0, key);
3880 spin_unlock_irqrestore(&q->lock, flags);
3882 EXPORT_SYMBOL(__wake_up);
3885 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3887 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3889 __wake_up_common(q, mode, 1, 0, NULL);
3893 * __wake_up_sync - wake up threads blocked on a waitqueue.
3894 * @q: the waitqueue
3895 * @mode: which threads
3896 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3898 * The sync wakeup differs that the waker knows that it will schedule
3899 * away soon, so while the target thread will be woken up, it will not
3900 * be migrated to another CPU - ie. the two threads are 'synchronized'
3901 * with each other. This can prevent needless bouncing between CPUs.
3903 * On UP it can prevent extra preemption.
3905 void fastcall
3906 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3908 unsigned long flags;
3909 int sync = 1;
3911 if (unlikely(!q))
3912 return;
3914 if (unlikely(!nr_exclusive))
3915 sync = 0;
3917 spin_lock_irqsave(&q->lock, flags);
3918 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3919 spin_unlock_irqrestore(&q->lock, flags);
3921 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3923 void complete(struct completion *x)
3925 unsigned long flags;
3927 spin_lock_irqsave(&x->wait.lock, flags);
3928 x->done++;
3929 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3930 1, 0, NULL);
3931 spin_unlock_irqrestore(&x->wait.lock, flags);
3933 EXPORT_SYMBOL(complete);
3935 void complete_all(struct completion *x)
3937 unsigned long flags;
3939 spin_lock_irqsave(&x->wait.lock, flags);
3940 x->done += UINT_MAX/2;
3941 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3942 0, 0, NULL);
3943 spin_unlock_irqrestore(&x->wait.lock, flags);
3945 EXPORT_SYMBOL(complete_all);
3947 static inline long __sched
3948 do_wait_for_common(struct completion *x, long timeout, int state)
3950 if (!x->done) {
3951 DECLARE_WAITQUEUE(wait, current);
3953 wait.flags |= WQ_FLAG_EXCLUSIVE;
3954 __add_wait_queue_tail(&x->wait, &wait);
3955 do {
3956 if (state == TASK_INTERRUPTIBLE &&
3957 signal_pending(current)) {
3958 __remove_wait_queue(&x->wait, &wait);
3959 return -ERESTARTSYS;
3961 __set_current_state(state);
3962 spin_unlock_irq(&x->wait.lock);
3963 timeout = schedule_timeout(timeout);
3964 spin_lock_irq(&x->wait.lock);
3965 if (!timeout) {
3966 __remove_wait_queue(&x->wait, &wait);
3967 return timeout;
3969 } while (!x->done);
3970 __remove_wait_queue(&x->wait, &wait);
3972 x->done--;
3973 return timeout;
3976 static long __sched
3977 wait_for_common(struct completion *x, long timeout, int state)
3979 might_sleep();
3981 spin_lock_irq(&x->wait.lock);
3982 timeout = do_wait_for_common(x, timeout, state);
3983 spin_unlock_irq(&x->wait.lock);
3984 return timeout;
3987 void __sched wait_for_completion(struct completion *x)
3989 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3991 EXPORT_SYMBOL(wait_for_completion);
3993 unsigned long __sched
3994 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3996 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3998 EXPORT_SYMBOL(wait_for_completion_timeout);
4000 int __sched wait_for_completion_interruptible(struct completion *x)
4002 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4003 if (t == -ERESTARTSYS)
4004 return t;
4005 return 0;
4007 EXPORT_SYMBOL(wait_for_completion_interruptible);
4009 unsigned long __sched
4010 wait_for_completion_interruptible_timeout(struct completion *x,
4011 unsigned long timeout)
4013 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4015 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4017 static long __sched
4018 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4020 unsigned long flags;
4021 wait_queue_t wait;
4023 init_waitqueue_entry(&wait, current);
4025 __set_current_state(state);
4027 spin_lock_irqsave(&q->lock, flags);
4028 __add_wait_queue(q, &wait);
4029 spin_unlock(&q->lock);
4030 timeout = schedule_timeout(timeout);
4031 spin_lock_irq(&q->lock);
4032 __remove_wait_queue(q, &wait);
4033 spin_unlock_irqrestore(&q->lock, flags);
4035 return timeout;
4038 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4040 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4042 EXPORT_SYMBOL(interruptible_sleep_on);
4044 long __sched
4045 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4047 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4049 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4051 void __sched sleep_on(wait_queue_head_t *q)
4053 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4055 EXPORT_SYMBOL(sleep_on);
4057 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4059 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4061 EXPORT_SYMBOL(sleep_on_timeout);
4063 #ifdef CONFIG_RT_MUTEXES
4066 * rt_mutex_setprio - set the current priority of a task
4067 * @p: task
4068 * @prio: prio value (kernel-internal form)
4070 * This function changes the 'effective' priority of a task. It does
4071 * not touch ->normal_prio like __setscheduler().
4073 * Used by the rt_mutex code to implement priority inheritance logic.
4075 void rt_mutex_setprio(struct task_struct *p, int prio)
4077 unsigned long flags;
4078 int oldprio, on_rq, running;
4079 struct rq *rq;
4081 BUG_ON(prio < 0 || prio > MAX_PRIO);
4083 rq = task_rq_lock(p, &flags);
4084 update_rq_clock(rq);
4086 oldprio = p->prio;
4087 on_rq = p->se.on_rq;
4088 running = task_current(rq, p);
4089 if (on_rq) {
4090 dequeue_task(rq, p, 0);
4091 if (running)
4092 p->sched_class->put_prev_task(rq, p);
4095 if (rt_prio(prio))
4096 p->sched_class = &rt_sched_class;
4097 else
4098 p->sched_class = &fair_sched_class;
4100 p->prio = prio;
4102 if (on_rq) {
4103 if (running)
4104 p->sched_class->set_curr_task(rq);
4105 enqueue_task(rq, p, 0);
4107 * Reschedule if we are currently running on this runqueue and
4108 * our priority decreased, or if we are not currently running on
4109 * this runqueue and our priority is higher than the current's
4111 if (running) {
4112 if (p->prio > oldprio)
4113 resched_task(rq->curr);
4114 } else {
4115 check_preempt_curr(rq, p);
4118 task_rq_unlock(rq, &flags);
4121 #endif
4123 void set_user_nice(struct task_struct *p, long nice)
4125 int old_prio, delta, on_rq;
4126 unsigned long flags;
4127 struct rq *rq;
4129 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4130 return;
4132 * We have to be careful, if called from sys_setpriority(),
4133 * the task might be in the middle of scheduling on another CPU.
4135 rq = task_rq_lock(p, &flags);
4136 update_rq_clock(rq);
4138 * The RT priorities are set via sched_setscheduler(), but we still
4139 * allow the 'normal' nice value to be set - but as expected
4140 * it wont have any effect on scheduling until the task is
4141 * SCHED_FIFO/SCHED_RR:
4143 if (task_has_rt_policy(p)) {
4144 p->static_prio = NICE_TO_PRIO(nice);
4145 goto out_unlock;
4147 on_rq = p->se.on_rq;
4148 if (on_rq)
4149 dequeue_task(rq, p, 0);
4151 p->static_prio = NICE_TO_PRIO(nice);
4152 set_load_weight(p);
4153 old_prio = p->prio;
4154 p->prio = effective_prio(p);
4155 delta = p->prio - old_prio;
4157 if (on_rq) {
4158 enqueue_task(rq, p, 0);
4160 * If the task increased its priority or is running and
4161 * lowered its priority, then reschedule its CPU:
4163 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4164 resched_task(rq->curr);
4166 out_unlock:
4167 task_rq_unlock(rq, &flags);
4169 EXPORT_SYMBOL(set_user_nice);
4172 * can_nice - check if a task can reduce its nice value
4173 * @p: task
4174 * @nice: nice value
4176 int can_nice(const struct task_struct *p, const int nice)
4178 /* convert nice value [19,-20] to rlimit style value [1,40] */
4179 int nice_rlim = 20 - nice;
4181 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4182 capable(CAP_SYS_NICE));
4185 #ifdef __ARCH_WANT_SYS_NICE
4188 * sys_nice - change the priority of the current process.
4189 * @increment: priority increment
4191 * sys_setpriority is a more generic, but much slower function that
4192 * does similar things.
4194 asmlinkage long sys_nice(int increment)
4196 long nice, retval;
4199 * Setpriority might change our priority at the same moment.
4200 * We don't have to worry. Conceptually one call occurs first
4201 * and we have a single winner.
4203 if (increment < -40)
4204 increment = -40;
4205 if (increment > 40)
4206 increment = 40;
4208 nice = PRIO_TO_NICE(current->static_prio) + increment;
4209 if (nice < -20)
4210 nice = -20;
4211 if (nice > 19)
4212 nice = 19;
4214 if (increment < 0 && !can_nice(current, nice))
4215 return -EPERM;
4217 retval = security_task_setnice(current, nice);
4218 if (retval)
4219 return retval;
4221 set_user_nice(current, nice);
4222 return 0;
4225 #endif
4228 * task_prio - return the priority value of a given task.
4229 * @p: the task in question.
4231 * This is the priority value as seen by users in /proc.
4232 * RT tasks are offset by -200. Normal tasks are centered
4233 * around 0, value goes from -16 to +15.
4235 int task_prio(const struct task_struct *p)
4237 return p->prio - MAX_RT_PRIO;
4241 * task_nice - return the nice value of a given task.
4242 * @p: the task in question.
4244 int task_nice(const struct task_struct *p)
4246 return TASK_NICE(p);
4248 EXPORT_SYMBOL_GPL(task_nice);
4251 * idle_cpu - is a given cpu idle currently?
4252 * @cpu: the processor in question.
4254 int idle_cpu(int cpu)
4256 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4260 * idle_task - return the idle task for a given cpu.
4261 * @cpu: the processor in question.
4263 struct task_struct *idle_task(int cpu)
4265 return cpu_rq(cpu)->idle;
4269 * find_process_by_pid - find a process with a matching PID value.
4270 * @pid: the pid in question.
4272 static struct task_struct *find_process_by_pid(pid_t pid)
4274 return pid ? find_task_by_vpid(pid) : current;
4277 /* Actually do priority change: must hold rq lock. */
4278 static void
4279 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4281 BUG_ON(p->se.on_rq);
4283 p->policy = policy;
4284 switch (p->policy) {
4285 case SCHED_NORMAL:
4286 case SCHED_BATCH:
4287 case SCHED_IDLE:
4288 p->sched_class = &fair_sched_class;
4289 break;
4290 case SCHED_FIFO:
4291 case SCHED_RR:
4292 p->sched_class = &rt_sched_class;
4293 break;
4296 p->rt_priority = prio;
4297 p->normal_prio = normal_prio(p);
4298 /* we are holding p->pi_lock already */
4299 p->prio = rt_mutex_getprio(p);
4300 set_load_weight(p);
4304 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4305 * @p: the task in question.
4306 * @policy: new policy.
4307 * @param: structure containing the new RT priority.
4309 * NOTE that the task may be already dead.
4311 int sched_setscheduler(struct task_struct *p, int policy,
4312 struct sched_param *param)
4314 int retval, oldprio, oldpolicy = -1, on_rq, running;
4315 unsigned long flags;
4316 struct rq *rq;
4318 /* may grab non-irq protected spin_locks */
4319 BUG_ON(in_interrupt());
4320 recheck:
4321 /* double check policy once rq lock held */
4322 if (policy < 0)
4323 policy = oldpolicy = p->policy;
4324 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4325 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4326 policy != SCHED_IDLE)
4327 return -EINVAL;
4329 * Valid priorities for SCHED_FIFO and SCHED_RR are
4330 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4331 * SCHED_BATCH and SCHED_IDLE is 0.
4333 if (param->sched_priority < 0 ||
4334 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4335 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4336 return -EINVAL;
4337 if (rt_policy(policy) != (param->sched_priority != 0))
4338 return -EINVAL;
4341 * Allow unprivileged RT tasks to decrease priority:
4343 if (!capable(CAP_SYS_NICE)) {
4344 if (rt_policy(policy)) {
4345 unsigned long rlim_rtprio;
4347 if (!lock_task_sighand(p, &flags))
4348 return -ESRCH;
4349 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4350 unlock_task_sighand(p, &flags);
4352 /* can't set/change the rt policy */
4353 if (policy != p->policy && !rlim_rtprio)
4354 return -EPERM;
4356 /* can't increase priority */
4357 if (param->sched_priority > p->rt_priority &&
4358 param->sched_priority > rlim_rtprio)
4359 return -EPERM;
4362 * Like positive nice levels, dont allow tasks to
4363 * move out of SCHED_IDLE either:
4365 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4366 return -EPERM;
4368 /* can't change other user's priorities */
4369 if ((current->euid != p->euid) &&
4370 (current->euid != p->uid))
4371 return -EPERM;
4374 retval = security_task_setscheduler(p, policy, param);
4375 if (retval)
4376 return retval;
4378 * make sure no PI-waiters arrive (or leave) while we are
4379 * changing the priority of the task:
4381 spin_lock_irqsave(&p->pi_lock, flags);
4383 * To be able to change p->policy safely, the apropriate
4384 * runqueue lock must be held.
