Btrfs: check for duplicate iov_base's when doing dio reads
[linux-2.6/x86.git] / fs / btrfs / inode.c
blob00d59c6a9769f9f94f19db5b3e0d0a97fe509f17
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
98 int err;
100 err = btrfs_init_acl(trans, inode, dir);
101 if (!err)
102 err = btrfs_xattr_security_init(trans, inode, dir);
103 return err;
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 int compress_type,
115 struct page **compressed_pages)
117 struct btrfs_key key;
118 struct btrfs_path *path;
119 struct extent_buffer *leaf;
120 struct page *page = NULL;
121 char *kaddr;
122 unsigned long ptr;
123 struct btrfs_file_extent_item *ei;
124 int err = 0;
125 int ret;
126 size_t cur_size = size;
127 size_t datasize;
128 unsigned long offset;
130 if (compressed_size && compressed_pages)
131 cur_size = compressed_size;
133 path = btrfs_alloc_path();
134 if (!path)
135 return -ENOMEM;
137 path->leave_spinning = 1;
138 btrfs_set_trans_block_group(trans, inode);
140 key.objectid = inode->i_ino;
141 key.offset = start;
142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143 datasize = btrfs_file_extent_calc_inline_size(cur_size);
145 inode_add_bytes(inode, size);
146 ret = btrfs_insert_empty_item(trans, root, path, &key,
147 datasize);
148 BUG_ON(ret);
149 if (ret) {
150 err = ret;
151 goto fail;
153 leaf = path->nodes[0];
154 ei = btrfs_item_ptr(leaf, path->slots[0],
155 struct btrfs_file_extent_item);
156 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 btrfs_set_file_extent_encryption(leaf, ei, 0);
159 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 ptr = btrfs_file_extent_inline_start(ei);
163 if (compress_type != BTRFS_COMPRESS_NONE) {
164 struct page *cpage;
165 int i = 0;
166 while (compressed_size > 0) {
167 cpage = compressed_pages[i];
168 cur_size = min_t(unsigned long, compressed_size,
169 PAGE_CACHE_SIZE);
171 kaddr = kmap_atomic(cpage, KM_USER0);
172 write_extent_buffer(leaf, kaddr, ptr, cur_size);
173 kunmap_atomic(kaddr, KM_USER0);
175 i++;
176 ptr += cur_size;
177 compressed_size -= cur_size;
179 btrfs_set_file_extent_compression(leaf, ei,
180 compress_type);
181 } else {
182 page = find_get_page(inode->i_mapping,
183 start >> PAGE_CACHE_SHIFT);
184 btrfs_set_file_extent_compression(leaf, ei, 0);
185 kaddr = kmap_atomic(page, KM_USER0);
186 offset = start & (PAGE_CACHE_SIZE - 1);
187 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 kunmap_atomic(kaddr, KM_USER0);
189 page_cache_release(page);
191 btrfs_mark_buffer_dirty(leaf);
192 btrfs_free_path(path);
195 * we're an inline extent, so nobody can
196 * extend the file past i_size without locking
197 * a page we already have locked.
199 * We must do any isize and inode updates
200 * before we unlock the pages. Otherwise we
201 * could end up racing with unlink.
203 BTRFS_I(inode)->disk_i_size = inode->i_size;
204 btrfs_update_inode(trans, root, inode);
206 return 0;
207 fail:
208 btrfs_free_path(path);
209 return err;
214 * conditionally insert an inline extent into the file. This
215 * does the checks required to make sure the data is small enough
216 * to fit as an inline extent.
218 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
219 struct btrfs_root *root,
220 struct inode *inode, u64 start, u64 end,
221 size_t compressed_size, int compress_type,
222 struct page **compressed_pages)
224 u64 isize = i_size_read(inode);
225 u64 actual_end = min(end + 1, isize);
226 u64 inline_len = actual_end - start;
227 u64 aligned_end = (end + root->sectorsize - 1) &
228 ~((u64)root->sectorsize - 1);
229 u64 hint_byte;
230 u64 data_len = inline_len;
231 int ret;
233 if (compressed_size)
234 data_len = compressed_size;
236 if (start > 0 ||
237 actual_end >= PAGE_CACHE_SIZE ||
238 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239 (!compressed_size &&
240 (actual_end & (root->sectorsize - 1)) == 0) ||
241 end + 1 < isize ||
242 data_len > root->fs_info->max_inline) {
243 return 1;
246 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
247 &hint_byte, 1);
248 BUG_ON(ret);
250 if (isize > actual_end)
251 inline_len = min_t(u64, isize, actual_end);
252 ret = insert_inline_extent(trans, root, inode, start,
253 inline_len, compressed_size,
254 compress_type, compressed_pages);
255 BUG_ON(ret);
256 btrfs_delalloc_release_metadata(inode, end + 1 - start);
257 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
258 return 0;
261 struct async_extent {
262 u64 start;
263 u64 ram_size;
264 u64 compressed_size;
265 struct page **pages;
266 unsigned long nr_pages;
267 int compress_type;
268 struct list_head list;
271 struct async_cow {
272 struct inode *inode;
273 struct btrfs_root *root;
274 struct page *locked_page;
275 u64 start;
276 u64 end;
277 struct list_head extents;
278 struct btrfs_work work;
281 static noinline int add_async_extent(struct async_cow *cow,
282 u64 start, u64 ram_size,
283 u64 compressed_size,
284 struct page **pages,
285 unsigned long nr_pages,
286 int compress_type)
288 struct async_extent *async_extent;
290 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
291 BUG_ON(!async_extent);
292 async_extent->start = start;
293 async_extent->ram_size = ram_size;
294 async_extent->compressed_size = compressed_size;
295 async_extent->pages = pages;
296 async_extent->nr_pages = nr_pages;
297 async_extent->compress_type = compress_type;
298 list_add_tail(&async_extent->list, &cow->extents);
299 return 0;
303 * we create compressed extents in two phases. The first
304 * phase compresses a range of pages that have already been
305 * locked (both pages and state bits are locked).
307 * This is done inside an ordered work queue, and the compression
308 * is spread across many cpus. The actual IO submission is step
309 * two, and the ordered work queue takes care of making sure that
310 * happens in the same order things were put onto the queue by
311 * writepages and friends.
313 * If this code finds it can't get good compression, it puts an
314 * entry onto the work queue to write the uncompressed bytes. This
315 * makes sure that both compressed inodes and uncompressed inodes
316 * are written in the same order that pdflush sent them down.
318 static noinline int compress_file_range(struct inode *inode,
319 struct page *locked_page,
320 u64 start, u64 end,
321 struct async_cow *async_cow,
322 int *num_added)
324 struct btrfs_root *root = BTRFS_I(inode)->root;
325 struct btrfs_trans_handle *trans;
326 u64 num_bytes;
327 u64 blocksize = root->sectorsize;
328 u64 actual_end;
329 u64 isize = i_size_read(inode);
330 int ret = 0;
331 struct page **pages = NULL;
332 unsigned long nr_pages;
333 unsigned long nr_pages_ret = 0;
334 unsigned long total_compressed = 0;
335 unsigned long total_in = 0;
336 unsigned long max_compressed = 128 * 1024;
337 unsigned long max_uncompressed = 128 * 1024;
338 int i;
339 int will_compress;
340 int compress_type = root->fs_info->compress_type;
342 actual_end = min_t(u64, isize, end + 1);
343 again:
344 will_compress = 0;
345 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
349 * we don't want to send crud past the end of i_size through
350 * compression, that's just a waste of CPU time. So, if the
351 * end of the file is before the start of our current
352 * requested range of bytes, we bail out to the uncompressed
353 * cleanup code that can deal with all of this.
355 * It isn't really the fastest way to fix things, but this is a
356 * very uncommon corner.
358 if (actual_end <= start)
359 goto cleanup_and_bail_uncompressed;
361 total_compressed = actual_end - start;
363 /* we want to make sure that amount of ram required to uncompress
364 * an extent is reasonable, so we limit the total size in ram
365 * of a compressed extent to 128k. This is a crucial number
366 * because it also controls how easily we can spread reads across
367 * cpus for decompression.
369 * We also want to make sure the amount of IO required to do
370 * a random read is reasonably small, so we limit the size of
371 * a compressed extent to 128k.
373 total_compressed = min(total_compressed, max_uncompressed);
374 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
375 num_bytes = max(blocksize, num_bytes);
376 total_in = 0;
377 ret = 0;
380 * we do compression for mount -o compress and when the
381 * inode has not been flagged as nocompress. This flag can
382 * change at any time if we discover bad compression ratios.
384 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
385 (btrfs_test_opt(root, COMPRESS) ||
386 (BTRFS_I(inode)->force_compress) ||
387 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
388 WARN_ON(pages);
389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390 BUG_ON(!pages);
392 if (BTRFS_I(inode)->force_compress)
393 compress_type = BTRFS_I(inode)->force_compress;
395 ret = btrfs_compress_pages(compress_type,
396 inode->i_mapping, start,
397 total_compressed, pages,
398 nr_pages, &nr_pages_ret,
399 &total_in,
400 &total_compressed,
401 max_compressed);
403 if (!ret) {
404 unsigned long offset = total_compressed &
405 (PAGE_CACHE_SIZE - 1);
406 struct page *page = pages[nr_pages_ret - 1];
407 char *kaddr;
409 /* zero the tail end of the last page, we might be
410 * sending it down to disk
412 if (offset) {
413 kaddr = kmap_atomic(page, KM_USER0);
414 memset(kaddr + offset, 0,
415 PAGE_CACHE_SIZE - offset);
416 kunmap_atomic(kaddr, KM_USER0);
418 will_compress = 1;
421 if (start == 0) {
422 trans = btrfs_join_transaction(root, 1);
423 BUG_ON(IS_ERR(trans));
424 btrfs_set_trans_block_group(trans, inode);
425 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
427 /* lets try to make an inline extent */
428 if (ret || total_in < (actual_end - start)) {
429 /* we didn't compress the entire range, try
430 * to make an uncompressed inline extent.
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end, 0, 0, NULL);
434 } else {
435 /* try making a compressed inline extent */
436 ret = cow_file_range_inline(trans, root, inode,
437 start, end,
438 total_compressed,
439 compress_type, pages);
441 if (ret == 0) {
443 * inline extent creation worked, we don't need
444 * to create any more async work items. Unlock
445 * and free up our temp pages.
447 extent_clear_unlock_delalloc(inode,
448 &BTRFS_I(inode)->io_tree,
449 start, end, NULL,
450 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
451 EXTENT_CLEAR_DELALLOC |
452 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
454 btrfs_end_transaction(trans, root);
455 goto free_pages_out;
457 btrfs_end_transaction(trans, root);
460 if (will_compress) {
462 * we aren't doing an inline extent round the compressed size
463 * up to a block size boundary so the allocator does sane
464 * things
466 total_compressed = (total_compressed + blocksize - 1) &
467 ~(blocksize - 1);
470 * one last check to make sure the compression is really a
471 * win, compare the page count read with the blocks on disk
473 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474 ~(PAGE_CACHE_SIZE - 1);
475 if (total_compressed >= total_in) {
476 will_compress = 0;
477 } else {
478 num_bytes = total_in;
481 if (!will_compress && pages) {
483 * the compression code ran but failed to make things smaller,
484 * free any pages it allocated and our page pointer array
486 for (i = 0; i < nr_pages_ret; i++) {
487 WARN_ON(pages[i]->mapping);
488 page_cache_release(pages[i]);
490 kfree(pages);
491 pages = NULL;
492 total_compressed = 0;
493 nr_pages_ret = 0;
495 /* flag the file so we don't compress in the future */
496 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497 !(BTRFS_I(inode)->force_compress)) {
498 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
501 if (will_compress) {
502 *num_added += 1;
504 /* the async work queues will take care of doing actual
505 * allocation on disk for these compressed pages,
506 * and will submit them to the elevator.
508 add_async_extent(async_cow, start, num_bytes,
509 total_compressed, pages, nr_pages_ret,
510 compress_type);
512 if (start + num_bytes < end) {
513 start += num_bytes;
514 pages = NULL;
515 cond_resched();
516 goto again;
518 } else {
519 cleanup_and_bail_uncompressed:
521 * No compression, but we still need to write the pages in
522 * the file we've been given so far. redirty the locked
523 * page if it corresponds to our extent and set things up
524 * for the async work queue to run cow_file_range to do
525 * the normal delalloc dance
527 if (page_offset(locked_page) >= start &&
528 page_offset(locked_page) <= end) {
529 __set_page_dirty_nobuffers(locked_page);
530 /* unlocked later on in the async handlers */
532 add_async_extent(async_cow, start, end - start + 1,
533 0, NULL, 0, BTRFS_COMPRESS_NONE);
534 *num_added += 1;
537 out:
538 return 0;
540 free_pages_out:
541 for (i = 0; i < nr_pages_ret; i++) {
542 WARN_ON(pages[i]->mapping);
543 page_cache_release(pages[i]);
545 kfree(pages);
547 goto out;
551 * phase two of compressed writeback. This is the ordered portion
552 * of the code, which only gets called in the order the work was
553 * queued. We walk all the async extents created by compress_file_range
554 * and send them down to the disk.
556 static noinline int submit_compressed_extents(struct inode *inode,
557 struct async_cow *async_cow)
559 struct async_extent *async_extent;
560 u64 alloc_hint = 0;
561 struct btrfs_trans_handle *trans;
562 struct btrfs_key ins;
563 struct extent_map *em;
564 struct btrfs_root *root = BTRFS_I(inode)->root;
565 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566 struct extent_io_tree *io_tree;
567 int ret = 0;
569 if (list_empty(&async_cow->extents))
570 return 0;
573 while (!list_empty(&async_cow->extents)) {
574 async_extent = list_entry(async_cow->extents.next,
575 struct async_extent, list);
576 list_del(&async_extent->list);
578 io_tree = &BTRFS_I(inode)->io_tree;
580 retry:
581 /* did the compression code fall back to uncompressed IO? */
582 if (!async_extent->pages) {
583 int page_started = 0;
584 unsigned long nr_written = 0;
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start +
588 async_extent->ram_size - 1, GFP_NOFS);
590 /* allocate blocks */
591 ret = cow_file_range(inode, async_cow->locked_page,
592 async_extent->start,
593 async_extent->start +
594 async_extent->ram_size - 1,
595 &page_started, &nr_written, 0);
598 * if page_started, cow_file_range inserted an
599 * inline extent and took care of all the unlocking
600 * and IO for us. Otherwise, we need to submit
601 * all those pages down to the drive.
603 if (!page_started && !ret)
604 extent_write_locked_range(io_tree,
605 inode, async_extent->start,
606 async_extent->start +
607 async_extent->ram_size - 1,
608 btrfs_get_extent,
609 WB_SYNC_ALL);
610 kfree(async_extent);
611 cond_resched();
612 continue;
615 lock_extent(io_tree, async_extent->start,
616 async_extent->start + async_extent->ram_size - 1,
617 GFP_NOFS);
619 trans = btrfs_join_transaction(root, 1);
620 BUG_ON(IS_ERR(trans));
621 ret = btrfs_reserve_extent(trans, root,
622 async_extent->compressed_size,
623 async_extent->compressed_size,
624 0, alloc_hint,
625 (u64)-1, &ins, 1);
626 btrfs_end_transaction(trans, root);
628 if (ret) {
629 int i;
630 for (i = 0; i < async_extent->nr_pages; i++) {
631 WARN_ON(async_extent->pages[i]->mapping);
632 page_cache_release(async_extent->pages[i]);
634 kfree(async_extent->pages);
635 async_extent->nr_pages = 0;
636 async_extent->pages = NULL;
637 unlock_extent(io_tree, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, GFP_NOFS);
640 goto retry;
644 * here we're doing allocation and writeback of the
645 * compressed pages
647 btrfs_drop_extent_cache(inode, async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1, 0);
651 em = alloc_extent_map(GFP_NOFS);
652 BUG_ON(!em);
653 em->start = async_extent->start;
654 em->len = async_extent->ram_size;
655 em->orig_start = em->start;
657 em->block_start = ins.objectid;
658 em->block_len = ins.offset;
659 em->bdev = root->fs_info->fs_devices->latest_bdev;
660 em->compress_type = async_extent->compress_type;
661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664 while (1) {
665 write_lock(&em_tree->lock);
666 ret = add_extent_mapping(em_tree, em);
667 write_unlock(&em_tree->lock);
668 if (ret != -EEXIST) {
669 free_extent_map(em);
670 break;
672 btrfs_drop_extent_cache(inode, async_extent->start,
673 async_extent->start +
674 async_extent->ram_size - 1, 0);
677 ret = btrfs_add_ordered_extent_compress(inode,
678 async_extent->start,
679 ins.objectid,
680 async_extent->ram_size,
681 ins.offset,
682 BTRFS_ORDERED_COMPRESSED,
683 async_extent->compress_type);
684 BUG_ON(ret);
687 * clear dirty, set writeback and unlock the pages.
689 extent_clear_unlock_delalloc(inode,
690 &BTRFS_I(inode)->io_tree,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695 EXTENT_CLEAR_UNLOCK |
696 EXTENT_CLEAR_DELALLOC |
697 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
699 ret = btrfs_submit_compressed_write(inode,
700 async_extent->start,
701 async_extent->ram_size,
702 ins.objectid,
703 ins.offset, async_extent->pages,
704 async_extent->nr_pages);
706 BUG_ON(ret);
707 alloc_hint = ins.objectid + ins.offset;
708 kfree(async_extent);
709 cond_resched();
712 return 0;
715 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716 u64 num_bytes)
718 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719 struct extent_map *em;
720 u64 alloc_hint = 0;
722 read_lock(&em_tree->lock);
723 em = search_extent_mapping(em_tree, start, num_bytes);
724 if (em) {
726 * if block start isn't an actual block number then find the
727 * first block in this inode and use that as a hint. If that
728 * block is also bogus then just don't worry about it.
730 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731 free_extent_map(em);
732 em = search_extent_mapping(em_tree, 0, 0);
733 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734 alloc_hint = em->block_start;
735 if (em)
736 free_extent_map(em);
737 } else {
738 alloc_hint = em->block_start;
739 free_extent_map(em);
742 read_unlock(&em_tree->lock);
744 return alloc_hint;
748 * when extent_io.c finds a delayed allocation range in the file,
749 * the call backs end up in this code. The basic idea is to
750 * allocate extents on disk for the range, and create ordered data structs
751 * in ram to track those extents.
753 * locked_page is the page that writepage had locked already. We use
754 * it to make sure we don't do extra locks or unlocks.
756 * *page_started is set to one if we unlock locked_page and do everything
757 * required to start IO on it. It may be clean and already done with
758 * IO when we return.
760 static noinline int cow_file_range(struct inode *inode,
761 struct page *locked_page,
762 u64 start, u64 end, int *page_started,
763 unsigned long *nr_written,
764 int unlock)
766 struct btrfs_root *root = BTRFS_I(inode)->root;
767 struct btrfs_trans_handle *trans;
768 u64 alloc_hint = 0;
769 u64 num_bytes;
770 unsigned long ram_size;
771 u64 disk_num_bytes;
772 u64 cur_alloc_size;
773 u64 blocksize = root->sectorsize;
774 struct btrfs_key ins;
775 struct extent_map *em;
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 int ret = 0;
779 BUG_ON(root == root->fs_info->tree_root);
780 trans = btrfs_join_transaction(root, 1);
781 BUG_ON(IS_ERR(trans));
782 btrfs_set_trans_block_group(trans, inode);
783 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
785 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786 num_bytes = max(blocksize, num_bytes);
787 disk_num_bytes = num_bytes;
788 ret = 0;
790 if (start == 0) {
791 /* lets try to make an inline extent */
792 ret = cow_file_range_inline(trans, root, inode,
793 start, end, 0, 0, NULL);
794 if (ret == 0) {
795 extent_clear_unlock_delalloc(inode,
796 &BTRFS_I(inode)->io_tree,
797 start, end, NULL,
798 EXTENT_CLEAR_UNLOCK_PAGE |
799 EXTENT_CLEAR_UNLOCK |
800 EXTENT_CLEAR_DELALLOC |
801 EXTENT_CLEAR_DIRTY |
802 EXTENT_SET_WRITEBACK |
803 EXTENT_END_WRITEBACK);
805 *nr_written = *nr_written +
806 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807 *page_started = 1;
808 ret = 0;
809 goto out;
813 BUG_ON(disk_num_bytes >
814 btrfs_super_total_bytes(&root->fs_info->super_copy));
816 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
817 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819 while (disk_num_bytes > 0) {
820 unsigned long op;
822 cur_alloc_size = disk_num_bytes;
823 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
824 root->sectorsize, 0, alloc_hint,
825 (u64)-1, &ins, 1);
826 BUG_ON(ret);
828 em = alloc_extent_map(GFP_NOFS);
829 BUG_ON(!em);
830 em->start = start;
831 em->orig_start = em->start;
832 ram_size = ins.offset;
833 em->len = ins.offset;
835 em->block_start = ins.objectid;
836 em->block_len = ins.offset;
837 em->bdev = root->fs_info->fs_devices->latest_bdev;
838 set_bit(EXTENT_FLAG_PINNED, &em->flags);
840 while (1) {
841 write_lock(&em_tree->lock);
842 ret = add_extent_mapping(em_tree, em);
843 write_unlock(&em_tree->lock);
844 if (ret != -EEXIST) {
845 free_extent_map(em);
846 break;
848 btrfs_drop_extent_cache(inode, start,
849 start + ram_size - 1, 0);
852 cur_alloc_size = ins.offset;
853 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
854 ram_size, cur_alloc_size, 0);
855 BUG_ON(ret);
857 if (root->root_key.objectid ==
858 BTRFS_DATA_RELOC_TREE_OBJECTID) {
859 ret = btrfs_reloc_clone_csums(inode, start,
860 cur_alloc_size);
861 BUG_ON(ret);
864 if (disk_num_bytes < cur_alloc_size)
865 break;
867 /* we're not doing compressed IO, don't unlock the first
868 * page (which the caller expects to stay locked), don't
869 * clear any dirty bits and don't set any writeback bits
871 * Do set the Private2 bit so we know this page was properly
872 * setup for writepage
874 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876 EXTENT_SET_PRIVATE2;
878 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879 start, start + ram_size - 1,
880 locked_page, op);
881 disk_num_bytes -= cur_alloc_size;
882 num_bytes -= cur_alloc_size;
883 alloc_hint = ins.objectid + ins.offset;
884 start += cur_alloc_size;
886 out:
887 ret = 0;
888 btrfs_end_transaction(trans, root);
890 return ret;
894 * work queue call back to started compression on a file and pages
896 static noinline void async_cow_start(struct btrfs_work *work)
898 struct async_cow *async_cow;
899 int num_added = 0;
900 async_cow = container_of(work, struct async_cow, work);
902 compress_file_range(async_cow->inode, async_cow->locked_page,
903 async_cow->start, async_cow->end, async_cow,
904 &num_added);
905 if (num_added == 0)
906 async_cow->inode = NULL;
910 * work queue call back to submit previously compressed pages
912 static noinline void async_cow_submit(struct btrfs_work *work)
914 struct async_cow *async_cow;
915 struct btrfs_root *root;
916 unsigned long nr_pages;
918 async_cow = container_of(work, struct async_cow, work);
920 root = async_cow->root;
921 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922 PAGE_CACHE_SHIFT;
924 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926 if (atomic_read(&root->fs_info->async_delalloc_pages) <
927 5 * 1042 * 1024 &&
928 waitqueue_active(&root->fs_info->async_submit_wait))
929 wake_up(&root->fs_info->async_submit_wait);
931 if (async_cow->inode)
932 submit_compressed_extents(async_cow->inode, async_cow);
935 static noinline void async_cow_free(struct btrfs_work *work)
937 struct async_cow *async_cow;
938 async_cow = container_of(work, struct async_cow, work);
939 kfree(async_cow);
942 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943 u64 start, u64 end, int *page_started,
944 unsigned long *nr_written)
946 struct async_cow *async_cow;
947 struct btrfs_root *root = BTRFS_I(inode)->root;
948 unsigned long nr_pages;
949 u64 cur_end;
950 int limit = 10 * 1024 * 1042;
952 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953 1, 0, NULL, GFP_NOFS);
954 while (start < end) {
955 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956 async_cow->inode = inode;
957 async_cow->root = root;
958 async_cow->locked_page = locked_page;
959 async_cow->start = start;
961 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
962 cur_end = end;
963 else
964 cur_end = min(end, start + 512 * 1024 - 1);
966 async_cow->end = cur_end;
967 INIT_LIST_HEAD(&async_cow->extents);
969 async_cow->work.func = async_cow_start;
970 async_cow->work.ordered_func = async_cow_submit;
971 async_cow->work.ordered_free = async_cow_free;
972 async_cow->work.flags = 0;
974 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
975 PAGE_CACHE_SHIFT;
976 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978 btrfs_queue_worker(&root->fs_info->delalloc_workers,
979 &async_cow->work);
981 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
982 wait_event(root->fs_info->async_submit_wait,
983 (atomic_read(&root->fs_info->async_delalloc_pages) <
984 limit));
987 while (atomic_read(&root->fs_info->async_submit_draining) &&
988 atomic_read(&root->fs_info->async_delalloc_pages)) {
989 wait_event(root->fs_info->async_submit_wait,
990 (atomic_read(&root->fs_info->async_delalloc_pages) ==
991 0));
994 *nr_written += nr_pages;
995 start = cur_end + 1;
997 *page_started = 1;
998 return 0;
1001 static noinline int csum_exist_in_range(struct btrfs_root *root,
1002 u64 bytenr, u64 num_bytes)
1004 int ret;
1005 struct btrfs_ordered_sum *sums;
1006 LIST_HEAD(list);
1008 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1009 bytenr + num_bytes - 1, &list);
1010 if (ret == 0 && list_empty(&list))
1011 return 0;
1013 while (!list_empty(&list)) {
1014 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1015 list_del(&sums->list);
1016 kfree(sums);
1018 return 1;
1022 * when nowcow writeback call back. This checks for snapshots or COW copies
1023 * of the extents that exist in the file, and COWs the file as required.
