x86-64, NUMA: Unify {acpi|amd}_{numa_init|scan_nodes}() arguments and return values
[linux-2.6/x86.git] / arch / x86 / mm / numa_64.c
bloba083f515f0042677dfeb35486f6983cad4f48c8c
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/memblock.h>
11 #include <linux/mmzone.h>
12 #include <linux/ctype.h>
13 #include <linux/module.h>
14 #include <linux/nodemask.h>
15 #include <linux/sched.h>
17 #include <asm/e820.h>
18 #include <asm/proto.h>
19 #include <asm/dma.h>
20 #include <asm/numa.h>
21 #include <asm/acpi.h>
22 #include <asm/amd_nb.h>
24 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
25 EXPORT_SYMBOL(node_data);
27 struct memnode memnode;
29 static unsigned long __initdata nodemap_addr;
30 static unsigned long __initdata nodemap_size;
33 * Given a shift value, try to populate memnodemap[]
34 * Returns :
35 * 1 if OK
36 * 0 if memnodmap[] too small (of shift too small)
37 * -1 if node overlap or lost ram (shift too big)
39 static int __init populate_memnodemap(const struct bootnode *nodes,
40 int numnodes, int shift, int *nodeids)
42 unsigned long addr, end;
43 int i, res = -1;
45 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
46 for (i = 0; i < numnodes; i++) {
47 addr = nodes[i].start;
48 end = nodes[i].end;
49 if (addr >= end)
50 continue;
51 if ((end >> shift) >= memnodemapsize)
52 return 0;
53 do {
54 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
55 return -1;
57 if (!nodeids)
58 memnodemap[addr >> shift] = i;
59 else
60 memnodemap[addr >> shift] = nodeids[i];
62 addr += (1UL << shift);
63 } while (addr < end);
64 res = 1;
66 return res;
69 static int __init allocate_cachealigned_memnodemap(void)
71 unsigned long addr;
73 memnodemap = memnode.embedded_map;
74 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
75 return 0;
77 addr = 0x8000;
78 nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
79 nodemap_addr = memblock_find_in_range(addr, get_max_mapped(),
80 nodemap_size, L1_CACHE_BYTES);
81 if (nodemap_addr == MEMBLOCK_ERROR) {
82 printk(KERN_ERR
83 "NUMA: Unable to allocate Memory to Node hash map\n");
84 nodemap_addr = nodemap_size = 0;
85 return -1;
87 memnodemap = phys_to_virt(nodemap_addr);
88 memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
90 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
91 nodemap_addr, nodemap_addr + nodemap_size);
92 return 0;
96 * The LSB of all start and end addresses in the node map is the value of the
97 * maximum possible shift.
99 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
100 int numnodes)
102 int i, nodes_used = 0;
103 unsigned long start, end;
104 unsigned long bitfield = 0, memtop = 0;
106 for (i = 0; i < numnodes; i++) {
107 start = nodes[i].start;
108 end = nodes[i].end;
109 if (start >= end)
110 continue;
111 bitfield |= start;
112 nodes_used++;
113 if (end > memtop)
114 memtop = end;
116 if (nodes_used <= 1)
117 i = 63;
118 else
119 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
120 memnodemapsize = (memtop >> i)+1;
121 return i;
124 int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
125 int *nodeids)
127 int shift;
129 shift = extract_lsb_from_nodes(nodes, numnodes);
130 if (allocate_cachealigned_memnodemap())
131 return -1;
132 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
133 shift);
135 if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
136 printk(KERN_INFO "Your memory is not aligned you need to "
137 "rebuild your kernel with a bigger NODEMAPSIZE "
138 "shift=%d\n", shift);
139 return -1;
141 return shift;
144 int __meminit __early_pfn_to_nid(unsigned long pfn)
146 return phys_to_nid(pfn << PAGE_SHIFT);
149 static void * __init early_node_mem(int nodeid, unsigned long start,
150 unsigned long end, unsigned long size,
151 unsigned long align)
153 unsigned long mem;
156 * put it on high as possible
157 * something will go with NODE_DATA
159 if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
160 start = MAX_DMA_PFN<<PAGE_SHIFT;
161 if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
