drivers/net/mac8390.c: make functions static
[linux-2.6/x86.git] / drivers / ata / libata-sff.c
blob3c2d2289f85ee3233c259a4508fdb134e969053d
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
40 #include "libata.h"
42 const struct ata_port_operations ata_sff_port_ops = {
43 .inherits = &ata_base_port_ops,
45 .qc_prep = ata_sff_qc_prep,
46 .qc_issue = ata_sff_qc_issue,
47 .qc_fill_rtf = ata_sff_qc_fill_rtf,
49 .freeze = ata_sff_freeze,
50 .thaw = ata_sff_thaw,
51 .prereset = ata_sff_prereset,
52 .softreset = ata_sff_softreset,
53 .hardreset = sata_sff_hardreset,
54 .postreset = ata_sff_postreset,
55 .error_handler = ata_sff_error_handler,
56 .post_internal_cmd = ata_sff_post_internal_cmd,
58 .sff_dev_select = ata_sff_dev_select,
59 .sff_check_status = ata_sff_check_status,
60 .sff_tf_load = ata_sff_tf_load,
61 .sff_tf_read = ata_sff_tf_read,
62 .sff_exec_command = ata_sff_exec_command,
63 .sff_data_xfer = ata_sff_data_xfer,
64 .sff_irq_on = ata_sff_irq_on,
65 .sff_irq_clear = ata_sff_irq_clear,
67 .port_start = ata_sff_port_start,
70 const struct ata_port_operations ata_bmdma_port_ops = {
71 .inherits = &ata_sff_port_ops,
73 .mode_filter = ata_bmdma_mode_filter,
75 .bmdma_setup = ata_bmdma_setup,
76 .bmdma_start = ata_bmdma_start,
77 .bmdma_stop = ata_bmdma_stop,
78 .bmdma_status = ata_bmdma_status,
81 /**
82 * ata_fill_sg - Fill PCI IDE PRD table
83 * @qc: Metadata associated with taskfile to be transferred
85 * Fill PCI IDE PRD (scatter-gather) table with segments
86 * associated with the current disk command.
88 * LOCKING:
89 * spin_lock_irqsave(host lock)
92 static void ata_fill_sg(struct ata_queued_cmd *qc)
94 struct ata_port *ap = qc->ap;
95 struct scatterlist *sg;
96 unsigned int si, pi;
98 pi = 0;
99 for_each_sg(qc->sg, sg, qc->n_elem, si) {
100 u32 addr, offset;
101 u32 sg_len, len;
103 /* determine if physical DMA addr spans 64K boundary.
104 * Note h/w doesn't support 64-bit, so we unconditionally
105 * truncate dma_addr_t to u32.
107 addr = (u32) sg_dma_address(sg);
108 sg_len = sg_dma_len(sg);
110 while (sg_len) {
111 offset = addr & 0xffff;
112 len = sg_len;
113 if ((offset + sg_len) > 0x10000)
114 len = 0x10000 - offset;
116 ap->prd[pi].addr = cpu_to_le32(addr);
117 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
118 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
120 pi++;
121 sg_len -= len;
122 addr += len;
126 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
130 * ata_fill_sg_dumb - Fill PCI IDE PRD table
131 * @qc: Metadata associated with taskfile to be transferred
133 * Fill PCI IDE PRD (scatter-gather) table with segments
134 * associated with the current disk command. Perform the fill
135 * so that we avoid writing any length 64K records for
136 * controllers that don't follow the spec.
138 * LOCKING:
139 * spin_lock_irqsave(host lock)
142 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
144 struct ata_port *ap = qc->ap;
145 struct scatterlist *sg;
146 unsigned int si, pi;
148 pi = 0;
149 for_each_sg(qc->sg, sg, qc->n_elem, si) {
150 u32 addr, offset;
151 u32 sg_len, len, blen;
153 /* determine if physical DMA addr spans 64K boundary.
154 * Note h/w doesn't support 64-bit, so we unconditionally
155 * truncate dma_addr_t to u32.
157 addr = (u32) sg_dma_address(sg);
158 sg_len = sg_dma_len(sg);
160 while (sg_len) {
161 offset = addr & 0xffff;
162 len = sg_len;
163 if ((offset + sg_len) > 0x10000)
164 len = 0x10000 - offset;
166 blen = len & 0xffff;
167 ap->prd[pi].addr = cpu_to_le32(addr);
168 if (blen == 0) {
169 /* Some PATA chipsets like the CS5530 can't
170 cope with 0x0000 meaning 64K as the spec says */
171 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
172 blen = 0x8000;
173 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
175 ap->prd[pi].flags_len = cpu_to_le32(blen);
176 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
178 pi++;
179 sg_len -= len;
180 addr += len;
184 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
188 * ata_sff_qc_prep - Prepare taskfile for submission
189 * @qc: Metadata associated with taskfile to be prepared
191 * Prepare ATA taskfile for submission.
193 * LOCKING:
194 * spin_lock_irqsave(host lock)
196 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
198 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
199 return;
201 ata_fill_sg(qc);
205 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
206 * @qc: Metadata associated with taskfile to be prepared
208 * Prepare ATA taskfile for submission.
210 * LOCKING:
211 * spin_lock_irqsave(host lock)
213 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
215 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
216 return;
218 ata_fill_sg_dumb(qc);
222 * ata_sff_check_status - Read device status reg & clear interrupt
223 * @ap: port where the device is
225 * Reads ATA taskfile status register for currently-selected device
226 * and return its value. This also clears pending interrupts
227 * from this device
229 * LOCKING:
230 * Inherited from caller.
232 u8 ata_sff_check_status(struct ata_port *ap)
234 return ioread8(ap->ioaddr.status_addr);
238 * ata_sff_altstatus - Read device alternate status reg
239 * @ap: port where the device is
241 * Reads ATA taskfile alternate status register for
242 * currently-selected device and return its value.
244 * Note: may NOT be used as the check_altstatus() entry in
245 * ata_port_operations.
247 * LOCKING:
248 * Inherited from caller.
250 u8 ata_sff_altstatus(struct ata_port *ap)
252 if (ap->ops->sff_check_altstatus)
253 return ap->ops->sff_check_altstatus(ap);
255 return ioread8(ap->ioaddr.altstatus_addr);
259 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
260 * @ap: port containing status register to be polled
261 * @tmout_pat: impatience timeout
262 * @tmout: overall timeout
264 * Sleep until ATA Status register bit BSY clears,
265 * or a timeout occurs.
267 * LOCKING:
268 * Kernel thread context (may sleep).
270 * RETURNS:
271 * 0 on success, -errno otherwise.