4386 rq = __task_rq_lock(p);
4387 /* recheck policy now with rq lock held */
4388 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4389 policy = oldpolicy = -1;
4390 __task_rq_unlock(rq);
4391 spin_unlock_irqrestore(&p->pi_lock, flags);
4392 goto recheck;
4394 update_rq_clock(rq);
4395 on_rq = p->se.on_rq;
4396 running = task_current(rq, p);
4397 if (on_rq) {
4398 deactivate_task(rq, p, 0);
4399 if (running)
4400 p->sched_class->put_prev_task(rq, p);
4403 oldprio = p->prio;
4404 __setscheduler(rq, p, policy, param->sched_priority);
4406 if (on_rq) {
4407 if (running)
4408 p->sched_class->set_curr_task(rq);
4409 activate_task(rq, p, 0);
4411 * Reschedule if we are currently running on this runqueue and
4412 * our priority decreased, or if we are not currently running on
4413 * this runqueue and our priority is higher than the current's
4415 if (running) {
4416 if (p->prio > oldprio)
4417 resched_task(rq->curr);
4418 } else {
4419 check_preempt_curr(rq, p);
4422 __task_rq_unlock(rq);
4423 spin_unlock_irqrestore(&p->pi_lock, flags);
4425 rt_mutex_adjust_pi(p);
4427 return 0;
4429 EXPORT_SYMBOL_GPL(sched_setscheduler);
4431 static int
4432 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4434 struct sched_param lparam;
4435 struct task_struct *p;
4436 int retval;
4438 if (!param || pid < 0)
4439 return -EINVAL;
4440 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4441 return -EFAULT;
4443 rcu_read_lock();
4444 retval = -ESRCH;
4445 p = find_process_by_pid(pid);
4446 if (p != NULL)
4447 retval = sched_setscheduler(p, policy, &lparam);
4448 rcu_read_unlock();
4450 return retval;
4454 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4455 * @pid: the pid in question.
4456 * @policy: new policy.
4457 * @param: structure containing the new RT priority.
4459 asmlinkage long
4460 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4462 /* negative values for policy are not valid */
4463 if (policy < 0)
4464 return -EINVAL;
4466 return do_sched_setscheduler(pid, policy, param);
4470 * sys_sched_setparam - set/change the RT priority of a thread
4471 * @pid: the pid in question.
4472 * @param: structure containing the new RT priority.
4474 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4476 return do_sched_setscheduler(pid, -1, param);
4480 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4481 * @pid: the pid in question.
4483 asmlinkage long sys_sched_getscheduler(pid_t pid)
4485 struct task_struct *p;
4486 int retval;
4488 if (pid < 0)
4489 return -EINVAL;
4491 retval = -ESRCH;
4492 read_lock(&tasklist_lock);
4493 p = find_process_by_pid(pid);
4494 if (p) {
4495 retval = security_task_getscheduler(p);
4496 if (!retval)
4497 retval = p->policy;
4499 read_unlock(&tasklist_lock);
4500 return retval;
4504 * sys_sched_getscheduler - get the RT priority of a thread
4505 * @pid: the pid in question.
4506 * @param: structure containing the RT priority.
4508 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4510 struct sched_param lp;
4511 struct task_struct *p;
4512 int retval;
4514 if (!param || pid < 0)
4515 return -EINVAL;
4517 read_lock(&tasklist_lock);
4518 p = find_process_by_pid(pid);
4519 retval = -ESRCH;
4520 if (!p)
4521 goto out_unlock;
4523 retval = security_task_getscheduler(p);
4524 if (retval)
4525 goto out_unlock;
4527 lp.sched_priority = p->rt_priority;
4528 read_unlock(&tasklist_lock);
4531 * This one might sleep, we cannot do it with a spinlock held ...
4533 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4535 return retval;
4537 out_unlock:
4538 read_unlock(&tasklist_lock);
4539 return retval;
4542 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4544 cpumask_t cpus_allowed;
4545 struct task_struct *p;
4546 int retval;
4548 get_online_cpus();
4549 read_lock(&tasklist_lock);
4551 p = find_process_by_pid(pid);
4552 if (!p) {
4553 read_unlock(&tasklist_lock);
4554 put_online_cpus();
4555 return -ESRCH;
4559 * It is not safe to call set_cpus_allowed with the
4560 * tasklist_lock held. We will bump the task_struct's
4561 * usage count and then drop tasklist_lock.
4563 get_task_struct(p);
4564 read_unlock(&tasklist_lock);
4566 retval = -EPERM;
4567 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4568 !capable(CAP_SYS_NICE))
4569 goto out_unlock;
4571 retval = security_task_setscheduler(p, 0, NULL);
4572 if (retval)
4573 goto out_unlock;
4575 cpus_allowed = cpuset_cpus_allowed(p);
4576 cpus_and(new_mask, new_mask, cpus_allowed);
4577 again:
4578 retval = set_cpus_allowed(p, new_mask);
4580 if (!retval) {
4581 cpus_allowed = cpuset_cpus_allowed(p);
4582 if (!cpus_subset(new_mask, cpus_allowed)) {
4584 * We must have raced with a concurrent cpuset
4585 * update. Just reset the cpus_allowed to the
4586 * cpuset's cpus_allowed
4588 new_mask = cpus_allowed;
4589 goto again;
4592 out_unlock:
4593 put_task_struct(p);
4594 put_online_cpus();
4595 return retval;
4598 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4599 cpumask_t *new_mask)
4601 if (len < sizeof(cpumask_t)) {
4602 memset(new_mask, 0, sizeof(cpumask_t));
4603 } else if (len > sizeof(cpumask_t)) {
4604 len = sizeof(cpumask_t);
4606 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4610 * sys_sched_setaffinity - set the cpu affinity of a process
4611 * @pid: pid of the process
4612 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4613 * @user_mask_ptr: user-space pointer to the new cpu mask
4615 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4616 unsigned long __user *user_mask_ptr)
4618 cpumask_t new_mask;
4619 int retval;
4621 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4622 if (retval)
4623 return retval;
4625 return sched_setaffinity(pid, new_mask);
4629 * Represents all cpu's present in the system
4630 * In systems capable of hotplug, this map could dynamically grow
4631 * as new cpu's are detected in the system via any platform specific
4632 * method, such as ACPI for e.g.
4635 cpumask_t cpu_present_map __read_mostly;
4636 EXPORT_SYMBOL(cpu_present_map);
4638 #ifndef CONFIG_SMP
4639 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4640 EXPORT_SYMBOL(cpu_online_map);
4642 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4643 EXPORT_SYMBOL(cpu_possible_map);
4644 #endif
4646 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4648 struct task_struct *p;
4649 int retval;
4651 get_online_cpus();
4652 read_lock(&tasklist_lock);
4654 retval = -ESRCH;
4655 p = find_process_by_pid(pid);
4656 if (!p)
4657 goto out_unlock;
4659 retval = security_task_getscheduler(p);
4660 if (retval)
4661 goto out_unlock;
4663 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4665 out_unlock:
4666 read_unlock(&tasklist_lock);
4667 put_online_cpus();
4669 return retval;
4673 * sys_sched_getaffinity - get the cpu affinity of a process
4674 * @pid: pid of the process
4675 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4676 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4678 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4679 unsigned long __user *user_mask_ptr)
4681 int ret;
4682 cpumask_t mask;
4684 if (len < sizeof(cpumask_t))
4685 return -EINVAL;
4687 ret = sched_getaffinity(pid, &mask);
4688 if (ret < 0)
4689 return ret;
4691 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4692 return -EFAULT;
4694 return sizeof(cpumask_t);
4698 * sys_sched_yield - yield the current processor to other threads.
4700 * This function yields the current CPU to other tasks. If there are no
4701 * other threads running on this CPU then this function will return.
4703 asmlinkage long sys_sched_yield(void)
4705 struct rq *rq = this_rq_lock();
4707 schedstat_inc(rq, yld_count);
4708 current->sched_class->yield_task(rq);
4711 * Since we are going to call schedule() anyway, there's
4712 * no need to preempt or enable interrupts:
4714 __release(rq->lock);
4715 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4716 _raw_spin_unlock(&rq->lock);
4717 preempt_enable_no_resched();
4719 schedule();
4721 return 0;
4724 static void __cond_resched(void)
4726 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4727 __might_sleep(__FILE__, __LINE__);
4728 #endif
4730 * The BKS might be reacquired before we have dropped
4731 * PREEMPT_ACTIVE, which could trigger a second
4732 * cond_resched() call.
4734 do {
4735 add_preempt_count(PREEMPT_ACTIVE);
4736 schedule();
4737 sub_preempt_count(PREEMPT_ACTIVE);
4738 } while (need_resched());
4741 int __sched cond_resched(void)
4743 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4744 system_state == SYSTEM_RUNNING) {
4745 __cond_resched();
4746 return 1;
4748 return 0;
4750 EXPORT_SYMBOL(cond_resched);
4753 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4754 * call schedule, and on return reacquire the lock.
4756 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4757 * operations here to prevent schedule() from being called twice (once via
4758 * spin_unlock(), once by hand).
4760 int cond_resched_lock(spinlock_t *lock)
4762 int ret = 0;
4764 if (need_lockbreak(lock)) {
4765 spin_unlock(lock);
4766 cpu_relax();
4767 ret = 1;
4768 spin_lock(lock);
4770 if (need_resched() && system_state == SYSTEM_RUNNING) {
4771 spin_release(&lock->dep_map, 1, _THIS_IP_);
4772 _raw_spin_unlock(lock);
4773 preempt_enable_no_resched();
4774 __cond_resched();
4775 ret = 1;
4776 spin_lock(lock);
4778 return ret;
4780 EXPORT_SYMBOL(cond_resched_lock);
4782 int __sched cond_resched_softirq(void)
4784 BUG_ON(!in_softirq());
4786 if (need_resched() && system_state == SYSTEM_RUNNING) {
4787 local_bh_enable();
4788 __cond_resched();
4789 local_bh_disable();
4790 return 1;
4792 return 0;
4794 EXPORT_SYMBOL(cond_resched_softirq);
4797 * yield - yield the current processor to other threads.
4799 * This is a shortcut for kernel-space yielding - it marks the
4800 * thread runnable and calls sys_sched_yield().
4802 void __sched yield(void)
4804 set_current_state(TASK_RUNNING);
4805 sys_sched_yield();
4807 EXPORT_SYMBOL(yield);
4810 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4811 * that process accounting knows that this is a task in IO wait state.
4813 * But don't do that if it is a deliberate, throttling IO wait (this task
4814 * has set its backing_dev_info: the queue against which it should throttle)
4816 void __sched io_schedule(void)
4818 struct rq *rq = &__raw_get_cpu_var(runqueues);
4820 delayacct_blkio_start();
4821 atomic_inc(&rq->nr_iowait);
4822 schedule();
4823 atomic_dec(&rq->nr_iowait);
4824 delayacct_blkio_end();
4826 EXPORT_SYMBOL(io_schedule);
4828 long __sched io_schedule_timeout(long timeout)
4830 struct rq *rq = &__raw_get_cpu_var(runqueues);
4831 long ret;
4833 delayacct_blkio_start();
4834 atomic_inc(&rq->nr_iowait);
4835 ret = schedule_timeout(timeout);
4836 atomic_dec(&rq->nr_iowait);
4837 delayacct_blkio_end();
4838 return ret;
4842 * sys_sched_get_priority_max - return maximum RT priority.
4843 * @policy: scheduling class.
4845 * this syscall returns the maximum rt_priority that can be used
4846 * by a given scheduling class.
4848 asmlinkage long sys_sched_get_priority_max(int policy)
4850 int ret = -EINVAL;
4852 switch (policy) {
4853 case SCHED_FIFO:
4854 case SCHED_RR:
4855 ret = MAX_USER_RT_PRIO-1;
4856 break;
4857 case SCHED_NORMAL:
4858 case SCHED_BATCH:
4859 case SCHED_IDLE:
4860 ret = 0;
4861 break;
4863 return ret;
4867 * sys_sched_get_priority_min - return minimum RT priority.
4868 * @policy: scheduling class.
4870 * this syscall returns the minimum rt_priority that can be used
4871 * by a given scheduling class.
4873 asmlinkage long sys_sched_get_priority_min(int policy)
4875 int ret = -EINVAL;
4877 switch (policy) {
4878 case SCHED_FIFO:
4879 case SCHED_RR:
4880 ret = 1;
4881 break;
4882 case SCHED_NORMAL:
4883 case SCHED_BATCH:
4884 case SCHED_IDLE:
4885 ret = 0;
4887 return ret;
4891 * sys_sched_rr_get_interval - return the default timeslice of a process.