162 end > (MAX_DMA32_PFN<<PAGE_SHIFT))
163 start = MAX_DMA32_PFN<<PAGE_SHIFT;
164 mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
165 if (mem != MEMBLOCK_ERROR)
166 return __va(mem);
168 /* extend the search scope */
169 end = max_pfn_mapped << PAGE_SHIFT;
170 start = MAX_DMA_PFN << PAGE_SHIFT;
171 mem = memblock_find_in_range(start, end, size, align);
172 if (mem != MEMBLOCK_ERROR)
173 return __va(mem);
175 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
176 size, nodeid);
178 return NULL;
181 /* Initialize bootmem allocator for a node */
182 void __init
183 setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
185 unsigned long start_pfn, last_pfn, nodedata_phys;
186 const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
187 int nid;
189 if (!end)
190 return;
193 * Don't confuse VM with a node that doesn't have the
194 * minimum amount of memory:
196 if (end && (end - start) < NODE_MIN_SIZE)
197 return;
199 start = roundup(start, ZONE_ALIGN);
201 printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
202 start, end);
204 start_pfn = start >> PAGE_SHIFT;
205 last_pfn = end >> PAGE_SHIFT;
207 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
208 SMP_CACHE_BYTES);
209 if (node_data[nodeid] == NULL)
210 return;
211 nodedata_phys = __pa(node_data[nodeid]);
212 memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
213 printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
214 nodedata_phys + pgdat_size - 1);
215 nid = phys_to_nid(nodedata_phys);
216 if (nid != nodeid)
217 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
219 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
220 NODE_DATA(nodeid)->node_id = nodeid;
221 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
222 NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
224 node_set_online(nodeid);
227 #ifdef CONFIG_NUMA_EMU
228 /* Numa emulation */
229 static struct bootnode nodes[MAX_NUMNODES] __initdata;
230 static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata;
231 static char *cmdline __initdata;
233 void __init numa_emu_cmdline(char *str)
235 cmdline = str;
238 static int __init setup_physnodes(unsigned long start, unsigned long end,
239 int acpi, int amd)
241 int ret = 0;
242 int i;
244 memset(physnodes, 0, sizeof(physnodes));
245 #ifdef CONFIG_ACPI_NUMA
246 if (acpi)
247 acpi_get_nodes(physnodes, start, end);
248 #endif
249 #ifdef CONFIG_AMD_NUMA
250 if (amd)
251 amd_get_nodes(physnodes);
252 #endif
254 * Basic sanity checking on the physical node map: there may be errors
255 * if the SRAT or AMD code incorrectly reported the topology or the mem=
256 * kernel parameter is used.
258 for (i = 0; i < MAX_NUMNODES; i++) {
259 if (physnodes[i].start == physnodes[i].end)
260 continue;
261 if (physnodes[i].start > end) {
262 physnodes[i].end = physnodes[i].start;
263 continue;
265 if (physnodes[i].end < start) {
266 physnodes[i].start = physnodes[i].end;
267 continue;
269 if (physnodes[i].start < start)
270 physnodes[i].start = start;
271 if (physnodes[i].end > end)
272 physnodes[i].end = end;
273 ret++;
277 * If no physical topology was detected, a single node is faked to cover
278 * the entire address space.
280 if (!ret) {
281 physnodes[ret].start = start;
282 physnodes[ret].end = end;
283 ret = 1;
285 return ret;
288 static void __init fake_physnodes(int acpi, int amd, int nr_nodes)
290 int i;
292 BUG_ON(acpi && amd);
293 #ifdef CONFIG_ACPI_NUMA
294 if (acpi)
295 acpi_fake_nodes(nodes, nr_nodes);
296 #endif
297 #ifdef CONFIG_AMD_NUMA
298 if (amd)
299 amd_fake_nodes(nodes, nr_nodes);
300 #endif
301 if (!acpi && !amd)
302 for (i = 0; i < nr_cpu_ids; i++)
303 numa_set_node(i, 0);
307 * Setups up nid to range from addr to addr + size. If the end
308 * boundary is greater than max_addr, then max_addr is used instead.
309 * The return value is 0 if there is additional memory left for
310 * allocation past addr and -1 otherwise. addr is adjusted to be at
311 * the end of the node.