273 int ata_sff_busy_sleep(struct ata_port *ap,
274 unsigned long tmout_pat, unsigned long tmout)
276 unsigned long timer_start, timeout;
277 u8 status;
279 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
280 timer_start = jiffies;
281 timeout = timer_start + tmout_pat;
282 while (status != 0xff && (status & ATA_BUSY) &&
283 time_before(jiffies, timeout)) {
284 msleep(50);
285 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
288 if (status != 0xff && (status & ATA_BUSY))
289 ata_port_printk(ap, KERN_WARNING,
290 "port is slow to respond, please be patient "
291 "(Status 0x%x)\n", status);
293 timeout = timer_start + tmout;
294 while (status != 0xff && (status & ATA_BUSY) &&
295 time_before(jiffies, timeout)) {
296 msleep(50);
297 status = ap->ops->sff_check_status(ap);
300 if (status == 0xff)
301 return -ENODEV;
303 if (status & ATA_BUSY) {
304 ata_port_printk(ap, KERN_ERR, "port failed to respond "
305 "(%lu secs, Status 0x%x)\n",
306 tmout / HZ, status);
307 return -EBUSY;
310 return 0;
313 static int ata_sff_check_ready(struct ata_link *link)
315 u8 status = link->ap->ops->sff_check_status(link->ap);
317 return ata_check_ready(status);
321 * ata_sff_wait_ready - sleep until BSY clears, or timeout
322 * @link: SFF link to wait ready status for
323 * @deadline: deadline jiffies for the operation
325 * Sleep until ATA Status register bit BSY clears, or timeout
326 * occurs.
328 * LOCKING:
329 * Kernel thread context (may sleep).
331 * RETURNS:
332 * 0 on success, -errno otherwise.
334 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
336 return ata_wait_ready(link, deadline, ata_sff_check_ready);
340 * ata_sff_dev_select - Select device 0/1 on ATA bus
341 * @ap: ATA channel to manipulate
342 * @device: ATA device (numbered from zero) to select
344 * Use the method defined in the ATA specification to
345 * make either device 0, or device 1, active on the
346 * ATA channel. Works with both PIO and MMIO.
348 * May be used as the dev_select() entry in ata_port_operations.
350 * LOCKING:
351 * caller.
353 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
355 u8 tmp;
357 if (device == 0)
358 tmp = ATA_DEVICE_OBS;
359 else
360 tmp = ATA_DEVICE_OBS | ATA_DEV1;
362 iowrite8(tmp, ap->ioaddr.device_addr);
363 ata_sff_pause(ap); /* needed; also flushes, for mmio */
367 * ata_dev_select - Select device 0/1 on ATA bus
368 * @ap: ATA channel to manipulate
369 * @device: ATA device (numbered from zero) to select
370 * @wait: non-zero to wait for Status register BSY bit to clear
371 * @can_sleep: non-zero if context allows sleeping
373 * Use the method defined in the ATA specification to
374 * make either device 0, or device 1, active on the
375 * ATA channel.
377 * This is a high-level version of ata_sff_dev_select(), which
378 * additionally provides the services of inserting the proper
379 * pauses and status polling, where needed.
381 * LOCKING:
382 * caller.
384 void ata_dev_select(struct ata_port *ap, unsigned int device,
385 unsigned int wait, unsigned int can_sleep)
387 if (ata_msg_probe(ap))
388 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
389 "device %u, wait %u\n", device, wait);
391 if (wait)
392 ata_wait_idle(ap);
394 ap->ops->sff_dev_select(ap, device);
396 if (wait) {
397 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
398 msleep(150);
399 ata_wait_idle(ap);
404 * ata_sff_irq_on - Enable interrupts on a port.
405 * @ap: Port on which interrupts are enabled.
407 * Enable interrupts on a legacy IDE device using MMIO or PIO,
408 * wait for idle, clear any pending interrupts.
410 * LOCKING:
411 * Inherited from caller.
413 u8 ata_sff_irq_on(struct ata_port *ap)
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 u8 tmp;
418 ap->ctl &= ~ATA_NIEN;
419 ap->last_ctl = ap->ctl;
421 if (ioaddr->ctl_addr)
422 iowrite8(ap->ctl, ioaddr->ctl_addr);
423 tmp = ata_wait_idle(ap);
425 ap->ops->sff_irq_clear(ap);
427 return tmp;
431 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
432 * @ap: Port associated with this ATA transaction.
434 * Clear interrupt and error flags in DMA status register.
436 * May be used as the irq_clear() entry in ata_port_operations.
438 * LOCKING:
439 * spin_lock_irqsave(host lock)
441 void ata_sff_irq_clear(struct ata_port *ap)
443 void __iomem *mmio = ap->ioaddr.bmdma_addr;
445 if (!mmio)
446 return;
448 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
452 * ata_sff_tf_load - send taskfile registers to host controller
453 * @ap: Port to which output is sent
454 * @tf: ATA taskfile register set
456 * Outputs ATA taskfile to standard ATA host controller.
458 * LOCKING:
459 * Inherited from caller.
461 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
463 struct ata_ioports *ioaddr = &ap->ioaddr;
464 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
466 if (tf->ctl != ap->last_ctl) {
467 if (ioaddr->ctl_addr)
468 iowrite8(tf->ctl, ioaddr->ctl_addr);
469 ap->last_ctl = tf->ctl;
470 ata_wait_idle(ap);
473 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
474 WARN_ON(!ioaddr->ctl_addr);
475 iowrite8(tf->hob_feature, ioaddr->feature_addr);
476 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
477 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
478 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
479 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
480 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
481 tf->hob_feature,
482 tf->hob_nsect,
483 tf->hob_lbal,
484 tf->hob_lbam,
485 tf->hob_lbah);
488 if (is_addr) {
489 iowrite8(tf->feature, ioaddr->feature_addr);
490 iowrite8(tf->nsect, ioaddr->nsect_addr);
491 iowrite8(tf->lbal, ioaddr->lbal_addr);
492 iowrite8(tf->lbam, ioaddr->lbam_addr);
493 iowrite8(tf->lbah, ioaddr->lbah_addr);
494 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
495 tf->feature,
496 tf->nsect,
497 tf->lbal,
498 tf->lbam,
499 tf->lbah);
502 if (tf->flags & ATA_TFLAG_DEVICE) {
503 iowrite8(tf->device, ioaddr->device_addr);
504 VPRINTK("device 0x%X\n", tf->device);
507 ata_wait_idle(ap);
511 * ata_sff_tf_read - input device's ATA taskfile shadow registers
512 * @ap: Port from which input is read
513 * @tf: ATA taskfile register set for storing input
515 * Reads ATA taskfile registers for currently-selected device
516 * into @tf. Assumes the device has a fully SFF compliant task file
517 * layout and behaviour. If you device does not (eg has a different
518 * status method) then you will need to provide a replacement tf_read
520 * LOCKING:
521 * Inherited from caller.