4892 * @pid: pid of the process.
4893 * @interval: userspace pointer to the timeslice value.
4895 * this syscall writes the default timeslice value of a given process
4896 * into the user-space timespec buffer. A value of '0' means infinity.
4898 asmlinkage
4899 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4901 struct task_struct *p;
4902 unsigned int time_slice;
4903 int retval;
4904 struct timespec t;
4906 if (pid < 0)
4907 return -EINVAL;
4909 retval = -ESRCH;
4910 read_lock(&tasklist_lock);
4911 p = find_process_by_pid(pid);
4912 if (!p)
4913 goto out_unlock;
4915 retval = security_task_getscheduler(p);
4916 if (retval)
4917 goto out_unlock;
4920 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4921 * tasks that are on an otherwise idle runqueue:
4923 time_slice = 0;
4924 if (p->policy == SCHED_RR) {
4925 time_slice = DEF_TIMESLICE;
4926 } else {
4927 struct sched_entity *se = &p->se;
4928 unsigned long flags;
4929 struct rq *rq;
4931 rq = task_rq_lock(p, &flags);
4932 if (rq->cfs.load.weight)
4933 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4934 task_rq_unlock(rq, &flags);
4936 read_unlock(&tasklist_lock);
4937 jiffies_to_timespec(time_slice, &t);
4938 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4939 return retval;
4941 out_unlock:
4942 read_unlock(&tasklist_lock);
4943 return retval;
4946 static const char stat_nam[] = "RSDTtZX";
4948 static void show_task(struct task_struct *p)
4950 unsigned long free = 0;
4951 unsigned state;
4953 state = p->state ? __ffs(p->state) + 1 : 0;
4954 printk(KERN_INFO "%-13.13s %c", p->comm,
4955 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4956 #if BITS_PER_LONG == 32
4957 if (state == TASK_RUNNING)
4958 printk(KERN_CONT " running ");
4959 else
4960 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4961 #else
4962 if (state == TASK_RUNNING)
4963 printk(KERN_CONT " running task ");
4964 else
4965 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4966 #endif
4967 #ifdef CONFIG_DEBUG_STACK_USAGE
4969 unsigned long *n = end_of_stack(p);
4970 while (!*n)
4971 n++;
4972 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4974 #endif
4975 printk(KERN_CONT "%5lu %5d %6d\n", free,
4976 task_pid_nr(p), task_pid_nr(p->real_parent));
4978 if (state != TASK_RUNNING)
4979 show_stack(p, NULL);
4982 void show_state_filter(unsigned long state_filter)
4984 struct task_struct *g, *p;
4986 #if BITS_PER_LONG == 32
4987 printk(KERN_INFO
4988 " task PC stack pid father\n");
4989 #else
4990 printk(KERN_INFO
4991 " task PC stack pid father\n");
4992 #endif
4993 read_lock(&tasklist_lock);
4994 do_each_thread(g, p) {
4996 * reset the NMI-timeout, listing all files on a slow
4997 * console might take alot of time:
4999 touch_nmi_watchdog();
5000 if (!state_filter || (p->state & state_filter))
5001 show_task(p);
5002 } while_each_thread(g, p);
5004 touch_all_softlockup_watchdogs();
5006 #ifdef CONFIG_SCHED_DEBUG
5007 sysrq_sched_debug_show();
5008 #endif
5009 read_unlock(&tasklist_lock);
5011 * Only show locks if all tasks are dumped:
5013 if (state_filter == -1)
5014 debug_show_all_locks();
5017 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5019 idle->sched_class = &idle_sched_class;
5023 * init_idle - set up an idle thread for a given CPU
5024 * @idle: task in question
5025 * @cpu: cpu the idle task belongs to
5027 * NOTE: this function does not set the idle thread's NEED_RESCHED
5028 * flag, to make booting more robust.
5030 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5032 struct rq *rq = cpu_rq(cpu);
5033 unsigned long flags;
5035 __sched_fork(idle);
5036 idle->se.exec_start = sched_clock();
5038 idle->prio = idle->normal_prio = MAX_PRIO;
5039 idle->cpus_allowed = cpumask_of_cpu(cpu);
5040 __set_task_cpu(idle, cpu);
5042 spin_lock_irqsave(&rq->lock, flags);
5043 rq->curr = rq->idle = idle;
5044 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5045 idle->oncpu = 1;
5046 #endif
5047 spin_unlock_irqrestore(&rq->lock, flags);
5049 /* Set the preempt count _outside_ the spinlocks! */
5050 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5051 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5052 #else
5053 task_thread_info(idle)->preempt_count = 0;
5054 #endif
5056 * The idle tasks have their own, simple scheduling class:
5058 idle->sched_class = &idle_sched_class;
5062 * In a system that switches off the HZ timer nohz_cpu_mask
5063 * indicates which cpus entered this state. This is used
5064 * in the rcu update to wait only for active cpus. For system
5065 * which do not switch off the HZ timer nohz_cpu_mask should
5066 * always be CPU_MASK_NONE.
5068 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5071 * Increase the granularity value when there are more CPUs,
5072 * because with more CPUs the 'effective latency' as visible
5073 * to users decreases. But the relationship is not linear,
5074 * so pick a second-best guess by going with the log2 of the
5075 * number of CPUs.
5077 * This idea comes from the SD scheduler of Con Kolivas:
5079 static inline void sched_init_granularity(void)
5081 unsigned int factor = 1 + ilog2(num_online_cpus());
5082 const unsigned long limit = 200000000;
5084 sysctl_sched_min_granularity *= factor;
5085 if (sysctl_sched_min_granularity > limit)
5086 sysctl_sched_min_granularity = limit;
5088 sysctl_sched_latency *= factor;
5089 if (sysctl_sched_latency > limit)
5090 sysctl_sched_latency = limit;
5092 sysctl_sched_wakeup_granularity *= factor;
5093 sysctl_sched_batch_wakeup_granularity *= factor;
5096 #ifdef CONFIG_SMP
5098 * This is how migration works:
5100 * 1) we queue a struct migration_req structure in the source CPU's
5101 * runqueue and wake up that CPU's migration thread.
5102 * 2) we down() the locked semaphore => thread blocks.
5103 * 3) migration thread wakes up (implicitly it forces the migrated
5104 * thread off the CPU)
5105 * 4) it gets the migration request and checks whether the migrated
5106 * task is still in the wrong runqueue.
5107 * 5) if it's in the wrong runqueue then the migration thread removes
5108 * it and puts it into the right queue.
5109 * 6) migration thread up()s the semaphore.
5110 * 7) we wake up and the migration is done.
5114 * Change a given task's CPU affinity. Migrate the thread to a
5115 * proper CPU and schedule it away if the CPU it's executing on
5116 * is removed from the allowed bitmask.
5118 * NOTE: the caller must have a valid reference to the task, the
5119 * task must not exit() & deallocate itself prematurely. The
5120 * call is not atomic; no spinlocks may be held.
5122 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5124 struct migration_req req;
5125 unsigned long flags;
5126 struct rq *rq;
5127 int ret = 0;
5129 rq = task_rq_lock(p, &flags);
5130 if (!cpus_intersects(new_mask, cpu_online_map)) {
5131 ret = -EINVAL;
5132 goto out;
5135 p->cpus_allowed = new_mask;
5136 /* Can the task run on the task's current CPU? If so, we're done */
5137 if (cpu_isset(task_cpu(p), new_mask))
5138 goto out;
5140 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5141 /* Need help from migration thread: drop lock and wait. */
5142 task_rq_unlock(rq, &flags);
5143 wake_up_process(rq->migration_thread);
5144 wait_for_completion(&req.done);
5145 tlb_migrate_finish(p->mm);
5146 return 0;
5148 out:
5149 task_rq_unlock(rq, &flags);
5151 return ret;
5153 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5156 * Move (not current) task off this cpu, onto dest cpu. We're doing
5157 * this because either it can't run here any more (set_cpus_allowed()
5158 * away from this CPU, or CPU going down), or because we're
5159 * attempting to rebalance this task on exec (sched_exec).
5161 * So we race with normal scheduler movements, but that's OK, as long
5162 * as the task is no longer on this CPU.
5164 * Returns non-zero if task was successfully migrated.
5166 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5168 struct rq *rq_dest, *rq_src;
5169 int ret = 0, on_rq;
5171 if (unlikely(cpu_is_offline(dest_cpu)))
5172 return ret;
5174 rq_src = cpu_rq(src_cpu);
5175 rq_dest = cpu_rq(dest_cpu);
5177 double_rq_lock(rq_src, rq_dest);
5178 /* Already moved. */
5179 if (task_cpu(p) != src_cpu)
5180 goto out;
5181 /* Affinity changed (again). */
5182 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5183 goto out;
5185 on_rq = p->se.on_rq;
5186 if (on_rq)
5187 deactivate_task(rq_src, p, 0);
5189 set_task_cpu(p, dest_cpu);
5190 if (on_rq) {
5191 activate_task(rq_dest, p, 0);
5192 check_preempt_curr(rq_dest, p);
5194 ret = 1;
5195 out:
5196 double_rq_unlock(rq_src, rq_dest);
5197 return ret;
5201 * migration_thread - this is a highprio system thread that performs
5202 * thread migration by bumping thread off CPU then 'pushing' onto
5203 * another runqueue.
5205 static int migration_thread(void *data)
5207 int cpu = (long)data;
5208 struct rq *rq;
5210 rq = cpu_rq(cpu);
5211 BUG_ON(rq->migration_thread != current);
5213 set_current_state(TASK_INTERRUPTIBLE);
5214 while (!kthread_should_stop()) {
5215 struct migration_req *req;
5216 struct list_head *head;
5218 spin_lock_irq(&rq->lock);
5220 if (cpu_is_offline(cpu)) {
5221 spin_unlock_irq(&rq->lock);
5222 goto wait_to_die;
5225 if (rq->active_balance) {
5226 active_load_balance(rq, cpu);
5227 rq->active_balance = 0;
5230 head = &rq->migration_queue;
5232 if (list_empty(head)) {
5233 spin_unlock_irq(&rq->lock);
5234 schedule();
5235 set_current_state(TASK_INTERRUPTIBLE);
5236 continue;
5238 req = list_entry(head->next, struct migration_req, list);
5239 list_del_init(head->next);
5241 spin_unlock(&rq->lock);
5242 __migrate_task(req->task, cpu, req->dest_cpu);
5243 local_irq_enable();
5245 complete(&req->done);
5247 __set_current_state(TASK_RUNNING);
5248 return 0;
5250 wait_to_die:
5251 /* Wait for kthread_stop */
5252 set_current_state(TASK_INTERRUPTIBLE);
5253 while (!kthread_should_stop()) {
5254 schedule();
5255 set_current_state(TASK_INTERRUPTIBLE);
5257 __set_current_state(TASK_RUNNING);
5258 return 0;
5261 #ifdef CONFIG_HOTPLUG_CPU
5263 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5265 int ret;
5267 local_irq_disable();
5268 ret = __migrate_task(p, src_cpu, dest_cpu);
5269 local_irq_enable();
5270 return ret;
5274 * Figure out where task on dead CPU should go, use force if necessary.
5275 * NOTE: interrupts should be disabled by the caller
5277 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5279 unsigned long flags;
5280 cpumask_t mask;
5281 struct rq *rq;
5282 int dest_cpu;
5284 do {
5285 /* On same node? */
5286 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5287 cpus_and(mask, mask, p->cpus_allowed);
5288 dest_cpu = any_online_cpu(mask);
5290 /* On any allowed CPU? */
5291 if (dest_cpu == NR_CPUS)
5292 dest_cpu = any_online_cpu(p->cpus_allowed);
5294 /* No more Mr. Nice Guy. */
5295 if (dest_cpu == NR_CPUS) {
5296 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5298 * Try to stay on the same cpuset, where the
5299 * current cpuset may be a subset of all cpus.
5300 * The cpuset_cpus_allowed_locked() variant of
5301 * cpuset_cpus_allowed() will not block. It must be
5302 * called within calls to cpuset_lock/cpuset_unlock.
5304 rq = task_rq_lock(p, &flags);
5305 p->cpus_allowed = cpus_allowed;
5306 dest_cpu = any_online_cpu(p->cpus_allowed);
5307 task_rq_unlock(rq, &flags);
5310 * Don't tell them about moving exiting tasks or
5311 * kernel threads (both mm NULL), since they never
5312 * leave kernel.