1025 * If no cow copies or snapshots exist, we write directly to the existing
1026 * blocks on disk
1028 static noinline int run_delalloc_nocow(struct inode *inode,
1029 struct page *locked_page,
1030 u64 start, u64 end, int *page_started, int force,
1031 unsigned long *nr_written)
1033 struct btrfs_root *root = BTRFS_I(inode)->root;
1034 struct btrfs_trans_handle *trans;
1035 struct extent_buffer *leaf;
1036 struct btrfs_path *path;
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key found_key;
1039 u64 cow_start;
1040 u64 cur_offset;
1041 u64 extent_end;
1042 u64 extent_offset;
1043 u64 disk_bytenr;
1044 u64 num_bytes;
1045 int extent_type;
1046 int ret;
1047 int type;
1048 int nocow;
1049 int check_prev = 1;
1050 bool nolock = false;
1052 path = btrfs_alloc_path();
1053 BUG_ON(!path);
1054 if (root == root->fs_info->tree_root) {
1055 nolock = true;
1056 trans = btrfs_join_transaction_nolock(root, 1);
1057 } else {
1058 trans = btrfs_join_transaction(root, 1);
1060 BUG_ON(IS_ERR(trans));
1062 cow_start = (u64)-1;
1063 cur_offset = start;
1064 while (1) {
1065 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1066 cur_offset, 0);
1067 BUG_ON(ret < 0);
1068 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1069 leaf = path->nodes[0];
1070 btrfs_item_key_to_cpu(leaf, &found_key,
1071 path->slots[0] - 1);
1072 if (found_key.objectid == inode->i_ino &&
1073 found_key.type == BTRFS_EXTENT_DATA_KEY)
1074 path->slots[0]--;
1076 check_prev = 0;
1077 next_slot:
1078 leaf = path->nodes[0];
1079 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1080 ret = btrfs_next_leaf(root, path);
1081 if (ret < 0)
1082 BUG_ON(1);
1083 if (ret > 0)
1084 break;
1085 leaf = path->nodes[0];
1088 nocow = 0;
1089 disk_bytenr = 0;
1090 num_bytes = 0;
1091 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093 if (found_key.objectid > inode->i_ino ||
1094 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1095 found_key.offset > end)
1096 break;
1098 if (found_key.offset > cur_offset) {
1099 extent_end = found_key.offset;
1100 extent_type = 0;
1101 goto out_check;
1104 fi = btrfs_item_ptr(leaf, path->slots[0],
1105 struct btrfs_file_extent_item);
1106 extent_type = btrfs_file_extent_type(leaf, fi);
1108 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1109 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1110 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1111 extent_offset = btrfs_file_extent_offset(leaf, fi);
1112 extent_end = found_key.offset +
1113 btrfs_file_extent_num_bytes(leaf, fi);
1114 if (extent_end <= start) {
1115 path->slots[0]++;
1116 goto next_slot;
1118 if (disk_bytenr == 0)
1119 goto out_check;
1120 if (btrfs_file_extent_compression(leaf, fi) ||
1121 btrfs_file_extent_encryption(leaf, fi) ||
1122 btrfs_file_extent_other_encoding(leaf, fi))
1123 goto out_check;
1124 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1125 goto out_check;
1126 if (btrfs_extent_readonly(root, disk_bytenr))
1127 goto out_check;
1128 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1129 found_key.offset -
1130 extent_offset, disk_bytenr))
1131 goto out_check;
1132 disk_bytenr += extent_offset;
1133 disk_bytenr += cur_offset - found_key.offset;
1134 num_bytes = min(end + 1, extent_end) - cur_offset;
1136 * force cow if csum exists in the range.
1137 * this ensure that csum for a given extent are
1138 * either valid or do not exist.
1140 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1141 goto out_check;
1142 nocow = 1;
1143 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1144 extent_end = found_key.offset +
1145 btrfs_file_extent_inline_len(leaf, fi);
1146 extent_end = ALIGN(extent_end, root->sectorsize);
1147 } else {
1148 BUG_ON(1);
1150 out_check:
1151 if (extent_end <= start) {
1152 path->slots[0]++;
1153 goto next_slot;
1155 if (!nocow) {
1156 if (cow_start == (u64)-1)
1157 cow_start = cur_offset;
1158 cur_offset = extent_end;
1159 if (cur_offset > end)
1160 break;
1161 path->slots[0]++;
1162 goto next_slot;
1165 btrfs_release_path(root, path);
1166 if (cow_start != (u64)-1) {
1167 ret = cow_file_range(inode, locked_page, cow_start,
1168 found_key.offset - 1, page_started,
1169 nr_written, 1);
1170 BUG_ON(ret);
1171 cow_start = (u64)-1;
1174 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1175 struct extent_map *em;
1176 struct extent_map_tree *em_tree;
1177 em_tree = &BTRFS_I(inode)->extent_tree;
1178 em = alloc_extent_map(GFP_NOFS);
1179 BUG_ON(!em);
1180 em->start = cur_offset;
1181 em->orig_start = em->start;
1182 em->len = num_bytes;
1183 em->block_len = num_bytes;
1184 em->block_start = disk_bytenr;
1185 em->bdev = root->fs_info->fs_devices->latest_bdev;
1186 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1187 while (1) {
1188 write_lock(&em_tree->lock);
1189 ret = add_extent_mapping(em_tree, em);
1190 write_unlock(&em_tree->lock);
1191 if (ret != -EEXIST) {
1192 free_extent_map(em);
1193 break;
1195 btrfs_drop_extent_cache(inode, em->start,
1196 em->start + em->len - 1, 0);
1198 type = BTRFS_ORDERED_PREALLOC;
1199 } else {
1200 type = BTRFS_ORDERED_NOCOW;
1203 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1204 num_bytes, num_bytes, type);
1205 BUG_ON(ret);
1207 if (root->root_key.objectid ==
1208 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1209 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1210 num_bytes);
1211 BUG_ON(ret);
1214 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1215 cur_offset, cur_offset + num_bytes - 1,
1216 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1217 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1218 EXTENT_SET_PRIVATE2);
1219 cur_offset = extent_end;
1220 if (cur_offset > end)
1221 break;
1223 btrfs_release_path(root, path);
1225 if (cur_offset <= end && cow_start == (u64)-1)
1226 cow_start = cur_offset;
1227 if (cow_start != (u64)-1) {
1228 ret = cow_file_range(inode, locked_page, cow_start, end,
1229 page_started, nr_written, 1);
1230 BUG_ON(ret);
1233 if (nolock) {
1234 ret = btrfs_end_transaction_nolock(trans, root);
1235 BUG_ON(ret);
1236 } else {
1237 ret = btrfs_end_transaction(trans, root);
1238 BUG_ON(ret);
1240 btrfs_free_path(path);
1241 return 0;
1245 * extent_io.c call back to do delayed allocation processing
1247 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1248 u64 start, u64 end, int *page_started,
1249 unsigned long *nr_written)
1251 int ret;
1252 struct btrfs_root *root = BTRFS_I(inode)->root;
1254 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1255 ret = run_delalloc_nocow(inode, locked_page, start, end,
1256 page_started, 1, nr_written);
1257 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1258 ret = run_delalloc_nocow(inode, locked_page, start, end,
1259 page_started, 0, nr_written);
1260 else if (!btrfs_test_opt(root, COMPRESS) &&
1261 !(BTRFS_I(inode)->force_compress) &&
1262 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1263 ret = cow_file_range(inode, locked_page, start, end,
1264 page_started, nr_written, 1);
1265 else
1266 ret = cow_file_range_async(inode, locked_page, start, end,
1267 page_started, nr_written);
1268 return ret;
1271 static int btrfs_split_extent_hook(struct inode *inode,
1272 struct extent_state *orig, u64 split)
1274 /* not delalloc, ignore it */
1275 if (!(orig->state & EXTENT_DELALLOC))
1276 return 0;
1278 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1279 return 0;
1283 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1284 * extents so we can keep track of new extents that are just merged onto old
1285 * extents, such as when we are doing sequential writes, so we can properly
1286 * account for the metadata space we'll need.
1288 static int btrfs_merge_extent_hook(struct inode *inode,
1289 struct extent_state *new,
1290 struct extent_state *other)
1292 /* not delalloc, ignore it */
1293 if (!(other->state & EXTENT_DELALLOC))
1294 return 0;
1296 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1297 return 0;
1301 * extent_io.c set_bit_hook, used to track delayed allocation
1302 * bytes in this file, and to maintain the list of inodes that
1303 * have pending delalloc work to be done.
1305 static int btrfs_set_bit_hook(struct inode *inode,
1306 struct extent_state *state, int *bits)
1310 * set_bit and clear bit hooks normally require _irqsave/restore
1311 * but in this case, we are only testeing for the DELALLOC
1312 * bit, which is only set or cleared with irqs on
1314 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1315 struct btrfs_root *root = BTRFS_I(inode)->root;
1316 u64 len = state->end + 1 - state->start;
1317 int do_list = (root->root_key.objectid !=
1318 BTRFS_ROOT_TREE_OBJECTID);
1320 if (*bits & EXTENT_FIRST_DELALLOC)
1321 *bits &= ~EXTENT_FIRST_DELALLOC;
1322 else
1323 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1325 spin_lock(&root->fs_info->delalloc_lock);
1326 BTRFS_I(inode)->delalloc_bytes += len;
1327 root->fs_info->delalloc_bytes += len;
1328 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1329 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330 &root->fs_info->delalloc_inodes);
1332 spin_unlock(&root->fs_info->delalloc_lock);
1334 return 0;
1338 * extent_io.c clear_bit_hook, see set_bit_hook for why
1340 static int btrfs_clear_bit_hook(struct inode *inode,
1341 struct extent_state *state, int *bits)
1344 * set_bit and clear bit hooks normally require _irqsave/restore
1345 * but in this case, we are only testeing for the DELALLOC
1346 * bit, which is only set or cleared with irqs on
1348 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1349 struct btrfs_root *root = BTRFS_I(inode)->root;
1350 u64 len = state->end + 1 - state->start;
1351 int do_list = (root->root_key.objectid !=
1352 BTRFS_ROOT_TREE_OBJECTID);
1354 if (*bits & EXTENT_FIRST_DELALLOC)
1355 *bits &= ~EXTENT_FIRST_DELALLOC;
1356 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1357 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359 if (*bits & EXTENT_DO_ACCOUNTING)
1360 btrfs_delalloc_release_metadata(inode, len);
1362 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1363 && do_list)
1364 btrfs_free_reserved_data_space(inode, len);
1366 spin_lock(&root->fs_info->delalloc_lock);
1367 root->fs_info->delalloc_bytes -= len;
1368 BTRFS_I(inode)->delalloc_bytes -= len;
1370 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1371 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1372 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374 spin_unlock(&root->fs_info->delalloc_lock);
1376 return 0;
1380 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1381 * we don't create bios that span stripes or chunks
1383 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1384 size_t size, struct bio *bio,
1385 unsigned long bio_flags)
1387 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1388 struct btrfs_mapping_tree *map_tree;
1389 u64 logical = (u64)bio->bi_sector << 9;
1390 u64 length = 0;
1391 u64 map_length;
1392 int ret;
1394 if (bio_flags & EXTENT_BIO_COMPRESSED)
1395 return 0;
1397 length = bio->bi_size;
1398 map_tree = &root->fs_info->mapping_tree;
1399 map_length = length;
1400 ret = btrfs_map_block(map_tree, READ, logical,
1401 &map_length, NULL, 0);
1403 if (map_length < length + size)
1404 return 1;
1405 return ret;
1409 * in order to insert checksums into the metadata in large chunks,
1410 * we wait until bio submission time. All the pages in the bio are
1411 * checksummed and sums are attached onto the ordered extent record.
1413 * At IO completion time the cums attached on the ordered extent record
1414 * are inserted into the btree
1416 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1417 struct bio *bio, int mirror_num,
1418 unsigned long bio_flags,
1419 u64 bio_offset)
1421 struct btrfs_root *root = BTRFS_I(inode)->root;
1422 int ret = 0;
1424 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1425 BUG_ON(ret);
1426 return 0;
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1437 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1438 int mirror_num, unsigned long bio_flags,
1439 u64 bio_offset)
1441 struct btrfs_root *root = BTRFS_I(inode)->root;
1442 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1446 * extent_io.c submission hook. This does the right thing for csum calculation
1447 * on write, or reading the csums from the tree before a read
1449 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1450 int mirror_num, unsigned long bio_flags,
1451 u64 bio_offset)
1453 struct btrfs_root *root = BTRFS_I(inode)->root;
1454 int ret = 0;
1455 int skip_sum;
1457 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1459 if (root == root->fs_info->tree_root)
1460 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1461 else
1462 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1463 BUG_ON(ret);
1465 if (!(rw & REQ_WRITE)) {
1466 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1467 return btrfs_submit_compressed_read(inode, bio,
1468 mirror_num, bio_flags);
1469 } else if (!skip_sum) {
1470 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1471 if (ret)
1472 return ret;
1474 goto mapit;
1475 } else if (!skip_sum) {
1476 /* csum items have already been cloned */
1477 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478 goto mapit;
1479 /* we're doing a write, do the async checksumming */
1480 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1481 inode, rw, bio, mirror_num,
1482 bio_flags, bio_offset,
1483 __btrfs_submit_bio_start,
1484 __btrfs_submit_bio_done);
1487 mapit:
1488 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1492 * given a list of ordered sums record them in the inode. This happens
1493 * at IO completion time based on sums calculated at bio submission time.
1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1496 struct inode *inode, u64 file_offset,
1497 struct list_head *list)
1499 struct btrfs_ordered_sum *sum;
1501 btrfs_set_trans_block_group(trans, inode);
1503 list_for_each_entry(sum, list, list) {
1504 btrfs_csum_file_blocks(trans,
1505 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507 return 0;
1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1511 struct extent_state **cached_state)
1513 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514 WARN_ON(1);
1515 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516 cached_state, GFP_NOFS);
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521 struct page *page;
1522 struct btrfs_work work;
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1527 struct btrfs_writepage_fixup *fixup;
1528 struct btrfs_ordered_extent *ordered;
1529 struct extent_state *cached_state = NULL;
1530 struct page *page;
1531 struct inode *inode;
1532 u64 page_start;
1533 u64 page_end;
1535 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1536 page = fixup->page;
1537 again:
1538 lock_page(page);
1539 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1540 ClearPageChecked(page);
1541 goto out_page;
1544 inode = page->mapping->host;
1545 page_start = page_offset(page);
1546 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1549 &cached_state, GFP_NOFS);
1551 /* already ordered? We're done */
1552 if (PagePrivate2(page))
1553 goto out;
1555 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1556 if (ordered) {
1557 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1558 page_end, &cached_state, GFP_NOFS);
1559 unlock_page(page);
1560 btrfs_start_ordered_extent(inode, ordered, 1);
1561 goto again;
1564 BUG();
1565 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1566 ClearPageChecked(page);
1567 out:
1568 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1569 &cached_state, GFP_NOFS);
1570 out_page:
1571 unlock_page(page);
1572 page_cache_release(page);
1573 kfree(fixup);
1577 * There are a few paths in the higher layers of the kernel that directly
1578 * set the page dirty bit without asking the filesystem if it is a
1579 * good idea. This causes problems because we want to make sure COW
1580 * properly happens and the data=ordered rules are followed.
1582 * In our case any range that doesn't have the ORDERED bit set
1583 * hasn't been properly setup for IO. We kick off an async process
1584 * to fix it up. The async helper will wait for ordered extents, set
1585 * the delalloc bit and make it safe to write the page.
1587 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1589 struct inode *inode = page->mapping->host;
1590 struct btrfs_writepage_fixup *fixup;
1591 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 /* this page is properly in the ordered list */
1594 if (TestClearPagePrivate2(page))
1595 return 0;
1597 if (PageChecked(page))
1598 return -EAGAIN;
1600 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1601 if (!fixup)
1602 return -EAGAIN;
1604 SetPageChecked(page);
1605 page_cache_get(page);
1606 fixup->work.func = btrfs_writepage_fixup_worker;
1607 fixup->page = page;
1608 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1609 return -EAGAIN;
1612 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1613 struct inode *inode, u64 file_pos,
1614 u64 disk_bytenr, u64 disk_num_bytes,
1615 u64 num_bytes, u64 ram_bytes,
1616 u8 compression, u8 encryption,
1617 u16 other_encoding, int extent_type)
1619 struct btrfs_root *root = BTRFS_I(inode)->root;
1620 struct btrfs_file_extent_item *fi;
1621 struct btrfs_path *path;
1622 struct extent_buffer *leaf;
1623 struct btrfs_key ins;
1624 u64 hint;
1625 int ret;
1627 path = btrfs_alloc_path();
1628 BUG_ON(!path);
1630 path->leave_spinning = 1;
1633 * we may be replacing one extent in the tree with another.
1634 * The new extent is pinned in the extent map, and we don't want
1635 * to drop it from the cache until it is completely in the btree.
1637 * So, tell btrfs_drop_extents to leave this extent in the cache.
1638 * the caller is expected to unpin it and allow it to be merged
1639 * with the others.
1641 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1642 &hint, 0);
1643 BUG_ON(ret);
1645 ins.objectid = inode->i_ino;
1646 ins.offset = file_pos;
1647 ins.type = BTRFS_EXTENT_DATA_KEY;
1648 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1649 BUG_ON(ret);
1650 leaf = path->nodes[0];
1651 fi = btrfs_item_ptr(leaf, path->slots[0],
1652 struct btrfs_file_extent_item);
1653 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1654 btrfs_set_file_extent_type(leaf, fi, extent_type);
1655 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1656 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1657 btrfs_set_file_extent_offset(leaf, fi, 0);
1658 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1659 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1660 btrfs_set_file_extent_compression(leaf, fi, compression);
1661 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1662 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1664 btrfs_unlock_up_safe(path, 1);
1665 btrfs_set_lock_blocking(leaf);
1667 btrfs_mark_buffer_dirty(leaf);
1669 inode_add_bytes(inode, num_bytes);
1671 ins.objectid = disk_bytenr;
1672 ins.offset = disk_num_bytes;
1673 ins.type = BTRFS_EXTENT_ITEM_KEY;
1674 ret = btrfs_alloc_reserved_file_extent(trans, root,
1675 root->root_key.objectid,
1676 inode->i_ino, file_pos, &ins);
1677 BUG_ON(ret);
1678 btrfs_free_path(path);
1680 return 0;
1684 * helper function for btrfs_finish_ordered_io, this
1685 * just reads in some of the csum leaves to prime them into ram
1686 * before we start the transaction. It limits the amount of btree
1687 * reads required while inside the transaction.
1689 /* as ordered data IO finishes, this gets called so we can finish
1690 * an ordered extent if the range of bytes in the file it covers are
1691 * fully written.
1693 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1695 struct btrfs_root *root = BTRFS_I(inode)->root;
1696 struct btrfs_trans_handle *trans = NULL;
1697 struct btrfs_ordered_extent *ordered_extent = NULL;
1698 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1699 struct extent_state *cached_state = NULL;
1700 int compress_type = 0;
1701 int ret;
1702 bool nolock = false;
1704 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1705 end - start + 1);
1706 if (!ret)
1707 return 0;
1708 BUG_ON(!ordered_extent);
1710 nolock = (root == root->fs_info->tree_root);
1712 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713 BUG_ON(!list_empty(&ordered_extent->list));
1714 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715 if (!ret) {
1716 if (nolock)
1717 trans = btrfs_join_transaction_nolock(root, 1);
1718 else
1719 trans = btrfs_join_transaction(root, 1);
1720 BUG_ON(IS_ERR(trans));
1721 btrfs_set_trans_block_group(trans, inode);
1722 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1723 ret = btrfs_update_inode(trans, root, inode);
1724 BUG_ON(ret);
1726 goto out;
1729 lock_extent_bits(io_tree, ordered_extent->file_offset,
1730 ordered_extent->file_offset + ordered_extent->len - 1,
1731 0, &cached_state, GFP_NOFS);
1733 if (nolock)
1734 trans = btrfs_join_transaction_nolock(root, 1);
1735 else
1736 trans = btrfs_join_transaction(root, 1);
1737 BUG_ON(IS_ERR(trans));
1738 btrfs_set_trans_block_group(trans, inode);
1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1742 compress_type = ordered_extent->compress_type;
1743 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1744 BUG_ON(compress_type);
1745 ret = btrfs_mark_extent_written(trans, inode,
1746 ordered_extent->file_offset,
1747 ordered_extent->file_offset +
1748 ordered_extent->len);
1749 BUG_ON(ret);
1750 } else {
1751 BUG_ON(root == root->fs_info->tree_root);
1752 ret = insert_reserved_file_extent(trans, inode,
1753 ordered_extent->file_offset,
1754 ordered_extent->start,
1755 ordered_extent->disk_len,
1756 ordered_extent->len,
1757 ordered_extent->len,
1758 compress_type, 0, 0,
1759 BTRFS_FILE_EXTENT_REG);
1760 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1761 ordered_extent->file_offset,
1762 ordered_extent->len);
1763 BUG_ON(ret);
1765 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1766 ordered_extent->file_offset +
1767 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769 add_pending_csums(trans, inode, ordered_extent->file_offset,
1770 &ordered_extent->list);
1772 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1773 if (!ret) {
1774 ret = btrfs_update_inode(trans, root, inode);
1775 BUG_ON(ret);
1777 ret = 0;
1778 out:
1779 if (nolock) {
1780 if (trans)
1781 btrfs_end_transaction_nolock(trans, root);
1782 } else {
1783 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1784 if (trans)
1785 btrfs_end_transaction(trans, root);
1788 /* once for us */
1789 btrfs_put_ordered_extent(ordered_extent);
1790 /* once for the tree */
1791 btrfs_put_ordered_extent(ordered_extent);
1793 return 0;
1796 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1797 struct extent_state *state, int uptodate)
1799 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1801 ClearPagePrivate2(page);
1802 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1806 * When IO fails, either with EIO or csum verification fails, we
1807 * try other mirrors that might have a good copy of the data. This
1808 * io_failure_record is used to record state as we go through all the
1809 * mirrors. If another mirror has good data, the page is set up to date
1810 * and things continue. If a good mirror can't be found, the original
1811 * bio end_io callback is called to indicate things have failed.
1813 struct io_failure_record {
1814 struct page *page;
1815 u64 start;
1816 u64 len;
1817 u64 logical;
1818 unsigned long bio_flags;
1819 int last_mirror;
1822 static int btrfs_io_failed_hook(struct bio *failed_bio,
1823 struct page *page, u64 start, u64 end,
1824 struct extent_state *state)
1826 struct io_failure_record *failrec = NULL;
1827 u64 private;
1828 struct extent_map *em;
1829 struct inode *inode = page->mapping->host;
1830 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1831 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1832 struct bio *bio;
1833 int num_copies;
1834 int ret;
1835 int rw;
1836 u64 logical;
1838 ret = get_state_private(failure_tree, start, &private);
1839 if (ret) {
1840 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1841 if (!failrec)
1842 return -ENOMEM;
1843 failrec->start = start;
1844 failrec->len = end - start + 1;
1845 failrec->last_mirror = 0;
1846 failrec->bio_flags = 0;
1848 read_lock(&em_tree->lock);
1849 em = lookup_extent_mapping(em_tree, start, failrec->len);
1850 if (em->start > start || em->start + em->len < start) {
1851 free_extent_map(em);
1852 em = NULL;
1854 read_unlock(&em_tree->lock);
1856 if (!em || IS_ERR(em)) {
1857 kfree(failrec);
1858 return -EIO;
1860 logical = start - em->start;
1861 logical = em->block_start + logical;
1862 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1863 logical = em->block_start;
1864 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1865 extent_set_compress_type(&failrec->bio_flags,
1866 em->compress_type);
1868 failrec->logical = logical;
1869 free_extent_map(em);
1870 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1871 EXTENT_DIRTY, GFP_NOFS);
1872 set_state_private(failure_tree, start,
1873 (u64)(unsigned long)failrec);
1874 } else {
1875 failrec = (struct io_failure_record *)(unsigned long)private;
1877 num_copies = btrfs_num_copies(
1878 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1879 failrec->logical, failrec->len);
1880 failrec->last_mirror++;
1881 if (!state) {
1882 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1883 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1884 failrec->start,
1885 EXTENT_LOCKED);
1886 if (state && state->start != failrec->start)
1887 state = NULL;
1888 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1890 if (!state || failrec->last_mirror > num_copies) {
1891 set_state_private(failure_tree, failrec->start, 0);
1892 clear_extent_bits(failure_tree, failrec->start,
1893 failrec->start + failrec->len - 1,
1894 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1895 kfree(failrec);
1896 return -EIO;
1898 bio = bio_alloc(GFP_NOFS, 1);
1899 bio->bi_private = state;
1900 bio->bi_end_io = failed_bio->bi_end_io;
1901 bio->bi_sector = failrec->logical >> 9;
1902 bio->bi_bdev = failed_bio->bi_bdev;
1903 bio->bi_size = 0;
1905 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1906 if (failed_bio->bi_rw & REQ_WRITE)
1907 rw = WRITE;
1908 else
1909 rw = READ;
1911 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1912 failrec->last_mirror,
1913 failrec->bio_flags, 0);
1914 return ret;
1918 * each time an IO finishes, we do a fast check in the IO failure tree
1919 * to see if we need to process or clean up an io_failure_record
1921 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1923 u64 private;
1924 u64 private_failure;
1925 struct io_failure_record *failure;
1926 int ret;
1928 private = 0;
1929 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1930 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1931 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1932 start, &private_failure);
1933 if (ret == 0) {
1934 failure = (struct io_failure_record *)(unsigned long)
1935 private_failure;
1936 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1937 failure->start, 0);
1938 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1939 failure->start,
1940 failure->start + failure->len - 1,
1941 EXTENT_DIRTY | EXTENT_LOCKED,
1942 GFP_NOFS);
1943 kfree(failure);
1946 return 0;
1950 * when reads are done, we need to check csums to verify the data is correct
1951 * if there's a match, we allow the bio to finish. If not, we go through
1952 * the io_failure_record routines to find good copies
1954 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1955 struct extent_state *state)
1957 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1958 struct inode *inode = page->mapping->host;
1959 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1960 char *kaddr;
1961 u64 private = ~(u32)0;
1962 int ret;
1963 struct btrfs_root *root = BTRFS_I(inode)->root;
1964 u32 csum = ~(u32)0;
1966 if (PageChecked(page)) {
1967 ClearPageChecked(page);
1968 goto good;
1971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1972 return 0;
1974 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1975 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1976 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1977 GFP_NOFS);
1978 return 0;
1981 if (state && state->start == start) {
1982 private = state->private;
1983 ret = 0;
1984 } else {
1985 ret = get_state_private(io_tree, start, &private);
1987 kaddr = kmap_atomic(page, KM_USER0);
1988 if (ret)
1989 goto zeroit;
1991 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1992 btrfs_csum_final(csum, (char *)&csum);
1993 if (csum != private)
1994 goto zeroit;
1996 kunmap_atomic(kaddr, KM_USER0);
1997 good:
1998 /* if the io failure tree for this inode is non-empty,
1999 * check to see if we've recovered from a failed IO
2001 btrfs_clean_io_failures(inode, start);
2002 return 0;
2004 zeroit:
2005 if (printk_ratelimit()) {
2006 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2007 "private %llu\n", page->mapping->host->i_ino,
2008 (unsigned long long)start, csum,
2009 (unsigned long long)private);
2011 memset(kaddr + offset, 1, end - start + 1);
2012 flush_dcache_page(page);
2013 kunmap_atomic(kaddr, KM_USER0);
2014 if (private == 0)
2015 return 0;
2016 return -EIO;
2019 struct delayed_iput {
2020 struct list_head list;
2021 struct inode *inode;
2024 void btrfs_add_delayed_iput(struct inode *inode)
2026 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2027 struct delayed_iput *delayed;
2029 if (atomic_add_unless(&inode->i_count, -1, 1))
2030 return;
2032 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2033 delayed->inode = inode;
2035 spin_lock(&fs_info->delayed_iput_lock);
2036 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2037 spin_unlock(&fs_info->delayed_iput_lock);
2040 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2042 LIST_HEAD(list);
2043 struct btrfs_fs_info *fs_info = root->fs_info;
2044 struct delayed_iput *delayed;
2045 int empty;
2047 spin_lock(&fs_info->delayed_iput_lock);
2048 empty = list_empty(&fs_info->delayed_iputs);
2049 spin_unlock(&fs_info->delayed_iput_lock);
2050 if (empty)
2051 return;
2053 down_read(&root->fs_info->cleanup_work_sem);
2054 spin_lock(&fs_info->delayed_iput_lock);
2055 list_splice_init(&fs_info->delayed_iputs, &list);
2056 spin_unlock(&fs_info->delayed_iput_lock);
2058 while (!list_empty(&list)) {
2059 delayed = list_entry(list.next, struct delayed_iput, list);
2060 list_del(&delayed->list);
2061 iput(delayed->inode);
2062 kfree(delayed);
2064 up_read(&root->fs_info->cleanup_work_sem);
2068 * calculate extra metadata reservation when snapshotting a subvolume
2069 * contains orphan files.
