perf: Fix race in callchains
[linux-2.6/x86.git] / arch / x86 / kernel / cpu / perf_event.c
blob8e91cf34a9c886a85ba9c77db49c3f5eb5a93674
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val) \
37 do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42 } while (0)
43 #endif
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
51 unsigned long offset, addr = (unsigned long)from;
52 int type = in_nmi() ? KM_NMI : KM_IRQ0;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
66 map = kmap_atomic(page, type);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map, type);
69 put_page(page);
71 len += size;
72 to += size;
73 addr += size;
75 } while (len < n);
77 return len;
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
85 u64 code;
86 u64 cmask;
87 int weight;
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
97 #define MAX_LBR_ENTRIES 16
99 struct cpu_hw_events {
101 * Generic x86 PMC bits
103 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
104 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105 int enabled;
107 int n_events;
108 int n_added;
109 int n_txn;
110 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111 u64 tags[X86_PMC_IDX_MAX];
112 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
114 unsigned int group_flag;
117 * Intel DebugStore bits
119 struct debug_store *ds;
120 u64 pebs_enabled;
123 * Intel LBR bits
125 int lbr_users;
126 void *lbr_context;
127 struct perf_branch_stack lbr_stack;
128 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
131 * AMD specific bits
133 struct amd_nb *amd_nb;
136 #define __EVENT_CONSTRAINT(c, n, m, w) {\
137 { .idxmsk64 = (n) }, \
138 .code = (c), \
139 .cmask = (m), \
140 .weight = (w), \
143 #define EVENT_CONSTRAINT(c, n, m) \
144 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
147 * Constraint on the Event code.
149 #define INTEL_EVENT_CONSTRAINT(c, n) \
150 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
153 * Constraint on the Event code + UMask + fixed-mask
155 * filter mask to validate fixed counter events.
156 * the following filters disqualify for fixed counters:
157 * - inv
158 * - edge
159 * - cnt-mask
160 * The other filters are supported by fixed counters.
161 * The any-thread option is supported starting with v3.
163 #define FIXED_EVENT_CONSTRAINT(c, n) \
164 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
167 * Constraint on the Event code + UMask
169 #define PEBS_EVENT_CONSTRAINT(c, n) \
170 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
172 #define EVENT_CONSTRAINT_END \
173 EVENT_CONSTRAINT(0, 0, 0)
175 #define for_each_event_constraint(e, c) \
176 for ((e) = (c); (e)->weight; (e)++)
178 union perf_capabilities {
179 struct {
180 u64 lbr_format : 6;
181 u64 pebs_trap : 1;
182 u64 pebs_arch_reg : 1;
183 u64 pebs_format : 4;
184 u64 smm_freeze : 1;
186 u64 capabilities;
190 * struct x86_pmu - generic x86 pmu
192 struct x86_pmu {
194 * Generic x86 PMC bits
196 const char *name;
197 int version;
198 int (*handle_irq)(struct pt_regs *);
199 void (*disable_all)(void);
200 void (*enable_all)(int added);
201 void (*enable)(struct perf_event *);
202 void (*disable)(struct perf_event *);
203 int (*hw_config)(struct perf_event *event);
204 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
205 unsigned eventsel;
206 unsigned perfctr;
207 u64 (*event_map)(int);
208 int max_events;
209 int num_counters;
210 int num_counters_fixed;
211 int cntval_bits;
212 u64 cntval_mask;
213 int apic;
214 u64 max_period;
215 struct event_constraint *
216 (*get_event_constraints)(struct cpu_hw_events *cpuc,
217 struct perf_event *event);
219 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
220 struct perf_event *event);
221 struct event_constraint *event_constraints;
222 void (*quirks)(void);
223 int perfctr_second_write;
225 int (*cpu_prepare)(int cpu);
226 void (*cpu_starting)(int cpu);
227 void (*cpu_dying)(int cpu);
228 void (*cpu_dead)(int cpu);
231 * Intel Arch Perfmon v2+
233 u64 intel_ctrl;
234 union perf_capabilities intel_cap;
237 * Intel DebugStore bits
239 int bts, pebs;
240 int pebs_record_size;
241 void (*drain_pebs)(struct pt_regs *regs);
242 struct event_constraint *pebs_constraints;
245 * Intel LBR
247 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
248 int lbr_nr; /* hardware stack size */
251 static struct x86_pmu x86_pmu __read_mostly;
253 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
254 .enabled = 1,
257 static int x86_perf_event_set_period(struct perf_event *event);
260 * Generalized hw caching related hw_event table, filled
261 * in on a per model basis. A value of 0 means
262 * 'not supported', -1 means 'hw_event makes no sense on
263 * this CPU', any other value means the raw hw_event
264 * ID.