5314 if (p->mm && printk_ratelimit()) {
5315 printk(KERN_INFO "process %d (%s) no "
5316 "longer affine to cpu%d\n",
5317 task_pid_nr(p), p->comm, dead_cpu);
5320 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5324 * While a dead CPU has no uninterruptible tasks queued at this point,
5325 * it might still have a nonzero ->nr_uninterruptible counter, because
5326 * for performance reasons the counter is not stricly tracking tasks to
5327 * their home CPUs. So we just add the counter to another CPU's counter,
5328 * to keep the global sum constant after CPU-down:
5330 static void migrate_nr_uninterruptible(struct rq *rq_src)
5332 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5333 unsigned long flags;
5335 local_irq_save(flags);
5336 double_rq_lock(rq_src, rq_dest);
5337 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5338 rq_src->nr_uninterruptible = 0;
5339 double_rq_unlock(rq_src, rq_dest);
5340 local_irq_restore(flags);
5343 /* Run through task list and migrate tasks from the dead cpu. */
5344 static void migrate_live_tasks(int src_cpu)
5346 struct task_struct *p, *t;
5348 read_lock(&tasklist_lock);
5350 do_each_thread(t, p) {
5351 if (p == current)
5352 continue;
5354 if (task_cpu(p) == src_cpu)
5355 move_task_off_dead_cpu(src_cpu, p);
5356 } while_each_thread(t, p);
5358 read_unlock(&tasklist_lock);
5362 * Schedules idle task to be the next runnable task on current CPU.
5363 * It does so by boosting its priority to highest possible.
5364 * Used by CPU offline code.
5366 void sched_idle_next(void)
5368 int this_cpu = smp_processor_id();
5369 struct rq *rq = cpu_rq(this_cpu);
5370 struct task_struct *p = rq->idle;
5371 unsigned long flags;
5373 /* cpu has to be offline */
5374 BUG_ON(cpu_online(this_cpu));
5377 * Strictly not necessary since rest of the CPUs are stopped by now
5378 * and interrupts disabled on the current cpu.
5380 spin_lock_irqsave(&rq->lock, flags);
5382 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5384 update_rq_clock(rq);
5385 activate_task(rq, p, 0);
5387 spin_unlock_irqrestore(&rq->lock, flags);
5391 * Ensures that the idle task is using init_mm right before its cpu goes
5392 * offline.
5394 void idle_task_exit(void)
5396 struct mm_struct *mm = current->active_mm;
5398 BUG_ON(cpu_online(smp_processor_id()));
5400 if (mm != &init_mm)
5401 switch_mm(mm, &init_mm, current);
5402 mmdrop(mm);
5405 /* called under rq->lock with disabled interrupts */
5406 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5408 struct rq *rq = cpu_rq(dead_cpu);
5410 /* Must be exiting, otherwise would be on tasklist. */
5411 BUG_ON(!p->exit_state);
5413 /* Cannot have done final schedule yet: would have vanished. */
5414 BUG_ON(p->state == TASK_DEAD);
5416 get_task_struct(p);
5419 * Drop lock around migration; if someone else moves it,
5420 * that's OK. No task can be added to this CPU, so iteration is
5421 * fine.
5423 spin_unlock_irq(&rq->lock);
5424 move_task_off_dead_cpu(dead_cpu, p);
5425 spin_lock_irq(&rq->lock);
5427 put_task_struct(p);
5430 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5431 static void migrate_dead_tasks(unsigned int dead_cpu)
5433 struct rq *rq = cpu_rq(dead_cpu);
5434 struct task_struct *next;
5436 for ( ; ; ) {
5437 if (!rq->nr_running)
5438 break;
5439 update_rq_clock(rq);
5440 next = pick_next_task(rq, rq->curr);
5441 if (!next)
5442 break;
5443 migrate_dead(dead_cpu, next);
5447 #endif /* CONFIG_HOTPLUG_CPU */
5449 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5451 static struct ctl_table sd_ctl_dir[] = {
5453 .procname = "sched_domain",
5454 .mode = 0555,
5456 {0, },
5459 static struct ctl_table sd_ctl_root[] = {
5461 .ctl_name = CTL_KERN,
5462 .procname = "kernel",
5463 .mode = 0555,
5464 .child = sd_ctl_dir,
5466 {0, },
5469 static struct ctl_table *sd_alloc_ctl_entry(int n)
5471 struct ctl_table *entry =
5472 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5474 return entry;
5477 static void sd_free_ctl_entry(struct ctl_table **tablep)
5479 struct ctl_table *entry;
5482 * In the intermediate directories, both the child directory and
5483 * procname are dynamically allocated and could fail but the mode
5484 * will always be set. In the lowest directory the names are
5485 * static strings and all have proc handlers.
5487 for (entry = *tablep; entry->mode; entry++) {
5488 if (entry->child)
5489 sd_free_ctl_entry(&entry->child);
5490 if (entry->proc_handler == NULL)
5491 kfree(entry->procname);
5494 kfree(*tablep);
5495 *tablep = NULL;
5498 static void
5499 set_table_entry(struct ctl_table *entry,
5500 const char *procname, void *data, int maxlen,
5501 mode_t mode, proc_handler *proc_handler)
5503 entry->procname = procname;
5504 entry->data = data;
5505 entry->maxlen = maxlen;
5506 entry->mode = mode;
5507 entry->proc_handler = proc_handler;
5510 static struct ctl_table *
5511 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5513 struct ctl_table *table = sd_alloc_ctl_entry(12);
5515 if (table == NULL)
5516 return NULL;
5518 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5519 sizeof(long), 0644, proc_doulongvec_minmax);
5520 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5521 sizeof(long), 0644, proc_doulongvec_minmax);
5522 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5523 sizeof(int), 0644, proc_dointvec_minmax);
5524 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5525 sizeof(int), 0644, proc_dointvec_minmax);
5526 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5527 sizeof(int), 0644, proc_dointvec_minmax);
5528 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5529 sizeof(int), 0644, proc_dointvec_minmax);
5530 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5531 sizeof(int), 0644, proc_dointvec_minmax);
5532 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5533 sizeof(int), 0644, proc_dointvec_minmax);
5534 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5535 sizeof(int), 0644, proc_dointvec_minmax);
5536 set_table_entry(&table[9], "cache_nice_tries",
5537 &sd->cache_nice_tries,
5538 sizeof(int), 0644, proc_dointvec_minmax);
5539 set_table_entry(&table[10], "flags", &sd->flags,
5540 sizeof(int), 0644, proc_dointvec_minmax);
5541 /* &table[11] is terminator */
5543 return table;
5546 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5548 struct ctl_table *entry, *table;
5549 struct sched_domain *sd;
5550 int domain_num = 0, i;
5551 char buf[32];
5553 for_each_domain(cpu, sd)
5554 domain_num++;
5555 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5556 if (table == NULL)
5557 return NULL;
5559 i = 0;
5560 for_each_domain(cpu, sd) {
5561 snprintf(buf, 32, "domain%d", i);
5562 entry->procname = kstrdup(buf, GFP_KERNEL);
5563 entry->mode = 0555;
5564 entry->child = sd_alloc_ctl_domain_table(sd);
5565 entry++;
5566 i++;
5568 return table;
5571 static struct ctl_table_header *sd_sysctl_header;
5572 static void register_sched_domain_sysctl(void)
5574 int i, cpu_num = num_online_cpus();
5575 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5576 char buf[32];
5578 WARN_ON(sd_ctl_dir[0].child);
5579 sd_ctl_dir[0].child = entry;
5581 if (entry == NULL)
5582 return;
5584 for_each_online_cpu(i) {
5585 snprintf(buf, 32, "cpu%d", i);
5586 entry->procname = kstrdup(buf, GFP_KERNEL);
5587 entry->mode = 0555;
5588 entry->child = sd_alloc_ctl_cpu_table(i);
5589 entry++;
5592 WARN_ON(sd_sysctl_header);
5593 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5596 /* may be called multiple times per register */
5597 static void unregister_sched_domain_sysctl(void)
5599 if (sd_sysctl_header)
5600 unregister_sysctl_table(sd_sysctl_header);
5601 sd_sysctl_header = NULL;
5602 if (sd_ctl_dir[0].child)
5603 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5605 #else
5606 static void register_sched_domain_sysctl(void)
5609 static void unregister_sched_domain_sysctl(void)
5612 #endif
5615 * migration_call - callback that gets triggered when a CPU is added.
5616 * Here we can start up the necessary migration thread for the new CPU.
5618 static int __cpuinit
5619 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5621 struct task_struct *p;
5622 int cpu = (long)hcpu;
5623 unsigned long flags;
5624 struct rq *rq;
5626 switch (action) {
5628 case CPU_UP_PREPARE:
5629 case CPU_UP_PREPARE_FROZEN:
5630 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5631 if (IS_ERR(p))
5632 return NOTIFY_BAD;
5633 kthread_bind(p, cpu);
5634 /* Must be high prio: stop_machine expects to yield to it. */
5635 rq = task_rq_lock(p, &flags);
5636 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5637 task_rq_unlock(rq, &flags);
5638 cpu_rq(cpu)->migration_thread = p;
5639 break;
5641 case CPU_ONLINE:
5642 case CPU_ONLINE_FROZEN:
5643 /* Strictly unnecessary, as first user will wake it. */
5644 wake_up_process(cpu_rq(cpu)->migration_thread);
5645 break;
5647 #ifdef CONFIG_HOTPLUG_CPU
5648 case CPU_UP_CANCELED:
5649 case CPU_UP_CANCELED_FROZEN:
5650 if (!cpu_rq(cpu)->migration_thread)
5651 break;
5652 /* Unbind it from offline cpu so it can run. Fall thru. */
5653 kthread_bind(cpu_rq(cpu)->migration_thread,
5654 any_online_cpu(cpu_online_map));
5655 kthread_stop(cpu_rq(cpu)->migration_thread);
5656 cpu_rq(cpu)->migration_thread = NULL;
5657 break;
5659 case CPU_DEAD:
5660 case CPU_DEAD_FROZEN:
5661 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5662 migrate_live_tasks(cpu);
5663 rq = cpu_rq(cpu);
5664 kthread_stop(rq->migration_thread);
5665 rq->migration_thread = NULL;
5666 /* Idle task back to normal (off runqueue, low prio) */
5667 spin_lock_irq(&rq->lock);
5668 update_rq_clock(rq);
5669 deactivate_task(rq, rq->idle, 0);
5670 rq->idle->static_prio = MAX_PRIO;
5671 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5672 rq->idle->sched_class = &idle_sched_class;
5673 migrate_dead_tasks(cpu);
5674 spin_unlock_irq(&rq->lock);
5675 cpuset_unlock();
5676 migrate_nr_uninterruptible(rq);
5677 BUG_ON(rq->nr_running != 0);
5680 * No need to migrate the tasks: it was best-effort if
5681 * they didn't take sched_hotcpu_mutex. Just wake up
5682 * the requestors.
5684 spin_lock_irq(&rq->lock);
5685 while (!list_empty(&rq->migration_queue)) {
5686 struct migration_req *req;
5688 req = list_entry(rq->migration_queue.next,
5689 struct migration_req, list);
5690 list_del_init(&req->list);
5691 complete(&req->done);
5693 spin_unlock_irq(&rq->lock);
5694 break;
5695 #endif
5697 return NOTIFY_OK;
5700 /* Register at highest priority so that task migration (migrate_all_tasks)
5701 * happens before everything else.