2071 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2072 struct btrfs_pending_snapshot *pending,
2073 u64 *bytes_to_reserve)
2075 struct btrfs_root *root;
2076 struct btrfs_block_rsv *block_rsv;
2077 u64 num_bytes;
2078 int index;
2080 root = pending->root;
2081 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2082 return;
2084 block_rsv = root->orphan_block_rsv;
2086 /* orphan block reservation for the snapshot */
2087 num_bytes = block_rsv->size;
2090 * after the snapshot is created, COWing tree blocks may use more
2091 * space than it frees. So we should make sure there is enough
2092 * reserved space.
2094 index = trans->transid & 0x1;
2095 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2096 num_bytes += block_rsv->size -
2097 (block_rsv->reserved + block_rsv->freed[index]);
2100 *bytes_to_reserve += num_bytes;
2103 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2104 struct btrfs_pending_snapshot *pending)
2106 struct btrfs_root *root = pending->root;
2107 struct btrfs_root *snap = pending->snap;
2108 struct btrfs_block_rsv *block_rsv;
2109 u64 num_bytes;
2110 int index;
2111 int ret;
2113 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2114 return;
2116 /* refill source subvolume's orphan block reservation */
2117 block_rsv = root->orphan_block_rsv;
2118 index = trans->transid & 0x1;
2119 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2120 num_bytes = block_rsv->size -
2121 (block_rsv->reserved + block_rsv->freed[index]);
2122 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2123 root->orphan_block_rsv,
2124 num_bytes);
2125 BUG_ON(ret);
2128 /* setup orphan block reservation for the snapshot */
2129 block_rsv = btrfs_alloc_block_rsv(snap);
2130 BUG_ON(!block_rsv);
2132 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2133 snap->orphan_block_rsv = block_rsv;
2135 num_bytes = root->orphan_block_rsv->size;
2136 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2137 block_rsv, num_bytes);
2138 BUG_ON(ret);
2140 #if 0
2141 /* insert orphan item for the snapshot */
2142 WARN_ON(!root->orphan_item_inserted);
2143 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2144 snap->root_key.objectid);
2145 BUG_ON(ret);
2146 snap->orphan_item_inserted = 1;
2147 #endif
2150 enum btrfs_orphan_cleanup_state {
2151 ORPHAN_CLEANUP_STARTED = 1,
2152 ORPHAN_CLEANUP_DONE = 2,
2156 * This is called in transaction commmit time. If there are no orphan
2157 * files in the subvolume, it removes orphan item and frees block_rsv
2158 * structure.
2160 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2161 struct btrfs_root *root)
2163 int ret;
2165 if (!list_empty(&root->orphan_list) ||
2166 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2167 return;
2169 if (root->orphan_item_inserted &&
2170 btrfs_root_refs(&root->root_item) > 0) {
2171 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2172 root->root_key.objectid);
2173 BUG_ON(ret);
2174 root->orphan_item_inserted = 0;
2177 if (root->orphan_block_rsv) {
2178 WARN_ON(root->orphan_block_rsv->size > 0);
2179 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2180 root->orphan_block_rsv = NULL;
2185 * This creates an orphan entry for the given inode in case something goes
2186 * wrong in the middle of an unlink/truncate.
2188 * NOTE: caller of this function should reserve 5 units of metadata for
2189 * this function.
2191 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2193 struct btrfs_root *root = BTRFS_I(inode)->root;
2194 struct btrfs_block_rsv *block_rsv = NULL;
2195 int reserve = 0;
2196 int insert = 0;
2197 int ret;
2199 if (!root->orphan_block_rsv) {
2200 block_rsv = btrfs_alloc_block_rsv(root);
2201 BUG_ON(!block_rsv);
2204 spin_lock(&root->orphan_lock);
2205 if (!root->orphan_block_rsv) {
2206 root->orphan_block_rsv = block_rsv;
2207 } else if (block_rsv) {
2208 btrfs_free_block_rsv(root, block_rsv);
2209 block_rsv = NULL;
2212 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2213 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2214 #if 0
2216 * For proper ENOSPC handling, we should do orphan
2217 * cleanup when mounting. But this introduces backward
2218 * compatibility issue.
2220 if (!xchg(&root->orphan_item_inserted, 1))
2221 insert = 2;
2222 else
2223 insert = 1;
2224 #endif
2225 insert = 1;
2228 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2229 BTRFS_I(inode)->orphan_meta_reserved = 1;
2230 reserve = 1;
2232 spin_unlock(&root->orphan_lock);
2234 if (block_rsv)
2235 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2237 /* grab metadata reservation from transaction handle */
2238 if (reserve) {
2239 ret = btrfs_orphan_reserve_metadata(trans, inode);
2240 BUG_ON(ret);
2243 /* insert an orphan item to track this unlinked/truncated file */
2244 if (insert >= 1) {
2245 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2246 BUG_ON(ret);
2249 /* insert an orphan item to track subvolume contains orphan files */
2250 if (insert >= 2) {
2251 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2252 root->root_key.objectid);
2253 BUG_ON(ret);
2255 return 0;
2259 * We have done the truncate/delete so we can go ahead and remove the orphan
2260 * item for this particular inode.
2262 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2264 struct btrfs_root *root = BTRFS_I(inode)->root;
2265 int delete_item = 0;
2266 int release_rsv = 0;
2267 int ret = 0;
2269 spin_lock(&root->orphan_lock);
2270 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2271 list_del_init(&BTRFS_I(inode)->i_orphan);
2272 delete_item = 1;
2275 if (BTRFS_I(inode)->orphan_meta_reserved) {
2276 BTRFS_I(inode)->orphan_meta_reserved = 0;
2277 release_rsv = 1;
2279 spin_unlock(&root->orphan_lock);
2281 if (trans && delete_item) {
2282 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2283 BUG_ON(ret);
2286 if (release_rsv)
2287 btrfs_orphan_release_metadata(inode);
2289 return 0;
2293 * this cleans up any orphans that may be left on the list from the last use
2294 * of this root.
2296 int btrfs_orphan_cleanup(struct btrfs_root *root)
2298 struct btrfs_path *path;
2299 struct extent_buffer *leaf;
2300 struct btrfs_key key, found_key;
2301 struct btrfs_trans_handle *trans;
2302 struct inode *inode;
2303 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2305 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2306 return 0;
2308 path = btrfs_alloc_path();
2309 if (!path) {
2310 ret = -ENOMEM;
2311 goto out;
2313 path->reada = -1;
2315 key.objectid = BTRFS_ORPHAN_OBJECTID;
2316 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2317 key.offset = (u64)-1;
2319 while (1) {
2320 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2321 if (ret < 0)
2322 goto out;
2325 * if ret == 0 means we found what we were searching for, which
2326 * is weird, but possible, so only screw with path if we didnt
2327 * find the key and see if we have stuff that matches
2329 if (ret > 0) {
2330 ret = 0;
2331 if (path->slots[0] == 0)
2332 break;
2333 path->slots[0]--;
2336 /* pull out the item */
2337 leaf = path->nodes[0];
2338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2340 /* make sure the item matches what we want */
2341 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2342 break;
2343 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2344 break;
2346 /* release the path since we're done with it */
2347 btrfs_release_path(root, path);
2350 * this is where we are basically btrfs_lookup, without the
2351 * crossing root thing. we store the inode number in the
2352 * offset of the orphan item.
2354 found_key.objectid = found_key.offset;
2355 found_key.type = BTRFS_INODE_ITEM_KEY;
2356 found_key.offset = 0;
2357 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2358 if (IS_ERR(inode)) {
2359 ret = PTR_ERR(inode);
2360 goto out;
2364 * add this inode to the orphan list so btrfs_orphan_del does
2365 * the proper thing when we hit it
2367 spin_lock(&root->orphan_lock);
2368 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2369 spin_unlock(&root->orphan_lock);
2372 * if this is a bad inode, means we actually succeeded in
2373 * removing the inode, but not the orphan record, which means
2374 * we need to manually delete the orphan since iput will just
2375 * do a destroy_inode
2377 if (is_bad_inode(inode)) {
2378 trans = btrfs_start_transaction(root, 0);
2379 if (IS_ERR(trans)) {
2380 ret = PTR_ERR(trans);
2381 goto out;
2383 btrfs_orphan_del(trans, inode);
2384 btrfs_end_transaction(trans, root);
2385 iput(inode);
2386 continue;
2389 /* if we have links, this was a truncate, lets do that */
2390 if (inode->i_nlink) {
2391 if (!S_ISREG(inode->i_mode)) {
2392 WARN_ON(1);
2393 iput(inode);
2394 continue;
2396 nr_truncate++;
2397 ret = btrfs_truncate(inode);
2398 } else {
2399 nr_unlink++;
2402 /* this will do delete_inode and everything for us */
2403 iput(inode);
2404 if (ret)
2405 goto out;
2407 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2409 if (root->orphan_block_rsv)
2410 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2411 (u64)-1);
2413 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2414 trans = btrfs_join_transaction(root, 1);
2415 if (!IS_ERR(trans))
2416 btrfs_end_transaction(trans, root);
2419 if (nr_unlink)
2420 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2421 if (nr_truncate)
2422 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2424 out:
2425 if (ret)
2426 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2427 btrfs_free_path(path);
2428 return ret;
2432 * very simple check to peek ahead in the leaf looking for xattrs. If we
2433 * don't find any xattrs, we know there can't be any acls.
2435 * slot is the slot the inode is in, objectid is the objectid of the inode
2437 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2438 int slot, u64 objectid)
2440 u32 nritems = btrfs_header_nritems(leaf);
2441 struct btrfs_key found_key;
2442 int scanned = 0;
2444 slot++;
2445 while (slot < nritems) {
2446 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2448 /* we found a different objectid, there must not be acls */
2449 if (found_key.objectid != objectid)
2450 return 0;
2452 /* we found an xattr, assume we've got an acl */
2453 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2454 return 1;
2457 * we found a key greater than an xattr key, there can't
2458 * be any acls later on
2460 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2461 return 0;
2463 slot++;
2464 scanned++;
2467 * it goes inode, inode backrefs, xattrs, extents,
2468 * so if there are a ton of hard links to an inode there can
2469 * be a lot of backrefs. Don't waste time searching too hard,
2470 * this is just an optimization
2472 if (scanned >= 8)
2473 break;
2475 /* we hit the end of the leaf before we found an xattr or
2476 * something larger than an xattr. We have to assume the inode
2477 * has acls
2479 return 1;
2483 * read an inode from the btree into the in-memory inode
2485 static void btrfs_read_locked_inode(struct inode *inode)
2487 struct btrfs_path *path;
2488 struct extent_buffer *leaf;
2489 struct btrfs_inode_item *inode_item;
2490 struct btrfs_timespec *tspec;
2491 struct btrfs_root *root = BTRFS_I(inode)->root;
2492 struct btrfs_key location;
2493 int maybe_acls;
2494 u64 alloc_group_block;
2495 u32 rdev;
2496 int ret;
2498 path = btrfs_alloc_path();
2499 BUG_ON(!path);
2500 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2502 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2503 if (ret)
2504 goto make_bad;
2506 leaf = path->nodes[0];
2507 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2508 struct btrfs_inode_item);
2510 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2511 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2512 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2513 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2514 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2516 tspec = btrfs_inode_atime(inode_item);
2517 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2518 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520 tspec = btrfs_inode_mtime(inode_item);
2521 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2522 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524 tspec = btrfs_inode_ctime(inode_item);
2525 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2526 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2528 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2529 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2530 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2531 inode->i_generation = BTRFS_I(inode)->generation;
2532 inode->i_rdev = 0;
2533 rdev = btrfs_inode_rdev(leaf, inode_item);
2535 BTRFS_I(inode)->index_cnt = (u64)-1;
2536 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2538 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2541 * try to precache a NULL acl entry for files that don't have
2542 * any xattrs or acls
2544 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2545 if (!maybe_acls)
2546 cache_no_acl(inode);
2548 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2549 alloc_group_block, 0);
2550 btrfs_free_path(path);
2551 inode_item = NULL;
2553 switch (inode->i_mode & S_IFMT) {
2554 case S_IFREG:
2555 inode->i_mapping->a_ops = &btrfs_aops;
2556 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2557 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2558 inode->i_fop = &btrfs_file_operations;
2559 inode->i_op = &btrfs_file_inode_operations;
2560 break;
2561 case S_IFDIR:
2562 inode->i_fop = &btrfs_dir_file_operations;
2563 if (root == root->fs_info->tree_root)
2564 inode->i_op = &btrfs_dir_ro_inode_operations;
2565 else
2566 inode->i_op = &btrfs_dir_inode_operations;
2567 break;
2568 case S_IFLNK:
2569 inode->i_op = &btrfs_symlink_inode_operations;
2570 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2571 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2572 break;
2573 default:
2574 inode->i_op = &btrfs_special_inode_operations;
2575 init_special_inode(inode, inode->i_mode, rdev);
2576 break;
2579 btrfs_update_iflags(inode);
2580 return;
2582 make_bad:
2583 btrfs_free_path(path);
2584 make_bad_inode(inode);
2588 * given a leaf and an inode, copy the inode fields into the leaf
2590 static void fill_inode_item(struct btrfs_trans_handle *trans,
2591 struct extent_buffer *leaf,
2592 struct btrfs_inode_item *item,
2593 struct inode *inode)
2595 if (!leaf->map_token)
2596 map_private_extent_buffer(leaf, (unsigned long)item,
2597 sizeof(struct btrfs_inode_item),
2598 &leaf->map_token, &leaf->kaddr,
2599 &leaf->map_start, &leaf->map_len,
2600 KM_USER1);
2602 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2603 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2604 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2605 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2606 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2608 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2609 inode->i_atime.tv_sec);
2610 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2611 inode->i_atime.tv_nsec);
2613 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2614 inode->i_mtime.tv_sec);
2615 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2616 inode->i_mtime.tv_nsec);
2618 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2619 inode->i_ctime.tv_sec);
2620 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2621 inode->i_ctime.tv_nsec);
2623 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2624 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2625 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2626 btrfs_set_inode_transid(leaf, item, trans->transid);
2627 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2628 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2629 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2631 if (leaf->map_token) {
2632 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2633 leaf->map_token = NULL;
2638 * copy everything in the in-memory inode into the btree.
2640 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root, struct inode *inode)
2643 struct btrfs_inode_item *inode_item;
2644 struct btrfs_path *path;
2645 struct extent_buffer *leaf;
2646 int ret;
2648 path = btrfs_alloc_path();
2649 BUG_ON(!path);
2650 path->leave_spinning = 1;
2651 ret = btrfs_lookup_inode(trans, root, path,
2652 &BTRFS_I(inode)->location, 1);
2653 if (ret) {
2654 if (ret > 0)
2655 ret = -ENOENT;
2656 goto failed;
2659 btrfs_unlock_up_safe(path, 1);
2660 leaf = path->nodes[0];
2661 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2662 struct btrfs_inode_item);
2664 fill_inode_item(trans, leaf, inode_item, inode);
2665 btrfs_mark_buffer_dirty(leaf);
2666 btrfs_set_inode_last_trans(trans, inode);
2667 ret = 0;
2668 failed:
2669 btrfs_free_path(path);
2670 return ret;
2675 * unlink helper that gets used here in inode.c and in the tree logging
2676 * recovery code. It remove a link in a directory with a given name, and
2677 * also drops the back refs in the inode to the directory
2679 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *root,
2681 struct inode *dir, struct inode *inode,
2682 const char *name, int name_len)
2684 struct btrfs_path *path;
2685 int ret = 0;
2686 struct extent_buffer *leaf;
2687 struct btrfs_dir_item *di;
2688 struct btrfs_key key;
2689 u64 index;
2691 path = btrfs_alloc_path();
2692 if (!path) {
2693 ret = -ENOMEM;
2694 goto out;
2697 path->leave_spinning = 1;
2698 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2699 name, name_len, -1);
2700 if (IS_ERR(di)) {
2701 ret = PTR_ERR(di);
2702 goto err;
2704 if (!di) {
2705 ret = -ENOENT;
2706 goto err;
2708 leaf = path->nodes[0];
2709 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2710 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2711 if (ret)
2712 goto err;
2713 btrfs_release_path(root, path);
2715 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2716 inode->i_ino,
2717 dir->i_ino, &index);
2718 if (ret) {
2719 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2720 "inode %lu parent %lu\n", name_len, name,
2721 inode->i_ino, dir->i_ino);
2722 goto err;
2725 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2726 index, name, name_len, -1);
2727 if (IS_ERR(di)) {
2728 ret = PTR_ERR(di);
2729 goto err;
2731 if (!di) {
2732 ret = -ENOENT;
2733 goto err;
2735 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2736 btrfs_release_path(root, path);
2738 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2739 inode, dir->i_ino);
2740 BUG_ON(ret != 0 && ret != -ENOENT);
2742 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2743 dir, index);
2744 if (ret == -ENOENT)
2745 ret = 0;
2746 err:
2747 btrfs_free_path(path);
2748 if (ret)
2749 goto out;
2751 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2752 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2753 btrfs_update_inode(trans, root, dir);
2754 out:
2755 return ret;
2758 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2759 struct btrfs_root *root,
2760 struct inode *dir, struct inode *inode,
2761 const char *name, int name_len)
2763 int ret;
2764 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2765 if (!ret) {
2766 btrfs_drop_nlink(inode);
2767 ret = btrfs_update_inode(trans, root, inode);
2769 return ret;
2773 /* helper to check if there is any shared block in the path */
2774 static int check_path_shared(struct btrfs_root *root,
2775 struct btrfs_path *path)
2777 struct extent_buffer *eb;
2778 int level;
2779 u64 refs = 1;
2781 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2782 int ret;
2784 if (!path->nodes[level])
2785 break;
2786 eb = path->nodes[level];
2787 if (!btrfs_block_can_be_shared(root, eb))
2788 continue;
2789 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2790 &refs, NULL);
2791 if (refs > 1)
2792 return 1;
2794 return 0;
2798 * helper to start transaction for unlink and rmdir.
2800 * unlink and rmdir are special in btrfs, they do not always free space.
2801 * so in enospc case, we should make sure they will free space before
2802 * allowing them to use the global metadata reservation.
2804 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2805 struct dentry *dentry)
2807 struct btrfs_trans_handle *trans;
2808 struct btrfs_root *root = BTRFS_I(dir)->root;
2809 struct btrfs_path *path;
2810 struct btrfs_inode_ref *ref;
2811 struct btrfs_dir_item *di;
2812 struct inode *inode = dentry->d_inode;
2813 u64 index;
2814 int check_link = 1;
2815 int err = -ENOSPC;
2816 int ret;
2818 trans = btrfs_start_transaction(root, 10);
2819 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2820 return trans;
2822 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2823 return ERR_PTR(-ENOSPC);
2825 /* check if there is someone else holds reference */
2826 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2827 return ERR_PTR(-ENOSPC);
2829 if (atomic_read(&inode->i_count) > 2)
2830 return ERR_PTR(-ENOSPC);
2832 if (xchg(&root->fs_info->enospc_unlink, 1))
2833 return ERR_PTR(-ENOSPC);
2835 path = btrfs_alloc_path();
2836 if (!path) {
2837 root->fs_info->enospc_unlink = 0;
2838 return ERR_PTR(-ENOMEM);
2841 trans = btrfs_start_transaction(root, 0);
2842 if (IS_ERR(trans)) {
2843 btrfs_free_path(path);
2844 root->fs_info->enospc_unlink = 0;
2845 return trans;
2848 path->skip_locking = 1;
2849 path->search_commit_root = 1;
2851 ret = btrfs_lookup_inode(trans, root, path,
2852 &BTRFS_I(dir)->location, 0);
2853 if (ret < 0) {
2854 err = ret;
2855 goto out;
2857 if (ret == 0) {
2858 if (check_path_shared(root, path))
2859 goto out;
2860 } else {
2861 check_link = 0;
2863 btrfs_release_path(root, path);
2865 ret = btrfs_lookup_inode(trans, root, path,
2866 &BTRFS_I(inode)->location, 0);
2867 if (ret < 0) {
2868 err = ret;
2869 goto out;
2871 if (ret == 0) {
2872 if (check_path_shared(root, path))
2873 goto out;
2874 } else {
2875 check_link = 0;
2877 btrfs_release_path(root, path);
2879 if (ret == 0 && S_ISREG(inode->i_mode)) {
2880 ret = btrfs_lookup_file_extent(trans, root, path,
2881 inode->i_ino, (u64)-1, 0);
2882 if (ret < 0) {
2883 err = ret;
2884 goto out;
2886 BUG_ON(ret == 0);
2887 if (check_path_shared(root, path))
2888 goto out;
2889 btrfs_release_path(root, path);
2892 if (!check_link) {
2893 err = 0;
2894 goto out;
2897 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2898 dentry->d_name.name, dentry->d_name.len, 0);
2899 if (IS_ERR(di)) {
2900 err = PTR_ERR(di);
2901 goto out;
2903 if (di) {
2904 if (check_path_shared(root, path))
2905 goto out;
2906 } else {
2907 err = 0;
2908 goto out;
2910 btrfs_release_path(root, path);
2912 ref = btrfs_lookup_inode_ref(trans, root, path,
2913 dentry->d_name.name, dentry->d_name.len,
2914 inode->i_ino, dir->i_ino, 0);
2915 if (IS_ERR(ref)) {
2916 err = PTR_ERR(ref);
2917 goto out;
2919 BUG_ON(!ref);
2920 if (check_path_shared(root, path))
2921 goto out;
2922 index = btrfs_inode_ref_index(path->nodes[0], ref);
2923 btrfs_release_path(root, path);
2925 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2926 dentry->d_name.name, dentry->d_name.len, 0);
2927 if (IS_ERR(di)) {
2928 err = PTR_ERR(di);
2929 goto out;
2931 BUG_ON(ret == -ENOENT);
2932 if (check_path_shared(root, path))
2933 goto out;
2935 err = 0;
2936 out:
2937 btrfs_free_path(path);
2938 if (err) {
2939 btrfs_end_transaction(trans, root);
2940 root->fs_info->enospc_unlink = 0;
2941 return ERR_PTR(err);
2944 trans->block_rsv = &root->fs_info->global_block_rsv;
2945 return trans;
2948 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2949 struct btrfs_root *root)
2951 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2952 BUG_ON(!root->fs_info->enospc_unlink);
2953 root->fs_info->enospc_unlink = 0;
2955 btrfs_end_transaction_throttle(trans, root);
2958 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2960 struct btrfs_root *root = BTRFS_I(dir)->root;
2961 struct btrfs_trans_handle *trans;
2962 struct inode *inode = dentry->d_inode;
2963 int ret;
2964 unsigned long nr = 0;
2966 trans = __unlink_start_trans(dir, dentry);
2967 if (IS_ERR(trans))
2968 return PTR_ERR(trans);
2970 btrfs_set_trans_block_group(trans, dir);
2972 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2974 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2975 dentry->d_name.name, dentry->d_name.len);
2976 BUG_ON(ret);
2978 if (inode->i_nlink == 0) {
2979 ret = btrfs_orphan_add(trans, inode);
2980 BUG_ON(ret);
2983 nr = trans->blocks_used;
2984 __unlink_end_trans(trans, root);
2985 btrfs_btree_balance_dirty(root, nr);
2986 return ret;
2989 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2990 struct btrfs_root *root,
2991 struct inode *dir, u64 objectid,
2992 const char *name, int name_len)
2994 struct btrfs_path *path;
2995 struct extent_buffer *leaf;
2996 struct btrfs_dir_item *di;
2997 struct btrfs_key key;
2998 u64 index;
2999 int ret;
3001 path = btrfs_alloc_path();
3002 if (!path)
3003 return -ENOMEM;
3005 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3006 name, name_len, -1);
3007 BUG_ON(!di || IS_ERR(di));
3009 leaf = path->nodes[0];
3010 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3011 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3012 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3013 BUG_ON(ret);
3014 btrfs_release_path(root, path);
3016 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3017 objectid, root->root_key.objectid,
3018 dir->i_ino, &index, name, name_len);
3019 if (ret < 0) {
3020 BUG_ON(ret != -ENOENT);
3021 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3022 name, name_len);
3023 BUG_ON(!di || IS_ERR(di));
3025 leaf = path->nodes[0];
3026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3027 btrfs_release_path(root, path);
3028 index = key.offset;
3031 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3032 index, name, name_len, -1);
3033 BUG_ON(!di || IS_ERR(di));
3035 leaf = path->nodes[0];
3036 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3037 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3038 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3039 BUG_ON(ret);
3040 btrfs_release_path(root, path);
3042 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3043 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3044 ret = btrfs_update_inode(trans, root, dir);
3045 BUG_ON(ret);
3047 btrfs_free_path(path);
3048 return 0;
3051 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3053 struct inode *inode = dentry->d_inode;
3054 int err = 0;
3055 struct btrfs_root *root = BTRFS_I(dir)->root;
3056 struct btrfs_trans_handle *trans;
3057 unsigned long nr = 0;
3059 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3060 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3061 return -ENOTEMPTY;
3063 trans = __unlink_start_trans(dir, dentry);
3064 if (IS_ERR(trans))
3065 return PTR_ERR(trans);
3067 btrfs_set_trans_block_group(trans, dir);
3069 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3070 err = btrfs_unlink_subvol(trans, root, dir,
3071 BTRFS_I(inode)->location.objectid,
3072 dentry->d_name.name,
3073 dentry->d_name.len);
3074 goto out;
3077 err = btrfs_orphan_add(trans, inode);
3078 if (err)
3079 goto out;
3081 /* now the directory is empty */
3082 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3083 dentry->d_name.name, dentry->d_name.len);
3084 if (!err)
3085 btrfs_i_size_write(inode, 0);
3086 out:
3087 nr = trans->blocks_used;
3088 __unlink_end_trans(trans, root);
3089 btrfs_btree_balance_dirty(root, nr);
3091 return err;
3094 #if 0
3096 * when truncating bytes in a file, it is possible to avoid reading
3097 * the leaves that contain only checksum items. This can be the
3098 * majority of the IO required to delete a large file, but it must
3099 * be done carefully.