523 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
525 struct ata_ioports *ioaddr = &ap->ioaddr;
527 tf->command = ata_sff_check_status(ap);
528 tf->feature = ioread8(ioaddr->error_addr);
529 tf->nsect = ioread8(ioaddr->nsect_addr);
530 tf->lbal = ioread8(ioaddr->lbal_addr);
531 tf->lbam = ioread8(ioaddr->lbam_addr);
532 tf->lbah = ioread8(ioaddr->lbah_addr);
533 tf->device = ioread8(ioaddr->device_addr);
535 if (tf->flags & ATA_TFLAG_LBA48) {
536 if (likely(ioaddr->ctl_addr)) {
537 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
538 tf->hob_feature = ioread8(ioaddr->error_addr);
539 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
540 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
541 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
542 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
543 iowrite8(tf->ctl, ioaddr->ctl_addr);
544 ap->last_ctl = tf->ctl;
545 } else
546 WARN_ON(1);
551 * ata_sff_exec_command - issue ATA command to host controller
552 * @ap: port to which command is being issued
553 * @tf: ATA taskfile register set
555 * Issues ATA command, with proper synchronization with interrupt
556 * handler / other threads.
558 * LOCKING:
559 * spin_lock_irqsave(host lock)
561 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
563 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
565 iowrite8(tf->command, ap->ioaddr.command_addr);
566 ata_sff_pause(ap);
570 * ata_tf_to_host - issue ATA taskfile to host controller
571 * @ap: port to which command is being issued
572 * @tf: ATA taskfile register set
574 * Issues ATA taskfile register set to ATA host controller,
575 * with proper synchronization with interrupt handler and
576 * other threads.
578 * LOCKING:
579 * spin_lock_irqsave(host lock)
581 static inline void ata_tf_to_host(struct ata_port *ap,
582 const struct ata_taskfile *tf)
584 ap->ops->sff_tf_load(ap, tf);
585 ap->ops->sff_exec_command(ap, tf);
589 * ata_sff_data_xfer - Transfer data by PIO
590 * @dev: device to target
591 * @buf: data buffer
592 * @buflen: buffer length
593 * @rw: read/write
595 * Transfer data from/to the device data register by PIO.
597 * LOCKING:
598 * Inherited from caller.
600 * RETURNS:
601 * Bytes consumed.
603 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
604 unsigned int buflen, int rw)
606 struct ata_port *ap = dev->link->ap;
607 void __iomem *data_addr = ap->ioaddr.data_addr;
608 unsigned int words = buflen >> 1;
610 /* Transfer multiple of 2 bytes */
611 if (rw == READ)
612 ioread16_rep(data_addr, buf, words);
613 else
614 iowrite16_rep(data_addr, buf, words);
616 /* Transfer trailing 1 byte, if any. */
617 if (unlikely(buflen & 0x01)) {
618 __le16 align_buf[1] = { 0 };
619 unsigned char *trailing_buf = buf + buflen - 1;
621 if (rw == READ) {
622 align_buf[0] = cpu_to_le16(ioread16(data_addr));
623 memcpy(trailing_buf, align_buf, 1);
624 } else {
625 memcpy(align_buf, trailing_buf, 1);
626 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
628 words++;
631 return words << 1;
635 * ata_sff_data_xfer_noirq - Transfer data by PIO
636 * @dev: device to target
637 * @buf: data buffer
638 * @buflen: buffer length
639 * @rw: read/write
641 * Transfer data from/to the device data register by PIO. Do the
642 * transfer with interrupts disabled.
644 * LOCKING:
645 * Inherited from caller.
647 * RETURNS:
648 * Bytes consumed.
650 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
651 unsigned int buflen, int rw)
653 unsigned long flags;
654 unsigned int consumed;
656 local_irq_save(flags);
657 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
658 local_irq_restore(flags);
660 return consumed;
664 * ata_pio_sector - Transfer a sector of data.
665 * @qc: Command on going
667 * Transfer qc->sect_size bytes of data from/to the ATA device.
669 * LOCKING:
670 * Inherited from caller.
672 static void ata_pio_sector(struct ata_queued_cmd *qc)
674 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
675 struct ata_port *ap = qc->ap;
676 struct page *page;
677 unsigned int offset;
678 unsigned char *buf;
680 if (qc->curbytes == qc->nbytes - qc->sect_size)
681 ap->hsm_task_state = HSM_ST_LAST;
683 page = sg_page(qc->cursg);
684 offset = qc->cursg->offset + qc->cursg_ofs;
686 /* get the current page and offset */
687 page = nth_page(page, (offset >> PAGE_SHIFT));
688 offset %= PAGE_SIZE;
690 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
692 if (PageHighMem(page)) {
693 unsigned long flags;
695 /* FIXME: use a bounce buffer */
696 local_irq_save(flags);
697 buf = kmap_atomic(page, KM_IRQ0);
699 /* do the actual data transfer */
700 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
701 do_write);
703 kunmap_atomic(buf, KM_IRQ0);
704 local_irq_restore(flags);
705 } else {
706 buf = page_address(page);
707 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
708 do_write);
711 qc->curbytes += qc->sect_size;
712 qc->cursg_ofs += qc->sect_size;
714 if (qc->cursg_ofs == qc->cursg->length) {
715 qc->cursg = sg_next(qc->cursg);
716 qc->cursg_ofs = 0;
721 * ata_pio_sectors - Transfer one or many sectors.
722 * @qc: Command on going
724 * Transfer one or many sectors of data from/to the
725 * ATA device for the DRQ request.
727 * LOCKING:
728 * Inherited from caller.
730 static void ata_pio_sectors(struct ata_queued_cmd *qc)
732 if (is_multi_taskfile(&qc->tf)) {
733 /* READ/WRITE MULTIPLE */
734 unsigned int nsect;
736 WARN_ON(qc->dev->multi_count == 0);
738 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
739 qc->dev->multi_count);
740 while (nsect--)
741 ata_pio_sector(qc);
742 } else
743 ata_pio_sector(qc);
745 ata_sff_altstatus(qc->ap); /* flush */
749 * atapi_send_cdb - Write CDB bytes to hardware
750 * @ap: Port to which ATAPI device is attached.
751 * @qc: Taskfile currently active
753 * When device has indicated its readiness to accept
754 * a CDB, this function is called. Send the CDB.
756 * LOCKING:
757 * caller.
759 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
761 /* send SCSI cdb */
762 DPRINTK("send cdb\n");
763 WARN_ON(qc->dev->cdb_len < 12);
765 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
766 ata_sff_altstatus(ap); /* flush */
768 switch (qc->tf.protocol) {
769 case ATAPI_PROT_PIO:
770 ap->hsm_task_state = HSM_ST;
771 break;
772 case ATAPI_PROT_NODATA:
773 ap->hsm_task_state = HSM_ST_LAST;
774 break;
775 case ATAPI_PROT_DMA:
776 ap->hsm_task_state = HSM_ST_LAST;
777 /* initiate bmdma */
778 ap->ops->bmdma_start(qc);
779 break;
784 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
785 * @qc: Command on going
786 * @bytes: number of bytes
788 * Transfer Transfer data from/to the ATAPI device.
790 * LOCKING:
791 * Inherited from caller.