5703 static struct notifier_block __cpuinitdata migration_notifier = {
5704 .notifier_call = migration_call,
5705 .priority = 10
5708 void __init migration_init(void)
5710 void *cpu = (void *)(long)smp_processor_id();
5711 int err;
5713 /* Start one for the boot CPU: */
5714 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5715 BUG_ON(err == NOTIFY_BAD);
5716 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5717 register_cpu_notifier(&migration_notifier);
5719 #endif
5721 #ifdef CONFIG_SMP
5723 /* Number of possible processor ids */
5724 int nr_cpu_ids __read_mostly = NR_CPUS;
5725 EXPORT_SYMBOL(nr_cpu_ids);
5727 #ifdef CONFIG_SCHED_DEBUG
5729 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5731 struct sched_group *group = sd->groups;
5732 cpumask_t groupmask;
5733 char str[NR_CPUS];
5735 cpumask_scnprintf(str, NR_CPUS, sd->span);
5736 cpus_clear(groupmask);
5738 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5740 if (!(sd->flags & SD_LOAD_BALANCE)) {
5741 printk("does not load-balance\n");
5742 if (sd->parent)
5743 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5744 " has parent");
5745 return -1;
5748 printk(KERN_CONT "span %s\n", str);
5750 if (!cpu_isset(cpu, sd->span)) {
5751 printk(KERN_ERR "ERROR: domain->span does not contain "
5752 "CPU%d\n", cpu);
5754 if (!cpu_isset(cpu, group->cpumask)) {
5755 printk(KERN_ERR "ERROR: domain->groups does not contain"
5756 " CPU%d\n", cpu);
5759 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5760 do {
5761 if (!group) {
5762 printk("\n");
5763 printk(KERN_ERR "ERROR: group is NULL\n");
5764 break;
5767 if (!group->__cpu_power) {
5768 printk(KERN_CONT "\n");
5769 printk(KERN_ERR "ERROR: domain->cpu_power not "
5770 "set\n");
5771 break;
5774 if (!cpus_weight(group->cpumask)) {
5775 printk(KERN_CONT "\n");
5776 printk(KERN_ERR "ERROR: empty group\n");
5777 break;
5780 if (cpus_intersects(groupmask, group->cpumask)) {
5781 printk(KERN_CONT "\n");
5782 printk(KERN_ERR "ERROR: repeated CPUs\n");
5783 break;
5786 cpus_or(groupmask, groupmask, group->cpumask);
5788 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5789 printk(KERN_CONT " %s", str);
5791 group = group->next;
5792 } while (group != sd->groups);
5793 printk(KERN_CONT "\n");
5795 if (!cpus_equal(sd->span, groupmask))
5796 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5798 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5799 printk(KERN_ERR "ERROR: parent span is not a superset "
5800 "of domain->span\n");
5801 return 0;
5804 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5806 int level = 0;
5808 if (!sd) {
5809 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5810 return;
5813 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5815 for (;;) {
5816 if (sched_domain_debug_one(sd, cpu, level))
5817 break;
5818 level++;
5819 sd = sd->parent;
5820 if (!sd)
5821 break;
5824 #else
5825 # define sched_domain_debug(sd, cpu) do { } while (0)
5826 #endif
5828 static int sd_degenerate(struct sched_domain *sd)
5830 if (cpus_weight(sd->span) == 1)
5831 return 1;
5833 /* Following flags need at least 2 groups */
5834 if (sd->flags & (SD_LOAD_BALANCE |
5835 SD_BALANCE_NEWIDLE |
5836 SD_BALANCE_FORK |
5837 SD_BALANCE_EXEC |
5838 SD_SHARE_CPUPOWER |
5839 SD_SHARE_PKG_RESOURCES)) {
5840 if (sd->groups != sd->groups->next)
5841 return 0;
5844 /* Following flags don't use groups */
5845 if (sd->flags & (SD_WAKE_IDLE |
5846 SD_WAKE_AFFINE |
5847 SD_WAKE_BALANCE))
5848 return 0;
5850 return 1;
5853 static int
5854 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5856 unsigned long cflags = sd->flags, pflags = parent->flags;
5858 if (sd_degenerate(parent))
5859 return 1;
5861 if (!cpus_equal(sd->span, parent->span))
5862 return 0;
5864 /* Does parent contain flags not in child? */
5865 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5866 if (cflags & SD_WAKE_AFFINE)
5867 pflags &= ~SD_WAKE_BALANCE;
5868 /* Flags needing groups don't count if only 1 group in parent */
5869 if (parent->groups == parent->groups->next) {
5870 pflags &= ~(SD_LOAD_BALANCE |
5871 SD_BALANCE_NEWIDLE |
5872 SD_BALANCE_FORK |
5873 SD_BALANCE_EXEC |
5874 SD_SHARE_CPUPOWER |
5875 SD_SHARE_PKG_RESOURCES);
5877 if (~cflags & pflags)
5878 return 0;
5880 return 1;
5884 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5885 * hold the hotplug lock.
5887 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5889 struct rq *rq = cpu_rq(cpu);
5890 struct sched_domain *tmp;
5892 /* Remove the sched domains which do not contribute to scheduling. */
5893 for (tmp = sd; tmp; tmp = tmp->parent) {
5894 struct sched_domain *parent = tmp->parent;
5895 if (!parent)
5896 break;
5897 if (sd_parent_degenerate(tmp, parent)) {
5898 tmp->parent = parent->parent;
5899 if (parent->parent)
5900 parent->parent->child = tmp;
5904 if (sd && sd_degenerate(sd)) {
5905 sd = sd->parent;
5906 if (sd)
5907 sd->child = NULL;
5910 sched_domain_debug(sd, cpu);
5912 rcu_assign_pointer(rq->sd, sd);
5915 /* cpus with isolated domains */
5916 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5918 /* Setup the mask of cpus configured for isolated domains */
5919 static int __init isolated_cpu_setup(char *str)
5921 int ints[NR_CPUS], i;
5923 str = get_options(str, ARRAY_SIZE(ints), ints);
5924 cpus_clear(cpu_isolated_map);
5925 for (i = 1; i <= ints[0]; i++)
5926 if (ints[i] < NR_CPUS)
5927 cpu_set(ints[i], cpu_isolated_map);
5928 return 1;
5931 __setup("isolcpus=", isolated_cpu_setup);
5934 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5935 * to a function which identifies what group(along with sched group) a CPU
5936 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5937 * (due to the fact that we keep track of groups covered with a cpumask_t).
5939 * init_sched_build_groups will build a circular linked list of the groups
5940 * covered by the given span, and will set each group's ->cpumask correctly,
5941 * and ->cpu_power to 0.
5943 static void
5944 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5945 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5946 struct sched_group **sg))
5948 struct sched_group *first = NULL, *last = NULL;
5949 cpumask_t covered = CPU_MASK_NONE;
5950 int i;
5952 for_each_cpu_mask(i, span) {
5953 struct sched_group *sg;
5954 int group = group_fn(i, cpu_map, &sg);
5955 int j;
5957 if (cpu_isset(i, covered))
5958 continue;
5960 sg->cpumask = CPU_MASK_NONE;
5961 sg->__cpu_power = 0;
5963 for_each_cpu_mask(j, span) {
5964 if (group_fn(j, cpu_map, NULL) != group)
5965 continue;
5967 cpu_set(j, covered);
5968 cpu_set(j, sg->cpumask);
5970 if (!first)
5971 first = sg;
5972 if (last)
5973 last->next = sg;
5974 last = sg;
5976 last->next = first;
5979 #define SD_NODES_PER_DOMAIN 16
5981 #ifdef CONFIG_NUMA
5984 * find_next_best_node - find the next node to include in a sched_domain
5985 * @node: node whose sched_domain we're building
5986 * @used_nodes: nodes already in the sched_domain
5988 * Find the next node to include in a given scheduling domain. Simply
5989 * finds the closest node not already in the @used_nodes map.
5991 * Should use nodemask_t.
5993 static int find_next_best_node(int node, unsigned long *used_nodes)
5995 int i, n, val, min_val, best_node = 0;
5997 min_val = INT_MAX;
5999 for (i = 0; i < MAX_NUMNODES; i++) {
6000 /* Start at @node */
6001 n = (node + i) % MAX_NUMNODES;
6003 if (!nr_cpus_node(n))
6004 continue;
6006 /* Skip already used nodes */
6007 if (test_bit(n, used_nodes))
6008 continue;
6010 /* Simple min distance search */
6011 val = node_distance(node, n);
6013 if (val < min_val) {
6014 min_val = val;
6015 best_node = n;
6019 set_bit(best_node, used_nodes);
6020 return best_node;
6024 * sched_domain_node_span - get a cpumask for a node's sched_domain
6025 * @node: node whose cpumask we're constructing
6026 * @size: number of nodes to include in this span
6028 * Given a node, construct a good cpumask for its sched_domain to span. It
6029 * should be one that prevents unnecessary balancing, but also spreads tasks
6030 * out optimally.
6032 static cpumask_t sched_domain_node_span(int node)
6034 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6035 cpumask_t span, nodemask;
6036 int i;
6038 cpus_clear(span);
6039 bitmap_zero(used_nodes, MAX_NUMNODES);
6041 nodemask = node_to_cpumask(node);
6042 cpus_or(span, span, nodemask);
6043 set_bit(node, used_nodes);
6045 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6046 int next_node = find_next_best_node(node, used_nodes);
6048 nodemask = node_to_cpumask(next_node);
6049 cpus_or(span, span, nodemask);
6052 return span;
6054 #endif
6056 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6059 * SMT sched-domains:
6061 #ifdef CONFIG_SCHED_SMT
6062 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6063 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6065 static int
6066 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6068 if (sg)
6069 *sg = &per_cpu(sched_group_cpus, cpu);
6070 return cpu;
6072 #endif
6075 * multi-core sched-domains:
6077 #ifdef CONFIG_SCHED_MC
6078 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6079 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6080 #endif
6082 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6083 static int
6084 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6086 int group;
6087 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6088 cpus_and(mask, mask, *cpu_map);
6089 group = first_cpu(mask);
6090 if (sg)
6091 *sg = &per_cpu(sched_group_core, group);
6092 return group;
6094 #elif defined(CONFIG_SCHED_MC)
6095 static int
6096 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6098 if (sg)
6099 *sg = &per_cpu(sched_group_core, cpu);
6100 return cpu;
6102 #endif
6104 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6105 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6107 static int
6108 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6110 int group;
6111 #ifdef CONFIG_SCHED_MC
6112 cpumask_t mask = cpu_coregroup_map(cpu);
6113 cpus_and(mask, mask, *cpu_map);
6114 group = first_cpu(mask);
6115 #elif defined(CONFIG_SCHED_SMT)
6116 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6117 cpus_and(mask, mask, *cpu_map);
6118 group = first_cpu(mask);
6119 #else
6120 group = cpu;
6121 #endif
6122 if (sg)
6123 *sg = &per_cpu(sched_group_phys, group);
6124 return group;
6127 #ifdef CONFIG_NUMA
6129 * The init_sched_build_groups can't handle what we want to do with node
6130 * groups, so roll our own. Now each node has its own list of groups which
6131 * gets dynamically allocated.
6133 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6134 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6136 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6137 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6139 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6140 struct sched_group **sg)
6142 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6143 int group;
6145 cpus_and(nodemask, nodemask, *cpu_map);
6146 group = first_cpu(nodemask);
6148 if (sg)
6149 *sg = &per_cpu(sched_group_allnodes, group);
6150 return group;
6153 static void init_numa_sched_groups_power(struct sched_group *group_head)
6155 struct sched_group *sg = group_head;
6156 int j;
6158 if (!sg)
6159 return;
6160 do {
6161 for_each_cpu_mask(j, sg->cpumask) {
6162 struct sched_domain *sd;
6164 sd = &per_cpu(phys_domains, j);
6165 if (j != first_cpu(sd->groups->cpumask)) {
6167 * Only add "power" once for each
6168 * physical package.
6170 continue;
6173 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6175 sg = sg->next;
6176 } while (sg != group_head);
6178 #endif
6180 #ifdef CONFIG_NUMA
6181 /* Free memory allocated for various sched_group structures */
6182 static void free_sched_groups(const cpumask_t *cpu_map)
6184 int cpu, i;
6186 for_each_cpu_mask(cpu, *cpu_map) {
6187 struct sched_group **sched_group_nodes
6188 = sched_group_nodes_bycpu[cpu];
6190 if (!sched_group_nodes)
6191 continue;
6193 for (i = 0; i < MAX_NUMNODES; i++) {
6194 cpumask_t nodemask = node_to_cpumask(i);
6195 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6197 cpus_and(nodemask, nodemask, *cpu_map);
6198 if (cpus_empty(nodemask))
6199 continue;
6201 if (sg == NULL)
6202 continue;
6203 sg = sg->next;
6204 next_sg:
6205 oldsg = sg;
6206 sg = sg->next;
6207 kfree(oldsg);
6208 if (oldsg != sched_group_nodes[i])
6209 goto next_sg;
6211 kfree(sched_group_nodes);
6212 sched_group_nodes_bycpu[cpu] = NULL;
6215 #else
6216 static void free_sched_groups(const cpumask_t *cpu_map)
6219 #endif
6222 * Initialize sched groups cpu_power.
6224 * cpu_power indicates the capacity of sched group, which is used while
6225 * distributing the load between different sched groups in a sched domain.
6226 * Typically cpu_power for all the groups in a sched domain will be same unless
6227 * there are asymmetries in the topology. If there are asymmetries, group
6228 * having more cpu_power will pickup more load compared to the group having
6229 * less cpu_power.
6231 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6232 * the maximum number of tasks a group can handle in the presence of other idle
6233 * or lightly loaded groups in the same sched domain.
6235 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6237 struct sched_domain *child;
6238 struct sched_group *group;
6240 WARN_ON(!sd || !sd->groups);
6242 if (cpu != first_cpu(sd->groups->cpumask))
6243 return;
6245 child = sd->child;
6247 sd->groups->__cpu_power = 0;
6250 * For perf policy, if the groups in child domain share resources
6251 * (for example cores sharing some portions of the cache hierarchy
6252 * or SMT), then set this domain groups cpu_power such that each group
6253 * can handle only one task, when there are other idle groups in the
6254 * same sched domain.