267 #define C(x) PERF_COUNT_HW_CACHE_##x
269 static u64 __read_mostly hw_cache_event_ids
270 [PERF_COUNT_HW_CACHE_MAX]
271 [PERF_COUNT_HW_CACHE_OP_MAX]
272 [PERF_COUNT_HW_CACHE_RESULT_MAX];
275 * Propagate event elapsed time into the generic event.
276 * Can only be executed on the CPU where the event is active.
277 * Returns the delta events processed.
279 static u64
280 x86_perf_event_update(struct perf_event *event)
282 struct hw_perf_event *hwc = &event->hw;
283 int shift = 64 - x86_pmu.cntval_bits;
284 u64 prev_raw_count, new_raw_count;
285 int idx = hwc->idx;
286 s64 delta;
288 if (idx == X86_PMC_IDX_FIXED_BTS)
289 return 0;
292 * Careful: an NMI might modify the previous event value.
294 * Our tactic to handle this is to first atomically read and
295 * exchange a new raw count - then add that new-prev delta
296 * count to the generic event atomically:
298 again:
299 prev_raw_count = local64_read(&hwc->prev_count);
300 rdmsrl(hwc->event_base + idx, new_raw_count);
302 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
303 new_raw_count) != prev_raw_count)
304 goto again;
307 * Now we have the new raw value and have updated the prev
308 * timestamp already. We can now calculate the elapsed delta
309 * (event-)time and add that to the generic event.
311 * Careful, not all hw sign-extends above the physical width
312 * of the count.
314 delta = (new_raw_count << shift) - (prev_raw_count << shift);
315 delta >>= shift;
317 local64_add(delta, &event->count);
318 local64_sub(delta, &hwc->period_left);
320 return new_raw_count;
323 static atomic_t active_events;
324 static DEFINE_MUTEX(pmc_reserve_mutex);
326 #ifdef CONFIG_X86_LOCAL_APIC
328 static bool reserve_pmc_hardware(void)
330 int i;
332 if (nmi_watchdog == NMI_LOCAL_APIC)
333 disable_lapic_nmi_watchdog();
335 for (i = 0; i < x86_pmu.num_counters; i++) {
336 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
337 goto perfctr_fail;
340 for (i = 0; i < x86_pmu.num_counters; i++) {
341 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
342 goto eventsel_fail;
345 return true;
347 eventsel_fail:
348 for (i--; i >= 0; i--)
349 release_evntsel_nmi(x86_pmu.eventsel + i);
351 i = x86_pmu.num_counters;
353 perfctr_fail:
354 for (i--; i >= 0; i--)
355 release_perfctr_nmi(x86_pmu.perfctr + i);
357 if (nmi_watchdog == NMI_LOCAL_APIC)
358 enable_lapic_nmi_watchdog();
360 return false;
363 static void release_pmc_hardware(void)
365 int i;
367 for (i = 0; i < x86_pmu.num_counters; i++) {
368 release_perfctr_nmi(x86_pmu.perfctr + i);
369 release_evntsel_nmi(x86_pmu.eventsel + i);
372 if (nmi_watchdog == NMI_LOCAL_APIC)
373 enable_lapic_nmi_watchdog();
376 #else
378 static bool reserve_pmc_hardware(void) { return true; }
379 static void release_pmc_hardware(void) {}
381 #endif
383 static int reserve_ds_buffers(void);
384 static void release_ds_buffers(void);
386 static void hw_perf_event_destroy(struct perf_event *event)
388 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
389 release_pmc_hardware();
390 release_ds_buffers();
391 mutex_unlock(&pmc_reserve_mutex);
395 static inline int x86_pmu_initialized(void)
397 return x86_pmu.handle_irq != NULL;
400 static inline int
401 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
403 unsigned int cache_type, cache_op, cache_result;
404 u64 config, val;
406 config = attr->config;
408 cache_type = (config >> 0) & 0xff;
409 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
410 return -EINVAL;
412 cache_op = (config >> 8) & 0xff;
413 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
414 return -EINVAL;
416 cache_result = (config >> 16) & 0xff;
417 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
418 return -EINVAL;
420 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
422 if (val == 0)
423 return -ENOENT;
425 if (val == -1)
426 return -EINVAL;
428 hwc->config |= val;
430 return 0;
433 static int x86_setup_perfctr(struct perf_event *event)
435 struct perf_event_attr *attr = &event->attr;
436 struct hw_perf_event *hwc = &event->hw;
437 u64 config;
439 if (!hwc->sample_period) {
440 hwc->sample_period = x86_pmu.max_period;
441 hwc->last_period = hwc->sample_period;
442 local64_set(&hwc->period_left, hwc->sample_period);
443 } else {
445 * If we have a PMU initialized but no APIC
446 * interrupts, we cannot sample hardware
447 * events (user-space has to fall back and
448 * sample via a hrtimer based software event):
450 if (!x86_pmu.apic)
451 return -EOPNOTSUPP;
454 if (attr->type == PERF_TYPE_RAW)
455 return 0;
457 if (attr->type == PERF_TYPE_HW_CACHE)
458 return set_ext_hw_attr(hwc, attr);