794 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
796 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
797 struct ata_port *ap = qc->ap;
798 struct ata_device *dev = qc->dev;
799 struct ata_eh_info *ehi = &dev->link->eh_info;
800 struct scatterlist *sg;
801 struct page *page;
802 unsigned char *buf;
803 unsigned int offset, count, consumed;
805 next_sg:
806 sg = qc->cursg;
807 if (unlikely(!sg)) {
808 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
809 "buf=%u cur=%u bytes=%u",
810 qc->nbytes, qc->curbytes, bytes);
811 return -1;
814 page = sg_page(sg);
815 offset = sg->offset + qc->cursg_ofs;
817 /* get the current page and offset */
818 page = nth_page(page, (offset >> PAGE_SHIFT));
819 offset %= PAGE_SIZE;
821 /* don't overrun current sg */
822 count = min(sg->length - qc->cursg_ofs, bytes);
824 /* don't cross page boundaries */
825 count = min(count, (unsigned int)PAGE_SIZE - offset);
827 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
829 if (PageHighMem(page)) {
830 unsigned long flags;
832 /* FIXME: use bounce buffer */
833 local_irq_save(flags);
834 buf = kmap_atomic(page, KM_IRQ0);
836 /* do the actual data transfer */
837 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
839 kunmap_atomic(buf, KM_IRQ0);
840 local_irq_restore(flags);
841 } else {
842 buf = page_address(page);
843 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
846 bytes -= min(bytes, consumed);
847 qc->curbytes += count;
848 qc->cursg_ofs += count;
850 if (qc->cursg_ofs == sg->length) {
851 qc->cursg = sg_next(qc->cursg);
852 qc->cursg_ofs = 0;
855 /* consumed can be larger than count only for the last transfer */
856 WARN_ON(qc->cursg && count != consumed);
858 if (bytes)
859 goto next_sg;
860 return 0;
864 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
865 * @qc: Command on going
867 * Transfer Transfer data from/to the ATAPI device.
869 * LOCKING:
870 * Inherited from caller.
872 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
874 struct ata_port *ap = qc->ap;
875 struct ata_device *dev = qc->dev;
876 struct ata_eh_info *ehi = &dev->link->eh_info;
877 unsigned int ireason, bc_lo, bc_hi, bytes;
878 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
880 /* Abuse qc->result_tf for temp storage of intermediate TF
881 * here to save some kernel stack usage.
882 * For normal completion, qc->result_tf is not relevant. For
883 * error, qc->result_tf is later overwritten by ata_qc_complete().
884 * So, the correctness of qc->result_tf is not affected.
886 ap->ops->sff_tf_read(ap, &qc->result_tf);
887 ireason = qc->result_tf.nsect;
888 bc_lo = qc->result_tf.lbam;
889 bc_hi = qc->result_tf.lbah;
890 bytes = (bc_hi << 8) | bc_lo;
892 /* shall be cleared to zero, indicating xfer of data */
893 if (unlikely(ireason & (1 << 0)))
894 goto atapi_check;
896 /* make sure transfer direction matches expected */
897 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
898 if (unlikely(do_write != i_write))
899 goto atapi_check;
901 if (unlikely(!bytes))
902 goto atapi_check;
904 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
906 if (unlikely(__atapi_pio_bytes(qc, bytes)))
907 goto err_out;
908 ata_sff_altstatus(ap); /* flush */
910 return;
912 atapi_check:
913 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
914 ireason, bytes);
915 err_out:
916 qc->err_mask |= AC_ERR_HSM;
917 ap->hsm_task_state = HSM_ST_ERR;
921 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
922 * @ap: the target ata_port
923 * @qc: qc on going
925 * RETURNS:
926 * 1 if ok in workqueue, 0 otherwise.
928 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
930 if (qc->tf.flags & ATA_TFLAG_POLLING)
931 return 1;
933 if (ap->hsm_task_state == HSM_ST_FIRST) {
934 if (qc->tf.protocol == ATA_PROT_PIO &&
935 (qc->tf.flags & ATA_TFLAG_WRITE))
936 return 1;
938 if (ata_is_atapi(qc->tf.protocol) &&
939 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
940 return 1;
943 return 0;
947 * ata_hsm_qc_complete - finish a qc running on standard HSM
948 * @qc: Command to complete
949 * @in_wq: 1 if called from workqueue, 0 otherwise
951 * Finish @qc which is running on standard HSM.
953 * LOCKING:
954 * If @in_wq is zero, spin_lock_irqsave(host lock).
955 * Otherwise, none on entry and grabs host lock.
957 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
959 struct ata_port *ap = qc->ap;
960 unsigned long flags;
962 if (ap->ops->error_handler) {
963 if (in_wq) {
964 spin_lock_irqsave(ap->lock, flags);
966 /* EH might have kicked in while host lock is
967 * released.
969 qc = ata_qc_from_tag(ap, qc->tag);
970 if (qc) {
971 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
972 ap->ops->sff_irq_on(ap);
973 ata_qc_complete(qc);
974 } else
975 ata_port_freeze(ap);
978 spin_unlock_irqrestore(ap->lock, flags);
979 } else {
980 if (likely(!(qc->err_mask & AC_ERR_HSM)))
981 ata_qc_complete(qc);
982 else
983 ata_port_freeze(ap);
985 } else {
986 if (in_wq) {
987 spin_lock_irqsave(ap->lock, flags);
988 ap->ops->sff_irq_on(ap);
989 ata_qc_complete(qc);
990 spin_unlock_irqrestore(ap->lock, flags);
991 } else
992 ata_qc_complete(qc);
997 * ata_sff_hsm_move - move the HSM to the next state.
998 * @ap: the target ata_port
999 * @qc: qc on going
1000 * @status: current device status
1001 * @in_wq: 1 if called from workqueue, 0 otherwise
1003 * RETURNS:
1004 * 1 when poll next status needed, 0 otherwise.
1006 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1007 u8 status, int in_wq)
1009 unsigned long flags = 0;
1010 int poll_next;
1012 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1014 /* Make sure ata_sff_qc_issue() does not throw things
1015 * like DMA polling into the workqueue. Notice that
1016 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1018 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
1020 fsm_start:
1021 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1022 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1024 switch (ap->hsm_task_state) {
1025 case HSM_ST_FIRST:
1026 /* Send first data block or PACKET CDB */
1028 /* If polling, we will stay in the work queue after
1029 * sending the data. Otherwise, interrupt handler
1030 * takes over after sending the data.
1032 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1034 /* check device status */
1035 if (unlikely((status & ATA_DRQ) == 0)) {
1036 /* handle BSY=0, DRQ=0 as error */
1037 if (likely(status & (ATA_ERR | ATA_DF)))
1038 /* device stops HSM for abort/error */
1039 qc->err_mask |= AC_ERR_DEV;
1040 else
1041 /* HSM violation. Let EH handle this */
1042 qc->err_mask |= AC_ERR_HSM;
1044 ap->hsm_task_state = HSM_ST_ERR;
1045 goto fsm_start;
1048 /* Device should not ask for data transfer (DRQ=1)
1049 * when it finds something wrong.
1050 * We ignore DRQ here and stop the HSM by
1051 * changing hsm_task_state to HSM_ST_ERR and
1052 * let the EH abort the command or reset the device.