3101 * The keys in the level just above the leaves are checked to make sure
3102 * the lowest key in a given leaf is a csum key, and starts at an offset
3103 * after the new size.
3105 * Then the key for the next leaf is checked to make sure it also has
3106 * a checksum item for the same file. If it does, we know our target leaf
3107 * contains only checksum items, and it can be safely freed without reading
3108 * it.
3110 * This is just an optimization targeted at large files. It may do
3111 * nothing. It will return 0 unless things went badly.
3113 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3114 struct btrfs_root *root,
3115 struct btrfs_path *path,
3116 struct inode *inode, u64 new_size)
3118 struct btrfs_key key;
3119 int ret;
3120 int nritems;
3121 struct btrfs_key found_key;
3122 struct btrfs_key other_key;
3123 struct btrfs_leaf_ref *ref;
3124 u64 leaf_gen;
3125 u64 leaf_start;
3127 path->lowest_level = 1;
3128 key.objectid = inode->i_ino;
3129 key.type = BTRFS_CSUM_ITEM_KEY;
3130 key.offset = new_size;
3131 again:
3132 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3133 if (ret < 0)
3134 goto out;
3136 if (path->nodes[1] == NULL) {
3137 ret = 0;
3138 goto out;
3140 ret = 0;
3141 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3142 nritems = btrfs_header_nritems(path->nodes[1]);
3144 if (!nritems)
3145 goto out;
3147 if (path->slots[1] >= nritems)
3148 goto next_node;
3150 /* did we find a key greater than anything we want to delete? */
3151 if (found_key.objectid > inode->i_ino ||
3152 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3153 goto out;
3155 /* we check the next key in the node to make sure the leave contains
3156 * only checksum items. This comparison doesn't work if our
3157 * leaf is the last one in the node
3159 if (path->slots[1] + 1 >= nritems) {
3160 next_node:
3161 /* search forward from the last key in the node, this
3162 * will bring us into the next node in the tree
3164 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3166 /* unlikely, but we inc below, so check to be safe */
3167 if (found_key.offset == (u64)-1)
3168 goto out;
3170 /* search_forward needs a path with locks held, do the
3171 * search again for the original key. It is possible
3172 * this will race with a balance and return a path that
3173 * we could modify, but this drop is just an optimization
3174 * and is allowed to miss some leaves.
3176 btrfs_release_path(root, path);
3177 found_key.offset++;
3179 /* setup a max key for search_forward */
3180 other_key.offset = (u64)-1;
3181 other_key.type = key.type;
3182 other_key.objectid = key.objectid;
3184 path->keep_locks = 1;
3185 ret = btrfs_search_forward(root, &found_key, &other_key,
3186 path, 0, 0);
3187 path->keep_locks = 0;
3188 if (ret || found_key.objectid != key.objectid ||
3189 found_key.type != key.type) {
3190 ret = 0;
3191 goto out;
3194 key.offset = found_key.offset;
3195 btrfs_release_path(root, path);
3196 cond_resched();
3197 goto again;
3200 /* we know there's one more slot after us in the tree,
3201 * read that key so we can verify it is also a checksum item
3203 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3205 if (found_key.objectid < inode->i_ino)
3206 goto next_key;
3208 if (found_key.type != key.type || found_key.offset < new_size)
3209 goto next_key;
3212 * if the key for the next leaf isn't a csum key from this objectid,
3213 * we can't be sure there aren't good items inside this leaf.
3214 * Bail out
3216 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3217 goto out;
3219 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3220 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3222 * it is safe to delete this leaf, it contains only
3223 * csum items from this inode at an offset >= new_size
3225 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3226 BUG_ON(ret);
3228 if (root->ref_cows && leaf_gen < trans->transid) {
3229 ref = btrfs_alloc_leaf_ref(root, 0);
3230 if (ref) {
3231 ref->root_gen = root->root_key.offset;
3232 ref->bytenr = leaf_start;
3233 ref->owner = 0;
3234 ref->generation = leaf_gen;
3235 ref->nritems = 0;
3237 btrfs_sort_leaf_ref(ref);
3239 ret = btrfs_add_leaf_ref(root, ref, 0);
3240 WARN_ON(ret);
3241 btrfs_free_leaf_ref(root, ref);
3242 } else {
3243 WARN_ON(1);
3246 next_key:
3247 btrfs_release_path(root, path);
3249 if (other_key.objectid == inode->i_ino &&
3250 other_key.type == key.type && other_key.offset > key.offset) {
3251 key.offset = other_key.offset;
3252 cond_resched();
3253 goto again;
3255 ret = 0;
3256 out:
3257 /* fixup any changes we've made to the path */
3258 path->lowest_level = 0;
3259 path->keep_locks = 0;
3260 btrfs_release_path(root, path);
3261 return ret;
3264 #endif
3267 * this can truncate away extent items, csum items and directory items.
3268 * It starts at a high offset and removes keys until it can't find
3269 * any higher than new_size
3271 * csum items that cross the new i_size are truncated to the new size
3272 * as well.
3274 * min_type is the minimum key type to truncate down to. If set to 0, this
3275 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3277 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3278 struct btrfs_root *root,
3279 struct inode *inode,
3280 u64 new_size, u32 min_type)
3282 struct btrfs_path *path;
3283 struct extent_buffer *leaf;
3284 struct btrfs_file_extent_item *fi;
3285 struct btrfs_key key;
3286 struct btrfs_key found_key;
3287 u64 extent_start = 0;
3288 u64 extent_num_bytes = 0;
3289 u64 extent_offset = 0;
3290 u64 item_end = 0;
3291 u64 mask = root->sectorsize - 1;
3292 u32 found_type = (u8)-1;
3293 int found_extent;
3294 int del_item;
3295 int pending_del_nr = 0;
3296 int pending_del_slot = 0;
3297 int extent_type = -1;
3298 int encoding;
3299 int ret;
3300 int err = 0;
3302 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3304 if (root->ref_cows || root == root->fs_info->tree_root)
3305 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3307 path = btrfs_alloc_path();
3308 BUG_ON(!path);
3309 path->reada = -1;
3311 key.objectid = inode->i_ino;
3312 key.offset = (u64)-1;
3313 key.type = (u8)-1;
3315 search_again:
3316 path->leave_spinning = 1;
3317 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3318 if (ret < 0) {
3319 err = ret;
3320 goto out;
3323 if (ret > 0) {
3324 /* there are no items in the tree for us to truncate, we're
3325 * done
3327 if (path->slots[0] == 0)
3328 goto out;
3329 path->slots[0]--;
3332 while (1) {
3333 fi = NULL;
3334 leaf = path->nodes[0];
3335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3336 found_type = btrfs_key_type(&found_key);
3337 encoding = 0;
3339 if (found_key.objectid != inode->i_ino)
3340 break;
3342 if (found_type < min_type)
3343 break;
3345 item_end = found_key.offset;
3346 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3347 fi = btrfs_item_ptr(leaf, path->slots[0],
3348 struct btrfs_file_extent_item);
3349 extent_type = btrfs_file_extent_type(leaf, fi);
3350 encoding = btrfs_file_extent_compression(leaf, fi);
3351 encoding |= btrfs_file_extent_encryption(leaf, fi);
3352 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3354 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3355 item_end +=
3356 btrfs_file_extent_num_bytes(leaf, fi);
3357 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3358 item_end += btrfs_file_extent_inline_len(leaf,
3359 fi);
3361 item_end--;
3363 if (found_type > min_type) {
3364 del_item = 1;
3365 } else {
3366 if (item_end < new_size)
3367 break;
3368 if (found_key.offset >= new_size)
3369 del_item = 1;
3370 else
3371 del_item = 0;
3373 found_extent = 0;
3374 /* FIXME, shrink the extent if the ref count is only 1 */
3375 if (found_type != BTRFS_EXTENT_DATA_KEY)
3376 goto delete;
3378 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3379 u64 num_dec;
3380 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3381 if (!del_item && !encoding) {
3382 u64 orig_num_bytes =
3383 btrfs_file_extent_num_bytes(leaf, fi);
3384 extent_num_bytes = new_size -
3385 found_key.offset + root->sectorsize - 1;
3386 extent_num_bytes = extent_num_bytes &
3387 ~((u64)root->sectorsize - 1);
3388 btrfs_set_file_extent_num_bytes(leaf, fi,
3389 extent_num_bytes);
3390 num_dec = (orig_num_bytes -
3391 extent_num_bytes);
3392 if (root->ref_cows && extent_start != 0)
3393 inode_sub_bytes(inode, num_dec);
3394 btrfs_mark_buffer_dirty(leaf);
3395 } else {
3396 extent_num_bytes =
3397 btrfs_file_extent_disk_num_bytes(leaf,
3398 fi);
3399 extent_offset = found_key.offset -
3400 btrfs_file_extent_offset(leaf, fi);
3402 /* FIXME blocksize != 4096 */
3403 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3404 if (extent_start != 0) {
3405 found_extent = 1;
3406 if (root->ref_cows)
3407 inode_sub_bytes(inode, num_dec);
3410 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3412 * we can't truncate inline items that have had
3413 * special encodings
3415 if (!del_item &&
3416 btrfs_file_extent_compression(leaf, fi) == 0 &&
3417 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3418 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3419 u32 size = new_size - found_key.offset;
3421 if (root->ref_cows) {
3422 inode_sub_bytes(inode, item_end + 1 -
3423 new_size);
3425 size =
3426 btrfs_file_extent_calc_inline_size(size);
3427 ret = btrfs_truncate_item(trans, root, path,
3428 size, 1);
3429 BUG_ON(ret);
3430 } else if (root->ref_cows) {
3431 inode_sub_bytes(inode, item_end + 1 -
3432 found_key.offset);
3435 delete:
3436 if (del_item) {
3437 if (!pending_del_nr) {
3438 /* no pending yet, add ourselves */
3439 pending_del_slot = path->slots[0];
3440 pending_del_nr = 1;
3441 } else if (pending_del_nr &&
3442 path->slots[0] + 1 == pending_del_slot) {
3443 /* hop on the pending chunk */
3444 pending_del_nr++;
3445 pending_del_slot = path->slots[0];
3446 } else {
3447 BUG();
3449 } else {
3450 break;
3452 if (found_extent && (root->ref_cows ||
3453 root == root->fs_info->tree_root)) {
3454 btrfs_set_path_blocking(path);
3455 ret = btrfs_free_extent(trans, root, extent_start,
3456 extent_num_bytes, 0,
3457 btrfs_header_owner(leaf),
3458 inode->i_ino, extent_offset);
3459 BUG_ON(ret);
3462 if (found_type == BTRFS_INODE_ITEM_KEY)
3463 break;
3465 if (path->slots[0] == 0 ||
3466 path->slots[0] != pending_del_slot) {
3467 if (root->ref_cows) {
3468 err = -EAGAIN;
3469 goto out;
3471 if (pending_del_nr) {
3472 ret = btrfs_del_items(trans, root, path,
3473 pending_del_slot,
3474 pending_del_nr);
3475 BUG_ON(ret);
3476 pending_del_nr = 0;
3478 btrfs_release_path(root, path);
3479 goto search_again;
3480 } else {
3481 path->slots[0]--;
3484 out:
3485 if (pending_del_nr) {
3486 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3487 pending_del_nr);
3488 BUG_ON(ret);
3490 btrfs_free_path(path);
3491 return err;
3495 * taken from block_truncate_page, but does cow as it zeros out
3496 * any bytes left in the last page in the file.
3498 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3500 struct inode *inode = mapping->host;
3501 struct btrfs_root *root = BTRFS_I(inode)->root;
3502 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3503 struct btrfs_ordered_extent *ordered;
3504 struct extent_state *cached_state = NULL;
3505 char *kaddr;
3506 u32 blocksize = root->sectorsize;
3507 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3508 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3509 struct page *page;
3510 int ret = 0;
3511 u64 page_start;
3512 u64 page_end;
3514 if ((offset & (blocksize - 1)) == 0)
3515 goto out;
3516 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3517 if (ret)
3518 goto out;
3520 ret = -ENOMEM;
3521 again:
3522 page = grab_cache_page(mapping, index);
3523 if (!page) {
3524 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3525 goto out;
3528 page_start = page_offset(page);
3529 page_end = page_start + PAGE_CACHE_SIZE - 1;
3531 if (!PageUptodate(page)) {
3532 ret = btrfs_readpage(NULL, page);
3533 lock_page(page);
3534 if (page->mapping != mapping) {
3535 unlock_page(page);
3536 page_cache_release(page);
3537 goto again;
3539 if (!PageUptodate(page)) {
3540 ret = -EIO;
3541 goto out_unlock;
3544 wait_on_page_writeback(page);
3546 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3547 GFP_NOFS);
3548 set_page_extent_mapped(page);
3550 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3551 if (ordered) {
3552 unlock_extent_cached(io_tree, page_start, page_end,
3553 &cached_state, GFP_NOFS);
3554 unlock_page(page);
3555 page_cache_release(page);
3556 btrfs_start_ordered_extent(inode, ordered, 1);
3557 btrfs_put_ordered_extent(ordered);
3558 goto again;
3561 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3562 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3563 0, 0, &cached_state, GFP_NOFS);
3565 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3566 &cached_state);
3567 if (ret) {
3568 unlock_extent_cached(io_tree, page_start, page_end,
3569 &cached_state, GFP_NOFS);
3570 goto out_unlock;
3573 ret = 0;
3574 if (offset != PAGE_CACHE_SIZE) {
3575 kaddr = kmap(page);
3576 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3577 flush_dcache_page(page);
3578 kunmap(page);
3580 ClearPageChecked(page);
3581 set_page_dirty(page);
3582 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3583 GFP_NOFS);
3585 out_unlock:
3586 if (ret)
3587 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3588 unlock_page(page);
3589 page_cache_release(page);
3590 out:
3591 return ret;
3595 * This function puts in dummy file extents for the area we're creating a hole
3596 * for. So if we are truncating this file to a larger size we need to insert
3597 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3598 * the range between oldsize and size
3600 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3602 struct btrfs_trans_handle *trans;
3603 struct btrfs_root *root = BTRFS_I(inode)->root;
3604 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3605 struct extent_map *em = NULL;
3606 struct extent_state *cached_state = NULL;
3607 u64 mask = root->sectorsize - 1;
3608 u64 hole_start = (oldsize + mask) & ~mask;
3609 u64 block_end = (size + mask) & ~mask;
3610 u64 last_byte;
3611 u64 cur_offset;
3612 u64 hole_size;
3613 int err = 0;
3615 if (size <= hole_start)
3616 return 0;
3618 while (1) {
3619 struct btrfs_ordered_extent *ordered;
3620 btrfs_wait_ordered_range(inode, hole_start,
3621 block_end - hole_start);
3622 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3623 &cached_state, GFP_NOFS);
3624 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3625 if (!ordered)
3626 break;
3627 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3628 &cached_state, GFP_NOFS);
3629 btrfs_put_ordered_extent(ordered);
3632 cur_offset = hole_start;
3633 while (1) {
3634 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3635 block_end - cur_offset, 0);
3636 BUG_ON(IS_ERR(em) || !em);
3637 last_byte = min(extent_map_end(em), block_end);
3638 last_byte = (last_byte + mask) & ~mask;
3639 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3640 u64 hint_byte = 0;
3641 hole_size = last_byte - cur_offset;
3643 trans = btrfs_start_transaction(root, 2);
3644 if (IS_ERR(trans)) {
3645 err = PTR_ERR(trans);
3646 break;
3648 btrfs_set_trans_block_group(trans, inode);
3650 err = btrfs_drop_extents(trans, inode, cur_offset,
3651 cur_offset + hole_size,
3652 &hint_byte, 1);
3653 if (err)
3654 break;
3656 err = btrfs_insert_file_extent(trans, root,
3657 inode->i_ino, cur_offset, 0,
3658 0, hole_size, 0, hole_size,
3659 0, 0, 0);
3660 if (err)
3661 break;
3663 btrfs_drop_extent_cache(inode, hole_start,
3664 last_byte - 1, 0);
3666 btrfs_end_transaction(trans, root);
3668 free_extent_map(em);
3669 em = NULL;
3670 cur_offset = last_byte;
3671 if (cur_offset >= block_end)
3672 break;
3675 free_extent_map(em);
3676 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3677 GFP_NOFS);
3678 return err;
3681 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3683 loff_t oldsize = i_size_read(inode);
3684 int ret;
3686 if (newsize == oldsize)
3687 return 0;
3689 if (newsize > oldsize) {
3690 i_size_write(inode, newsize);
3691 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3692 truncate_pagecache(inode, oldsize, newsize);
3693 ret = btrfs_cont_expand(inode, oldsize, newsize);
3694 if (ret) {
3695 btrfs_setsize(inode, oldsize);
3696 return ret;
3699 mark_inode_dirty(inode);
3700 } else {
3703 * We're truncating a file that used to have good data down to
3704 * zero. Make sure it gets into the ordered flush list so that
3705 * any new writes get down to disk quickly.
3707 if (newsize == 0)
3708 BTRFS_I(inode)->ordered_data_close = 1;
3710 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3711 truncate_setsize(inode, newsize);
3712 ret = btrfs_truncate(inode);
3715 return ret;
3718 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3720 struct inode *inode = dentry->d_inode;
3721 struct btrfs_root *root = BTRFS_I(inode)->root;
3722 int err;
3724 if (btrfs_root_readonly(root))
3725 return -EROFS;
3727 err = inode_change_ok(inode, attr);
3728 if (err)
3729 return err;
3731 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3732 err = btrfs_setsize(inode, attr->ia_size);
3733 if (err)
3734 return err;
3737 if (attr->ia_valid) {
3738 setattr_copy(inode, attr);
3739 mark_inode_dirty(inode);
3741 if (attr->ia_valid & ATTR_MODE)
3742 err = btrfs_acl_chmod(inode);
3745 return err;
3748 void btrfs_evict_inode(struct inode *inode)
3750 struct btrfs_trans_handle *trans;
3751 struct btrfs_root *root = BTRFS_I(inode)->root;
3752 unsigned long nr;
3753 int ret;
3755 trace_btrfs_inode_evict(inode);
3757 truncate_inode_pages(&inode->i_data, 0);
3758 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3759 root == root->fs_info->tree_root))
3760 goto no_delete;
3762 if (is_bad_inode(inode)) {
3763 btrfs_orphan_del(NULL, inode);
3764 goto no_delete;
3766 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3767 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3769 if (root->fs_info->log_root_recovering) {
3770 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3771 goto no_delete;
3774 if (inode->i_nlink > 0) {
3775 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3776 goto no_delete;
3779 btrfs_i_size_write(inode, 0);
3781 while (1) {
3782 trans = btrfs_start_transaction(root, 0);
3783 BUG_ON(IS_ERR(trans));
3784 btrfs_set_trans_block_group(trans, inode);
3785 trans->block_rsv = root->orphan_block_rsv;
3787 ret = btrfs_block_rsv_check(trans, root,
3788 root->orphan_block_rsv, 0, 5);
3789 if (ret) {
3790 BUG_ON(ret != -EAGAIN);
3791 ret = btrfs_commit_transaction(trans, root);
3792 BUG_ON(ret);
3793 continue;
3796 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3797 if (ret != -EAGAIN)
3798 break;
3800 nr = trans->blocks_used;
3801 btrfs_end_transaction(trans, root);
3802 trans = NULL;
3803 btrfs_btree_balance_dirty(root, nr);
3807 if (ret == 0) {
3808 ret = btrfs_orphan_del(trans, inode);
3809 BUG_ON(ret);
3812 nr = trans->blocks_used;
3813 btrfs_end_transaction(trans, root);
3814 btrfs_btree_balance_dirty(root, nr);
3815 no_delete:
3816 end_writeback(inode);
3817 return;
3821 * this returns the key found in the dir entry in the location pointer.
3822 * If no dir entries were found, location->objectid is 0.
3824 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3825 struct btrfs_key *location)
3827 const char *name = dentry->d_name.name;
3828 int namelen = dentry->d_name.len;
3829 struct btrfs_dir_item *di;
3830 struct btrfs_path *path;
3831 struct btrfs_root *root = BTRFS_I(dir)->root;
3832 int ret = 0;
3834 path = btrfs_alloc_path();
3835 BUG_ON(!path);
3837 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3838 namelen, 0);
3839 if (IS_ERR(di))
3840 ret = PTR_ERR(di);
3842 if (!di || IS_ERR(di))
3843 goto out_err;
3845 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3846 out:
3847 btrfs_free_path(path);
3848 return ret;
3849 out_err:
3850 location->objectid = 0;
3851 goto out;
3855 * when we hit a tree root in a directory, the btrfs part of the inode
3856 * needs to be changed to reflect the root directory of the tree root. This
3857 * is kind of like crossing a mount point.
3859 static int fixup_tree_root_location(struct btrfs_root *root,
3860 struct inode *dir,
3861 struct dentry *dentry,
3862 struct btrfs_key *location,
3863 struct btrfs_root **sub_root)
3865 struct btrfs_path *path;
3866 struct btrfs_root *new_root;
3867 struct btrfs_root_ref *ref;
3868 struct extent_buffer *leaf;
3869 int ret;
3870 int err = 0;
3872 path = btrfs_alloc_path();
3873 if (!path) {
3874 err = -ENOMEM;
3875 goto out;
3878 err = -ENOENT;
3879 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3880 BTRFS_I(dir)->root->root_key.objectid,
3881 location->objectid);
3882 if (ret) {
3883 if (ret < 0)
3884 err = ret;
3885 goto out;
3888 leaf = path->nodes[0];
3889 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3890 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3891 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3892 goto out;
3894 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3895 (unsigned long)(ref + 1),
3896 dentry->d_name.len);
3897 if (ret)
3898 goto out;
3900 btrfs_release_path(root->fs_info->tree_root, path);
3902 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3903 if (IS_ERR(new_root)) {
3904 err = PTR_ERR(new_root);
3905 goto out;
3908 if (btrfs_root_refs(&new_root->root_item) == 0) {
3909 err = -ENOENT;
3910 goto out;
3913 *sub_root = new_root;
3914 location->objectid = btrfs_root_dirid(&new_root->root_item);
3915 location->type = BTRFS_INODE_ITEM_KEY;
3916 location->offset = 0;
3917 err = 0;
3918 out:
3919 btrfs_free_path(path);
3920 return err;
3923 static void inode_tree_add(struct inode *inode)
3925 struct btrfs_root *root = BTRFS_I(inode)->root;
3926 struct btrfs_inode *entry;
3927 struct rb_node **p;
3928 struct rb_node *parent;
3929 again:
3930 p = &root->inode_tree.rb_node;
3931 parent = NULL;
3933 if (inode_unhashed(inode))
3934 return;
3936 spin_lock(&root->inode_lock);
3937 while (*p) {
3938 parent = *p;
3939 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3941 if (inode->i_ino < entry->vfs_inode.i_ino)
3942 p = &parent->rb_left;
3943 else if (inode->i_ino > entry->vfs_inode.i_ino)
3944 p = &parent->rb_right;
3945 else {
3946 WARN_ON(!(entry->vfs_inode.i_state &
3947 (I_WILL_FREE | I_FREEING)));
3948 rb_erase(parent, &root->inode_tree);
3949 RB_CLEAR_NODE(parent);
3950 spin_unlock(&root->inode_lock);
3951 goto again;
3954 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3955 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3956 spin_unlock(&root->inode_lock);
3959 static void inode_tree_del(struct inode *inode)
3961 struct btrfs_root *root = BTRFS_I(inode)->root;
3962 int empty = 0;
3964 spin_lock(&root->inode_lock);
3965 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3966 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3967 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3968 empty = RB_EMPTY_ROOT(&root->inode_tree);
3970 spin_unlock(&root->inode_lock);
3973 * Free space cache has inodes in the tree root, but the tree root has a
3974 * root_refs of 0, so this could end up dropping the tree root as a
3975 * snapshot, so we need the extra !root->fs_info->tree_root check to
3976 * make sure we don't drop it.