460 if (attr->config >= x86_pmu.max_events)
461 return -EINVAL;
464 * The generic map:
466 config = x86_pmu.event_map(attr->config);
468 if (config == 0)
469 return -ENOENT;
471 if (config == -1LL)
472 return -EINVAL;
475 * Branch tracing:
477 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
478 (hwc->sample_period == 1)) {
479 /* BTS is not supported by this architecture. */
480 if (!x86_pmu.bts)
481 return -EOPNOTSUPP;
483 /* BTS is currently only allowed for user-mode. */
484 if (!attr->exclude_kernel)
485 return -EOPNOTSUPP;
488 hwc->config |= config;
490 return 0;
493 static int x86_pmu_hw_config(struct perf_event *event)
495 if (event->attr.precise_ip) {
496 int precise = 0;
498 /* Support for constant skid */
499 if (x86_pmu.pebs)
500 precise++;
502 /* Support for IP fixup */
503 if (x86_pmu.lbr_nr)
504 precise++;
506 if (event->attr.precise_ip > precise)
507 return -EOPNOTSUPP;
511 * Generate PMC IRQs:
512 * (keep 'enabled' bit clear for now)
514 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
517 * Count user and OS events unless requested not to
519 if (!event->attr.exclude_user)
520 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
521 if (!event->attr.exclude_kernel)
522 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
524 if (event->attr.type == PERF_TYPE_RAW)
525 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
527 return x86_setup_perfctr(event);
531 * Setup the hardware configuration for a given attr_type
533 static int __hw_perf_event_init(struct perf_event *event)
535 int err;
537 if (!x86_pmu_initialized())
538 return -ENODEV;
540 err = 0;
541 if (!atomic_inc_not_zero(&active_events)) {
542 mutex_lock(&pmc_reserve_mutex);
543 if (atomic_read(&active_events) == 0) {
544 if (!reserve_pmc_hardware())
545 err = -EBUSY;
546 else {
547 err = reserve_ds_buffers();
548 if (err)
549 release_pmc_hardware();
552 if (!err)
553 atomic_inc(&active_events);
554 mutex_unlock(&pmc_reserve_mutex);
556 if (err)
557 return err;
559 event->destroy = hw_perf_event_destroy;
561 event->hw.idx = -1;
562 event->hw.last_cpu = -1;
563 event->hw.last_tag = ~0ULL;
565 return x86_pmu.hw_config(event);
568 static void x86_pmu_disable_all(void)
570 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
571 int idx;
573 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
574 u64 val;
576 if (!test_bit(idx, cpuc->active_mask))
577 continue;
578 rdmsrl(x86_pmu.eventsel + idx, val);
579 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
580 continue;
581 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
582 wrmsrl(x86_pmu.eventsel + idx, val);
586 void hw_perf_disable(void)
588 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
590 if (!x86_pmu_initialized())
591 return;
593 if (!cpuc->enabled)
594 return;
596 cpuc->n_added = 0;
597 cpuc->enabled = 0;
598 barrier();
600 x86_pmu.disable_all();
603 static void x86_pmu_enable_all(int added)
605 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
606 int idx;
608 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
609 struct perf_event *event = cpuc->events[idx];
610 u64 val;
612 if (!test_bit(idx, cpuc->active_mask))
613 continue;
615 val = event->hw.config;
616 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
617 wrmsrl(x86_pmu.eventsel + idx, val);
621 static const struct pmu pmu;
623 static inline int is_x86_event(struct perf_event *event)
625 return event->pmu == &pmu;
628 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
630 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
631 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
632 int i, j, w, wmax, num = 0;
633 struct hw_perf_event *hwc;
635 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
637 for (i = 0; i < n; i++) {
638 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
639 constraints[i] = c;
643 * fastpath, try to reuse previous register
645 for (i = 0; i < n; i++) {
646 hwc = &cpuc->event_list[i]->hw;
647 c = constraints[i];
649 /* never assigned */
650 if (hwc->idx == -1)
651 break;
653 /* constraint still honored */
654 if (!test_bit(hwc->idx, c->idxmsk))
655 break;
657 /* not already used */
658 if (test_bit(hwc->idx, used_mask))
659 break;
661 __set_bit(hwc->idx, used_mask);
662 if (assign)
663 assign[i] = hwc->idx;
665 if (i == n)
666 goto done;
669 * begin slow path
672 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
675 * weight = number of possible counters
677 * 1 = most constrained, only works on one counter
678 * wmax = least constrained, works on any counter
680 * assign events to counters starting with most
681 * constrained events.