1054 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1055 /* Some ATAPI tape drives forget to clear the ERR bit
1056 * when doing the next command (mostly request sense).
1057 * We ignore ERR here to workaround and proceed sending
1058 * the CDB.
1060 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1061 ata_port_printk(ap, KERN_WARNING,
1062 "DRQ=1 with device error, "
1063 "dev_stat 0x%X\n", status);
1064 qc->err_mask |= AC_ERR_HSM;
1065 ap->hsm_task_state = HSM_ST_ERR;
1066 goto fsm_start;
1070 /* Send the CDB (atapi) or the first data block (ata pio out).
1071 * During the state transition, interrupt handler shouldn't
1072 * be invoked before the data transfer is complete and
1073 * hsm_task_state is changed. Hence, the following locking.
1075 if (in_wq)
1076 spin_lock_irqsave(ap->lock, flags);
1078 if (qc->tf.protocol == ATA_PROT_PIO) {
1079 /* PIO data out protocol.
1080 * send first data block.
1083 /* ata_pio_sectors() might change the state
1084 * to HSM_ST_LAST. so, the state is changed here
1085 * before ata_pio_sectors().
1087 ap->hsm_task_state = HSM_ST;
1088 ata_pio_sectors(qc);
1089 } else
1090 /* send CDB */
1091 atapi_send_cdb(ap, qc);
1093 if (in_wq)
1094 spin_unlock_irqrestore(ap->lock, flags);
1096 /* if polling, ata_pio_task() handles the rest.
1097 * otherwise, interrupt handler takes over from here.
1099 break;
1101 case HSM_ST:
1102 /* complete command or read/write the data register */
1103 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1104 /* ATAPI PIO protocol */
1105 if ((status & ATA_DRQ) == 0) {
1106 /* No more data to transfer or device error.
1107 * Device error will be tagged in HSM_ST_LAST.
1109 ap->hsm_task_state = HSM_ST_LAST;
1110 goto fsm_start;
1113 /* Device should not ask for data transfer (DRQ=1)
1114 * when it finds something wrong.
1115 * We ignore DRQ here and stop the HSM by
1116 * changing hsm_task_state to HSM_ST_ERR and
1117 * let the EH abort the command or reset the device.
1119 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1120 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
1121 "device error, dev_stat 0x%X\n",
1122 status);
1123 qc->err_mask |= AC_ERR_HSM;
1124 ap->hsm_task_state = HSM_ST_ERR;
1125 goto fsm_start;
1128 atapi_pio_bytes(qc);
1130 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1131 /* bad ireason reported by device */
1132 goto fsm_start;
1134 } else {
1135 /* ATA PIO protocol */
1136 if (unlikely((status & ATA_DRQ) == 0)) {
1137 /* handle BSY=0, DRQ=0 as error */
1138 if (likely(status & (ATA_ERR | ATA_DF)))
1139 /* device stops HSM for abort/error */
1140 qc->err_mask |= AC_ERR_DEV;
1141 else
1142 /* HSM violation. Let EH handle this.
1143 * Phantom devices also trigger this
1144 * condition. Mark hint.
1146 qc->err_mask |= AC_ERR_HSM |
1147 AC_ERR_NODEV_HINT;
1149 ap->hsm_task_state = HSM_ST_ERR;
1150 goto fsm_start;
1153 /* For PIO reads, some devices may ask for
1154 * data transfer (DRQ=1) alone with ERR=1.
1155 * We respect DRQ here and transfer one
1156 * block of junk data before changing the
1157 * hsm_task_state to HSM_ST_ERR.
1159 * For PIO writes, ERR=1 DRQ=1 doesn't make
1160 * sense since the data block has been
1161 * transferred to the device.
1163 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1164 /* data might be corrputed */
1165 qc->err_mask |= AC_ERR_DEV;
1167 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1168 ata_pio_sectors(qc);
1169 status = ata_wait_idle(ap);
1172 if (status & (ATA_BUSY | ATA_DRQ))
1173 qc->err_mask |= AC_ERR_HSM;
1175 /* ata_pio_sectors() might change the
1176 * state to HSM_ST_LAST. so, the state
1177 * is changed after ata_pio_sectors().
1179 ap->hsm_task_state = HSM_ST_ERR;
1180 goto fsm_start;
1183 ata_pio_sectors(qc);
1185 if (ap->hsm_task_state == HSM_ST_LAST &&
1186 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1187 /* all data read */
1188 status = ata_wait_idle(ap);
1189 goto fsm_start;
1193 poll_next = 1;
1194 break;
1196 case HSM_ST_LAST:
1197 if (unlikely(!ata_ok(status))) {
1198 qc->err_mask |= __ac_err_mask(status);
1199 ap->hsm_task_state = HSM_ST_ERR;
1200 goto fsm_start;
1203 /* no more data to transfer */
1204 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1205 ap->print_id, qc->dev->devno, status);
1207 WARN_ON(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1209 ap->hsm_task_state = HSM_ST_IDLE;
1211 /* complete taskfile transaction */
1212 ata_hsm_qc_complete(qc, in_wq);
1214 poll_next = 0;
1215 break;
1217 case HSM_ST_ERR:
1218 /* make sure qc->err_mask is available to
1219 * know what's wrong and recover
1221 WARN_ON(!(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)));
1223 ap->hsm_task_state = HSM_ST_IDLE;
1225 /* complete taskfile transaction */
1226 ata_hsm_qc_complete(qc, in_wq);
1228 poll_next = 0;
1229 break;
1230 default:
1231 poll_next = 0;
1232 BUG();
1235 return poll_next;
1238 void ata_pio_task(struct work_struct *work)
1240 struct ata_port *ap =
1241 container_of(work, struct ata_port, port_task.work);
1242 struct ata_queued_cmd *qc = ap->port_task_data;
1243 u8 status;
1244 int poll_next;
1246 fsm_start:
1247 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1250 * This is purely heuristic. This is a fast path.
1251 * Sometimes when we enter, BSY will be cleared in
1252 * a chk-status or two. If not, the drive is probably seeking
1253 * or something. Snooze for a couple msecs, then
1254 * chk-status again. If still busy, queue delayed work.
1256 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1257 if (status & ATA_BUSY) {
1258 msleep(2);
1259 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1260 if (status & ATA_BUSY) {
1261 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1262 return;
1266 /* move the HSM */
1267 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1269 /* another command or interrupt handler
1270 * may be running at this point.
1272 if (poll_next)
1273 goto fsm_start;
1277 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1278 * @qc: command to issue to device
1280 * Using various libata functions and hooks, this function
1281 * starts an ATA command. ATA commands are grouped into
1282 * classes called "protocols", and issuing each type of protocol
1283 * is slightly different.
1285 * May be used as the qc_issue() entry in ata_port_operations.
1287 * LOCKING:
1288 * spin_lock_irqsave(host lock)
1290 * RETURNS:
1291 * Zero on success, AC_ERR_* mask on failure
1293 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1295 struct ata_port *ap = qc->ap;
1297 /* Use polling pio if the LLD doesn't handle
1298 * interrupt driven pio and atapi CDB interrupt.