3978 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3979 root != root->fs_info->tree_root) {
3980 synchronize_srcu(&root->fs_info->subvol_srcu);
3981 spin_lock(&root->inode_lock);
3982 empty = RB_EMPTY_ROOT(&root->inode_tree);
3983 spin_unlock(&root->inode_lock);
3984 if (empty)
3985 btrfs_add_dead_root(root);
3989 int btrfs_invalidate_inodes(struct btrfs_root *root)
3991 struct rb_node *node;
3992 struct rb_node *prev;
3993 struct btrfs_inode *entry;
3994 struct inode *inode;
3995 u64 objectid = 0;
3997 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3999 spin_lock(&root->inode_lock);
4000 again:
4001 node = root->inode_tree.rb_node;
4002 prev = NULL;
4003 while (node) {
4004 prev = node;
4005 entry = rb_entry(node, struct btrfs_inode, rb_node);
4007 if (objectid < entry->vfs_inode.i_ino)
4008 node = node->rb_left;
4009 else if (objectid > entry->vfs_inode.i_ino)
4010 node = node->rb_right;
4011 else
4012 break;
4014 if (!node) {
4015 while (prev) {
4016 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4017 if (objectid <= entry->vfs_inode.i_ino) {
4018 node = prev;
4019 break;
4021 prev = rb_next(prev);
4024 while (node) {
4025 entry = rb_entry(node, struct btrfs_inode, rb_node);
4026 objectid = entry->vfs_inode.i_ino + 1;
4027 inode = igrab(&entry->vfs_inode);
4028 if (inode) {
4029 spin_unlock(&root->inode_lock);
4030 if (atomic_read(&inode->i_count) > 1)
4031 d_prune_aliases(inode);
4033 * btrfs_drop_inode will have it removed from
4034 * the inode cache when its usage count
4035 * hits zero.
4037 iput(inode);
4038 cond_resched();
4039 spin_lock(&root->inode_lock);
4040 goto again;
4043 if (cond_resched_lock(&root->inode_lock))
4044 goto again;
4046 node = rb_next(node);
4048 spin_unlock(&root->inode_lock);
4049 return 0;
4052 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4054 struct btrfs_iget_args *args = p;
4055 inode->i_ino = args->ino;
4056 BTRFS_I(inode)->root = args->root;
4057 btrfs_set_inode_space_info(args->root, inode);
4058 return 0;
4061 static int btrfs_find_actor(struct inode *inode, void *opaque)
4063 struct btrfs_iget_args *args = opaque;
4064 return args->ino == inode->i_ino &&
4065 args->root == BTRFS_I(inode)->root;
4068 static struct inode *btrfs_iget_locked(struct super_block *s,
4069 u64 objectid,
4070 struct btrfs_root *root)
4072 struct inode *inode;
4073 struct btrfs_iget_args args;
4074 args.ino = objectid;
4075 args.root = root;
4077 inode = iget5_locked(s, objectid, btrfs_find_actor,
4078 btrfs_init_locked_inode,
4079 (void *)&args);
4080 return inode;
4083 /* Get an inode object given its location and corresponding root.
4084 * Returns in *is_new if the inode was read from disk
4086 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4087 struct btrfs_root *root, int *new)
4089 struct inode *inode;
4091 inode = btrfs_iget_locked(s, location->objectid, root);
4092 if (!inode)
4093 return ERR_PTR(-ENOMEM);
4095 if (inode->i_state & I_NEW) {
4096 BTRFS_I(inode)->root = root;
4097 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4098 btrfs_read_locked_inode(inode);
4099 inode_tree_add(inode);
4100 unlock_new_inode(inode);
4101 if (new)
4102 *new = 1;
4105 return inode;
4108 static struct inode *new_simple_dir(struct super_block *s,
4109 struct btrfs_key *key,
4110 struct btrfs_root *root)
4112 struct inode *inode = new_inode(s);
4114 if (!inode)
4115 return ERR_PTR(-ENOMEM);
4117 BTRFS_I(inode)->root = root;
4118 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4119 BTRFS_I(inode)->dummy_inode = 1;
4121 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4122 inode->i_op = &simple_dir_inode_operations;
4123 inode->i_fop = &simple_dir_operations;
4124 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4125 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4127 return inode;
4130 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4132 struct inode *inode;
4133 struct btrfs_root *root = BTRFS_I(dir)->root;
4134 struct btrfs_root *sub_root = root;
4135 struct btrfs_key location;
4136 int index;
4137 int ret;
4139 if (dentry->d_name.len > BTRFS_NAME_LEN)
4140 return ERR_PTR(-ENAMETOOLONG);
4142 ret = btrfs_inode_by_name(dir, dentry, &location);
4144 if (ret < 0)
4145 return ERR_PTR(ret);
4147 if (location.objectid == 0)
4148 return NULL;
4150 if (location.type == BTRFS_INODE_ITEM_KEY) {
4151 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4152 return inode;
4155 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4157 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4158 ret = fixup_tree_root_location(root, dir, dentry,
4159 &location, &sub_root);
4160 if (ret < 0) {
4161 if (ret != -ENOENT)
4162 inode = ERR_PTR(ret);
4163 else
4164 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4165 } else {
4166 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4168 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4170 if (!IS_ERR(inode) && root != sub_root) {
4171 down_read(&root->fs_info->cleanup_work_sem);
4172 if (!(inode->i_sb->s_flags & MS_RDONLY))
4173 ret = btrfs_orphan_cleanup(sub_root);
4174 up_read(&root->fs_info->cleanup_work_sem);
4175 if (ret)
4176 inode = ERR_PTR(ret);
4179 return inode;
4182 static int btrfs_dentry_delete(const struct dentry *dentry)
4184 struct btrfs_root *root;
4186 if (!dentry->d_inode && !IS_ROOT(dentry))
4187 dentry = dentry->d_parent;
4189 if (dentry->d_inode) {
4190 root = BTRFS_I(dentry->d_inode)->root;
4191 if (btrfs_root_refs(&root->root_item) == 0)
4192 return 1;
4194 return 0;
4197 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4198 struct nameidata *nd)
4200 struct inode *inode;
4202 inode = btrfs_lookup_dentry(dir, dentry);
4203 if (IS_ERR(inode))
4204 return ERR_CAST(inode);
4206 return d_splice_alias(inode, dentry);
4209 static unsigned char btrfs_filetype_table[] = {
4210 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4213 static int btrfs_real_readdir(struct file *filp, void *dirent,
4214 filldir_t filldir)
4216 struct inode *inode = filp->f_dentry->d_inode;
4217 struct btrfs_root *root = BTRFS_I(inode)->root;
4218 struct btrfs_item *item;
4219 struct btrfs_dir_item *di;
4220 struct btrfs_key key;
4221 struct btrfs_key found_key;
4222 struct btrfs_path *path;
4223 int ret;
4224 u32 nritems;
4225 struct extent_buffer *leaf;
4226 int slot;
4227 int advance;
4228 unsigned char d_type;
4229 int over = 0;
4230 u32 di_cur;
4231 u32 di_total;
4232 u32 di_len;
4233 int key_type = BTRFS_DIR_INDEX_KEY;
4234 char tmp_name[32];
4235 char *name_ptr;
4236 int name_len;
4238 /* FIXME, use a real flag for deciding about the key type */
4239 if (root->fs_info->tree_root == root)
4240 key_type = BTRFS_DIR_ITEM_KEY;
4242 /* special case for "." */
4243 if (filp->f_pos == 0) {
4244 over = filldir(dirent, ".", 1,
4245 1, inode->i_ino,
4246 DT_DIR);
4247 if (over)
4248 return 0;
4249 filp->f_pos = 1;
4251 /* special case for .., just use the back ref */
4252 if (filp->f_pos == 1) {
4253 u64 pino = parent_ino(filp->f_path.dentry);
4254 over = filldir(dirent, "..", 2,
4255 2, pino, DT_DIR);
4256 if (over)
4257 return 0;
4258 filp->f_pos = 2;
4260 path = btrfs_alloc_path();
4261 path->reada = 2;
4263 btrfs_set_key_type(&key, key_type);
4264 key.offset = filp->f_pos;
4265 key.objectid = inode->i_ino;
4267 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4268 if (ret < 0)
4269 goto err;
4270 advance = 0;
4272 while (1) {
4273 leaf = path->nodes[0];
4274 nritems = btrfs_header_nritems(leaf);
4275 slot = path->slots[0];
4276 if (advance || slot >= nritems) {
4277 if (slot >= nritems - 1) {
4278 ret = btrfs_next_leaf(root, path);
4279 if (ret)
4280 break;
4281 leaf = path->nodes[0];
4282 nritems = btrfs_header_nritems(leaf);
4283 slot = path->slots[0];
4284 } else {
4285 slot++;
4286 path->slots[0]++;
4290 advance = 1;
4291 item = btrfs_item_nr(leaf, slot);
4292 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4294 if (found_key.objectid != key.objectid)
4295 break;
4296 if (btrfs_key_type(&found_key) != key_type)
4297 break;
4298 if (found_key.offset < filp->f_pos)
4299 continue;
4301 filp->f_pos = found_key.offset;
4303 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4304 di_cur = 0;
4305 di_total = btrfs_item_size(leaf, item);
4307 while (di_cur < di_total) {
4308 struct btrfs_key location;
4310 if (verify_dir_item(root, leaf, di))
4311 break;
4313 name_len = btrfs_dir_name_len(leaf, di);
4314 if (name_len <= sizeof(tmp_name)) {
4315 name_ptr = tmp_name;
4316 } else {
4317 name_ptr = kmalloc(name_len, GFP_NOFS);
4318 if (!name_ptr) {
4319 ret = -ENOMEM;
4320 goto err;
4323 read_extent_buffer(leaf, name_ptr,
4324 (unsigned long)(di + 1), name_len);
4326 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4327 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4329 /* is this a reference to our own snapshot? If so
4330 * skip it
4332 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4333 location.objectid == root->root_key.objectid) {
4334 over = 0;
4335 goto skip;
4337 over = filldir(dirent, name_ptr, name_len,
4338 found_key.offset, location.objectid,
4339 d_type);
4341 skip:
4342 if (name_ptr != tmp_name)
4343 kfree(name_ptr);
4345 if (over)
4346 goto nopos;
4347 di_len = btrfs_dir_name_len(leaf, di) +
4348 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4349 di_cur += di_len;
4350 di = (struct btrfs_dir_item *)((char *)di + di_len);
4354 /* Reached end of directory/root. Bump pos past the last item. */
4355 if (key_type == BTRFS_DIR_INDEX_KEY)
4357 * 32-bit glibc will use getdents64, but then strtol -
4358 * so the last number we can serve is this.
4360 filp->f_pos = 0x7fffffff;
4361 else
4362 filp->f_pos++;
4363 nopos:
4364 ret = 0;
4365 err:
4366 btrfs_free_path(path);
4367 return ret;
4370 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4372 struct btrfs_root *root = BTRFS_I(inode)->root;
4373 struct btrfs_trans_handle *trans;
4374 int ret = 0;
4375 bool nolock = false;
4377 if (BTRFS_I(inode)->dummy_inode)
4378 return 0;
4380 smp_mb();
4381 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4383 if (wbc->sync_mode == WB_SYNC_ALL) {
4384 if (nolock)
4385 trans = btrfs_join_transaction_nolock(root, 1);
4386 else
4387 trans = btrfs_join_transaction(root, 1);
4388 if (IS_ERR(trans))
4389 return PTR_ERR(trans);
4390 btrfs_set_trans_block_group(trans, inode);
4391 if (nolock)
4392 ret = btrfs_end_transaction_nolock(trans, root);
4393 else
4394 ret = btrfs_commit_transaction(trans, root);
4396 return ret;
4400 * This is somewhat expensive, updating the tree every time the
4401 * inode changes. But, it is most likely to find the inode in cache.
4402 * FIXME, needs more benchmarking...there are no reasons other than performance
4403 * to keep or drop this code.
4405 void btrfs_dirty_inode(struct inode *inode)
4407 struct btrfs_root *root = BTRFS_I(inode)->root;
4408 struct btrfs_trans_handle *trans;
4409 int ret;
4411 if (BTRFS_I(inode)->dummy_inode)
4412 return;
4414 trans = btrfs_join_transaction(root, 1);
4415 BUG_ON(IS_ERR(trans));
4416 btrfs_set_trans_block_group(trans, inode);
4418 ret = btrfs_update_inode(trans, root, inode);
4419 if (ret && ret == -ENOSPC) {
4420 /* whoops, lets try again with the full transaction */
4421 btrfs_end_transaction(trans, root);
4422 trans = btrfs_start_transaction(root, 1);
4423 if (IS_ERR(trans)) {
4424 if (printk_ratelimit()) {
4425 printk(KERN_ERR "btrfs: fail to "
4426 "dirty inode %lu error %ld\n",
4427 inode->i_ino, PTR_ERR(trans));
4429 return;
4431 btrfs_set_trans_block_group(trans, inode);
4433 ret = btrfs_update_inode(trans, root, inode);
4434 if (ret) {
4435 if (printk_ratelimit()) {
4436 printk(KERN_ERR "btrfs: fail to "
4437 "dirty inode %lu error %d\n",
4438 inode->i_ino, ret);
4442 btrfs_end_transaction(trans, root);
4446 * find the highest existing sequence number in a directory
4447 * and then set the in-memory index_cnt variable to reflect
4448 * free sequence numbers
4450 static int btrfs_set_inode_index_count(struct inode *inode)
4452 struct btrfs_root *root = BTRFS_I(inode)->root;
4453 struct btrfs_key key, found_key;
4454 struct btrfs_path *path;
4455 struct extent_buffer *leaf;
4456 int ret;
4458 key.objectid = inode->i_ino;
4459 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4460 key.offset = (u64)-1;
4462 path = btrfs_alloc_path();
4463 if (!path)
4464 return -ENOMEM;
4466 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4467 if (ret < 0)
4468 goto out;
4469 /* FIXME: we should be able to handle this */
4470 if (ret == 0)
4471 goto out;
4472 ret = 0;
4475 * MAGIC NUMBER EXPLANATION:
4476 * since we search a directory based on f_pos we have to start at 2
4477 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4478 * else has to start at 2
4480 if (path->slots[0] == 0) {
4481 BTRFS_I(inode)->index_cnt = 2;
4482 goto out;
4485 path->slots[0]--;
4487 leaf = path->nodes[0];
4488 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4490 if (found_key.objectid != inode->i_ino ||
4491 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4492 BTRFS_I(inode)->index_cnt = 2;
4493 goto out;
4496 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4497 out:
4498 btrfs_free_path(path);
4499 return ret;
4503 * helper to find a free sequence number in a given directory. This current
4504 * code is very simple, later versions will do smarter things in the btree
4506 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4508 int ret = 0;
4510 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4511 ret = btrfs_set_inode_index_count(dir);
4512 if (ret)
4513 return ret;
4516 *index = BTRFS_I(dir)->index_cnt;
4517 BTRFS_I(dir)->index_cnt++;
4519 return ret;
4522 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4523 struct btrfs_root *root,
4524 struct inode *dir,
4525 const char *name, int name_len,
4526 u64 ref_objectid, u64 objectid,
4527 u64 alloc_hint, int mode, u64 *index)
4529 struct inode *inode;
4530 struct btrfs_inode_item *inode_item;
4531 struct btrfs_key *location;
4532 struct btrfs_path *path;
4533 struct btrfs_inode_ref *ref;
4534 struct btrfs_key key[2];
4535 u32 sizes[2];
4536 unsigned long ptr;
4537 int ret;
4538 int owner;
4540 path = btrfs_alloc_path();
4541 BUG_ON(!path);
4543 inode = new_inode(root->fs_info->sb);
4544 if (!inode)
4545 return ERR_PTR(-ENOMEM);
4547 if (dir) {
4548 trace_btrfs_inode_request(dir);
4550 ret = btrfs_set_inode_index(dir, index);
4551 if (ret) {
4552 iput(inode);
4553 return ERR_PTR(ret);
4557 * index_cnt is ignored for everything but a dir,
4558 * btrfs_get_inode_index_count has an explanation for the magic
4559 * number
4561 BTRFS_I(inode)->index_cnt = 2;
4562 BTRFS_I(inode)->root = root;
4563 BTRFS_I(inode)->generation = trans->transid;
4564 inode->i_generation = BTRFS_I(inode)->generation;
4565 btrfs_set_inode_space_info(root, inode);
4567 if (mode & S_IFDIR)
4568 owner = 0;
4569 else
4570 owner = 1;
4571 BTRFS_I(inode)->block_group =
4572 btrfs_find_block_group(root, 0, alloc_hint, owner);
4574 key[0].objectid = objectid;
4575 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4576 key[0].offset = 0;
4578 key[1].objectid = objectid;
4579 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4580 key[1].offset = ref_objectid;
4582 sizes[0] = sizeof(struct btrfs_inode_item);
4583 sizes[1] = name_len + sizeof(*ref);
4585 path->leave_spinning = 1;
4586 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4587 if (ret != 0)
4588 goto fail;
4590 inode_init_owner(inode, dir, mode);
4591 inode->i_ino = objectid;
4592 inode_set_bytes(inode, 0);
4593 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4594 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4595 struct btrfs_inode_item);
4596 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4598 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4599 struct btrfs_inode_ref);
4600 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4601 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4602 ptr = (unsigned long)(ref + 1);
4603 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4605 btrfs_mark_buffer_dirty(path->nodes[0]);
4606 btrfs_free_path(path);
4608 location = &BTRFS_I(inode)->location;
4609 location->objectid = objectid;
4610 location->offset = 0;
4611 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4613 btrfs_inherit_iflags(inode, dir);
4615 if ((mode & S_IFREG)) {
4616 if (btrfs_test_opt(root, NODATASUM))
4617 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4618 if (btrfs_test_opt(root, NODATACOW) ||
4619 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4620 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4623 insert_inode_hash(inode);
4624 inode_tree_add(inode);
4626 trace_btrfs_inode_new(inode);
4628 return inode;
4629 fail:
4630 if (dir)
4631 BTRFS_I(dir)->index_cnt--;
4632 btrfs_free_path(path);
4633 iput(inode);
4634 return ERR_PTR(ret);
4637 static inline u8 btrfs_inode_type(struct inode *inode)
4639 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4643 * utility function to add 'inode' into 'parent_inode' with
4644 * a give name and a given sequence number.
4645 * if 'add_backref' is true, also insert a backref from the
4646 * inode to the parent directory.
4648 int btrfs_add_link(struct btrfs_trans_handle *trans,
4649 struct inode *parent_inode, struct inode *inode,
4650 const char *name, int name_len, int add_backref, u64 index)
4652 int ret = 0;
4653 struct btrfs_key key;
4654 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4656 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4657 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4658 } else {
4659 key.objectid = inode->i_ino;
4660 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4661 key.offset = 0;
4664 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4665 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4666 key.objectid, root->root_key.objectid,
4667 parent_inode->i_ino,
4668 index, name, name_len);
4669 } else if (add_backref) {
4670 ret = btrfs_insert_inode_ref(trans, root,
4671 name, name_len, inode->i_ino,
4672 parent_inode->i_ino, index);
4675 if (ret == 0) {
4676 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4677 parent_inode->i_ino, &key,
4678 btrfs_inode_type(inode), index);
4679 BUG_ON(ret);
4681 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4682 name_len * 2);
4683 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4684 ret = btrfs_update_inode(trans, root, parent_inode);
4686 return ret;
4689 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4690 struct inode *dir, struct dentry *dentry,
4691 struct inode *inode, int backref, u64 index)
4693 int err = btrfs_add_link(trans, dir, inode,
4694 dentry->d_name.name, dentry->d_name.len,
4695 backref, index);
4696 if (!err) {
4697 d_instantiate(dentry, inode);
4698 return 0;
4700 if (err > 0)
4701 err = -EEXIST;
4702 return err;
4705 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4706 int mode, dev_t rdev)
4708 struct btrfs_trans_handle *trans;
4709 struct btrfs_root *root = BTRFS_I(dir)->root;
4710 struct inode *inode = NULL;
4711 int err;
4712 int drop_inode = 0;
4713 u64 objectid;
4714 unsigned long nr = 0;
4715 u64 index = 0;
4717 if (!new_valid_dev(rdev))
4718 return -EINVAL;
4720 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4721 if (err)
4722 return err;
4725 * 2 for inode item and ref
4726 * 2 for dir items
4727 * 1 for xattr if selinux is on
4729 trans = btrfs_start_transaction(root, 5);
4730 if (IS_ERR(trans))
4731 return PTR_ERR(trans);
4733 btrfs_set_trans_block_group(trans, dir);
4735 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4736 dentry->d_name.len, dir->i_ino, objectid,
4737 BTRFS_I(dir)->block_group, mode, &index);
4738 err = PTR_ERR(inode);
4739 if (IS_ERR(inode))
4740 goto out_unlock;
4742 err = btrfs_init_inode_security(trans, inode, dir);
4743 if (err) {
4744 drop_inode = 1;
4745 goto out_unlock;
4748 btrfs_set_trans_block_group(trans, inode);
4749 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4750 if (err)
4751 drop_inode = 1;
4752 else {
4753 inode->i_op = &btrfs_special_inode_operations;
4754 init_special_inode(inode, inode->i_mode, rdev);
4755 btrfs_update_inode(trans, root, inode);
4757 btrfs_update_inode_block_group(trans, inode);
4758 btrfs_update_inode_block_group(trans, dir);
4759 out_unlock:
4760 nr = trans->blocks_used;
4761 btrfs_end_transaction_throttle(trans, root);
4762 btrfs_btree_balance_dirty(root, nr);
4763 if (drop_inode) {
4764 inode_dec_link_count(inode);
4765 iput(inode);
4767 return err;
4770 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4771 int mode, struct nameidata *nd)
4773 struct btrfs_trans_handle *trans;
4774 struct btrfs_root *root = BTRFS_I(dir)->root;
4775 struct inode *inode = NULL;
4776 int drop_inode = 0;
4777 int err;
4778 unsigned long nr = 0;
4779 u64 objectid;
4780 u64 index = 0;
4782 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4783 if (err)
4784 return err;
4786 * 2 for inode item and ref
4787 * 2 for dir items
4788 * 1 for xattr if selinux is on
4790 trans = btrfs_start_transaction(root, 5);
4791 if (IS_ERR(trans))
4792 return PTR_ERR(trans);
4794 btrfs_set_trans_block_group(trans, dir);
4796 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4797 dentry->d_name.len, dir->i_ino, objectid,
4798 BTRFS_I(dir)->block_group, mode, &index);
4799 err = PTR_ERR(inode);
4800 if (IS_ERR(inode))
4801 goto out_unlock;
4803 err = btrfs_init_inode_security(trans, inode, dir);
4804 if (err) {
4805 drop_inode = 1;
4806 goto out_unlock;
4809 btrfs_set_trans_block_group(trans, inode);
4810 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4811 if (err)
4812 drop_inode = 1;
4813 else {
4814 inode->i_mapping->a_ops = &btrfs_aops;
4815 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4816 inode->i_fop = &btrfs_file_operations;
4817 inode->i_op = &btrfs_file_inode_operations;
4818 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4820 btrfs_update_inode_block_group(trans, inode);
4821 btrfs_update_inode_block_group(trans, dir);
4822 out_unlock:
4823 nr = trans->blocks_used;
4824 btrfs_end_transaction_throttle(trans, root);
4825 if (drop_inode) {
4826 inode_dec_link_count(inode);
4827 iput(inode);
4829 btrfs_btree_balance_dirty(root, nr);
4830 return err;
4833 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4834 struct dentry *dentry)
4836 struct btrfs_trans_handle *trans;
4837 struct btrfs_root *root = BTRFS_I(dir)->root;
4838 struct inode *inode = old_dentry->d_inode;
4839 u64 index;
4840 unsigned long nr = 0;
4841 int err;
4842 int drop_inode = 0;
4844 if (inode->i_nlink == 0)
4845 return -ENOENT;
4847 /* do not allow sys_link's with other subvols of the same device */
4848 if (root->objectid != BTRFS_I(inode)->root->objectid)
4849 return -EXDEV;
4851 if (inode->i_nlink == ~0U)
4852 return -EMLINK;
4854 btrfs_inc_nlink(inode);
4855 inode->i_ctime = CURRENT_TIME;
4857 err = btrfs_set_inode_index(dir, &index);
4858 if (err)
4859 goto fail;
4862 * 2 items for inode and inode ref
4863 * 2 items for dir items
4864 * 1 item for parent inode
4866 trans = btrfs_start_transaction(root, 5);
4867 if (IS_ERR(trans)) {
4868 err = PTR_ERR(trans);
4869 goto fail;
4872 btrfs_set_trans_block_group(trans, dir);
4873 ihold(inode);
4875 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4877 if (err) {
4878 drop_inode = 1;
4879 } else {
4880 struct dentry *parent = dget_parent(dentry);
4881 btrfs_update_inode_block_group(trans, dir);
4882 err = btrfs_update_inode(trans, root, inode);
4883 BUG_ON(err);
4884 btrfs_log_new_name(trans, inode, NULL, parent);
4885 dput(parent);
4888 nr = trans->blocks_used;
4889 btrfs_end_transaction_throttle(trans, root);
4890 fail:
4891 if (drop_inode) {
4892 inode_dec_link_count(inode);
4893 iput(inode);
4895 btrfs_btree_balance_dirty(root, nr);
4896 return err;
4899 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4901 struct inode *inode = NULL;
4902 struct btrfs_trans_handle *trans;
4903 struct btrfs_root *root = BTRFS_I(dir)->root;
4904 int err = 0;
4905 int drop_on_err = 0;
4906 u64 objectid = 0;
4907 u64 index = 0;
4908 unsigned long nr = 1;
4910 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4911 if (err)
4912 return err;
4915 * 2 items for inode and ref
4916 * 2 items for dir items
4917 * 1 for xattr if selinux is on
4919 trans = btrfs_start_transaction(root, 5);
4920 if (IS_ERR(trans))
4921 return PTR_ERR(trans);
4922 btrfs_set_trans_block_group(trans, dir);
4924 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4925 dentry->d_name.len, dir->i_ino, objectid,
4926 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4927 &index);
4928 if (IS_ERR(inode)) {
4929 err = PTR_ERR(inode);
4930 goto out_fail;
4933 drop_on_err = 1;
4935 err = btrfs_init_inode_security(trans, inode, dir);
4936 if (err)
4937 goto out_fail;
4939 inode->i_op = &btrfs_dir_inode_operations;
4940 inode->i_fop = &btrfs_dir_file_operations;
4941 btrfs_set_trans_block_group(trans, inode);
4943 btrfs_i_size_write(inode, 0);
4944 err = btrfs_update_inode(trans, root, inode);
4945 if (err)
4946 goto out_fail;
4948 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4949 dentry->d_name.len, 0, index);
4950 if (err)
4951 goto out_fail;
4953 d_instantiate(dentry, inode);
4954 drop_on_err = 0;
4955 btrfs_update_inode_block_group(trans, inode);
4956 btrfs_update_inode_block_group(trans, dir);
4958 out_fail:
4959 nr = trans->blocks_used;
4960 btrfs_end_transaction_throttle(trans, root);
4961 if (drop_on_err)
4962 iput(inode);
4963 btrfs_btree_balance_dirty(root, nr);
4964 return err;
4967 /* helper for btfs_get_extent. Given an existing extent in the tree,
4968 * and an extent that you want to insert, deal with overlap and insert
4969 * the new extent into the tree.