6256 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6257 (child->flags &
6258 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6259 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6260 return;
6264 * add cpu_power of each child group to this groups cpu_power
6266 group = child->groups;
6267 do {
6268 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6269 group = group->next;
6270 } while (group != child->groups);
6274 * Build sched domains for a given set of cpus and attach the sched domains
6275 * to the individual cpus
6277 static int build_sched_domains(const cpumask_t *cpu_map)
6279 int i;
6280 #ifdef CONFIG_NUMA
6281 struct sched_group **sched_group_nodes = NULL;
6282 int sd_allnodes = 0;
6285 * Allocate the per-node list of sched groups
6287 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6288 GFP_KERNEL);
6289 if (!sched_group_nodes) {
6290 printk(KERN_WARNING "Can not alloc sched group node list\n");
6291 return -ENOMEM;
6293 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6294 #endif
6297 * Set up domains for cpus specified by the cpu_map.
6299 for_each_cpu_mask(i, *cpu_map) {
6300 struct sched_domain *sd = NULL, *p;
6301 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6303 cpus_and(nodemask, nodemask, *cpu_map);
6305 #ifdef CONFIG_NUMA
6306 if (cpus_weight(*cpu_map) >
6307 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6308 sd = &per_cpu(allnodes_domains, i);
6309 *sd = SD_ALLNODES_INIT;
6310 sd->span = *cpu_map;
6311 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6312 p = sd;
6313 sd_allnodes = 1;
6314 } else
6315 p = NULL;
6317 sd = &per_cpu(node_domains, i);
6318 *sd = SD_NODE_INIT;
6319 sd->span = sched_domain_node_span(cpu_to_node(i));
6320 sd->parent = p;
6321 if (p)
6322 p->child = sd;
6323 cpus_and(sd->span, sd->span, *cpu_map);
6324 #endif
6326 p = sd;
6327 sd = &per_cpu(phys_domains, i);
6328 *sd = SD_CPU_INIT;
6329 sd->span = nodemask;
6330 sd->parent = p;
6331 if (p)
6332 p->child = sd;
6333 cpu_to_phys_group(i, cpu_map, &sd->groups);
6335 #ifdef CONFIG_SCHED_MC
6336 p = sd;
6337 sd = &per_cpu(core_domains, i);
6338 *sd = SD_MC_INIT;
6339 sd->span = cpu_coregroup_map(i);
6340 cpus_and(sd->span, sd->span, *cpu_map);
6341 sd->parent = p;
6342 p->child = sd;
6343 cpu_to_core_group(i, cpu_map, &sd->groups);
6344 #endif
6346 #ifdef CONFIG_SCHED_SMT
6347 p = sd;
6348 sd = &per_cpu(cpu_domains, i);
6349 *sd = SD_SIBLING_INIT;
6350 sd->span = per_cpu(cpu_sibling_map, i);
6351 cpus_and(sd->span, sd->span, *cpu_map);
6352 sd->parent = p;
6353 p->child = sd;
6354 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6355 #endif
6358 #ifdef CONFIG_SCHED_SMT
6359 /* Set up CPU (sibling) groups */
6360 for_each_cpu_mask(i, *cpu_map) {
6361 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6362 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6363 if (i != first_cpu(this_sibling_map))
6364 continue;
6366 init_sched_build_groups(this_sibling_map, cpu_map,
6367 &cpu_to_cpu_group);
6369 #endif
6371 #ifdef CONFIG_SCHED_MC
6372 /* Set up multi-core groups */
6373 for_each_cpu_mask(i, *cpu_map) {
6374 cpumask_t this_core_map = cpu_coregroup_map(i);
6375 cpus_and(this_core_map, this_core_map, *cpu_map);
6376 if (i != first_cpu(this_core_map))
6377 continue;
6378 init_sched_build_groups(this_core_map, cpu_map,
6379 &cpu_to_core_group);
6381 #endif
6383 /* Set up physical groups */
6384 for (i = 0; i < MAX_NUMNODES; i++) {
6385 cpumask_t nodemask = node_to_cpumask(i);
6387 cpus_and(nodemask, nodemask, *cpu_map);
6388 if (cpus_empty(nodemask))
6389 continue;
6391 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6394 #ifdef CONFIG_NUMA
6395 /* Set up node groups */
6396 if (sd_allnodes)
6397 init_sched_build_groups(*cpu_map, cpu_map,
6398 &cpu_to_allnodes_group);
6400 for (i = 0; i < MAX_NUMNODES; i++) {
6401 /* Set up node groups */
6402 struct sched_group *sg, *prev;
6403 cpumask_t nodemask = node_to_cpumask(i);
6404 cpumask_t domainspan;
6405 cpumask_t covered = CPU_MASK_NONE;
6406 int j;
6408 cpus_and(nodemask, nodemask, *cpu_map);
6409 if (cpus_empty(nodemask)) {
6410 sched_group_nodes[i] = NULL;
6411 continue;
6414 domainspan = sched_domain_node_span(i);
6415 cpus_and(domainspan, domainspan, *cpu_map);
6417 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6418 if (!sg) {
6419 printk(KERN_WARNING "Can not alloc domain group for "
6420 "node %d\n", i);
6421 goto error;
6423 sched_group_nodes[i] = sg;
6424 for_each_cpu_mask(j, nodemask) {
6425 struct sched_domain *sd;
6427 sd = &per_cpu(node_domains, j);
6428 sd->groups = sg;
6430 sg->__cpu_power = 0;
6431 sg->cpumask = nodemask;
6432 sg->next = sg;
6433 cpus_or(covered, covered, nodemask);
6434 prev = sg;
6436 for (j = 0; j < MAX_NUMNODES; j++) {
6437 cpumask_t tmp, notcovered;
6438 int n = (i + j) % MAX_NUMNODES;
6440 cpus_complement(notcovered, covered);
6441 cpus_and(tmp, notcovered, *cpu_map);
6442 cpus_and(tmp, tmp, domainspan);
6443 if (cpus_empty(tmp))
6444 break;
6446 nodemask = node_to_cpumask(n);
6447 cpus_and(tmp, tmp, nodemask);
6448 if (cpus_empty(tmp))
6449 continue;
6451 sg = kmalloc_node(sizeof(struct sched_group),
6452 GFP_KERNEL, i);
6453 if (!sg) {
6454 printk(KERN_WARNING
6455 "Can not alloc domain group for node %d\n", j);
6456 goto error;
6458 sg->__cpu_power = 0;
6459 sg->cpumask = tmp;
6460 sg->next = prev->next;
6461 cpus_or(covered, covered, tmp);
6462 prev->next = sg;
6463 prev = sg;
6466 #endif
6468 /* Calculate CPU power for physical packages and nodes */
6469 #ifdef CONFIG_SCHED_SMT
6470 for_each_cpu_mask(i, *cpu_map) {
6471 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6473 init_sched_groups_power(i, sd);
6475 #endif
6476 #ifdef CONFIG_SCHED_MC
6477 for_each_cpu_mask(i, *cpu_map) {
6478 struct sched_domain *sd = &per_cpu(core_domains, i);
6480 init_sched_groups_power(i, sd);
6482 #endif
6484 for_each_cpu_mask(i, *cpu_map) {
6485 struct sched_domain *sd = &per_cpu(phys_domains, i);
6487 init_sched_groups_power(i, sd);
6490 #ifdef CONFIG_NUMA
6491 for (i = 0; i < MAX_NUMNODES; i++)
6492 init_numa_sched_groups_power(sched_group_nodes[i]);
6494 if (sd_allnodes) {
6495 struct sched_group *sg;
6497 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6498 init_numa_sched_groups_power(sg);
6500 #endif
6502 /* Attach the domains */
6503 for_each_cpu_mask(i, *cpu_map) {
6504 struct sched_domain *sd;
6505 #ifdef CONFIG_SCHED_SMT
6506 sd = &per_cpu(cpu_domains, i);
6507 #elif defined(CONFIG_SCHED_MC)
6508 sd = &per_cpu(core_domains, i);
6509 #else
6510 sd = &per_cpu(phys_domains, i);
6511 #endif
6512 cpu_attach_domain(sd, i);
6515 return 0;
6517 #ifdef CONFIG_NUMA
6518 error:
6519 free_sched_groups(cpu_map);
6520 return -ENOMEM;
6521 #endif
6524 static cpumask_t *doms_cur; /* current sched domains */
6525 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6528 * Special case: If a kmalloc of a doms_cur partition (array of
6529 * cpumask_t) fails, then fallback to a single sched domain,
6530 * as determined by the single cpumask_t fallback_doms.
6532 static cpumask_t fallback_doms;
6535 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6536 * For now this just excludes isolated cpus, but could be used to
6537 * exclude other special cases in the future.
6539 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6541 int err;
6543 ndoms_cur = 1;
6544 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6545 if (!doms_cur)
6546 doms_cur = &fallback_doms;
6547 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6548 err = build_sched_domains(doms_cur);
6549 register_sched_domain_sysctl();
6551 return err;
6554 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6556 free_sched_groups(cpu_map);
6560 * Detach sched domains from a group of cpus specified in cpu_map
6561 * These cpus will now be attached to the NULL domain
6563 static void detach_destroy_domains(const cpumask_t *cpu_map)
6565 int i;
6567 unregister_sched_domain_sysctl();
6569 for_each_cpu_mask(i, *cpu_map)
6570 cpu_attach_domain(NULL, i);
6571 synchronize_sched();
6572 arch_destroy_sched_domains(cpu_map);
6576 * Partition sched domains as specified by the 'ndoms_new'
6577 * cpumasks in the array doms_new[] of cpumasks. This compares
6578 * doms_new[] to the current sched domain partitioning, doms_cur[].
6579 * It destroys each deleted domain and builds each new domain.
6581 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6582 * The masks don't intersect (don't overlap.) We should setup one
6583 * sched domain for each mask. CPUs not in any of the cpumasks will
6584 * not be load balanced. If the same cpumask appears both in the
6585 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6586 * it as it is.
6588 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6589 * ownership of it and will kfree it when done with it. If the caller
6590 * failed the kmalloc call, then it can pass in doms_new == NULL,
6591 * and partition_sched_domains() will fallback to the single partition
6592 * 'fallback_doms'.
6594 * Call with hotplug lock held
6596 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6598 int i, j;
6600 lock_doms_cur();
6602 /* always unregister in case we don't destroy any domains */
6603 unregister_sched_domain_sysctl();
6605 if (doms_new == NULL) {
6606 ndoms_new = 1;
6607 doms_new = &fallback_doms;
6608 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6611 /* Destroy deleted domains */
6612 for (i = 0; i < ndoms_cur; i++) {
6613 for (j = 0; j < ndoms_new; j++) {
6614 if (cpus_equal(doms_cur[i], doms_new[j]))
6615 goto match1;
6617 /* no match - a current sched domain not in new doms_new[] */
6618 detach_destroy_domains(doms_cur + i);
6619 match1:
6623 /* Build new domains */
6624 for (i = 0; i < ndoms_new; i++) {
6625 for (j = 0; j < ndoms_cur; j++) {
6626 if (cpus_equal(doms_new[i], doms_cur[j]))
6627 goto match2;
6629 /* no match - add a new doms_new */
6630 build_sched_domains(doms_new + i);
6631 match2:
6635 /* Remember the new sched domains */
6636 if (doms_cur != &fallback_doms)
6637 kfree(doms_cur);
6638 doms_cur = doms_new;
6639 ndoms_cur = ndoms_new;
6641 register_sched_domain_sysctl();
6643 unlock_doms_cur();
6646 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6647 static int arch_reinit_sched_domains(void)
6649 int err;
6651 get_online_cpus();
6652 detach_destroy_domains(&cpu_online_map);
6653 err = arch_init_sched_domains(&cpu_online_map);
6654 put_online_cpus();
6656 return err;
6659 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6661 int ret;
6663 if (buf[0] != '0' && buf[0] != '1')
6664 return -EINVAL;
6666 if (smt)
6667 sched_smt_power_savings = (buf[0] == '1');
6668 else
6669 sched_mc_power_savings = (buf[0] == '1');
6671 ret = arch_reinit_sched_domains();
6673 return ret ? ret : count;
6676 #ifdef CONFIG_SCHED_MC
6677 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6679 return sprintf(page, "%u\n", sched_mc_power_savings);
6681 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6682 const char *buf, size_t count)
6684 return sched_power_savings_store(buf, count, 0);
6686 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6687 sched_mc_power_savings_store);
6688 #endif
6690 #ifdef CONFIG_SCHED_SMT
6691 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6693 return sprintf(page, "%u\n", sched_smt_power_savings);
6695 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6696 const char *buf, size_t count)
6698 return sched_power_savings_store(buf, count, 1);
6700 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6701 sched_smt_power_savings_store);
6702 #endif
6704 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6706 int err = 0;
6708 #ifdef CONFIG_SCHED_SMT
6709 if (smt_capable())
6710 err = sysfs_create_file(&cls->kset.kobj,
6711 &attr_sched_smt_power_savings.attr);
6712 #endif
6713 #ifdef CONFIG_SCHED_MC
6714 if (!err && mc_capable())
6715 err = sysfs_create_file(&cls->kset.kobj,
6716 &attr_sched_mc_power_savings.attr);
6717 #endif
6718 return err;
6720 #endif
6723 * Force a reinitialization of the sched domains hierarchy. The domains
6724 * and groups cannot be updated in place without racing with the balancing
6725 * code, so we temporarily attach all running cpus to the NULL domain
6726 * which will prevent rebalancing while the sched domains are recalculated.