1300 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1301 switch (qc->tf.protocol) {
1302 case ATA_PROT_PIO:
1303 case ATA_PROT_NODATA:
1304 case ATAPI_PROT_PIO:
1305 case ATAPI_PROT_NODATA:
1306 qc->tf.flags |= ATA_TFLAG_POLLING;
1307 break;
1308 case ATAPI_PROT_DMA:
1309 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1310 /* see ata_dma_blacklisted() */
1311 BUG();
1312 break;
1313 default:
1314 break;
1318 /* select the device */
1319 ata_dev_select(ap, qc->dev->devno, 1, 0);
1321 /* start the command */
1322 switch (qc->tf.protocol) {
1323 case ATA_PROT_NODATA:
1324 if (qc->tf.flags & ATA_TFLAG_POLLING)
1325 ata_qc_set_polling(qc);
1327 ata_tf_to_host(ap, &qc->tf);
1328 ap->hsm_task_state = HSM_ST_LAST;
1330 if (qc->tf.flags & ATA_TFLAG_POLLING)
1331 ata_pio_queue_task(ap, qc, 0);
1333 break;
1335 case ATA_PROT_DMA:
1336 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1338 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1339 ap->ops->bmdma_setup(qc); /* set up bmdma */
1340 ap->ops->bmdma_start(qc); /* initiate bmdma */
1341 ap->hsm_task_state = HSM_ST_LAST;
1342 break;
1344 case ATA_PROT_PIO:
1345 if (qc->tf.flags & ATA_TFLAG_POLLING)
1346 ata_qc_set_polling(qc);
1348 ata_tf_to_host(ap, &qc->tf);
1350 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1351 /* PIO data out protocol */
1352 ap->hsm_task_state = HSM_ST_FIRST;
1353 ata_pio_queue_task(ap, qc, 0);
1355 /* always send first data block using
1356 * the ata_pio_task() codepath.
1358 } else {
1359 /* PIO data in protocol */
1360 ap->hsm_task_state = HSM_ST;
1362 if (qc->tf.flags & ATA_TFLAG_POLLING)
1363 ata_pio_queue_task(ap, qc, 0);
1365 /* if polling, ata_pio_task() handles the rest.
1366 * otherwise, interrupt handler takes over from here.
1370 break;
1372 case ATAPI_PROT_PIO:
1373 case ATAPI_PROT_NODATA:
1374 if (qc->tf.flags & ATA_TFLAG_POLLING)
1375 ata_qc_set_polling(qc);
1377 ata_tf_to_host(ap, &qc->tf);
1379 ap->hsm_task_state = HSM_ST_FIRST;
1381 /* send cdb by polling if no cdb interrupt */
1382 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1383 (qc->tf.flags & ATA_TFLAG_POLLING))
1384 ata_pio_queue_task(ap, qc, 0);
1385 break;
1387 case ATAPI_PROT_DMA:
1388 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1390 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1391 ap->ops->bmdma_setup(qc); /* set up bmdma */
1392 ap->hsm_task_state = HSM_ST_FIRST;
1394 /* send cdb by polling if no cdb interrupt */
1395 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1396 ata_pio_queue_task(ap, qc, 0);
1397 break;
1399 default:
1400 WARN_ON(1);
1401 return AC_ERR_SYSTEM;
1404 return 0;
1408 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1409 * @qc: qc to fill result TF for
1411 * @qc is finished and result TF needs to be filled. Fill it
1412 * using ->sff_tf_read.
1414 * LOCKING:
1415 * spin_lock_irqsave(host lock)
1417 * RETURNS:
1418 * true indicating that result TF is successfully filled.
1420 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1422 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1423 return true;
1427 * ata_sff_host_intr - Handle host interrupt for given (port, task)
1428 * @ap: Port on which interrupt arrived (possibly...)
1429 * @qc: Taskfile currently active in engine
1431 * Handle host interrupt for given queued command. Currently,
1432 * only DMA interrupts are handled. All other commands are
1433 * handled via polling with interrupts disabled (nIEN bit).
1435 * LOCKING:
1436 * spin_lock_irqsave(host lock)
1438 * RETURNS:
1439 * One if interrupt was handled, zero if not (shared irq).
1441 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1442 struct ata_queued_cmd *qc)
1444 struct ata_eh_info *ehi = &ap->link.eh_info;
1445 u8 status, host_stat = 0;
1447 VPRINTK("ata%u: protocol %d task_state %d\n",
1448 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1450 /* Check whether we are expecting interrupt in this state */
1451 switch (ap->hsm_task_state) {
1452 case HSM_ST_FIRST:
1453 /* Some pre-ATAPI-4 devices assert INTRQ
1454 * at this state when ready to receive CDB.
1457 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1458 * The flag was turned on only for atapi devices. No
1459 * need to check ata_is_atapi(qc->tf.protocol) again.
1461 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1462 goto idle_irq;
1463 break;
1464 case HSM_ST_LAST:
1465 if (qc->tf.protocol == ATA_PROT_DMA ||
1466 qc->tf.protocol == ATAPI_PROT_DMA) {
1467 /* check status of DMA engine */
1468 host_stat = ap->ops->bmdma_status(ap);
1469 VPRINTK("ata%u: host_stat 0x%X\n",
1470 ap->print_id, host_stat);
1472 /* if it's not our irq... */
1473 if (!(host_stat & ATA_DMA_INTR))
1474 goto idle_irq;
1476 /* before we do anything else, clear DMA-Start bit */
1477 ap->ops->bmdma_stop(qc);
1479 if (unlikely(host_stat & ATA_DMA_ERR)) {
1480 /* error when transfering data to/from memory */
1481 qc->err_mask |= AC_ERR_HOST_BUS;
1482 ap->hsm_task_state = HSM_ST_ERR;
1485 break;
1486 case HSM_ST:
1487 break;
1488 default:
1489 goto idle_irq;
1492 /* check altstatus */
1493 status = ata_sff_altstatus(ap);
1494 if (status & ATA_BUSY)
1495 goto idle_irq;
1497 /* check main status, clearing INTRQ */
1498 status = ap->ops->sff_check_status(ap);
1499 if (unlikely(status & ATA_BUSY))
1500 goto idle_irq;
1502 /* ack bmdma irq events */
1503 ap->ops->sff_irq_clear(ap);
1505 ata_sff_hsm_move(ap, qc, status, 0);
1507 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1508 qc->tf.protocol == ATAPI_PROT_DMA))
1509 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1511 return 1; /* irq handled */
1513 idle_irq:
1514 ap->stats.idle_irq++;
1516 #ifdef ATA_IRQ_TRAP
1517 if ((ap->stats.idle_irq % 1000) == 0) {
1518 ap->ops->sff_check_status(ap);
1519 ap->ops->sff_irq_clear(ap);
1520 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1521 return 1;
1523 #endif
1524 return 0; /* irq not handled */
1528 * ata_sff_interrupt - Default ATA host interrupt handler
1529 * @irq: irq line (unused)
1530 * @dev_instance: pointer to our ata_host information structure
1532 * Default interrupt handler for PCI IDE devices. Calls
1533 * ata_sff_host_intr() for each port that is not disabled.