4971 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4972 struct extent_map *existing,
4973 struct extent_map *em,
4974 u64 map_start, u64 map_len)
4976 u64 start_diff;
4978 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4979 start_diff = map_start - em->start;
4980 em->start = map_start;
4981 em->len = map_len;
4982 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4983 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4984 em->block_start += start_diff;
4985 em->block_len -= start_diff;
4987 return add_extent_mapping(em_tree, em);
4990 static noinline int uncompress_inline(struct btrfs_path *path,
4991 struct inode *inode, struct page *page,
4992 size_t pg_offset, u64 extent_offset,
4993 struct btrfs_file_extent_item *item)
4995 int ret;
4996 struct extent_buffer *leaf = path->nodes[0];
4997 char *tmp;
4998 size_t max_size;
4999 unsigned long inline_size;
5000 unsigned long ptr;
5001 int compress_type;
5003 WARN_ON(pg_offset != 0);
5004 compress_type = btrfs_file_extent_compression(leaf, item);
5005 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5006 inline_size = btrfs_file_extent_inline_item_len(leaf,
5007 btrfs_item_nr(leaf, path->slots[0]));
5008 tmp = kmalloc(inline_size, GFP_NOFS);
5009 ptr = btrfs_file_extent_inline_start(item);
5011 read_extent_buffer(leaf, tmp, ptr, inline_size);
5013 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5014 ret = btrfs_decompress(compress_type, tmp, page,
5015 extent_offset, inline_size, max_size);
5016 if (ret) {
5017 char *kaddr = kmap_atomic(page, KM_USER0);
5018 unsigned long copy_size = min_t(u64,
5019 PAGE_CACHE_SIZE - pg_offset,
5020 max_size - extent_offset);
5021 memset(kaddr + pg_offset, 0, copy_size);
5022 kunmap_atomic(kaddr, KM_USER0);
5024 kfree(tmp);
5025 return 0;
5029 * a bit scary, this does extent mapping from logical file offset to the disk.
5030 * the ugly parts come from merging extents from the disk with the in-ram
5031 * representation. This gets more complex because of the data=ordered code,
5032 * where the in-ram extents might be locked pending data=ordered completion.
5034 * This also copies inline extents directly into the page.
5037 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5038 size_t pg_offset, u64 start, u64 len,
5039 int create)
5041 int ret;
5042 int err = 0;
5043 u64 bytenr;
5044 u64 extent_start = 0;
5045 u64 extent_end = 0;
5046 u64 objectid = inode->i_ino;
5047 u32 found_type;
5048 struct btrfs_path *path = NULL;
5049 struct btrfs_root *root = BTRFS_I(inode)->root;
5050 struct btrfs_file_extent_item *item;
5051 struct extent_buffer *leaf;
5052 struct btrfs_key found_key;
5053 struct extent_map *em = NULL;
5054 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5055 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5056 struct btrfs_trans_handle *trans = NULL;
5057 int compress_type;
5059 again:
5060 read_lock(&em_tree->lock);
5061 em = lookup_extent_mapping(em_tree, start, len);
5062 if (em)
5063 em->bdev = root->fs_info->fs_devices->latest_bdev;
5064 read_unlock(&em_tree->lock);
5066 if (em) {
5067 if (em->start > start || em->start + em->len <= start)
5068 free_extent_map(em);
5069 else if (em->block_start == EXTENT_MAP_INLINE && page)
5070 free_extent_map(em);
5071 else
5072 goto out;
5074 em = alloc_extent_map(GFP_NOFS);
5075 if (!em) {
5076 err = -ENOMEM;
5077 goto out;
5079 em->bdev = root->fs_info->fs_devices->latest_bdev;
5080 em->start = EXTENT_MAP_HOLE;
5081 em->orig_start = EXTENT_MAP_HOLE;
5082 em->len = (u64)-1;
5083 em->block_len = (u64)-1;
5085 if (!path) {
5086 path = btrfs_alloc_path();
5087 BUG_ON(!path);
5090 ret = btrfs_lookup_file_extent(trans, root, path,
5091 objectid, start, trans != NULL);
5092 if (ret < 0) {
5093 err = ret;
5094 goto out;
5097 if (ret != 0) {
5098 if (path->slots[0] == 0)
5099 goto not_found;
5100 path->slots[0]--;
5103 leaf = path->nodes[0];
5104 item = btrfs_item_ptr(leaf, path->slots[0],
5105 struct btrfs_file_extent_item);
5106 /* are we inside the extent that was found? */
5107 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5108 found_type = btrfs_key_type(&found_key);
5109 if (found_key.objectid != objectid ||
5110 found_type != BTRFS_EXTENT_DATA_KEY) {
5111 goto not_found;
5114 found_type = btrfs_file_extent_type(leaf, item);
5115 extent_start = found_key.offset;
5116 compress_type = btrfs_file_extent_compression(leaf, item);
5117 if (found_type == BTRFS_FILE_EXTENT_REG ||
5118 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5119 extent_end = extent_start +
5120 btrfs_file_extent_num_bytes(leaf, item);
5121 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5122 size_t size;
5123 size = btrfs_file_extent_inline_len(leaf, item);
5124 extent_end = (extent_start + size + root->sectorsize - 1) &
5125 ~((u64)root->sectorsize - 1);
5128 if (start >= extent_end) {
5129 path->slots[0]++;
5130 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5131 ret = btrfs_next_leaf(root, path);
5132 if (ret < 0) {
5133 err = ret;
5134 goto out;
5136 if (ret > 0)
5137 goto not_found;
5138 leaf = path->nodes[0];
5140 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5141 if (found_key.objectid != objectid ||
5142 found_key.type != BTRFS_EXTENT_DATA_KEY)
5143 goto not_found;
5144 if (start + len <= found_key.offset)
5145 goto not_found;
5146 em->start = start;
5147 em->len = found_key.offset - start;
5148 goto not_found_em;
5151 if (found_type == BTRFS_FILE_EXTENT_REG ||
5152 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5153 em->start = extent_start;
5154 em->len = extent_end - extent_start;
5155 em->orig_start = extent_start -
5156 btrfs_file_extent_offset(leaf, item);
5157 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5158 if (bytenr == 0) {
5159 em->block_start = EXTENT_MAP_HOLE;
5160 goto insert;
5162 if (compress_type != BTRFS_COMPRESS_NONE) {
5163 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5164 em->compress_type = compress_type;
5165 em->block_start = bytenr;
5166 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5167 item);
5168 } else {
5169 bytenr += btrfs_file_extent_offset(leaf, item);
5170 em->block_start = bytenr;
5171 em->block_len = em->len;
5172 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5173 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5175 goto insert;
5176 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5177 unsigned long ptr;
5178 char *map;
5179 size_t size;
5180 size_t extent_offset;
5181 size_t copy_size;
5183 em->block_start = EXTENT_MAP_INLINE;
5184 if (!page || create) {
5185 em->start = extent_start;
5186 em->len = extent_end - extent_start;
5187 goto out;
5190 size = btrfs_file_extent_inline_len(leaf, item);
5191 extent_offset = page_offset(page) + pg_offset - extent_start;
5192 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5193 size - extent_offset);
5194 em->start = extent_start + extent_offset;
5195 em->len = (copy_size + root->sectorsize - 1) &
5196 ~((u64)root->sectorsize - 1);
5197 em->orig_start = EXTENT_MAP_INLINE;
5198 if (compress_type) {
5199 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5200 em->compress_type = compress_type;
5202 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5203 if (create == 0 && !PageUptodate(page)) {
5204 if (btrfs_file_extent_compression(leaf, item) !=
5205 BTRFS_COMPRESS_NONE) {
5206 ret = uncompress_inline(path, inode, page,
5207 pg_offset,
5208 extent_offset, item);
5209 BUG_ON(ret);
5210 } else {
5211 map = kmap(page);
5212 read_extent_buffer(leaf, map + pg_offset, ptr,
5213 copy_size);
5214 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5215 memset(map + pg_offset + copy_size, 0,
5216 PAGE_CACHE_SIZE - pg_offset -
5217 copy_size);
5219 kunmap(page);
5221 flush_dcache_page(page);
5222 } else if (create && PageUptodate(page)) {
5223 WARN_ON(1);
5224 if (!trans) {
5225 kunmap(page);
5226 free_extent_map(em);
5227 em = NULL;
5228 btrfs_release_path(root, path);
5229 trans = btrfs_join_transaction(root, 1);
5230 if (IS_ERR(trans))
5231 return ERR_CAST(trans);
5232 goto again;
5234 map = kmap(page);
5235 write_extent_buffer(leaf, map + pg_offset, ptr,
5236 copy_size);
5237 kunmap(page);
5238 btrfs_mark_buffer_dirty(leaf);
5240 set_extent_uptodate(io_tree, em->start,
5241 extent_map_end(em) - 1, GFP_NOFS);
5242 goto insert;
5243 } else {
5244 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5245 WARN_ON(1);
5247 not_found:
5248 em->start = start;
5249 em->len = len;
5250 not_found_em:
5251 em->block_start = EXTENT_MAP_HOLE;
5252 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5253 insert:
5254 btrfs_release_path(root, path);
5255 if (em->start > start || extent_map_end(em) <= start) {
5256 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5257 "[%llu %llu]\n", (unsigned long long)em->start,
5258 (unsigned long long)em->len,
5259 (unsigned long long)start,
5260 (unsigned long long)len);
5261 err = -EIO;
5262 goto out;
5265 err = 0;
5266 write_lock(&em_tree->lock);
5267 ret = add_extent_mapping(em_tree, em);
5268 /* it is possible that someone inserted the extent into the tree
5269 * while we had the lock dropped. It is also possible that
5270 * an overlapping map exists in the tree
5272 if (ret == -EEXIST) {
5273 struct extent_map *existing;
5275 ret = 0;
5277 existing = lookup_extent_mapping(em_tree, start, len);
5278 if (existing && (existing->start > start ||
5279 existing->start + existing->len <= start)) {
5280 free_extent_map(existing);
5281 existing = NULL;
5283 if (!existing) {
5284 existing = lookup_extent_mapping(em_tree, em->start,
5285 em->len);
5286 if (existing) {
5287 err = merge_extent_mapping(em_tree, existing,
5288 em, start,
5289 root->sectorsize);
5290 free_extent_map(existing);
5291 if (err) {
5292 free_extent_map(em);
5293 em = NULL;
5295 } else {
5296 err = -EIO;
5297 free_extent_map(em);
5298 em = NULL;
5300 } else {
5301 free_extent_map(em);
5302 em = existing;
5303 err = 0;
5306 write_unlock(&em_tree->lock);
5307 out:
5309 trace_btrfs_get_extent(root, em);
5311 if (path)
5312 btrfs_free_path(path);
5313 if (trans) {
5314 ret = btrfs_end_transaction(trans, root);
5315 if (!err)
5316 err = ret;
5318 if (err) {
5319 free_extent_map(em);
5320 return ERR_PTR(err);
5322 return em;
5325 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5326 size_t pg_offset, u64 start, u64 len,
5327 int create)
5329 struct extent_map *em;
5330 struct extent_map *hole_em = NULL;
5331 u64 range_start = start;
5332 u64 end;
5333 u64 found;
5334 u64 found_end;
5335 int err = 0;
5337 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5338 if (IS_ERR(em))
5339 return em;
5340 if (em) {
5342 * if our em maps to a hole, there might
5343 * actually be delalloc bytes behind it
5345 if (em->block_start != EXTENT_MAP_HOLE)
5346 return em;
5347 else
5348 hole_em = em;
5351 /* check to see if we've wrapped (len == -1 or similar) */
5352 end = start + len;
5353 if (end < start)
5354 end = (u64)-1;
5355 else
5356 end -= 1;
5358 em = NULL;
5360 /* ok, we didn't find anything, lets look for delalloc */
5361 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5362 end, len, EXTENT_DELALLOC, 1);
5363 found_end = range_start + found;
5364 if (found_end < range_start)
5365 found_end = (u64)-1;
5368 * we didn't find anything useful, return
5369 * the original results from get_extent()
5371 if (range_start > end || found_end <= start) {
5372 em = hole_em;
5373 hole_em = NULL;
5374 goto out;
5377 /* adjust the range_start to make sure it doesn't
5378 * go backwards from the start they passed in
5380 range_start = max(start,range_start);
5381 found = found_end - range_start;
5383 if (found > 0) {
5384 u64 hole_start = start;
5385 u64 hole_len = len;
5387 em = alloc_extent_map(GFP_NOFS);
5388 if (!em) {
5389 err = -ENOMEM;
5390 goto out;
5393 * when btrfs_get_extent can't find anything it
5394 * returns one huge hole
5396 * make sure what it found really fits our range, and
5397 * adjust to make sure it is based on the start from
5398 * the caller
5400 if (hole_em) {
5401 u64 calc_end = extent_map_end(hole_em);
5403 if (calc_end <= start || (hole_em->start > end)) {
5404 free_extent_map(hole_em);
5405 hole_em = NULL;
5406 } else {
5407 hole_start = max(hole_em->start, start);
5408 hole_len = calc_end - hole_start;
5411 em->bdev = NULL;
5412 if (hole_em && range_start > hole_start) {
5413 /* our hole starts before our delalloc, so we
5414 * have to return just the parts of the hole
5415 * that go until the delalloc starts
5417 em->len = min(hole_len,
5418 range_start - hole_start);
5419 em->start = hole_start;
5420 em->orig_start = hole_start;
5422 * don't adjust block start at all,
5423 * it is fixed at EXTENT_MAP_HOLE
5425 em->block_start = hole_em->block_start;
5426 em->block_len = hole_len;
5427 } else {
5428 em->start = range_start;
5429 em->len = found;
5430 em->orig_start = range_start;
5431 em->block_start = EXTENT_MAP_DELALLOC;
5432 em->block_len = found;
5434 } else if (hole_em) {
5435 return hole_em;
5437 out:
5439 free_extent_map(hole_em);
5440 if (err) {
5441 free_extent_map(em);
5442 return ERR_PTR(err);
5444 return em;
5447 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5448 struct extent_map *em,
5449 u64 start, u64 len)
5451 struct btrfs_root *root = BTRFS_I(inode)->root;
5452 struct btrfs_trans_handle *trans;
5453 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5454 struct btrfs_key ins;
5455 u64 alloc_hint;
5456 int ret;
5457 bool insert = false;
5460 * Ok if the extent map we looked up is a hole and is for the exact
5461 * range we want, there is no reason to allocate a new one, however if
5462 * it is not right then we need to free this one and drop the cache for
5463 * our range.
5465 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5466 em->len != len) {
5467 free_extent_map(em);
5468 em = NULL;
5469 insert = true;
5470 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5473 trans = btrfs_join_transaction(root, 0);
5474 if (IS_ERR(trans))
5475 return ERR_CAST(trans);
5477 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5479 alloc_hint = get_extent_allocation_hint(inode, start, len);
5480 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5481 alloc_hint, (u64)-1, &ins, 1);
5482 if (ret) {
5483 em = ERR_PTR(ret);
5484 goto out;
5487 if (!em) {
5488 em = alloc_extent_map(GFP_NOFS);
5489 if (!em) {
5490 em = ERR_PTR(-ENOMEM);
5491 goto out;
5495 em->start = start;
5496 em->orig_start = em->start;
5497 em->len = ins.offset;
5499 em->block_start = ins.objectid;
5500 em->block_len = ins.offset;
5501 em->bdev = root->fs_info->fs_devices->latest_bdev;
5504 * We need to do this because if we're using the original em we searched
5505 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5507 em->flags = 0;
5508 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5510 while (insert) {
5511 write_lock(&em_tree->lock);
5512 ret = add_extent_mapping(em_tree, em);
5513 write_unlock(&em_tree->lock);
5514 if (ret != -EEXIST)
5515 break;
5516 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5519 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5520 ins.offset, ins.offset, 0);
5521 if (ret) {
5522 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5523 em = ERR_PTR(ret);
5525 out:
5526 btrfs_end_transaction(trans, root);
5527 return em;
5531 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5532 * block must be cow'd
5534 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5535 struct inode *inode, u64 offset, u64 len)
5537 struct btrfs_path *path;
5538 int ret;
5539 struct extent_buffer *leaf;
5540 struct btrfs_root *root = BTRFS_I(inode)->root;
5541 struct btrfs_file_extent_item *fi;
5542 struct btrfs_key key;
5543 u64 disk_bytenr;
5544 u64 backref_offset;
5545 u64 extent_end;
5546 u64 num_bytes;
5547 int slot;
5548 int found_type;
5550 path = btrfs_alloc_path();
5551 if (!path)
5552 return -ENOMEM;
5554 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5555 offset, 0);
5556 if (ret < 0)
5557 goto out;
5559 slot = path->slots[0];
5560 if (ret == 1) {
5561 if (slot == 0) {
5562 /* can't find the item, must cow */
5563 ret = 0;
5564 goto out;
5566 slot--;
5568 ret = 0;
5569 leaf = path->nodes[0];
5570 btrfs_item_key_to_cpu(leaf, &key, slot);
5571 if (key.objectid != inode->i_ino ||
5572 key.type != BTRFS_EXTENT_DATA_KEY) {
5573 /* not our file or wrong item type, must cow */
5574 goto out;
5577 if (key.offset > offset) {
5578 /* Wrong offset, must cow */
5579 goto out;
5582 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5583 found_type = btrfs_file_extent_type(leaf, fi);
5584 if (found_type != BTRFS_FILE_EXTENT_REG &&
5585 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5586 /* not a regular extent, must cow */
5587 goto out;
5589 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5590 backref_offset = btrfs_file_extent_offset(leaf, fi);
5592 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5593 if (extent_end < offset + len) {
5594 /* extent doesn't include our full range, must cow */
5595 goto out;
5598 if (btrfs_extent_readonly(root, disk_bytenr))
5599 goto out;
5602 * look for other files referencing this extent, if we
5603 * find any we must cow
5605 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5606 key.offset - backref_offset, disk_bytenr))
5607 goto out;
5610 * adjust disk_bytenr and num_bytes to cover just the bytes
5611 * in this extent we are about to write. If there
5612 * are any csums in that range we have to cow in order
5613 * to keep the csums correct
5615 disk_bytenr += backref_offset;
5616 disk_bytenr += offset - key.offset;
5617 num_bytes = min(offset + len, extent_end) - offset;
5618 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5619 goto out;
5621 * all of the above have passed, it is safe to overwrite this extent
5622 * without cow
5624 ret = 1;
5625 out:
5626 btrfs_free_path(path);
5627 return ret;
5630 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5631 struct buffer_head *bh_result, int create)
5633 struct extent_map *em;
5634 struct btrfs_root *root = BTRFS_I(inode)->root;
5635 u64 start = iblock << inode->i_blkbits;
5636 u64 len = bh_result->b_size;
5637 struct btrfs_trans_handle *trans;
5639 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5640 if (IS_ERR(em))
5641 return PTR_ERR(em);
5644 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5645 * io. INLINE is special, and we could probably kludge it in here, but
5646 * it's still buffered so for safety lets just fall back to the generic
5647 * buffered path.
5649 * For COMPRESSED we _have_ to read the entire extent in so we can
5650 * decompress it, so there will be buffering required no matter what we
5651 * do, so go ahead and fallback to buffered.
5653 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5654 * to buffered IO. Don't blame me, this is the price we pay for using
5655 * the generic code.
5657 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5658 em->block_start == EXTENT_MAP_INLINE) {
5659 free_extent_map(em);
5660 return -ENOTBLK;
5663 /* Just a good old fashioned hole, return */
5664 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5665 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5666 free_extent_map(em);
5667 /* DIO will do one hole at a time, so just unlock a sector */
5668 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5669 start + root->sectorsize - 1, GFP_NOFS);
5670 return 0;
5674 * We don't allocate a new extent in the following cases
5676 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5677 * existing extent.
5678 * 2) The extent is marked as PREALLOC. We're good to go here and can
5679 * just use the extent.