683 wmax = x86_pmu.num_counters;
686 * when fixed event counters are present,
687 * wmax is incremented by 1 to account
688 * for one more choice
690 if (x86_pmu.num_counters_fixed)
691 wmax++;
693 for (w = 1, num = n; num && w <= wmax; w++) {
694 /* for each event */
695 for (i = 0; num && i < n; i++) {
696 c = constraints[i];
697 hwc = &cpuc->event_list[i]->hw;
699 if (c->weight != w)
700 continue;
702 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
703 if (!test_bit(j, used_mask))
704 break;
707 if (j == X86_PMC_IDX_MAX)
708 break;
710 __set_bit(j, used_mask);
712 if (assign)
713 assign[i] = j;
714 num--;
717 done:
719 * scheduling failed or is just a simulation,
720 * free resources if necessary
722 if (!assign || num) {
723 for (i = 0; i < n; i++) {
724 if (x86_pmu.put_event_constraints)
725 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
728 return num ? -ENOSPC : 0;
732 * dogrp: true if must collect siblings events (group)
733 * returns total number of events and error code
735 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
737 struct perf_event *event;
738 int n, max_count;
740 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
742 /* current number of events already accepted */
743 n = cpuc->n_events;
745 if (is_x86_event(leader)) {
746 if (n >= max_count)
747 return -ENOSPC;
748 cpuc->event_list[n] = leader;
749 n++;
751 if (!dogrp)
752 return n;
754 list_for_each_entry(event, &leader->sibling_list, group_entry) {
755 if (!is_x86_event(event) ||
756 event->state <= PERF_EVENT_STATE_OFF)
757 continue;
759 if (n >= max_count)
760 return -ENOSPC;
762 cpuc->event_list[n] = event;
763 n++;
765 return n;
768 static inline void x86_assign_hw_event(struct perf_event *event,
769 struct cpu_hw_events *cpuc, int i)
771 struct hw_perf_event *hwc = &event->hw;
773 hwc->idx = cpuc->assign[i];
774 hwc->last_cpu = smp_processor_id();
775 hwc->last_tag = ++cpuc->tags[i];
777 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
778 hwc->config_base = 0;
779 hwc->event_base = 0;
780 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
781 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
783 * We set it so that event_base + idx in wrmsr/rdmsr maps to
784 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
786 hwc->event_base =
787 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
788 } else {
789 hwc->config_base = x86_pmu.eventsel;
790 hwc->event_base = x86_pmu.perfctr;
794 static inline int match_prev_assignment(struct hw_perf_event *hwc,
795 struct cpu_hw_events *cpuc,
796 int i)
798 return hwc->idx == cpuc->assign[i] &&
799 hwc->last_cpu == smp_processor_id() &&
800 hwc->last_tag == cpuc->tags[i];
803 static int x86_pmu_start(struct perf_event *event);
804 static void x86_pmu_stop(struct perf_event *event);
806 void hw_perf_enable(void)
808 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
809 struct perf_event *event;
810 struct hw_perf_event *hwc;
811 int i, added = cpuc->n_added;
813 if (!x86_pmu_initialized())
814 return;
816 if (cpuc->enabled)
817 return;
819 if (cpuc->n_added) {
820 int n_running = cpuc->n_events - cpuc->n_added;
822 * apply assignment obtained either from
823 * hw_perf_group_sched_in() or x86_pmu_enable()
825 * step1: save events moving to new counters
826 * step2: reprogram moved events into new counters
828 for (i = 0; i < n_running; i++) {
829 event = cpuc->event_list[i];
830 hwc = &event->hw;
833 * we can avoid reprogramming counter if:
834 * - assigned same counter as last time
835 * - running on same CPU as last time
836 * - no other event has used the counter since
838 if (hwc->idx == -1 ||
839 match_prev_assignment(hwc, cpuc, i))
840 continue;
842 x86_pmu_stop(event);
845 for (i = 0; i < cpuc->n_events; i++) {
846 event = cpuc->event_list[i];
847 hwc = &event->hw;
849 if (!match_prev_assignment(hwc, cpuc, i))
850 x86_assign_hw_event(event, cpuc, i);
851 else if (i < n_running)
852 continue;
854 x86_pmu_start(event);
856 cpuc->n_added = 0;
857 perf_events_lapic_init();
860 cpuc->enabled = 1;
861 barrier();
863 x86_pmu.enable_all(added);
866 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
867 u64 enable_mask)
869 wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
872 static inline void x86_pmu_disable_event(struct perf_event *event)
874 struct hw_perf_event *hwc = &event->hw;
876 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
879 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
882 * Set the next IRQ period, based on the hwc->period_left value.