6728 static int update_sched_domains(struct notifier_block *nfb,
6729 unsigned long action, void *hcpu)
6731 switch (action) {
6732 case CPU_UP_PREPARE:
6733 case CPU_UP_PREPARE_FROZEN:
6734 case CPU_DOWN_PREPARE:
6735 case CPU_DOWN_PREPARE_FROZEN:
6736 detach_destroy_domains(&cpu_online_map);
6737 return NOTIFY_OK;
6739 case CPU_UP_CANCELED:
6740 case CPU_UP_CANCELED_FROZEN:
6741 case CPU_DOWN_FAILED:
6742 case CPU_DOWN_FAILED_FROZEN:
6743 case CPU_ONLINE:
6744 case CPU_ONLINE_FROZEN:
6745 case CPU_DEAD:
6746 case CPU_DEAD_FROZEN:
6748 * Fall through and re-initialise the domains.
6750 break;
6751 default:
6752 return NOTIFY_DONE;
6755 /* The hotplug lock is already held by cpu_up/cpu_down */
6756 arch_init_sched_domains(&cpu_online_map);
6758 return NOTIFY_OK;
6761 void __init sched_init_smp(void)
6763 cpumask_t non_isolated_cpus;
6765 get_online_cpus();
6766 arch_init_sched_domains(&cpu_online_map);
6767 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6768 if (cpus_empty(non_isolated_cpus))
6769 cpu_set(smp_processor_id(), non_isolated_cpus);
6770 put_online_cpus();
6771 /* XXX: Theoretical race here - CPU may be hotplugged now */
6772 hotcpu_notifier(update_sched_domains, 0);
6774 /* Move init over to a non-isolated CPU */
6775 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6776 BUG();
6777 sched_init_granularity();
6779 #ifdef CONFIG_FAIR_GROUP_SCHED
6780 if (nr_cpu_ids == 1)
6781 return;
6783 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6784 "group_balance");
6785 if (!IS_ERR(lb_monitor_task)) {
6786 lb_monitor_task->flags |= PF_NOFREEZE;
6787 wake_up_process(lb_monitor_task);
6788 } else {
6789 printk(KERN_ERR "Could not create load balance monitor thread"
6790 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6792 #endif
6794 #else
6795 void __init sched_init_smp(void)
6797 sched_init_granularity();
6799 #endif /* CONFIG_SMP */
6801 int in_sched_functions(unsigned long addr)
6803 return in_lock_functions(addr) ||
6804 (addr >= (unsigned long)__sched_text_start
6805 && addr < (unsigned long)__sched_text_end);
6808 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6810 cfs_rq->tasks_timeline = RB_ROOT;
6811 #ifdef CONFIG_FAIR_GROUP_SCHED
6812 cfs_rq->rq = rq;
6813 #endif
6814 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6817 void __init sched_init(void)
6819 int highest_cpu = 0;
6820 int i, j;
6822 for_each_possible_cpu(i) {
6823 struct rt_prio_array *array;
6824 struct rq *rq;
6826 rq = cpu_rq(i);
6827 spin_lock_init(&rq->lock);
6828 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6829 rq->nr_running = 0;
6830 rq->clock = 1;
6831 init_cfs_rq(&rq->cfs, rq);
6832 #ifdef CONFIG_FAIR_GROUP_SCHED
6833 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6835 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6836 struct sched_entity *se =
6837 &per_cpu(init_sched_entity, i);
6839 init_cfs_rq_p[i] = cfs_rq;
6840 init_cfs_rq(cfs_rq, rq);
6841 cfs_rq->tg = &init_task_group;
6842 list_add(&cfs_rq->leaf_cfs_rq_list,
6843 &rq->leaf_cfs_rq_list);
6845 init_sched_entity_p[i] = se;
6846 se->cfs_rq = &rq->cfs;
6847 se->my_q = cfs_rq;
6848 se->load.weight = init_task_group_load;
6849 se->load.inv_weight =
6850 div64_64(1ULL<<32, init_task_group_load);
6851 se->parent = NULL;
6853 init_task_group.shares = init_task_group_load;
6854 #endif
6856 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6857 rq->cpu_load[j] = 0;
6858 #ifdef CONFIG_SMP
6859 rq->sd = NULL;
6860 rq->active_balance = 0;
6861 rq->next_balance = jiffies;
6862 rq->push_cpu = 0;
6863 rq->cpu = i;
6864 rq->migration_thread = NULL;
6865 INIT_LIST_HEAD(&rq->migration_queue);
6866 #endif
6867 atomic_set(&rq->nr_iowait, 0);
6869 array = &rq->rt.active;
6870 for (j = 0; j < MAX_RT_PRIO; j++) {
6871 INIT_LIST_HEAD(array->queue + j);
6872 __clear_bit(j, array->bitmap);
6874 highest_cpu = i;
6875 /* delimiter for bitsearch: */
6876 __set_bit(MAX_RT_PRIO, array->bitmap);
6879 set_load_weight(&init_task);
6881 #ifdef CONFIG_PREEMPT_NOTIFIERS
6882 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6883 #endif
6885 #ifdef CONFIG_SMP
6886 nr_cpu_ids = highest_cpu + 1;
6887 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6888 #endif
6890 #ifdef CONFIG_RT_MUTEXES
6891 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6892 #endif
6895 * The boot idle thread does lazy MMU switching as well:
6897 atomic_inc(&init_mm.mm_count);
6898 enter_lazy_tlb(&init_mm, current);
6901 * Make us the idle thread. Technically, schedule() should not be
6902 * called from this thread, however somewhere below it might be,
6903 * but because we are the idle thread, we just pick up running again
6904 * when this runqueue becomes "idle".
6906 init_idle(current, smp_processor_id());
6908 * During early bootup we pretend to be a normal task:
6910 current->sched_class = &fair_sched_class;
6913 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6914 void __might_sleep(char *file, int line)
6916 #ifdef in_atomic
6917 static unsigned long prev_jiffy; /* ratelimiting */
6919 if ((in_atomic() || irqs_disabled()) &&
6920 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6921 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6922 return;
6923 prev_jiffy = jiffies;
6924 printk(KERN_ERR "BUG: sleeping function called from invalid"
6925 " context at %s:%d\n", file, line);
6926 printk("in_atomic():%d, irqs_disabled():%d\n",
6927 in_atomic(), irqs_disabled());
6928 debug_show_held_locks(current);
6929 if (irqs_disabled())
6930 print_irqtrace_events(current);
6931 dump_stack();
6933 #endif
6935 EXPORT_SYMBOL(__might_sleep);
6936 #endif
6938 #ifdef CONFIG_MAGIC_SYSRQ
6939 static void normalize_task(struct rq *rq, struct task_struct *p)
6941 int on_rq;
6942 update_rq_clock(rq);
6943 on_rq = p->se.on_rq;
6944 if (on_rq)
6945 deactivate_task(rq, p, 0);
6946 __setscheduler(rq, p, SCHED_NORMAL, 0);
6947 if (on_rq) {
6948 activate_task(rq, p, 0);
6949 resched_task(rq->curr);
6953 void normalize_rt_tasks(void)
6955 struct task_struct *g, *p;
6956 unsigned long flags;
6957 struct rq *rq;
6959 read_lock_irq(&tasklist_lock);
6960 do_each_thread(g, p) {
6962 * Only normalize user tasks:
6964 if (!p->mm)
6965 continue;
6967 p->se.exec_start = 0;
6968 #ifdef CONFIG_SCHEDSTATS
6969 p->se.wait_start = 0;
6970 p->se.sleep_start = 0;
6971 p->se.block_start = 0;
6972 #endif
6973 task_rq(p)->clock = 0;
6975 if (!rt_task(p)) {
6977 * Renice negative nice level userspace
6978 * tasks back to 0:
6980 if (TASK_NICE(p) < 0 && p->mm)
6981 set_user_nice(p, 0);
6982 continue;
6985 spin_lock_irqsave(&p->pi_lock, flags);
6986 rq = __task_rq_lock(p);
6988 normalize_task(rq, p);
6990 __task_rq_unlock(rq);
6991 spin_unlock_irqrestore(&p->pi_lock, flags);
6992 } while_each_thread(g, p);
6994 read_unlock_irq(&tasklist_lock);
6997 #endif /* CONFIG_MAGIC_SYSRQ */
6999 #ifdef CONFIG_IA64
7001 * These functions are only useful for the IA64 MCA handling.
7003 * They can only be called when the whole system has been
7004 * stopped - every CPU needs to be quiescent, and no scheduling
7005 * activity can take place. Using them for anything else would
7006 * be a serious bug, and as a result, they aren't even visible
7007 * under any other configuration.
7011 * curr_task - return the current task for a given cpu.
7012 * @cpu: the processor in question.
7014 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7016 struct task_struct *curr_task(int cpu)
7018 return cpu_curr(cpu);
7022 * set_curr_task - set the current task for a given cpu.
7023 * @cpu: the processor in question.
7024 * @p: the task pointer to set.
7026 * Description: This function must only be used when non-maskable interrupts
7027 * are serviced on a separate stack. It allows the architecture to switch the
7028 * notion of the current task on a cpu in a non-blocking manner. This function
7029 * must be called with all CPU's synchronized, and interrupts disabled, the
7030 * and caller must save the original value of the current task (see
7031 * curr_task() above) and restore that value before reenabling interrupts and
7032 * re-starting the system.
7034 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7036 void set_curr_task(int cpu, struct task_struct *p)
7038 cpu_curr(cpu) = p;
7041 #endif
7043 #ifdef CONFIG_FAIR_GROUP_SCHED
7045 #ifdef CONFIG_SMP
7047 * distribute shares of all task groups among their schedulable entities,
7048 * to reflect load distrbution across cpus.
7050 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7052 struct cfs_rq *cfs_rq;
7053 struct rq *rq = cpu_rq(this_cpu);
7054 cpumask_t sdspan = sd->span;
7055 int balanced = 1;
7057 /* Walk thr' all the task groups that we have */
7058 for_each_leaf_cfs_rq(rq, cfs_rq) {
7059 int i;
7060 unsigned long total_load = 0, total_shares;
7061 struct task_group *tg = cfs_rq->tg;
7063 /* Gather total task load of this group across cpus */
7064 for_each_cpu_mask(i, sdspan)
7065 total_load += tg->cfs_rq[i]->load.weight;
7067 /* Nothing to do if this group has no load */
7068 if (!total_load)
7069 continue;
7072 * tg->shares represents the number of cpu shares the task group
7073 * is eligible to hold on a single cpu. On N cpus, it is
7074 * eligible to hold (N * tg->shares) number of cpu shares.
7076 total_shares = tg->shares * cpus_weight(sdspan);
7079 * redistribute total_shares across cpus as per the task load
7080 * distribution.
7082 for_each_cpu_mask(i, sdspan) {
7083 unsigned long local_load, local_shares;
7085 local_load = tg->cfs_rq[i]->load.weight;
7086 local_shares = (local_load * total_shares) / total_load;
7087 if (!local_shares)
7088 local_shares = MIN_GROUP_SHARES;
7089 if (local_shares == tg->se[i]->load.weight)
7090 continue;
7092 spin_lock_irq(&cpu_rq(i)->lock);
7093 set_se_shares(tg->se[i], local_shares);
7094 spin_unlock_irq(&cpu_rq(i)->lock);
7095 balanced = 0;
7099 return balanced;
7103 * How frequently should we rebalance_shares() across cpus?
7105 * The more frequently we rebalance shares, the more accurate is the fairness
7106 * of cpu bandwidth distribution between task groups. However higher frequency
7107 * also implies increased scheduling overhead.
7109 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7110 * consecutive calls to rebalance_shares() in the same sched domain.
7112 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7113 * consecutive calls to rebalance_shares() in the same sched domain.
7115 * These settings allows for the appropriate tradeoff between accuracy of
7116 * fairness and the associated overhead.
7120 /* default: 8ms, units: milliseconds */
7121 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7123 /* default: 128ms, units: milliseconds */
7124 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7126 /* kernel thread that runs rebalance_shares() periodically */
7127 static int load_balance_monitor(void *unused)
7129 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7130 struct sched_param schedparm;
7131 int ret;
7134 * We don't want this thread's execution to be limited by the shares
7135 * assigned to default group (init_task_group). Hence make it run
7136 * as a SCHED_RR RT task at the lowest priority.