5682 if (!create) {
5683 len = em->len - (start - em->start);
5684 goto map;
5687 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5688 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5689 em->block_start != EXTENT_MAP_HOLE)) {
5690 int type;
5691 int ret;
5692 u64 block_start;
5694 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5695 type = BTRFS_ORDERED_PREALLOC;
5696 else
5697 type = BTRFS_ORDERED_NOCOW;
5698 len = min(len, em->len - (start - em->start));
5699 block_start = em->block_start + (start - em->start);
5702 * we're not going to log anything, but we do need
5703 * to make sure the current transaction stays open
5704 * while we look for nocow cross refs
5706 trans = btrfs_join_transaction(root, 0);
5707 if (IS_ERR(trans))
5708 goto must_cow;
5710 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5711 ret = btrfs_add_ordered_extent_dio(inode, start,
5712 block_start, len, len, type);
5713 btrfs_end_transaction(trans, root);
5714 if (ret) {
5715 free_extent_map(em);
5716 return ret;
5718 goto unlock;
5720 btrfs_end_transaction(trans, root);
5722 must_cow:
5724 * this will cow the extent, reset the len in case we changed
5725 * it above
5727 len = bh_result->b_size;
5728 em = btrfs_new_extent_direct(inode, em, start, len);
5729 if (IS_ERR(em))
5730 return PTR_ERR(em);
5731 len = min(len, em->len - (start - em->start));
5732 unlock:
5733 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5734 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5735 0, NULL, GFP_NOFS);
5736 map:
5737 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5738 inode->i_blkbits;
5739 bh_result->b_size = len;
5740 bh_result->b_bdev = em->bdev;
5741 set_buffer_mapped(bh_result);
5742 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5743 set_buffer_new(bh_result);
5745 free_extent_map(em);
5747 return 0;
5750 struct btrfs_dio_private {
5751 struct inode *inode;
5752 u64 logical_offset;
5753 u64 disk_bytenr;
5754 u64 bytes;
5755 u32 *csums;
5756 void *private;
5758 /* number of bios pending for this dio */
5759 atomic_t pending_bios;
5761 /* IO errors */
5762 int errors;
5764 struct bio *orig_bio;
5767 static void btrfs_endio_direct_read(struct bio *bio, int err)
5769 struct btrfs_dio_private *dip = bio->bi_private;
5770 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5771 struct bio_vec *bvec = bio->bi_io_vec;
5772 struct inode *inode = dip->inode;
5773 struct btrfs_root *root = BTRFS_I(inode)->root;
5774 u64 start;
5775 u32 *private = dip->csums;
5777 start = dip->logical_offset;
5778 do {
5779 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5780 struct page *page = bvec->bv_page;
5781 char *kaddr;
5782 u32 csum = ~(u32)0;
5783 unsigned long flags;
5785 local_irq_save(flags);
5786 kaddr = kmap_atomic(page, KM_IRQ0);
5787 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5788 csum, bvec->bv_len);
5789 btrfs_csum_final(csum, (char *)&csum);
5790 kunmap_atomic(kaddr, KM_IRQ0);
5791 local_irq_restore(flags);
5793 flush_dcache_page(bvec->bv_page);
5794 if (csum != *private) {
5795 printk(KERN_ERR "btrfs csum failed ino %lu off"
5796 " %llu csum %u private %u\n",
5797 inode->i_ino, (unsigned long long)start,
5798 csum, *private);
5799 err = -EIO;
5803 start += bvec->bv_len;
5804 private++;
5805 bvec++;
5806 } while (bvec <= bvec_end);
5808 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5809 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5810 bio->bi_private = dip->private;
5812 kfree(dip->csums);
5813 kfree(dip);
5815 /* If we had a csum failure make sure to clear the uptodate flag */
5816 if (err)
5817 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5818 dio_end_io(bio, err);
5821 static void btrfs_endio_direct_write(struct bio *bio, int err)
5823 struct btrfs_dio_private *dip = bio->bi_private;
5824 struct inode *inode = dip->inode;
5825 struct btrfs_root *root = BTRFS_I(inode)->root;
5826 struct btrfs_trans_handle *trans;
5827 struct btrfs_ordered_extent *ordered = NULL;
5828 struct extent_state *cached_state = NULL;
5829 u64 ordered_offset = dip->logical_offset;
5830 u64 ordered_bytes = dip->bytes;
5831 int ret;
5833 if (err)
5834 goto out_done;
5835 again:
5836 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5837 &ordered_offset,
5838 ordered_bytes);
5839 if (!ret)
5840 goto out_test;
5842 BUG_ON(!ordered);
5844 trans = btrfs_join_transaction(root, 1);
5845 if (IS_ERR(trans)) {
5846 err = -ENOMEM;
5847 goto out;
5849 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5851 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5852 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5853 if (!ret)
5854 ret = btrfs_update_inode(trans, root, inode);
5855 err = ret;
5856 goto out;
5859 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5860 ordered->file_offset + ordered->len - 1, 0,
5861 &cached_state, GFP_NOFS);
5863 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5864 ret = btrfs_mark_extent_written(trans, inode,
5865 ordered->file_offset,
5866 ordered->file_offset +
5867 ordered->len);
5868 if (ret) {
5869 err = ret;
5870 goto out_unlock;
5872 } else {
5873 ret = insert_reserved_file_extent(trans, inode,
5874 ordered->file_offset,
5875 ordered->start,
5876 ordered->disk_len,
5877 ordered->len,
5878 ordered->len,
5879 0, 0, 0,
5880 BTRFS_FILE_EXTENT_REG);
5881 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5882 ordered->file_offset, ordered->len);
5883 if (ret) {
5884 err = ret;
5885 WARN_ON(1);
5886 goto out_unlock;
5890 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5891 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5892 if (!ret)
5893 btrfs_update_inode(trans, root, inode);
5894 ret = 0;
5895 out_unlock:
5896 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5897 ordered->file_offset + ordered->len - 1,
5898 &cached_state, GFP_NOFS);
5899 out:
5900 btrfs_delalloc_release_metadata(inode, ordered->len);
5901 btrfs_end_transaction(trans, root);
5902 ordered_offset = ordered->file_offset + ordered->len;
5903 btrfs_put_ordered_extent(ordered);
5904 btrfs_put_ordered_extent(ordered);
5906 out_test:
5908 * our bio might span multiple ordered extents. If we haven't
5909 * completed the accounting for the whole dio, go back and try again
5911 if (ordered_offset < dip->logical_offset + dip->bytes) {
5912 ordered_bytes = dip->logical_offset + dip->bytes -
5913 ordered_offset;
5914 goto again;
5916 out_done:
5917 bio->bi_private = dip->private;
5919 kfree(dip->csums);
5920 kfree(dip);
5922 /* If we had an error make sure to clear the uptodate flag */
5923 if (err)
5924 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5925 dio_end_io(bio, err);
5928 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5929 struct bio *bio, int mirror_num,
5930 unsigned long bio_flags, u64 offset)
5932 int ret;
5933 struct btrfs_root *root = BTRFS_I(inode)->root;
5934 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5935 BUG_ON(ret);
5936 return 0;
5939 static void btrfs_end_dio_bio(struct bio *bio, int err)
5941 struct btrfs_dio_private *dip = bio->bi_private;
5943 if (err) {
5944 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5945 "sector %#Lx len %u err no %d\n",
5946 dip->inode->i_ino, bio->bi_rw,
5947 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5948 dip->errors = 1;
5951 * before atomic variable goto zero, we must make sure
5952 * dip->errors is perceived to be set.
5954 smp_mb__before_atomic_dec();
5957 /* if there are more bios still pending for this dio, just exit */
5958 if (!atomic_dec_and_test(&dip->pending_bios))
5959 goto out;
5961 if (dip->errors)
5962 bio_io_error(dip->orig_bio);
5963 else {
5964 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5965 bio_endio(dip->orig_bio, 0);
5967 out:
5968 bio_put(bio);
5971 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5972 u64 first_sector, gfp_t gfp_flags)
5974 int nr_vecs = bio_get_nr_vecs(bdev);
5975 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5978 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5979 int rw, u64 file_offset, int skip_sum,
5980 u32 *csums, int async_submit)
5982 int write = rw & REQ_WRITE;
5983 struct btrfs_root *root = BTRFS_I(inode)->root;
5984 int ret;
5986 bio_get(bio);
5987 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5988 if (ret)
5989 goto err;
5991 if (skip_sum)
5992 goto map;
5994 if (write && async_submit) {
5995 ret = btrfs_wq_submit_bio(root->fs_info,
5996 inode, rw, bio, 0, 0,
5997 file_offset,
5998 __btrfs_submit_bio_start_direct_io,
5999 __btrfs_submit_bio_done);
6000 goto err;
6001 } else if (write) {
6003 * If we aren't doing async submit, calculate the csum of the
6004 * bio now.
6006 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6007 if (ret)
6008 goto err;
6009 } else if (!skip_sum) {
6010 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6011 file_offset, csums);
6012 if (ret)
6013 goto err;
6016 map:
6017 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6018 err:
6019 bio_put(bio);
6020 return ret;
6023 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6024 int skip_sum)
6026 struct inode *inode = dip->inode;
6027 struct btrfs_root *root = BTRFS_I(inode)->root;
6028 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6029 struct bio *bio;
6030 struct bio *orig_bio = dip->orig_bio;
6031 struct bio_vec *bvec = orig_bio->bi_io_vec;
6032 u64 start_sector = orig_bio->bi_sector;
6033 u64 file_offset = dip->logical_offset;
6034 u64 submit_len = 0;
6035 u64 map_length;
6036 int nr_pages = 0;
6037 u32 *csums = dip->csums;
6038 int ret = 0;
6039 int async_submit = 0;
6040 int write = rw & REQ_WRITE;
6042 map_length = orig_bio->bi_size;
6043 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6044 &map_length, NULL, 0);
6045 if (ret) {
6046 bio_put(bio);
6047 return -EIO;
6050 if (map_length >= orig_bio->bi_size) {
6051 bio = orig_bio;
6052 goto submit;
6055 async_submit = 1;
6056 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6057 if (!bio)
6058 return -ENOMEM;
6059 bio->bi_private = dip;
6060 bio->bi_end_io = btrfs_end_dio_bio;
6061 atomic_inc(&dip->pending_bios);
6063 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6064 if (unlikely(map_length < submit_len + bvec->bv_len ||
6065 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6066 bvec->bv_offset) < bvec->bv_len)) {
6068 * inc the count before we submit the bio so
6069 * we know the end IO handler won't happen before
6070 * we inc the count. Otherwise, the dip might get freed
6071 * before we're done setting it up
6073 atomic_inc(&dip->pending_bios);
6074 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6075 file_offset, skip_sum,
6076 csums, async_submit);
6077 if (ret) {
6078 bio_put(bio);
6079 atomic_dec(&dip->pending_bios);
6080 goto out_err;
6083 /* Write's use the ordered csums */
6084 if (!write && !skip_sum)
6085 csums = csums + nr_pages;
6086 start_sector += submit_len >> 9;
6087 file_offset += submit_len;
6089 submit_len = 0;
6090 nr_pages = 0;
6092 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6093 start_sector, GFP_NOFS);
6094 if (!bio)
6095 goto out_err;
6096 bio->bi_private = dip;
6097 bio->bi_end_io = btrfs_end_dio_bio;
6099 map_length = orig_bio->bi_size;
6100 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6101 &map_length, NULL, 0);
6102 if (ret) {
6103 bio_put(bio);
6104 goto out_err;
6106 } else {
6107 submit_len += bvec->bv_len;
6108 nr_pages ++;
6109 bvec++;
6113 submit:
6114 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6115 csums, async_submit);
6116 if (!ret)
6117 return 0;
6119 bio_put(bio);
6120 out_err:
6121 dip->errors = 1;
6123 * before atomic variable goto zero, we must
6124 * make sure dip->errors is perceived to be set.
6126 smp_mb__before_atomic_dec();
6127 if (atomic_dec_and_test(&dip->pending_bios))
6128 bio_io_error(dip->orig_bio);
6130 /* bio_end_io() will handle error, so we needn't return it */
6131 return 0;
6134 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6135 loff_t file_offset)
6137 struct btrfs_root *root = BTRFS_I(inode)->root;
6138 struct btrfs_dio_private *dip;
6139 struct bio_vec *bvec = bio->bi_io_vec;
6140 int skip_sum;
6141 int write = rw & REQ_WRITE;
6142 int ret = 0;
6144 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6146 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6147 if (!dip) {
6148 ret = -ENOMEM;
6149 goto free_ordered;
6151 dip->csums = NULL;
6153 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6154 if (!write && !skip_sum) {
6155 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6156 if (!dip->csums) {
6157 kfree(dip);
6158 ret = -ENOMEM;
6159 goto free_ordered;
6163 dip->private = bio->bi_private;
6164 dip->inode = inode;
6165 dip->logical_offset = file_offset;
6167 dip->bytes = 0;
6168 do {
6169 dip->bytes += bvec->bv_len;
6170 bvec++;
6171 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6173 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6174 bio->bi_private = dip;
6175 dip->errors = 0;
6176 dip->orig_bio = bio;
6177 atomic_set(&dip->pending_bios, 0);
6179 if (write)
6180 bio->bi_end_io = btrfs_endio_direct_write;
6181 else
6182 bio->bi_end_io = btrfs_endio_direct_read;
6184 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6185 if (!ret)
6186 return;
6187 free_ordered:
6189 * If this is a write, we need to clean up the reserved space and kill
6190 * the ordered extent.
6192 if (write) {
6193 struct btrfs_ordered_extent *ordered;
6194 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6195 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6196 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6197 btrfs_free_reserved_extent(root, ordered->start,
6198 ordered->disk_len);
6199 btrfs_put_ordered_extent(ordered);
6200 btrfs_put_ordered_extent(ordered);
6202 bio_endio(bio, ret);
6205 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6206 const struct iovec *iov, loff_t offset,
6207 unsigned long nr_segs)
6209 int seg;
6210 int i;
6211 size_t size;
6212 unsigned long addr;
6213 unsigned blocksize_mask = root->sectorsize - 1;
6214 ssize_t retval = -EINVAL;
6215 loff_t end = offset;
6217 if (offset & blocksize_mask)
6218 goto out;
6220 /* Check the memory alignment. Blocks cannot straddle pages */
6221 for (seg = 0; seg < nr_segs; seg++) {
6222 addr = (unsigned long)iov[seg].iov_base;
6223 size = iov[seg].iov_len;
6224 end += size;
6225 if ((addr & blocksize_mask) || (size & blocksize_mask))
6226 goto out;
6228 /* If this is a write we don't need to check anymore */
6229 if (rw & WRITE)
6230 continue;
6233 * Check to make sure we don't have duplicate iov_base's in this
6234 * iovec, if so return EINVAL, otherwise we'll get csum errors
6235 * when reading back.
6237 for (i = seg + 1; i < nr_segs; i++) {
6238 if (iov[seg].iov_base == iov[i].iov_base)
6239 goto out;
6242 retval = 0;
6243 out:
6244 return retval;
6246 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6247 const struct iovec *iov, loff_t offset,
6248 unsigned long nr_segs)
6250 struct file *file = iocb->ki_filp;
6251 struct inode *inode = file->f_mapping->host;
6252 struct btrfs_ordered_extent *ordered;
6253 struct extent_state *cached_state = NULL;
6254 u64 lockstart, lockend;
6255 ssize_t ret;
6256 int writing = rw & WRITE;
6257 int write_bits = 0;
6258 size_t count = iov_length(iov, nr_segs);
6260 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6261 offset, nr_segs)) {
6262 return 0;
6265 lockstart = offset;
6266 lockend = offset + count - 1;
6268 if (writing) {
6269 ret = btrfs_delalloc_reserve_space(inode, count);
6270 if (ret)
6271 goto out;
6274 while (1) {
6275 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6276 0, &cached_state, GFP_NOFS);
6278 * We're concerned with the entire range that we're going to be
6279 * doing DIO to, so we need to make sure theres no ordered
6280 * extents in this range.
6282 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6283 lockend - lockstart + 1);
6284 if (!ordered)
6285 break;
6286 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6287 &cached_state, GFP_NOFS);
6288 btrfs_start_ordered_extent(inode, ordered, 1);
6289 btrfs_put_ordered_extent(ordered);
6290 cond_resched();
6294 * we don't use btrfs_set_extent_delalloc because we don't want
6295 * the dirty or uptodate bits
6297 if (writing) {
6298 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6299 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6300 EXTENT_DELALLOC, 0, NULL, &cached_state,
6301 GFP_NOFS);
6302 if (ret) {
6303 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6304 lockend, EXTENT_LOCKED | write_bits,
6305 1, 0, &cached_state, GFP_NOFS);
6306 goto out;
6310 free_extent_state(cached_state);
6311 cached_state = NULL;
6313 ret = __blockdev_direct_IO(rw, iocb, inode,
6314 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6315 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6316 btrfs_submit_direct, 0);
6318 if (ret < 0 && ret != -EIOCBQUEUED) {
6319 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6320 offset + iov_length(iov, nr_segs) - 1,
6321 EXTENT_LOCKED | write_bits, 1, 0,
6322 &cached_state, GFP_NOFS);
6323 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6325 * We're falling back to buffered, unlock the section we didn't
6326 * do IO on.
6328 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6329 offset + iov_length(iov, nr_segs) - 1,
6330 EXTENT_LOCKED | write_bits, 1, 0,
6331 &cached_state, GFP_NOFS);
6333 out:
6334 free_extent_state(cached_state);
6335 return ret;
6338 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6339 __u64 start, __u64 len)
6341 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6344 int btrfs_readpage(struct file *file, struct page *page)
6346 struct extent_io_tree *tree;
6347 tree = &BTRFS_I(page->mapping->host)->io_tree;
6348 return extent_read_full_page(tree, page, btrfs_get_extent);
6351 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6353 struct extent_io_tree *tree;
6356 if (current->flags & PF_MEMALLOC) {
6357 redirty_page_for_writepage(wbc, page);
6358 unlock_page(page);
6359 return 0;
6361 tree = &BTRFS_I(page->mapping->host)->io_tree;
6362 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6365 int btrfs_writepages(struct address_space *mapping,
6366 struct writeback_control *wbc)
6368 struct extent_io_tree *tree;
6370 tree = &BTRFS_I(mapping->host)->io_tree;
6371 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6374 static int
6375 btrfs_readpages(struct file *file, struct address_space *mapping,
6376 struct list_head *pages, unsigned nr_pages)
6378 struct extent_io_tree *tree;
6379 tree = &BTRFS_I(mapping->host)->io_tree;
6380 return extent_readpages(tree, mapping, pages, nr_pages,
6381 btrfs_get_extent);
6383 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6385 struct extent_io_tree *tree;
6386 struct extent_map_tree *map;
6387 int ret;
6389 tree = &BTRFS_I(page->mapping->host)->io_tree;
6390 map = &BTRFS_I(page->mapping->host)->extent_tree;
6391 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6392 if (ret == 1) {
6393 ClearPagePrivate(page);
6394 set_page_private(page, 0);
6395 page_cache_release(page);
6397 return ret;
6400 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6402 if (PageWriteback(page) || PageDirty(page))
6403 return 0;
6404 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6407 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6409 struct extent_io_tree *tree;
6410 struct btrfs_ordered_extent *ordered;
6411 struct extent_state *cached_state = NULL;
6412 u64 page_start = page_offset(page);
6413 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6417 * we have the page locked, so new writeback can't start,
6418 * and the dirty bit won't be cleared while we are here.
6420 * Wait for IO on this page so that we can safely clear
6421 * the PagePrivate2 bit and do ordered accounting
6423 wait_on_page_writeback(page);
6425 tree = &BTRFS_I(page->mapping->host)->io_tree;
6426 if (offset) {
6427 btrfs_releasepage(page, GFP_NOFS);
6428 return;
6430 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6431 GFP_NOFS);
6432 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6433 page_offset(page));
6434 if (ordered) {
6436 * IO on this page will never be started, so we need
6437 * to account for any ordered extents now
6439 clear_extent_bit(tree, page_start, page_end,
6440 EXTENT_DIRTY | EXTENT_DELALLOC |
6441 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6442 &cached_state, GFP_NOFS);
6444 * whoever cleared the private bit is responsible
6445 * for the finish_ordered_io
6447 if (TestClearPagePrivate2(page)) {
6448 btrfs_finish_ordered_io(page->mapping->host,
6449 page_start, page_end);
6451 btrfs_put_ordered_extent(ordered);
6452 cached_state = NULL;
6453 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6454 GFP_NOFS);
6456 clear_extent_bit(tree, page_start, page_end,
6457 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6458 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6459 __btrfs_releasepage(page, GFP_NOFS);
6461 ClearPageChecked(page);
6462 if (PagePrivate(page)) {
6463 ClearPagePrivate(page);
6464 set_page_private(page, 0);
6465 page_cache_release(page);
6470 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6471 * called from a page fault handler when a page is first dirtied. Hence we must
6472 * be careful to check for EOF conditions here. We set the page up correctly
6473 * for a written page which means we get ENOSPC checking when writing into
6474 * holes and correct delalloc and unwritten extent mapping on filesystems that
6475 * support these features.
6477 * We are not allowed to take the i_mutex here so we have to play games to
6478 * protect against truncate races as the page could now be beyond EOF. Because
6479 * vmtruncate() writes the inode size before removing pages, once we have the
6480 * page lock we can determine safely if the page is beyond EOF. If it is not
6481 * beyond EOF, then the page is guaranteed safe against truncation until we
6482 * unlock the page.
6484 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6486 struct page *page = vmf->page;
6487 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6488 struct btrfs_root *root = BTRFS_I(inode)->root;
6489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6490 struct btrfs_ordered_extent *ordered;
6491 struct extent_state *cached_state = NULL;
6492 char *kaddr;
6493 unsigned long zero_start;
6494 loff_t size;
6495 int ret;
6496 u64 page_start;
6497 u64 page_end;
6499 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6500 if (ret) {
6501 if (ret == -ENOMEM)
6502 ret = VM_FAULT_OOM;
6503 else /* -ENOSPC, -EIO, etc */
6504 ret = VM_FAULT_SIGBUS;
6505 goto out;
6508 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6509 again:
6510 lock_page(page);
6511 size = i_size_read(inode);
6512 page_start = page_offset(page);
6513 page_end = page_start + PAGE_CACHE_SIZE - 1;
6515 if ((page->mapping != inode->i_mapping) ||
6516 (page_start >= size)) {
6517 /* page got truncated out from underneath us */
6518 goto out_unlock;
6520 wait_on_page_writeback(page);
6522 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6523 GFP_NOFS);
6524 set_page_extent_mapped(page);
6527 * we can't set the delalloc bits if there are pending ordered
6528 * extents. Drop our locks and wait for them to finish
6530 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6531 if (ordered) {
6532 unlock_extent_cached(io_tree, page_start, page_end,
6533 &cached_state, GFP_NOFS);
6534 unlock_page(page);
6535 btrfs_start_ordered_extent(inode, ordered, 1);
6536 btrfs_put_ordered_extent(ordered);
6537 goto again;
6541 * XXX - page_mkwrite gets called every time the page is dirtied, even
6542 * if it was already dirty, so for space accounting reasons we need to
6543 * clear any delalloc bits for the range we are fixing to save. There
6544 * is probably a better way to do this, but for now keep consistent with
6545 * prepare_pages in the normal write path.
6547 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6548 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6549 0, 0, &cached_state, GFP_NOFS);
6551 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6552 &cached_state);
6553 if (ret) {
6554 unlock_extent_cached(io_tree, page_start, page_end,
6555 &cached_state, GFP_NOFS);
6556 ret = VM_FAULT_SIGBUS;
6557 goto out_unlock;
6559 ret = 0;
6561 /* page is wholly or partially inside EOF */
6562 if (page_start + PAGE_CACHE_SIZE > size)
6563 zero_start = size & ~PAGE_CACHE_MASK;
6564 else
6565 zero_start = PAGE_CACHE_SIZE;
6567 if (zero_start != PAGE_CACHE_SIZE) {
6568 kaddr = kmap(page);
6569 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6570 flush_dcache_page(page);
6571 kunmap(page);
6573 ClearPageChecked(page);
6574 set_page_dirty(page);
6575 SetPageUptodate(page);
6577 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6578 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6580 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6582 out_unlock:
6583 if (!ret)
6584 return VM_FAULT_LOCKED;
6585 unlock_page(page);
6586 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6587 out:
6588 return ret;
6591 static int btrfs_truncate(struct inode *inode)
6593 struct btrfs_root *root = BTRFS_I(inode)->root;
6594 int ret;
6595 int err = 0;
6596 struct btrfs_trans_handle *trans;
6597 unsigned long nr;
6598 u64 mask = root->sectorsize - 1;
6600 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6601 if (ret)
6602 return ret;
6604 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6605 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6607 trans = btrfs_start_transaction(root, 5);
6608 if (IS_ERR(trans))
6609 return PTR_ERR(trans);
6611 btrfs_set_trans_block_group(trans, inode);
6613 ret = btrfs_orphan_add(trans, inode);
6614 if (ret) {
6615 btrfs_end_transaction(trans, root);
6616 return ret;
6619 nr = trans->blocks_used;
6620 btrfs_end_transaction(trans, root);
6621 btrfs_btree_balance_dirty(root, nr);
6623 /* Now start a transaction for the truncate */
6624 trans = btrfs_start_transaction(root, 0);
6625 if (IS_ERR(trans))
6626 return PTR_ERR(trans);
6627 btrfs_set_trans_block_group(trans, inode);
6628 trans->block_rsv = root->orphan_block_rsv;
6631 * setattr is responsible for setting the ordered_data_close flag,
6632 * but that is only tested during the last file release. That
6633 * could happen well after the next commit, leaving a great big
6634 * window where new writes may get lost if someone chooses to write
6635 * to this file after truncating to zero
6637 * The inode doesn't have any dirty data here, and so if we commit
6638 * this is a noop. If someone immediately starts writing to the inode
6639 * it is very likely we'll catch some of their writes in this
6640 * transaction, and the commit will find this file on the ordered
6641 * data list with good things to send down.
6643 * This is a best effort solution, there is still a window where
6644 * using truncate to replace the contents of the file will
6645 * end up with a zero length file after a crash.
6647 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6648 btrfs_add_ordered_operation(trans, root, inode);
6650 while (1) {
6651 if (!trans) {
6652 trans = btrfs_start_transaction(root, 0);
6653 if (IS_ERR(trans))
6654 return PTR_ERR(trans);
6655 btrfs_set_trans_block_group(trans, inode);
6656 trans->block_rsv = root->orphan_block_rsv;
6659 ret = btrfs_block_rsv_check(trans, root,
6660 root->orphan_block_rsv, 0, 5);
6661 if (ret == -EAGAIN) {
6662 ret = btrfs_commit_transaction(trans, root);
6663 if (ret)
6664 return ret;
6665 trans = NULL;
6666 continue;
6667 } else if (ret) {
6668 err = ret;
6669 break;
6672 ret = btrfs_truncate_inode_items(trans, root, inode,
6673 inode->i_size,
6674 BTRFS_EXTENT_DATA_KEY);
6675 if (ret != -EAGAIN) {
6676 err = ret;
6677 break;
6680 ret = btrfs_update_inode(trans, root, inode);
6681 if (ret) {
6682 err = ret;
6683 break;
6686 nr = trans->blocks_used;
6687 btrfs_end_transaction(trans, root);
6688 trans = NULL;
6689 btrfs_btree_balance_dirty(root, nr);
6692 if (ret == 0 && inode->i_nlink > 0) {
6693 ret = btrfs_orphan_del(trans, inode);
6694 if (ret)
6695 err = ret;
6696 } else if (ret && inode->i_nlink > 0) {
6698 * Failed to do the truncate, remove us from the in memory
6699 * orphan list.
6701 ret = btrfs_orphan_del(NULL, inode);
6704 ret = btrfs_update_inode(trans, root, inode);
6705 if (ret && !err)
6706 err = ret;
6708 nr = trans->blocks_used;
6709 ret = btrfs_end_transaction_throttle(trans, root);
6710 if (ret && !err)
6711 err = ret;
6712 btrfs_btree_balance_dirty(root, nr);
6714 return err;
6718 * create a new subvolume directory/inode (helper for the ioctl).