883 * To be called with the event disabled in hw:
885 static int
886 x86_perf_event_set_period(struct perf_event *event)
888 struct hw_perf_event *hwc = &event->hw;
889 s64 left = local64_read(&hwc->period_left);
890 s64 period = hwc->sample_period;
891 int ret = 0, idx = hwc->idx;
893 if (idx == X86_PMC_IDX_FIXED_BTS)
894 return 0;
897 * If we are way outside a reasonable range then just skip forward:
899 if (unlikely(left <= -period)) {
900 left = period;
901 local64_set(&hwc->period_left, left);
902 hwc->last_period = period;
903 ret = 1;
906 if (unlikely(left <= 0)) {
907 left += period;
908 local64_set(&hwc->period_left, left);
909 hwc->last_period = period;
910 ret = 1;
913 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
915 if (unlikely(left < 2))
916 left = 2;
918 if (left > x86_pmu.max_period)
919 left = x86_pmu.max_period;
921 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
924 * The hw event starts counting from this event offset,
925 * mark it to be able to extra future deltas:
927 local64_set(&hwc->prev_count, (u64)-left);
929 wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
932 * Due to erratum on certan cpu we need
933 * a second write to be sure the register
934 * is updated properly
936 if (x86_pmu.perfctr_second_write) {
937 wrmsrl(hwc->event_base + idx,
938 (u64)(-left) & x86_pmu.cntval_mask);
941 perf_event_update_userpage(event);
943 return ret;
946 static void x86_pmu_enable_event(struct perf_event *event)
948 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
949 if (cpuc->enabled)
950 __x86_pmu_enable_event(&event->hw,
951 ARCH_PERFMON_EVENTSEL_ENABLE);
955 * activate a single event
957 * The event is added to the group of enabled events
958 * but only if it can be scehduled with existing events.
960 * Called with PMU disabled. If successful and return value 1,
961 * then guaranteed to call perf_enable() and hw_perf_enable()
963 static int x86_pmu_enable(struct perf_event *event)
965 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
966 struct hw_perf_event *hwc;
967 int assign[X86_PMC_IDX_MAX];
968 int n, n0, ret;
970 hwc = &event->hw;
972 n0 = cpuc->n_events;
973 n = collect_events(cpuc, event, false);
974 if (n < 0)
975 return n;
978 * If group events scheduling transaction was started,
979 * skip the schedulability test here, it will be peformed
980 * at commit time(->commit_txn) as a whole
982 if (cpuc->group_flag & PERF_EVENT_TXN)
983 goto out;
985 ret = x86_pmu.schedule_events(cpuc, n, assign);
986 if (ret)
987 return ret;
989 * copy new assignment, now we know it is possible
990 * will be used by hw_perf_enable()
992 memcpy(cpuc->assign, assign, n*sizeof(int));
994 out:
995 cpuc->n_events = n;
996 cpuc->n_added += n - n0;
997 cpuc->n_txn += n - n0;
999 return 0;
1002 static int x86_pmu_start(struct perf_event *event)
1004 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005 int idx = event->hw.idx;
1007 if (idx == -1)
1008 return -EAGAIN;
1010 x86_perf_event_set_period(event);
1011 cpuc->events[idx] = event;
1012 __set_bit(idx, cpuc->active_mask);
1013 x86_pmu.enable(event);
1014 perf_event_update_userpage(event);
1016 return 0;
1019 static void x86_pmu_unthrottle(struct perf_event *event)
1021 int ret = x86_pmu_start(event);
1022 WARN_ON_ONCE(ret);
1025 void perf_event_print_debug(void)
1027 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1028 u64 pebs;
1029 struct cpu_hw_events *cpuc;
1030 unsigned long flags;
1031 int cpu, idx;
1033 if (!x86_pmu.num_counters)
1034 return;
1036 local_irq_save(flags);
1038 cpu = smp_processor_id();
1039 cpuc = &per_cpu(cpu_hw_events, cpu);
1041 if (x86_pmu.version >= 2) {
1042 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1043 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1044 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1045 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1046 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1048 pr_info("\n");
1049 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1050 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1051 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1052 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1053 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1055 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1057 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1058 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1059 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1061 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1063 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1064 cpu, idx, pmc_ctrl);
1065 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1066 cpu, idx, pmc_count);
1067 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1068 cpu, idx, prev_left);
1070 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1071 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1073 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1074 cpu, idx, pmc_count);
1076 local_irq_restore(flags);
1079 static void x86_pmu_stop(struct perf_event *event)
1081 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1082 struct hw_perf_event *hwc = &event->hw;
1083 int idx = hwc->idx;
1085 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1086 return;
1088 x86_pmu.disable(event);
1091 * Drain the remaining delta count out of a event
1092 * that we are disabling:
1094 x86_perf_event_update(event);
1096 cpuc->events[idx] = NULL;
1099 static void x86_pmu_disable(struct perf_event *event)
1101 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1102 int i;
1105 * If we're called during a txn, we don't need to do anything.
1106 * The events never got scheduled and ->cancel_txn will truncate
1107 * the event_list.