1535 * LOCKING:
1536 * Obtains host lock during operation.
1538 * RETURNS:
1539 * IRQ_NONE or IRQ_HANDLED.
1541 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1543 struct ata_host *host = dev_instance;
1544 unsigned int i;
1545 unsigned int handled = 0;
1546 unsigned long flags;
1548 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1549 spin_lock_irqsave(&host->lock, flags);
1551 for (i = 0; i < host->n_ports; i++) {
1552 struct ata_port *ap;
1554 ap = host->ports[i];
1555 if (ap &&
1556 !(ap->flags & ATA_FLAG_DISABLED)) {
1557 struct ata_queued_cmd *qc;
1559 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1560 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1561 (qc->flags & ATA_QCFLAG_ACTIVE))
1562 handled |= ata_sff_host_intr(ap, qc);
1566 spin_unlock_irqrestore(&host->lock, flags);
1568 return IRQ_RETVAL(handled);
1572 * ata_sff_freeze - Freeze SFF controller port
1573 * @ap: port to freeze
1575 * Freeze BMDMA controller port.
1577 * LOCKING:
1578 * Inherited from caller.
1580 void ata_sff_freeze(struct ata_port *ap)
1582 struct ata_ioports *ioaddr = &ap->ioaddr;
1584 ap->ctl |= ATA_NIEN;
1585 ap->last_ctl = ap->ctl;
1587 if (ioaddr->ctl_addr)
1588 iowrite8(ap->ctl, ioaddr->ctl_addr);
1590 /* Under certain circumstances, some controllers raise IRQ on
1591 * ATA_NIEN manipulation. Also, many controllers fail to mask
1592 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1594 ap->ops->sff_check_status(ap);
1596 ap->ops->sff_irq_clear(ap);
1600 * ata_sff_thaw - Thaw SFF controller port
1601 * @ap: port to thaw
1603 * Thaw SFF controller port.
1605 * LOCKING:
1606 * Inherited from caller.
1608 void ata_sff_thaw(struct ata_port *ap)
1610 /* clear & re-enable interrupts */
1611 ap->ops->sff_check_status(ap);
1612 ap->ops->sff_irq_clear(ap);
1613 ap->ops->sff_irq_on(ap);
1617 * ata_sff_prereset - prepare SFF link for reset
1618 * @link: SFF link to be reset
1619 * @deadline: deadline jiffies for the operation
1621 * SFF link @link is about to be reset. Initialize it. It first
1622 * calls ata_std_prereset() and wait for !BSY if the port is
1623 * being softreset.
1625 * LOCKING:
1626 * Kernel thread context (may sleep)
1628 * RETURNS:
1629 * 0 on success, -errno otherwise.
1631 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1633 struct ata_eh_context *ehc = &link->eh_context;
1634 int rc;
1636 rc = ata_std_prereset(link, deadline);
1637 if (rc)
1638 return rc;
1640 /* if we're about to do hardreset, nothing more to do */
1641 if (ehc->i.action & ATA_EH_HARDRESET)
1642 return 0;
1644 /* wait for !BSY if we don't know that no device is attached */
1645 if (!ata_link_offline(link)) {
1646 rc = ata_sff_wait_ready(link, deadline);
1647 if (rc && rc != -ENODEV) {
1648 ata_link_printk(link, KERN_WARNING, "device not ready "
1649 "(errno=%d), forcing hardreset\n", rc);
1650 ehc->i.action |= ATA_EH_HARDRESET;
1654 return 0;
1658 * ata_devchk - PATA device presence detection
1659 * @ap: ATA channel to examine
1660 * @device: Device to examine (starting at zero)
1662 * This technique was originally described in
1663 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1664 * later found its way into the ATA/ATAPI spec.
1666 * Write a pattern to the ATA shadow registers,
1667 * and if a device is present, it will respond by
1668 * correctly storing and echoing back the
1669 * ATA shadow register contents.
1671 * LOCKING:
1672 * caller.
1674 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1676 struct ata_ioports *ioaddr = &ap->ioaddr;
1677 u8 nsect, lbal;
1679 ap->ops->sff_dev_select(ap, device);
1681 iowrite8(0x55, ioaddr->nsect_addr);
1682 iowrite8(0xaa, ioaddr->lbal_addr);
1684 iowrite8(0xaa, ioaddr->nsect_addr);
1685 iowrite8(0x55, ioaddr->lbal_addr);
1687 iowrite8(0x55, ioaddr->nsect_addr);
1688 iowrite8(0xaa, ioaddr->lbal_addr);
1690 nsect = ioread8(ioaddr->nsect_addr);
1691 lbal = ioread8(ioaddr->lbal_addr);
1693 if ((nsect == 0x55) && (lbal == 0xaa))
1694 return 1; /* we found a device */
1696 return 0; /* nothing found */
1700 * ata_sff_dev_classify - Parse returned ATA device signature
1701 * @dev: ATA device to classify (starting at zero)
1702 * @present: device seems present
1703 * @r_err: Value of error register on completion
1705 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1706 * an ATA/ATAPI-defined set of values is placed in the ATA
1707 * shadow registers, indicating the results of device detection
1708 * and diagnostics.
1710 * Select the ATA device, and read the values from the ATA shadow
1711 * registers. Then parse according to the Error register value,
1712 * and the spec-defined values examined by ata_dev_classify().
1714 * LOCKING:
1715 * caller.
1717 * RETURNS:
1718 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1720 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1721 u8 *r_err)
1723 struct ata_port *ap = dev->link->ap;
1724 struct ata_taskfile tf;
1725 unsigned int class;
1726 u8 err;
1728 ap->ops->sff_dev_select(ap, dev->devno);
1730 memset(&tf, 0, sizeof(tf));
1732 ap->ops->sff_tf_read(ap, &tf);
1733 err = tf.feature;
1734 if (r_err)
1735 *r_err = err;
1737 /* see if device passed diags: continue and warn later */
1738 if (err == 0)
1739 /* diagnostic fail : do nothing _YET_ */
1740 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1741 else if (err == 1)
1742 /* do nothing */ ;
1743 else if ((dev->devno == 0) && (err == 0x81))
1744 /* do nothing */ ;
1745 else
1746 return ATA_DEV_NONE;
1748 /* determine if device is ATA or ATAPI */
1749 class = ata_dev_classify(&tf);
1751 if (class == ATA_DEV_UNKNOWN) {
1752 /* If the device failed diagnostic, it's likely to
1753 * have reported incorrect device signature too.
1754 * Assume ATA device if the device seems present but
1755 * device signature is invalid with diagnostic
1756 * failure.