313 static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
315 int ret = 0;
316 nodes[nid].start = *addr;
317 *addr += size;
318 if (*addr >= max_addr) {
319 *addr = max_addr;
320 ret = -1;
322 nodes[nid].end = *addr;
323 node_set(nid, node_possible_map);
324 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
325 nodes[nid].start, nodes[nid].end,
326 (nodes[nid].end - nodes[nid].start) >> 20);
327 return ret;
331 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
332 * to max_addr. The return value is the number of nodes allocated.
334 static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes)
336 nodemask_t physnode_mask = NODE_MASK_NONE;
337 u64 size;
338 int big;
339 int ret = 0;
340 int i;
342 if (nr_nodes <= 0)
343 return -1;
344 if (nr_nodes > MAX_NUMNODES) {
345 pr_info("numa=fake=%d too large, reducing to %d\n",
346 nr_nodes, MAX_NUMNODES);
347 nr_nodes = MAX_NUMNODES;
350 size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
352 * Calculate the number of big nodes that can be allocated as a result
353 * of consolidating the remainder.
355 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
356 FAKE_NODE_MIN_SIZE;
358 size &= FAKE_NODE_MIN_HASH_MASK;
359 if (!size) {
360 pr_err("Not enough memory for each node. "
361 "NUMA emulation disabled.\n");
362 return -1;
365 for (i = 0; i < MAX_NUMNODES; i++)
366 if (physnodes[i].start != physnodes[i].end)
367 node_set(i, physnode_mask);
370 * Continue to fill physical nodes with fake nodes until there is no
371 * memory left on any of them.
373 while (nodes_weight(physnode_mask)) {
374 for_each_node_mask(i, physnode_mask) {
375 u64 end = physnodes[i].start + size;
376 u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
378 if (ret < big)
379 end += FAKE_NODE_MIN_SIZE;
382 * Continue to add memory to this fake node if its
383 * non-reserved memory is less than the per-node size.
385 while (end - physnodes[i].start -
386 memblock_x86_hole_size(physnodes[i].start, end) < size) {
387 end += FAKE_NODE_MIN_SIZE;
388 if (end > physnodes[i].end) {
389 end = physnodes[i].end;
390 break;
395 * If there won't be at least FAKE_NODE_MIN_SIZE of
396 * non-reserved memory in ZONE_DMA32 for the next node,
397 * this one must extend to the boundary.
399 if (end < dma32_end && dma32_end - end -
400 memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
401 end = dma32_end;
404 * If there won't be enough non-reserved memory for the
405 * next node, this one must extend to the end of the
406 * physical node.
408 if (physnodes[i].end - end -
409 memblock_x86_hole_size(end, physnodes[i].end) < size)
410 end = physnodes[i].end;
413 * Avoid allocating more nodes than requested, which can
414 * happen as a result of rounding down each node's size
415 * to FAKE_NODE_MIN_SIZE.
417 if (nodes_weight(physnode_mask) + ret >= nr_nodes)
418 end = physnodes[i].end;
420 if (setup_node_range(ret++, &physnodes[i].start,
421 end - physnodes[i].start,
422 physnodes[i].end) < 0)
423 node_clear(i, physnode_mask);
426 return ret;
430 * Returns the end address of a node so that there is at least `size' amount of
431 * non-reserved memory or `max_addr' is reached.
433 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
435 u64 end = start + size;
437 while (end - start - memblock_x86_hole_size(start, end) < size) {
438 end += FAKE_NODE_MIN_SIZE;
439 if (end > max_addr) {
440 end = max_addr;
441 break;
444 return end;
448 * Sets up fake nodes of `size' interleaved over physical nodes ranging from
449 * `addr' to `max_addr'. The return value is the number of nodes allocated.
451 static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
453 nodemask_t physnode_mask = NODE_MASK_NONE;
454 u64 min_size;
455 int ret = 0;
456 int i;
458 if (!size)
459 return -1;
461 * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
462 * increased accordingly if the requested size is too small. This
463 * creates a uniform distribution of node sizes across the entire
464 * machine (but not necessarily over physical nodes).