7138 schedparm.sched_priority = 1;
7139 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7140 if (ret)
7141 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7142 " monitor thread (error = %d) \n", ret);
7144 while (!kthread_should_stop()) {
7145 int i, cpu, balanced = 1;
7147 /* Prevent cpus going down or coming up */
7148 get_online_cpus();
7149 /* lockout changes to doms_cur[] array */
7150 lock_doms_cur();
7152 * Enter a rcu read-side critical section to safely walk rq->sd
7153 * chain on various cpus and to walk task group list
7154 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7156 rcu_read_lock();
7158 for (i = 0; i < ndoms_cur; i++) {
7159 cpumask_t cpumap = doms_cur[i];
7160 struct sched_domain *sd = NULL, *sd_prev = NULL;
7162 cpu = first_cpu(cpumap);
7164 /* Find the highest domain at which to balance shares */
7165 for_each_domain(cpu, sd) {
7166 if (!(sd->flags & SD_LOAD_BALANCE))
7167 continue;
7168 sd_prev = sd;
7171 sd = sd_prev;
7172 /* sd == NULL? No load balance reqd in this domain */
7173 if (!sd)
7174 continue;
7176 balanced &= rebalance_shares(sd, cpu);
7179 rcu_read_unlock();
7181 unlock_doms_cur();
7182 put_online_cpus();
7184 if (!balanced)
7185 timeout = sysctl_sched_min_bal_int_shares;
7186 else if (timeout < sysctl_sched_max_bal_int_shares)
7187 timeout *= 2;
7189 msleep_interruptible(timeout);
7192 return 0;
7194 #endif /* CONFIG_SMP */
7196 /* allocate runqueue etc for a new task group */
7197 struct task_group *sched_create_group(void)
7199 struct task_group *tg;
7200 struct cfs_rq *cfs_rq;
7201 struct sched_entity *se;
7202 struct rq *rq;
7203 int i;
7205 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7206 if (!tg)
7207 return ERR_PTR(-ENOMEM);
7209 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7210 if (!tg->cfs_rq)
7211 goto err;
7212 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7213 if (!tg->se)
7214 goto err;
7216 for_each_possible_cpu(i) {
7217 rq = cpu_rq(i);
7219 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7220 cpu_to_node(i));
7221 if (!cfs_rq)
7222 goto err;
7224 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7225 cpu_to_node(i));
7226 if (!se)
7227 goto err;
7229 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7230 memset(se, 0, sizeof(struct sched_entity));
7232 tg->cfs_rq[i] = cfs_rq;
7233 init_cfs_rq(cfs_rq, rq);
7234 cfs_rq->tg = tg;
7236 tg->se[i] = se;
7237 se->cfs_rq = &rq->cfs;
7238 se->my_q = cfs_rq;
7239 se->load.weight = NICE_0_LOAD;
7240 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7241 se->parent = NULL;
7244 tg->shares = NICE_0_LOAD;
7246 lock_task_group_list();
7247 for_each_possible_cpu(i) {
7248 rq = cpu_rq(i);
7249 cfs_rq = tg->cfs_rq[i];
7250 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7252 unlock_task_group_list();
7254 return tg;
7256 err:
7257 for_each_possible_cpu(i) {
7258 if (tg->cfs_rq)
7259 kfree(tg->cfs_rq[i]);
7260 if (tg->se)
7261 kfree(tg->se[i]);
7263 kfree(tg->cfs_rq);
7264 kfree(tg->se);
7265 kfree(tg);
7267 return ERR_PTR(-ENOMEM);
7270 /* rcu callback to free various structures associated with a task group */
7271 static void free_sched_group(struct rcu_head *rhp)
7273 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7274 struct cfs_rq *cfs_rq;
7275 struct sched_entity *se;
7276 int i;
7278 /* now it should be safe to free those cfs_rqs */
7279 for_each_possible_cpu(i) {
7280 cfs_rq = tg->cfs_rq[i];
7281 kfree(cfs_rq);
7283 se = tg->se[i];
7284 kfree(se);
7287 kfree(tg->cfs_rq);
7288 kfree(tg->se);
7289 kfree(tg);
7292 /* Destroy runqueue etc associated with a task group */
7293 void sched_destroy_group(struct task_group *tg)
7295 struct cfs_rq *cfs_rq = NULL;
7296 int i;
7298 lock_task_group_list();
7299 for_each_possible_cpu(i) {
7300 cfs_rq = tg->cfs_rq[i];
7301 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7303 unlock_task_group_list();
7305 BUG_ON(!cfs_rq);
7307 /* wait for possible concurrent references to cfs_rqs complete */
7308 call_rcu(&tg->rcu, free_sched_group);
7311 /* change task's runqueue when it moves between groups.
7312 * The caller of this function should have put the task in its new group
7313 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7314 * reflect its new group.
7316 void sched_move_task(struct task_struct *tsk)
7318 int on_rq, running;
7319 unsigned long flags;
7320 struct rq *rq;
7322 rq = task_rq_lock(tsk, &flags);
7324 if (tsk->sched_class != &fair_sched_class) {
7325 set_task_cfs_rq(tsk, task_cpu(tsk));
7326 goto done;
7329 update_rq_clock(rq);
7331 running = task_current(rq, tsk);
7332 on_rq = tsk->se.on_rq;
7334 if (on_rq) {
7335 dequeue_task(rq, tsk, 0);
7336 if (unlikely(running))
7337 tsk->sched_class->put_prev_task(rq, tsk);
7340 set_task_cfs_rq(tsk, task_cpu(tsk));
7342 if (on_rq) {
7343 if (unlikely(running))
7344 tsk->sched_class->set_curr_task(rq);
7345 enqueue_task(rq, tsk, 0);
7348 done:
7349 task_rq_unlock(rq, &flags);
7352 /* rq->lock to be locked by caller */
7353 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7355 struct cfs_rq *cfs_rq = se->cfs_rq;
7356 struct rq *rq = cfs_rq->rq;
7357 int on_rq;
7359 if (!shares)
7360 shares = MIN_GROUP_SHARES;
7362 on_rq = se->on_rq;
7363 if (on_rq) {
7364 dequeue_entity(cfs_rq, se, 0);
7365 dec_cpu_load(rq, se->load.weight);
7368 se->load.weight = shares;
7369 se->load.inv_weight = div64_64((1ULL<<32), shares);
7371 if (on_rq) {
7372 enqueue_entity(cfs_rq, se, 0);
7373 inc_cpu_load(rq, se->load.weight);
7377 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7379 int i;
7380 struct cfs_rq *cfs_rq;
7381 struct rq *rq;
7383 lock_task_group_list();
7384 if (tg->shares == shares)
7385 goto done;
7387 if (shares < MIN_GROUP_SHARES)
7388 shares = MIN_GROUP_SHARES;
7391 * Prevent any load balance activity (rebalance_shares,
7392 * load_balance_fair) from referring to this group first,
7393 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7395 for_each_possible_cpu(i) {
7396 cfs_rq = tg->cfs_rq[i];
7397 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7400 /* wait for any ongoing reference to this group to finish */
7401 synchronize_sched();
7404 * Now we are free to modify the group's share on each cpu
7405 * w/o tripping rebalance_share or load_balance_fair.
7407 tg->shares = shares;
7408 for_each_possible_cpu(i) {
7409 spin_lock_irq(&cpu_rq(i)->lock);
7410 set_se_shares(tg->se[i], shares);
7411 spin_unlock_irq(&cpu_rq(i)->lock);
7415 * Enable load balance activity on this group, by inserting it back on
7416 * each cpu's rq->leaf_cfs_rq_list.
7418 for_each_possible_cpu(i) {
7419 rq = cpu_rq(i);
7420 cfs_rq = tg->cfs_rq[i];
7421 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7423 done:
7424 unlock_task_group_list();
7425 return 0;
7428 unsigned long sched_group_shares(struct task_group *tg)
7430 return tg->shares;
7433 #endif /* CONFIG_FAIR_GROUP_SCHED */
7435 #ifdef CONFIG_FAIR_CGROUP_SCHED
7437 /* return corresponding task_group object of a cgroup */
7438 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7440 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7441 struct task_group, css);
7444 static struct cgroup_subsys_state *
7445 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7447 struct task_group *tg;
7449 if (!cgrp->parent) {
7450 /* This is early initialization for the top cgroup */
7451 init_task_group.css.cgroup = cgrp;
7452 return &init_task_group.css;
7455 /* we support only 1-level deep hierarchical scheduler atm */
7456 if (cgrp->parent->parent)
7457 return ERR_PTR(-EINVAL);
7459 tg = sched_create_group();
7460 if (IS_ERR(tg))
7461 return ERR_PTR(-ENOMEM);
7463 /* Bind the cgroup to task_group object we just created */
7464 tg->css.cgroup = cgrp;
7466 return &tg->css;
7469 static void
7470 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7472 struct task_group *tg = cgroup_tg(cgrp);
7474 sched_destroy_group(tg);
7477 static int
7478 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7479 struct task_struct *tsk)
7481 /* We don't support RT-tasks being in separate groups */
7482 if (tsk->sched_class != &fair_sched_class)
7483 return -EINVAL;
7485 return 0;
7488 static void
7489 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7490 struct cgroup *old_cont, struct task_struct *tsk)
7492 sched_move_task(tsk);
7495 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7496 u64 shareval)
7498 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7501 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7503 struct task_group *tg = cgroup_tg(cgrp);
7505 return (u64) tg->shares;
7508 static struct cftype cpu_files[] = {
7510 .name = "shares",
7511 .read_uint = cpu_shares_read_uint,
7512 .write_uint = cpu_shares_write_uint,
7516 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7518 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7521 struct cgroup_subsys cpu_cgroup_subsys = {
7522 .name = "cpu",
7523 .create = cpu_cgroup_create,
7524 .destroy = cpu_cgroup_destroy,
7525 .can_attach = cpu_cgroup_can_attach,
7526 .attach = cpu_cgroup_attach,
7527 .populate = cpu_cgroup_populate,
7528 .subsys_id = cpu_cgroup_subsys_id,
7529 .early_init = 1,
7532 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7534 #ifdef CONFIG_CGROUP_CPUACCT
7537 * CPU accounting code for task groups.
7539 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7540 * (balbir@in.ibm.com).
7543 /* track cpu usage of a group of tasks */
7544 struct cpuacct {
7545 struct cgroup_subsys_state css;
7546 /* cpuusage holds pointer to a u64-type object on every cpu */
7547 u64 *cpuusage;
7550 struct cgroup_subsys cpuacct_subsys;
7552 /* return cpu accounting group corresponding to this container */
7553 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7555 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7556 struct cpuacct, css);
7559 /* return cpu accounting group to which this task belongs */
7560 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7562 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7563 struct cpuacct, css);
7566 /* create a new cpu accounting group */
7567 static struct cgroup_subsys_state *cpuacct_create(
7568 struct cgroup_subsys *ss, struct cgroup *cont)
7570 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7572 if (!ca)
7573 return ERR_PTR(-ENOMEM);
7575 ca->cpuusage = alloc_percpu(u64);
7576 if (!ca->cpuusage) {
7577 kfree(ca);
7578 return ERR_PTR(-ENOMEM);
7581 return &ca->css;
7584 /* destroy an existing cpu accounting group */
7585 static void
7586 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7588 struct cpuacct *ca = cgroup_ca(cont);
7590 free_percpu(ca->cpuusage);
7591 kfree(ca);
7594 /* return total cpu usage (in nanoseconds) of a group */
7595 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7597 struct cpuacct *ca = cgroup_ca(cont);
7598 u64 totalcpuusage = 0;
7599 int i;
7601 for_each_possible_cpu(i) {
7602 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7605 * Take rq->lock to make 64-bit addition safe on 32-bit
7606 * platforms.
7608 spin_lock_irq(&cpu_rq(i)->lock);
7609 totalcpuusage += *cpuusage;
7610 spin_unlock_irq(&cpu_rq(i)->lock);
7613 return totalcpuusage;
7616 static struct cftype files[] = {
7618 .name = "usage",
7619 .read_uint = cpuusage_read,
7623 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7625 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7629 * charge this task's execution time to its accounting group.
7631 * called with rq->lock held.
7633 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7635 struct cpuacct *ca;
7637 if (!cpuacct_subsys.active)
7638 return;
7640 ca = task_ca(tsk);
7641 if (ca) {
7642 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7644 *cpuusage += cputime;
7648 struct cgroup_subsys cpuacct_subsys = {
7649 .name = "cpuacct",
7650 .create = cpuacct_create,
7651 .destroy = cpuacct_destroy,
7652 .populate = cpuacct_populate,
7653 .subsys_id = cpuacct_subsys_id,
7655 #endif /* CONFIG_CGROUP_CPUACCT */