6720 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6721 struct btrfs_root *new_root,
6722 u64 new_dirid, u64 alloc_hint)
6724 struct inode *inode;
6725 int err;
6726 u64 index = 0;
6728 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6729 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6730 if (IS_ERR(inode))
6731 return PTR_ERR(inode);
6732 inode->i_op = &btrfs_dir_inode_operations;
6733 inode->i_fop = &btrfs_dir_file_operations;
6735 inode->i_nlink = 1;
6736 btrfs_i_size_write(inode, 0);
6738 err = btrfs_update_inode(trans, new_root, inode);
6739 BUG_ON(err);
6741 iput(inode);
6742 return 0;
6745 /* helper function for file defrag and space balancing. This
6746 * forces readahead on a given range of bytes in an inode
6748 unsigned long btrfs_force_ra(struct address_space *mapping,
6749 struct file_ra_state *ra, struct file *file,
6750 pgoff_t offset, pgoff_t last_index)
6752 pgoff_t req_size = last_index - offset + 1;
6754 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6755 return offset + req_size;
6758 struct inode *btrfs_alloc_inode(struct super_block *sb)
6760 struct btrfs_inode *ei;
6761 struct inode *inode;
6763 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6764 if (!ei)
6765 return NULL;
6767 ei->root = NULL;
6768 ei->space_info = NULL;
6769 ei->generation = 0;
6770 ei->sequence = 0;
6771 ei->last_trans = 0;
6772 ei->last_sub_trans = 0;
6773 ei->logged_trans = 0;
6774 ei->delalloc_bytes = 0;
6775 ei->reserved_bytes = 0;
6776 ei->disk_i_size = 0;
6777 ei->flags = 0;
6778 ei->index_cnt = (u64)-1;
6779 ei->last_unlink_trans = 0;
6781 atomic_set(&ei->outstanding_extents, 0);
6782 atomic_set(&ei->reserved_extents, 0);
6784 ei->ordered_data_close = 0;
6785 ei->orphan_meta_reserved = 0;
6786 ei->dummy_inode = 0;
6787 ei->force_compress = BTRFS_COMPRESS_NONE;
6789 inode = &ei->vfs_inode;
6790 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6791 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6792 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6793 mutex_init(&ei->log_mutex);
6794 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6795 INIT_LIST_HEAD(&ei->i_orphan);
6796 INIT_LIST_HEAD(&ei->delalloc_inodes);
6797 INIT_LIST_HEAD(&ei->ordered_operations);
6798 RB_CLEAR_NODE(&ei->rb_node);
6800 return inode;
6803 static void btrfs_i_callback(struct rcu_head *head)
6805 struct inode *inode = container_of(head, struct inode, i_rcu);
6806 INIT_LIST_HEAD(&inode->i_dentry);
6807 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6810 void btrfs_destroy_inode(struct inode *inode)
6812 struct btrfs_ordered_extent *ordered;
6813 struct btrfs_root *root = BTRFS_I(inode)->root;
6815 WARN_ON(!list_empty(&inode->i_dentry));
6816 WARN_ON(inode->i_data.nrpages);
6817 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6818 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6821 * This can happen where we create an inode, but somebody else also
6822 * created the same inode and we need to destroy the one we already
6823 * created.
6825 if (!root)
6826 goto free;
6829 * Make sure we're properly removed from the ordered operation
6830 * lists.
6832 smp_mb();
6833 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6834 spin_lock(&root->fs_info->ordered_extent_lock);
6835 list_del_init(&BTRFS_I(inode)->ordered_operations);
6836 spin_unlock(&root->fs_info->ordered_extent_lock);
6839 if (root == root->fs_info->tree_root) {
6840 struct btrfs_block_group_cache *block_group;
6842 block_group = btrfs_lookup_block_group(root->fs_info,
6843 BTRFS_I(inode)->block_group);
6844 if (block_group && block_group->inode == inode) {
6845 spin_lock(&block_group->lock);
6846 block_group->inode = NULL;
6847 spin_unlock(&block_group->lock);
6848 btrfs_put_block_group(block_group);
6849 } else if (block_group) {
6850 btrfs_put_block_group(block_group);
6854 spin_lock(&root->orphan_lock);
6855 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6856 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6857 inode->i_ino);
6858 list_del_init(&BTRFS_I(inode)->i_orphan);
6860 spin_unlock(&root->orphan_lock);
6862 while (1) {
6863 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6864 if (!ordered)
6865 break;
6866 else {
6867 printk(KERN_ERR "btrfs found ordered "
6868 "extent %llu %llu on inode cleanup\n",
6869 (unsigned long long)ordered->file_offset,
6870 (unsigned long long)ordered->len);
6871 btrfs_remove_ordered_extent(inode, ordered);
6872 btrfs_put_ordered_extent(ordered);
6873 btrfs_put_ordered_extent(ordered);
6876 inode_tree_del(inode);
6877 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6878 free:
6879 call_rcu(&inode->i_rcu, btrfs_i_callback);
6882 int btrfs_drop_inode(struct inode *inode)
6884 struct btrfs_root *root = BTRFS_I(inode)->root;
6886 if (btrfs_root_refs(&root->root_item) == 0 &&
6887 root != root->fs_info->tree_root)
6888 return 1;
6889 else
6890 return generic_drop_inode(inode);
6893 static void init_once(void *foo)
6895 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6897 inode_init_once(&ei->vfs_inode);
6900 void btrfs_destroy_cachep(void)
6902 if (btrfs_inode_cachep)
6903 kmem_cache_destroy(btrfs_inode_cachep);
6904 if (btrfs_trans_handle_cachep)
6905 kmem_cache_destroy(btrfs_trans_handle_cachep);
6906 if (btrfs_transaction_cachep)
6907 kmem_cache_destroy(btrfs_transaction_cachep);
6908 if (btrfs_path_cachep)
6909 kmem_cache_destroy(btrfs_path_cachep);
6910 if (btrfs_free_space_cachep)
6911 kmem_cache_destroy(btrfs_free_space_cachep);
6914 int btrfs_init_cachep(void)
6916 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6917 sizeof(struct btrfs_inode), 0,
6918 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6919 if (!btrfs_inode_cachep)
6920 goto fail;
6922 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6923 sizeof(struct btrfs_trans_handle), 0,
6924 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6925 if (!btrfs_trans_handle_cachep)
6926 goto fail;
6928 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6929 sizeof(struct btrfs_transaction), 0,
6930 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6931 if (!btrfs_transaction_cachep)
6932 goto fail;
6934 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6935 sizeof(struct btrfs_path), 0,
6936 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6937 if (!btrfs_path_cachep)
6938 goto fail;
6940 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6941 sizeof(struct btrfs_free_space), 0,
6942 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6943 if (!btrfs_free_space_cachep)
6944 goto fail;
6946 return 0;
6947 fail:
6948 btrfs_destroy_cachep();
6949 return -ENOMEM;
6952 static int btrfs_getattr(struct vfsmount *mnt,
6953 struct dentry *dentry, struct kstat *stat)
6955 struct inode *inode = dentry->d_inode;
6956 generic_fillattr(inode, stat);
6957 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6958 stat->blksize = PAGE_CACHE_SIZE;
6959 stat->blocks = (inode_get_bytes(inode) +
6960 BTRFS_I(inode)->delalloc_bytes) >> 9;
6961 return 0;
6965 * If a file is moved, it will inherit the cow and compression flags of the new
6966 * directory.
6968 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6970 struct btrfs_inode *b_dir = BTRFS_I(dir);
6971 struct btrfs_inode *b_inode = BTRFS_I(inode);
6973 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6974 b_inode->flags |= BTRFS_INODE_NODATACOW;
6975 else
6976 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6978 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6979 b_inode->flags |= BTRFS_INODE_COMPRESS;
6980 else
6981 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6984 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6985 struct inode *new_dir, struct dentry *new_dentry)
6987 struct btrfs_trans_handle *trans;
6988 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6989 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6990 struct inode *new_inode = new_dentry->d_inode;
6991 struct inode *old_inode = old_dentry->d_inode;
6992 struct timespec ctime = CURRENT_TIME;
6993 u64 index = 0;
6994 u64 root_objectid;
6995 int ret;
6997 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6998 return -EPERM;
7000 /* we only allow rename subvolume link between subvolumes */
7001 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7002 return -EXDEV;
7004 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7005 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
7006 return -ENOTEMPTY;
7008 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7009 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7010 return -ENOTEMPTY;
7012 * we're using rename to replace one file with another.
7013 * and the replacement file is large. Start IO on it now so
7014 * we don't add too much work to the end of the transaction
7016 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7017 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7018 filemap_flush(old_inode->i_mapping);
7020 /* close the racy window with snapshot create/destroy ioctl */
7021 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7022 down_read(&root->fs_info->subvol_sem);
7024 * We want to reserve the absolute worst case amount of items. So if
7025 * both inodes are subvols and we need to unlink them then that would
7026 * require 4 item modifications, but if they are both normal inodes it
7027 * would require 5 item modifications, so we'll assume their normal
7028 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7029 * should cover the worst case number of items we'll modify.
7031 trans = btrfs_start_transaction(root, 20);
7032 if (IS_ERR(trans)) {
7033 ret = PTR_ERR(trans);
7034 goto out_notrans;
7037 btrfs_set_trans_block_group(trans, new_dir);
7039 if (dest != root)
7040 btrfs_record_root_in_trans(trans, dest);
7042 ret = btrfs_set_inode_index(new_dir, &index);
7043 if (ret)
7044 goto out_fail;
7046 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7047 /* force full log commit if subvolume involved. */
7048 root->fs_info->last_trans_log_full_commit = trans->transid;
7049 } else {
7050 ret = btrfs_insert_inode_ref(trans, dest,
7051 new_dentry->d_name.name,
7052 new_dentry->d_name.len,
7053 old_inode->i_ino,
7054 new_dir->i_ino, index);
7055 if (ret)
7056 goto out_fail;
7058 * this is an ugly little race, but the rename is required
7059 * to make sure that if we crash, the inode is either at the
7060 * old name or the new one. pinning the log transaction lets
7061 * us make sure we don't allow a log commit to come in after
7062 * we unlink the name but before we add the new name back in.
7064 btrfs_pin_log_trans(root);
7067 * make sure the inode gets flushed if it is replacing
7068 * something.
7070 if (new_inode && new_inode->i_size &&
7071 old_inode && S_ISREG(old_inode->i_mode)) {
7072 btrfs_add_ordered_operation(trans, root, old_inode);
7075 old_dir->i_ctime = old_dir->i_mtime = ctime;
7076 new_dir->i_ctime = new_dir->i_mtime = ctime;
7077 old_inode->i_ctime = ctime;
7079 if (old_dentry->d_parent != new_dentry->d_parent)
7080 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7082 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7083 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7084 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7085 old_dentry->d_name.name,
7086 old_dentry->d_name.len);
7087 } else {
7088 ret = __btrfs_unlink_inode(trans, root, old_dir,
7089 old_dentry->d_inode,
7090 old_dentry->d_name.name,
7091 old_dentry->d_name.len);
7092 if (!ret)
7093 ret = btrfs_update_inode(trans, root, old_inode);
7095 BUG_ON(ret);
7097 if (new_inode) {
7098 new_inode->i_ctime = CURRENT_TIME;
7099 if (unlikely(new_inode->i_ino ==
7100 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7101 root_objectid = BTRFS_I(new_inode)->location.objectid;
7102 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7103 root_objectid,
7104 new_dentry->d_name.name,
7105 new_dentry->d_name.len);
7106 BUG_ON(new_inode->i_nlink == 0);
7107 } else {
7108 ret = btrfs_unlink_inode(trans, dest, new_dir,
7109 new_dentry->d_inode,
7110 new_dentry->d_name.name,
7111 new_dentry->d_name.len);
7113 BUG_ON(ret);
7114 if (new_inode->i_nlink == 0) {
7115 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7116 BUG_ON(ret);
7120 fixup_inode_flags(new_dir, old_inode);
7122 ret = btrfs_add_link(trans, new_dir, old_inode,
7123 new_dentry->d_name.name,
7124 new_dentry->d_name.len, 0, index);
7125 BUG_ON(ret);
7127 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7128 struct dentry *parent = dget_parent(new_dentry);
7129 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7130 dput(parent);
7131 btrfs_end_log_trans(root);
7133 out_fail:
7134 btrfs_end_transaction_throttle(trans, root);
7135 out_notrans:
7136 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7137 up_read(&root->fs_info->subvol_sem);
7139 return ret;
7143 * some fairly slow code that needs optimization. This walks the list
7144 * of all the inodes with pending delalloc and forces them to disk.
7146 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7148 struct list_head *head = &root->fs_info->delalloc_inodes;
7149 struct btrfs_inode *binode;
7150 struct inode *inode;
7152 if (root->fs_info->sb->s_flags & MS_RDONLY)
7153 return -EROFS;
7155 spin_lock(&root->fs_info->delalloc_lock);
7156 while (!list_empty(head)) {
7157 binode = list_entry(head->next, struct btrfs_inode,
7158 delalloc_inodes);
7159 inode = igrab(&binode->vfs_inode);
7160 if (!inode)
7161 list_del_init(&binode->delalloc_inodes);
7162 spin_unlock(&root->fs_info->delalloc_lock);
7163 if (inode) {
7164 filemap_flush(inode->i_mapping);
7165 if (delay_iput)
7166 btrfs_add_delayed_iput(inode);
7167 else
7168 iput(inode);
7170 cond_resched();
7171 spin_lock(&root->fs_info->delalloc_lock);
7173 spin_unlock(&root->fs_info->delalloc_lock);
7175 /* the filemap_flush will queue IO into the worker threads, but
7176 * we have to make sure the IO is actually started and that
7177 * ordered extents get created before we return
7179 atomic_inc(&root->fs_info->async_submit_draining);
7180 while (atomic_read(&root->fs_info->nr_async_submits) ||
7181 atomic_read(&root->fs_info->async_delalloc_pages)) {
7182 wait_event(root->fs_info->async_submit_wait,
7183 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7184 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7186 atomic_dec(&root->fs_info->async_submit_draining);
7187 return 0;
7190 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7191 int sync)
7193 struct btrfs_inode *binode;
7194 struct inode *inode = NULL;
7196 spin_lock(&root->fs_info->delalloc_lock);
7197 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7198 binode = list_entry(root->fs_info->delalloc_inodes.next,
7199 struct btrfs_inode, delalloc_inodes);
7200 inode = igrab(&binode->vfs_inode);
7201 if (inode) {
7202 list_move_tail(&binode->delalloc_inodes,
7203 &root->fs_info->delalloc_inodes);
7204 break;
7207 list_del_init(&binode->delalloc_inodes);
7208 cond_resched_lock(&root->fs_info->delalloc_lock);
7210 spin_unlock(&root->fs_info->delalloc_lock);
7212 if (inode) {
7213 if (sync) {
7214 filemap_write_and_wait(inode->i_mapping);
7216 * We have to do this because compression doesn't
7217 * actually set PG_writeback until it submits the pages
7218 * for IO, which happens in an async thread, so we could
7219 * race and not actually wait for any writeback pages
7220 * because they've not been submitted yet. Technically
7221 * this could still be the case for the ordered stuff
7222 * since the async thread may not have started to do its
7223 * work yet. If this becomes the case then we need to
7224 * figure out a way to make sure that in writepage we
7225 * wait for any async pages to be submitted before
7226 * returning so that fdatawait does what its supposed to
7227 * do.
7229 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7230 } else {
7231 filemap_flush(inode->i_mapping);
7233 if (delay_iput)
7234 btrfs_add_delayed_iput(inode);
7235 else
7236 iput(inode);
7237 return 1;
7239 return 0;
7242 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7243 const char *symname)
7245 struct btrfs_trans_handle *trans;
7246 struct btrfs_root *root = BTRFS_I(dir)->root;
7247 struct btrfs_path *path;
7248 struct btrfs_key key;
7249 struct inode *inode = NULL;
7250 int err;
7251 int drop_inode = 0;
7252 u64 objectid;
7253 u64 index = 0 ;
7254 int name_len;
7255 int datasize;
7256 unsigned long ptr;
7257 struct btrfs_file_extent_item *ei;
7258 struct extent_buffer *leaf;
7259 unsigned long nr = 0;
7261 name_len = strlen(symname) + 1;
7262 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7263 return -ENAMETOOLONG;
7265 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7266 if (err)
7267 return err;
7269 * 2 items for inode item and ref
7270 * 2 items for dir items
7271 * 1 item for xattr if selinux is on
7273 trans = btrfs_start_transaction(root, 5);
7274 if (IS_ERR(trans))
7275 return PTR_ERR(trans);
7277 btrfs_set_trans_block_group(trans, dir);
7279 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7280 dentry->d_name.len, dir->i_ino, objectid,
7281 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7282 &index);
7283 err = PTR_ERR(inode);
7284 if (IS_ERR(inode))
7285 goto out_unlock;
7287 err = btrfs_init_inode_security(trans, inode, dir);
7288 if (err) {
7289 drop_inode = 1;
7290 goto out_unlock;
7293 btrfs_set_trans_block_group(trans, inode);
7294 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7295 if (err)
7296 drop_inode = 1;
7297 else {
7298 inode->i_mapping->a_ops = &btrfs_aops;
7299 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7300 inode->i_fop = &btrfs_file_operations;
7301 inode->i_op = &btrfs_file_inode_operations;
7302 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7304 btrfs_update_inode_block_group(trans, inode);
7305 btrfs_update_inode_block_group(trans, dir);
7306 if (drop_inode)
7307 goto out_unlock;
7309 path = btrfs_alloc_path();
7310 BUG_ON(!path);
7311 key.objectid = inode->i_ino;
7312 key.offset = 0;
7313 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7314 datasize = btrfs_file_extent_calc_inline_size(name_len);
7315 err = btrfs_insert_empty_item(trans, root, path, &key,
7316 datasize);
7317 if (err) {
7318 drop_inode = 1;
7319 goto out_unlock;
7321 leaf = path->nodes[0];
7322 ei = btrfs_item_ptr(leaf, path->slots[0],
7323 struct btrfs_file_extent_item);
7324 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7325 btrfs_set_file_extent_type(leaf, ei,
7326 BTRFS_FILE_EXTENT_INLINE);
7327 btrfs_set_file_extent_encryption(leaf, ei, 0);
7328 btrfs_set_file_extent_compression(leaf, ei, 0);
7329 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7330 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7332 ptr = btrfs_file_extent_inline_start(ei);
7333 write_extent_buffer(leaf, symname, ptr, name_len);
7334 btrfs_mark_buffer_dirty(leaf);
7335 btrfs_free_path(path);
7337 inode->i_op = &btrfs_symlink_inode_operations;
7338 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7339 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7340 inode_set_bytes(inode, name_len);
7341 btrfs_i_size_write(inode, name_len - 1);
7342 err = btrfs_update_inode(trans, root, inode);
7343 if (err)
7344 drop_inode = 1;
7346 out_unlock:
7347 nr = trans->blocks_used;
7348 btrfs_end_transaction_throttle(trans, root);
7349 if (drop_inode) {
7350 inode_dec_link_count(inode);
7351 iput(inode);
7353 btrfs_btree_balance_dirty(root, nr);
7354 return err;
7357 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7358 u64 start, u64 num_bytes, u64 min_size,
7359 loff_t actual_len, u64 *alloc_hint,
7360 struct btrfs_trans_handle *trans)
7362 struct btrfs_root *root = BTRFS_I(inode)->root;
7363 struct btrfs_key ins;
7364 u64 cur_offset = start;
7365 u64 i_size;
7366 int ret = 0;
7367 bool own_trans = true;
7369 if (trans)
7370 own_trans = false;
7371 while (num_bytes > 0) {
7372 if (own_trans) {
7373 trans = btrfs_start_transaction(root, 3);
7374 if (IS_ERR(trans)) {
7375 ret = PTR_ERR(trans);
7376 break;
7380 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7381 0, *alloc_hint, (u64)-1, &ins, 1);
7382 if (ret) {
7383 if (own_trans)
7384 btrfs_end_transaction(trans, root);
7385 break;
7388 ret = insert_reserved_file_extent(trans, inode,
7389 cur_offset, ins.objectid,
7390 ins.offset, ins.offset,
7391 ins.offset, 0, 0, 0,
7392 BTRFS_FILE_EXTENT_PREALLOC);
7393 BUG_ON(ret);
7394 btrfs_drop_extent_cache(inode, cur_offset,
7395 cur_offset + ins.offset -1, 0);
7397 num_bytes -= ins.offset;
7398 cur_offset += ins.offset;
7399 *alloc_hint = ins.objectid + ins.offset;
7401 inode->i_ctime = CURRENT_TIME;
7402 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7403 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7404 (actual_len > inode->i_size) &&
7405 (cur_offset > inode->i_size)) {
7406 if (cur_offset > actual_len)
7407 i_size = actual_len;
7408 else
7409 i_size = cur_offset;
7410 i_size_write(inode, i_size);
7411 btrfs_ordered_update_i_size(inode, i_size, NULL);
7414 ret = btrfs_update_inode(trans, root, inode);
7415 BUG_ON(ret);
7417 if (own_trans)
7418 btrfs_end_transaction(trans, root);
7420 return ret;
7423 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7424 u64 start, u64 num_bytes, u64 min_size,
7425 loff_t actual_len, u64 *alloc_hint)
7427 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7428 min_size, actual_len, alloc_hint,
7429 NULL);
7432 int btrfs_prealloc_file_range_trans(struct inode *inode,
7433 struct btrfs_trans_handle *trans, int mode,
7434 u64 start, u64 num_bytes, u64 min_size,
7435 loff_t actual_len, u64 *alloc_hint)
7437 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7438 min_size, actual_len, alloc_hint, trans);
7441 static int btrfs_set_page_dirty(struct page *page)
7443 return __set_page_dirty_nobuffers(page);
7446 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7448 struct btrfs_root *root = BTRFS_I(inode)->root;
7450 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7451 return -EROFS;
7452 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7453 return -EACCES;
7454 return generic_permission(inode, mask, flags, btrfs_check_acl);
7457 static const struct inode_operations btrfs_dir_inode_operations = {
7458 .getattr = btrfs_getattr,
7459 .lookup = btrfs_lookup,
7460 .create = btrfs_create,
7461 .unlink = btrfs_unlink,
7462 .link = btrfs_link,
7463 .mkdir = btrfs_mkdir,
7464 .rmdir = btrfs_rmdir,
7465 .rename = btrfs_rename,
7466 .symlink = btrfs_symlink,
7467 .setattr = btrfs_setattr,
7468 .mknod = btrfs_mknod,
7469 .setxattr = btrfs_setxattr,
7470 .getxattr = btrfs_getxattr,
7471 .listxattr = btrfs_listxattr,
7472 .removexattr = btrfs_removexattr,
7473 .permission = btrfs_permission,
7475 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7476 .lookup = btrfs_lookup,
7477 .permission = btrfs_permission,
7480 static const struct file_operations btrfs_dir_file_operations = {
7481 .llseek = generic_file_llseek,
7482 .read = generic_read_dir,
7483 .readdir = btrfs_real_readdir,
7484 .unlocked_ioctl = btrfs_ioctl,
7485 #ifdef CONFIG_COMPAT
7486 .compat_ioctl = btrfs_ioctl,
7487 #endif
7488 .release = btrfs_release_file,
7489 .fsync = btrfs_sync_file,
7492 static struct extent_io_ops btrfs_extent_io_ops = {
7493 .fill_delalloc = run_delalloc_range,
7494 .submit_bio_hook = btrfs_submit_bio_hook,
7495 .merge_bio_hook = btrfs_merge_bio_hook,
7496 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7497 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7498 .writepage_start_hook = btrfs_writepage_start_hook,
7499 .readpage_io_failed_hook = btrfs_io_failed_hook,
7500 .set_bit_hook = btrfs_set_bit_hook,
7501 .clear_bit_hook = btrfs_clear_bit_hook,
7502 .merge_extent_hook = btrfs_merge_extent_hook,
7503 .split_extent_hook = btrfs_split_extent_hook,
7507 * btrfs doesn't support the bmap operation because swapfiles
7508 * use bmap to make a mapping of extents in the file. They assume
7509 * these extents won't change over the life of the file and they
7510 * use the bmap result to do IO directly to the drive.
7512 * the btrfs bmap call would return logical addresses that aren't
7513 * suitable for IO and they also will change frequently as COW
7514 * operations happen. So, swapfile + btrfs == corruption.
7516 * For now we're avoiding this by dropping bmap.
7518 static const struct address_space_operations btrfs_aops = {
7519 .readpage = btrfs_readpage,
7520 .writepage = btrfs_writepage,
7521 .writepages = btrfs_writepages,
7522 .readpages = btrfs_readpages,
7523 .sync_page = block_sync_page,
7524 .direct_IO = btrfs_direct_IO,
7525 .invalidatepage = btrfs_invalidatepage,
7526 .releasepage = btrfs_releasepage,
7527 .set_page_dirty = btrfs_set_page_dirty,
7528 .error_remove_page = generic_error_remove_page,
7531 static const struct address_space_operations btrfs_symlink_aops = {
7532 .readpage = btrfs_readpage,
7533 .writepage = btrfs_writepage,
7534 .invalidatepage = btrfs_invalidatepage,
7535 .releasepage = btrfs_releasepage,
7538 static const struct inode_operations btrfs_file_inode_operations = {
7539 .getattr = btrfs_getattr,
7540 .setattr = btrfs_setattr,
7541 .setxattr = btrfs_setxattr,
7542 .getxattr = btrfs_getxattr,
7543 .listxattr = btrfs_listxattr,
7544 .removexattr = btrfs_removexattr,
7545 .permission = btrfs_permission,
7546 .fiemap = btrfs_fiemap,
7548 static const struct inode_operations btrfs_special_inode_operations = {
7549 .getattr = btrfs_getattr,
7550 .setattr = btrfs_setattr,
7551 .permission = btrfs_permission,
7552 .setxattr = btrfs_setxattr,
7553 .getxattr = btrfs_getxattr,
7554 .listxattr = btrfs_listxattr,
7555 .removexattr = btrfs_removexattr,
7557 static const struct inode_operations btrfs_symlink_inode_operations = {
7558 .readlink = generic_readlink,
7559 .follow_link = page_follow_link_light,
7560 .put_link = page_put_link,
7561 .getattr = btrfs_getattr,
7562 .permission = btrfs_permission,
7563 .setxattr = btrfs_setxattr,
7564 .getxattr = btrfs_getxattr,
7565 .listxattr = btrfs_listxattr,
7566 .removexattr = btrfs_removexattr,
7569 const struct dentry_operations btrfs_dentry_operations = {
7570 .d_delete = btrfs_dentry_delete,