466 min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
467 MAX_NUMNODES;
468 min_size = max(min_size, FAKE_NODE_MIN_SIZE);
469 if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
470 min_size = (min_size + FAKE_NODE_MIN_SIZE) &
471 FAKE_NODE_MIN_HASH_MASK;
472 if (size < min_size) {
473 pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
474 size >> 20, min_size >> 20);
475 size = min_size;
477 size &= FAKE_NODE_MIN_HASH_MASK;
479 for (i = 0; i < MAX_NUMNODES; i++)
480 if (physnodes[i].start != physnodes[i].end)
481 node_set(i, physnode_mask);
483 * Fill physical nodes with fake nodes of size until there is no memory
484 * left on any of them.
486 while (nodes_weight(physnode_mask)) {
487 for_each_node_mask(i, physnode_mask) {
488 u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
489 u64 end;
491 end = find_end_of_node(physnodes[i].start,
492 physnodes[i].end, size);
494 * If there won't be at least FAKE_NODE_MIN_SIZE of
495 * non-reserved memory in ZONE_DMA32 for the next node,
496 * this one must extend to the boundary.
498 if (end < dma32_end && dma32_end - end -
499 memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
500 end = dma32_end;
503 * If there won't be enough non-reserved memory for the
504 * next node, this one must extend to the end of the
505 * physical node.
507 if (physnodes[i].end - end -
508 memblock_x86_hole_size(end, physnodes[i].end) < size)
509 end = physnodes[i].end;
512 * Setup the fake node that will be allocated as bootmem
513 * later. If setup_node_range() returns non-zero, there
514 * is no more memory available on this physical node.
516 if (setup_node_range(ret++, &physnodes[i].start,
517 end - physnodes[i].start,
518 physnodes[i].end) < 0)
519 node_clear(i, physnode_mask);
522 return ret;
526 * Sets up the system RAM area from start_pfn to last_pfn according to the
527 * numa=fake command-line option.
529 static int __init numa_emulation(unsigned long start_pfn,
530 unsigned long last_pfn, int acpi, int amd)
532 u64 addr = start_pfn << PAGE_SHIFT;
533 u64 max_addr = last_pfn << PAGE_SHIFT;
534 int num_nodes;
535 int i;
538 * If the numa=fake command-line contains a 'M' or 'G', it represents
539 * the fixed node size. Otherwise, if it is just a single number N,
540 * split the system RAM into N fake nodes.
542 if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
543 u64 size;
545 size = memparse(cmdline, &cmdline);
546 num_nodes = split_nodes_size_interleave(addr, max_addr, size);
547 } else {
548 unsigned long n;
550 n = simple_strtoul(cmdline, NULL, 0);
551 num_nodes = split_nodes_interleave(addr, max_addr, n);
554 if (num_nodes < 0)
555 return num_nodes;
556 memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
557 if (memnode_shift < 0) {
558 memnode_shift = 0;
559 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
560 "disabled.\n");
561 return -1;
565 * We need to vacate all active ranges that may have been registered for
566 * the e820 memory map.
568 remove_all_active_ranges();
569 for_each_node_mask(i, node_possible_map)
570 memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
571 nodes[i].end >> PAGE_SHIFT);
572 init_memory_mapping_high();
573 for_each_node_mask(i, node_possible_map)
574 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
575 setup_physnodes(addr, max_addr, acpi, amd);
576 fake_physnodes(acpi, amd, num_nodes);
577 numa_init_array();
578 return 0;
580 #endif /* CONFIG_NUMA_EMU */
582 void __init initmem_init(int acpi, int amd)
584 int i;
586 nodes_clear(node_possible_map);
587 nodes_clear(node_online_map);
589 #ifdef CONFIG_NUMA_EMU
590 setup_physnodes(0, max_pfn << PAGE_SHIFT, acpi, amd);
591 if (cmdline && !numa_emulation(0, max_pfn, acpi, amd))
592 return;
593 setup_physnodes(0, max_pfn << PAGE_SHIFT, acpi, amd);
594 nodes_clear(node_possible_map);