1109 if (cpuc->group_flag & PERF_EVENT_TXN)
1110 return;
1112 x86_pmu_stop(event);
1114 for (i = 0; i < cpuc->n_events; i++) {
1115 if (event == cpuc->event_list[i]) {
1117 if (x86_pmu.put_event_constraints)
1118 x86_pmu.put_event_constraints(cpuc, event);
1120 while (++i < cpuc->n_events)
1121 cpuc->event_list[i-1] = cpuc->event_list[i];
1123 --cpuc->n_events;
1124 break;
1127 perf_event_update_userpage(event);
1130 static int x86_pmu_handle_irq(struct pt_regs *regs)
1132 struct perf_sample_data data;
1133 struct cpu_hw_events *cpuc;
1134 struct perf_event *event;
1135 struct hw_perf_event *hwc;
1136 int idx, handled = 0;
1137 u64 val;
1139 perf_sample_data_init(&data, 0);
1141 cpuc = &__get_cpu_var(cpu_hw_events);
1143 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1144 if (!test_bit(idx, cpuc->active_mask))
1145 continue;
1147 event = cpuc->events[idx];
1148 hwc = &event->hw;
1150 val = x86_perf_event_update(event);
1151 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1152 continue;
1155 * event overflow
1157 handled = 1;
1158 data.period = event->hw.last_period;
1160 if (!x86_perf_event_set_period(event))
1161 continue;
1163 if (perf_event_overflow(event, 1, &data, regs))
1164 x86_pmu_stop(event);
1167 if (handled)
1168 inc_irq_stat(apic_perf_irqs);
1170 return handled;
1173 void smp_perf_pending_interrupt(struct pt_regs *regs)
1175 irq_enter();
1176 ack_APIC_irq();
1177 inc_irq_stat(apic_pending_irqs);
1178 perf_event_do_pending();
1179 irq_exit();
1182 void set_perf_event_pending(void)
1184 #ifdef CONFIG_X86_LOCAL_APIC
1185 if (!x86_pmu.apic || !x86_pmu_initialized())
1186 return;
1188 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1189 #endif
1192 void perf_events_lapic_init(void)
1194 if (!x86_pmu.apic || !x86_pmu_initialized())
1195 return;
1198 * Always use NMI for PMU
1200 apic_write(APIC_LVTPC, APIC_DM_NMI);
1203 static int __kprobes
1204 perf_event_nmi_handler(struct notifier_block *self,
1205 unsigned long cmd, void *__args)
1207 struct die_args *args = __args;
1208 struct pt_regs *regs;
1210 if (!atomic_read(&active_events))
1211 return NOTIFY_DONE;
1213 switch (cmd) {
1214 case DIE_NMI:
1215 case DIE_NMI_IPI:
1216 break;
1218 default:
1219 return NOTIFY_DONE;
1222 regs = args->regs;
1224 apic_write(APIC_LVTPC, APIC_DM_NMI);
1226 * Can't rely on the handled return value to say it was our NMI, two
1227 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1229 * If the first NMI handles both, the latter will be empty and daze
1230 * the CPU.
1232 x86_pmu.handle_irq(regs);
1234 return NOTIFY_STOP;
1237 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1238 .notifier_call = perf_event_nmi_handler,
1239 .next = NULL,
1240 .priority = 1
1243 static struct event_constraint unconstrained;
1244 static struct event_constraint emptyconstraint;
1246 static struct event_constraint *
1247 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1249 struct event_constraint *c;
1251 if (x86_pmu.event_constraints) {
1252 for_each_event_constraint(c, x86_pmu.event_constraints) {
1253 if ((event->hw.config & c->cmask) == c->code)
1254 return c;
1258 return &unconstrained;
1261 #include "perf_event_amd.c"
1262 #include "perf_event_p6.c"
1263 #include "perf_event_p4.c"
1264 #include "perf_event_intel_lbr.c"
1265 #include "perf_event_intel_ds.c"
1266 #include "perf_event_intel.c"
1268 static int __cpuinit
1269 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1271 unsigned int cpu = (long)hcpu;
1272 int ret = NOTIFY_OK;
1274 switch (action & ~CPU_TASKS_FROZEN) {
1275 case CPU_UP_PREPARE:
1276 if (x86_pmu.cpu_prepare)
1277 ret = x86_pmu.cpu_prepare(cpu);
1278 break;
1280 case CPU_STARTING:
1281 if (x86_pmu.cpu_starting)
1282 x86_pmu.cpu_starting(cpu);
1283 break;
1285 case CPU_DYING:
1286 if (x86_pmu.cpu_dying)
1287 x86_pmu.cpu_dying(cpu);
1288 break;
1290 case CPU_UP_CANCELED:
1291 case CPU_DEAD:
1292 if (x86_pmu.cpu_dead)
1293 x86_pmu.cpu_dead(cpu);
1294 break;
1296 default:
1297 break;
1300 return ret;
1303 static void __init pmu_check_apic(void)
1305 if (cpu_has_apic)
1306 return;
1308 x86_pmu.apic = 0;
1309 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1310 pr_info("no hardware sampling interrupt available.\n");
1313 void __init init_hw_perf_events(void)
1315 struct event_constraint *c;
1316 int err;
1318 pr_info("Performance Events: ");
1320 switch (boot_cpu_data.x86_vendor) {
1321 case X86_VENDOR_INTEL:
1322 err = intel_pmu_init();
1323 break;
1324 case X86_VENDOR_AMD:
1325 err = amd_pmu_init();
1326 break;