595 nodes_clear(node_online_map);
596 #endif
598 #ifdef CONFIG_ACPI_NUMA
599 if (!numa_off && acpi && !acpi_scan_nodes())
600 return;
601 nodes_clear(node_possible_map);
602 nodes_clear(node_online_map);
603 #endif
605 #ifdef CONFIG_AMD_NUMA
606 if (!numa_off && amd && !amd_scan_nodes())
607 return;
608 nodes_clear(node_possible_map);
609 nodes_clear(node_online_map);
610 #endif
611 printk(KERN_INFO "%s\n",
612 numa_off ? "NUMA turned off" : "No NUMA configuration found");
614 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
615 0LU, max_pfn << PAGE_SHIFT);
616 /* setup dummy node covering all memory */
617 memnode_shift = 63;
618 memnodemap = memnode.embedded_map;
619 memnodemap[0] = 0;
620 node_set_online(0);
621 node_set(0, node_possible_map);
622 for (i = 0; i < MAX_LOCAL_APIC; i++)
623 set_apicid_to_node(i, NUMA_NO_NODE);
624 memblock_x86_register_active_regions(0, 0, max_pfn);
625 init_memory_mapping_high();
626 setup_node_bootmem(0, 0, max_pfn << PAGE_SHIFT);
627 numa_init_array();
630 unsigned long __init numa_free_all_bootmem(void)
632 unsigned long pages = 0;
633 int i;
635 for_each_online_node(i)
636 pages += free_all_bootmem_node(NODE_DATA(i));
638 pages += free_all_memory_core_early(MAX_NUMNODES);
640 return pages;
643 int __cpuinit numa_cpu_node(int cpu)
645 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
647 if (apicid != BAD_APICID)
648 return __apicid_to_node[apicid];
649 return NUMA_NO_NODE;
653 * UGLINESS AHEAD: Currently, CONFIG_NUMA_EMU is 64bit only and makes use
654 * of 64bit specific data structures. The distinction is artificial and
655 * should be removed. numa_{add|remove}_cpu() are implemented in numa.c
656 * for both 32 and 64bit when CONFIG_NUMA_EMU is disabled but here when
657 * enabled.
659 * NUMA emulation is planned to be made generic and the following and other
660 * related code should be moved to numa.c.
662 #ifdef CONFIG_NUMA_EMU
663 # ifndef CONFIG_DEBUG_PER_CPU_MAPS
664 void __cpuinit numa_add_cpu(int cpu)
666 unsigned long addr;
667 int physnid, nid;
669 nid = numa_cpu_node(cpu);
670 if (nid == NUMA_NO_NODE)
671 nid = early_cpu_to_node(cpu);
672 BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
675 * Use the starting address of the emulated node to find which physical
676 * node it is allocated on.
678 addr = node_start_pfn(nid) << PAGE_SHIFT;
679 for (physnid = 0; physnid < MAX_NUMNODES; physnid++)
680 if (addr >= physnodes[physnid].start &&
681 addr < physnodes[physnid].end)
682 break;
685 * Map the cpu to each emulated node that is allocated on the physical
686 * node of the cpu's apic id.
688 for_each_online_node(nid) {
689 addr = node_start_pfn(nid) << PAGE_SHIFT;
690 if (addr >= physnodes[physnid].start &&
691 addr < physnodes[physnid].end)
692 cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
696 void __cpuinit numa_remove_cpu(int cpu)
698 int i;
700 for_each_online_node(i)
701 cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
703 # else /* !CONFIG_DEBUG_PER_CPU_MAPS */
704 static void __cpuinit numa_set_cpumask(int cpu, int enable)
706 int node = early_cpu_to_node(cpu);
707 struct cpumask *mask;
708 int i;
710 if (node == NUMA_NO_NODE) {
711 /* early_cpu_to_node() already emits a warning and trace */
712 return;
714 for_each_online_node(i) {
715 unsigned long addr;
717 addr = node_start_pfn(i) << PAGE_SHIFT;
718 if (addr < physnodes[node].start ||
719 addr >= physnodes[node].end)
720 continue;
721 mask = debug_cpumask_set_cpu(cpu, enable);
722 if (!mask)
723 return;
725 if (enable)
726 cpumask_set_cpu(cpu, mask);
727 else
728 cpumask_clear_cpu(cpu, mask);
732 void __cpuinit numa_add_cpu(int cpu)
734 numa_set_cpumask(cpu, 1);
737 void __cpuinit numa_remove_cpu(int cpu)
739 numa_set_cpumask(cpu, 0);
741 # endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
742 #endif /* CONFIG_NUMA_EMU */