1327 default:
1328 return;
1330 if (err != 0) {
1331 pr_cont("no PMU driver, software events only.\n");
1332 return;
1335 pmu_check_apic();
1337 pr_cont("%s PMU driver.\n", x86_pmu.name);
1339 if (x86_pmu.quirks)
1340 x86_pmu.quirks();
1342 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1343 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1344 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1345 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1347 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1348 perf_max_events = x86_pmu.num_counters;
1350 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1351 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1352 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1353 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1356 x86_pmu.intel_ctrl |=
1357 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1359 perf_events_lapic_init();
1360 register_die_notifier(&perf_event_nmi_notifier);
1362 unconstrained = (struct event_constraint)
1363 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1364 0, x86_pmu.num_counters);
1366 if (x86_pmu.event_constraints) {
1367 for_each_event_constraint(c, x86_pmu.event_constraints) {
1368 if (c->cmask != X86_RAW_EVENT_MASK)
1369 continue;
1371 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1372 c->weight += x86_pmu.num_counters;
1376 pr_info("... version: %d\n", x86_pmu.version);
1377 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1378 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1379 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1380 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1381 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1382 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1384 perf_cpu_notifier(x86_pmu_notifier);
1387 static inline void x86_pmu_read(struct perf_event *event)
1389 x86_perf_event_update(event);
1393 * Start group events scheduling transaction
1394 * Set the flag to make pmu::enable() not perform the
1395 * schedulability test, it will be performed at commit time
1397 static void x86_pmu_start_txn(const struct pmu *pmu)
1399 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1401 cpuc->group_flag |= PERF_EVENT_TXN;
1402 cpuc->n_txn = 0;
1406 * Stop group events scheduling transaction
1407 * Clear the flag and pmu::enable() will perform the
1408 * schedulability test.
1410 static void x86_pmu_cancel_txn(const struct pmu *pmu)
1412 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1414 cpuc->group_flag &= ~PERF_EVENT_TXN;
1416 * Truncate the collected events.
1418 cpuc->n_added -= cpuc->n_txn;
1419 cpuc->n_events -= cpuc->n_txn;
1423 * Commit group events scheduling transaction
1424 * Perform the group schedulability test as a whole
1425 * Return 0 if success
1427 static int x86_pmu_commit_txn(const struct pmu *pmu)
1429 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1430 int assign[X86_PMC_IDX_MAX];
1431 int n, ret;
1433 n = cpuc->n_events;
1435 if (!x86_pmu_initialized())
1436 return -EAGAIN;
1438 ret = x86_pmu.schedule_events(cpuc, n, assign);
1439 if (ret)
1440 return ret;
1443 * copy new assignment, now we know it is possible
1444 * will be used by hw_perf_enable()
1446 memcpy(cpuc->assign, assign, n*sizeof(int));
1448 cpuc->group_flag &= ~PERF_EVENT_TXN;
1450 return 0;
1453 static const struct pmu pmu = {
1454 .enable = x86_pmu_enable,
1455 .disable = x86_pmu_disable,
1456 .start = x86_pmu_start,
1457 .stop = x86_pmu_stop,
1458 .read = x86_pmu_read,
1459 .unthrottle = x86_pmu_unthrottle,
1460 .start_txn = x86_pmu_start_txn,
1461 .cancel_txn = x86_pmu_cancel_txn,
1462 .commit_txn = x86_pmu_commit_txn,
1466 * validate that we can schedule this event
1468 static int validate_event(struct perf_event *event)
1470 struct cpu_hw_events *fake_cpuc;
1471 struct event_constraint *c;
1472 int ret = 0;
1474 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1475 if (!fake_cpuc)
1476 return -ENOMEM;
1478 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1480 if (!c || !c->weight)
1481 ret = -ENOSPC;
1483 if (x86_pmu.put_event_constraints)
1484 x86_pmu.put_event_constraints(fake_cpuc, event);
1486 kfree(fake_cpuc);
1488 return ret;
1492 * validate a single event group
1494 * validation include:
1495 * - check events are compatible which each other
1496 * - events do not compete for the same counter
1497 * - number of events <= number of counters
1499 * validation ensures the group can be loaded onto the
1500 * PMU if it was the only group available.
1502 static int validate_group(struct perf_event *event)
1504 struct perf_event *leader = event->group_leader;
1505 struct cpu_hw_events *fake_cpuc;
1506 int ret, n;
1508 ret = -ENOMEM;
1509 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1510 if (!fake_cpuc)
1511 goto out;
1514 * the event is not yet connected with its
1515 * siblings therefore we must first collect
1516 * existing siblings, then add the new event
1517 * before we can simulate the scheduling
1519 ret = -ENOSPC;
1520 n = collect_events(fake_cpuc, leader, true);
1521 if (n < 0)
1522 goto out_free;
1524 fake_cpuc->n_events = n;
1525 n = collect_events(fake_cpuc, event, false);
1526 if (n < 0)
1527 goto out_free;
1529 fake_cpuc->n_events = n;
1531 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1533 out_free:
1534 kfree(fake_cpuc);
1535 out:
1536 return ret;
1539 const struct pmu *hw_perf_event_init(struct perf_event *event)
1541 const struct pmu *tmp;
1542 int err;
1544 err = __hw_perf_event_init(event);
1545 if (!err) {
1547 * we temporarily connect event to its pmu
1548 * such that validate_group() can classify
1549 * it as an x86 event using is_x86_event()
1551 tmp = event->pmu;
1552 event->pmu = &pmu;
1554 if (event->group_leader != event)
1555 err = validate_group(event);
1556 else
1557 err = validate_event(event);
1559 event->pmu = tmp;
1561 if (err) {
1562 if (event->destroy)
1563 event->destroy(event);
1564 return ERR_PTR(err);
1567 return &pmu;
1571 * callchain support
1574 static DEFINE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry_nmi);
1577 static void
1578 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1580 /* Ignore warnings */
1583 static void backtrace_warning(void *data, char *msg)
1585 /* Ignore warnings */
1588 static int backtrace_stack(void *data, char *name)
1590 return 0;
1593 static void backtrace_address(void *data, unsigned long addr, int reliable)
1595 struct perf_callchain_entry *entry = data;
1597 perf_callchain_store(entry, addr);
1600 static const struct stacktrace_ops backtrace_ops = {
1601 .warning = backtrace_warning,
1602 .warning_symbol = backtrace_warning_symbol,
1603 .stack = backtrace_stack,
1604 .address = backtrace_address,
1605 .walk_stack = print_context_stack_bp,
1608 void
1609 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1611 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1612 /* TODO: We don't support guest os callchain now */
1613 return NULL;
1616 perf_callchain_store(entry, regs->ip);
1618 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1621 #ifdef CONFIG_COMPAT
1622 static inline int
1623 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1625 /* 32-bit process in 64-bit kernel. */
1626 struct stack_frame_ia32 frame;
1627 const void __user *fp;
1629 if (!test_thread_flag(TIF_IA32))
1630 return 0;
1632 fp = compat_ptr(regs->bp);
1633 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1634 unsigned long bytes;
1635 frame.next_frame = 0;
1636 frame.return_address = 0;
1638 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1639 if (bytes != sizeof(frame))
1640 break;
1642 if (fp < compat_ptr(regs->sp))
1643 break;
1645 perf_callchain_store(entry, frame.return_address);
1646 fp = compat_ptr(frame.next_frame);
1648 return 1;
1650 #else
1651 static inline int
1652 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1654 return 0;
1656 #endif
1658 void
1659 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1661 struct stack_frame frame;
1662 const void __user *fp;
1664 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1665 /* TODO: We don't support guest os callchain now */
1666 return NULL;
1669 fp = (void __user *)regs->bp;
1671 perf_callchain_store(entry, regs->ip);
1673 if (perf_callchain_user32(regs, entry))
1674 return;
1676 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1677 unsigned long bytes;
1678 frame.next_frame = NULL;
1679 frame.return_address = 0;
1681 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1682 if (bytes != sizeof(frame))
1683 break;
1685 if ((unsigned long)fp < regs->sp)
1686 break;
1688 perf_callchain_store(entry, frame.return_address);
1689 fp = frame.next_frame;
1693 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1695 unsigned long ip;
1697 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1698 ip = perf_guest_cbs->get_guest_ip();
1699 else
1700 ip = instruction_pointer(regs);
1702 return ip;
1705 unsigned long perf_misc_flags(struct pt_regs *regs)
1707 int misc = 0;
1709 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1710 if (perf_guest_cbs->is_user_mode())
1711 misc |= PERF_RECORD_MISC_GUEST_USER;
1712 else
1713 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1714 } else {
1715 if (user_mode(regs))
1716 misc |= PERF_RECORD_MISC_USER;
1717 else
1718 misc |= PERF_RECORD_MISC_KERNEL;
1721 if (regs->flags & PERF_EFLAGS_EXACT)
1722 misc |= PERF_RECORD_MISC_EXACT_IP;
1724 return misc;