1758 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1759 class = ATA_DEV_ATA;
1760 else
1761 class = ATA_DEV_NONE;
1762 } else if ((class == ATA_DEV_ATA) &&
1763 (ap->ops->sff_check_status(ap) == 0))
1764 class = ATA_DEV_NONE;
1766 return class;
1770 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1771 * @link: SFF link which is just reset
1772 * @devmask: mask of present devices
1773 * @deadline: deadline jiffies for the operation
1775 * Wait devices attached to SFF @link to become ready after
1776 * reset. It contains preceding 150ms wait to avoid accessing TF
1777 * status register too early.
1779 * LOCKING:
1780 * Kernel thread context (may sleep).
1782 * RETURNS:
1783 * 0 on success, -ENODEV if some or all of devices in @devmask
1784 * don't seem to exist. -errno on other errors.
1786 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1787 unsigned long deadline)
1789 struct ata_port *ap = link->ap;
1790 struct ata_ioports *ioaddr = &ap->ioaddr;
1791 unsigned int dev0 = devmask & (1 << 0);
1792 unsigned int dev1 = devmask & (1 << 1);
1793 int rc, ret = 0;
1795 msleep(ATA_WAIT_AFTER_RESET_MSECS);
1797 /* always check readiness of the master device */
1798 rc = ata_sff_wait_ready(link, deadline);
1799 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1800 * and TF status is 0xff, bail out on it too.
1802 if (rc)
1803 return rc;
1805 /* if device 1 was found in ata_devchk, wait for register
1806 * access briefly, then wait for BSY to clear.
1808 if (dev1) {
1809 int i;
1811 ap->ops->sff_dev_select(ap, 1);
1813 /* Wait for register access. Some ATAPI devices fail
1814 * to set nsect/lbal after reset, so don't waste too
1815 * much time on it. We're gonna wait for !BSY anyway.
1817 for (i = 0; i < 2; i++) {
1818 u8 nsect, lbal;
1820 nsect = ioread8(ioaddr->nsect_addr);
1821 lbal = ioread8(ioaddr->lbal_addr);
1822 if ((nsect == 1) && (lbal == 1))
1823 break;
1824 msleep(50); /* give drive a breather */
1827 rc = ata_sff_wait_ready(link, deadline);
1828 if (rc) {
1829 if (rc != -ENODEV)
1830 return rc;
1831 ret = rc;
1835 /* is all this really necessary? */
1836 ap->ops->sff_dev_select(ap, 0);
1837 if (dev1)
1838 ap->ops->sff_dev_select(ap, 1);
1839 if (dev0)
1840 ap->ops->sff_dev_select(ap, 0);
1842 return ret;
1845 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1846 unsigned long deadline)
1848 struct ata_ioports *ioaddr = &ap->ioaddr;
1850 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1852 /* software reset. causes dev0 to be selected */
1853 iowrite8(ap->ctl, ioaddr->ctl_addr);
1854 udelay(20); /* FIXME: flush */
1855 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1856 udelay(20); /* FIXME: flush */
1857 iowrite8(ap->ctl, ioaddr->ctl_addr);
1859 /* wait the port to become ready */
1860 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1864 * ata_sff_softreset - reset host port via ATA SRST
1865 * @link: ATA link to reset
1866 * @classes: resulting classes of attached devices
1867 * @deadline: deadline jiffies for the operation
1869 * Reset host port using ATA SRST.
1871 * LOCKING:
1872 * Kernel thread context (may sleep)
1874 * RETURNS:
1875 * 0 on success, -errno otherwise.
1877 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1878 unsigned long deadline)
1880 struct ata_port *ap = link->ap;
1881 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1882 unsigned int devmask = 0;
1883 int rc;
1884 u8 err;
1886 DPRINTK("ENTER\n");
1888 /* determine if device 0/1 are present */
1889 if (ata_devchk(ap, 0))
1890 devmask |= (1 << 0);
1891 if (slave_possible && ata_devchk(ap, 1))
1892 devmask |= (1 << 1);
1894 /* select device 0 again */
1895 ap->ops->sff_dev_select(ap, 0);
1897 /* issue bus reset */
1898 DPRINTK("about to softreset, devmask=%x\n", devmask);
1899 rc = ata_bus_softreset(ap, devmask, deadline);
1900 /* if link is occupied, -ENODEV too is an error */
1901 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1902 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
1903 return rc;
1906 /* determine by signature whether we have ATA or ATAPI devices */
1907 classes[0] = ata_sff_dev_classify(&link->device[0],
1908 devmask & (1 << 0), &err);
1909 if (slave_possible && err != 0x81)
1910 classes[1] = ata_sff_dev_classify(&link->device[1],
1911 devmask & (1 << 1), &err);
1913 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
1914 return 0;
1918 * sata_sff_hardreset - reset host port via SATA phy reset
1919 * @link: link to reset
1920 * @class: resulting class of attached device
1921 * @deadline: deadline jiffies for the operation
1923 * SATA phy-reset host port using DET bits of SControl register,
1924 * wait for !BSY and classify the attached device.
1926 * LOCKING:
1927 * Kernel thread context (may sleep)
1929 * RETURNS:
1930 * 0 on success, -errno otherwise.
1932 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1933 unsigned long deadline)
1935 struct ata_eh_context *ehc = &link->eh_context;
1936 const unsigned long *timing = sata_ehc_deb_timing(ehc);
1937 bool online;
1938 int rc;
1940 rc = sata_link_hardreset(link, timing, deadline, &online,
1941 ata_sff_check_ready);
1942 if (online)
1943 *class = ata_sff_dev_classify(link->device, 1, NULL);
1945 DPRINTK("EXIT, class=%u\n", *class);
1946 return rc;
1950 * ata_sff_postreset - SFF postreset callback
1951 * @link: the target SFF ata_link
1952 * @classes: classes of attached devices
1954 * This function is invoked after a successful reset. It first
1955 * calls ata_std_postreset() and performs SFF specific postreset
1956 * processing.
1958 * LOCKING:
1959 * Kernel thread context (may sleep)
1961 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1963 struct ata_port *ap = link->ap;
1965 ata_std_postreset(link, classes);
1967 /* is double-select really necessary? */
1968 if (classes[0] != ATA_DEV_NONE)
1969 ap->ops->sff_dev_select(ap, 1);
1970 if (classes[1] != ATA_DEV_NONE)
1971 ap->ops->sff_dev_select(ap, 0);
1973 /* bail out if no device is present */
1974 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
1975 DPRINTK("EXIT, no device\n");
1976 return;
1979 /* set up device control */
1980 if (ap->ioaddr.ctl_addr)
1981 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
1985 * ata_sff_error_handler - Stock error handler for BMDMA controller
1986 * @ap: port to handle error for
1988 * Stock error handler for SFF controller. It can handle both
1989 * PATA and SATA controllers. Many controllers should be able to
1990 * use this EH as-is or with some added handling before and
1991 * after.
1993 * LOCKING:
1994 * Kernel thread context (may sleep)
1996 void ata_sff_error_handler(struct ata_port *ap)
1998 ata_reset_fn_t softreset = ap->ops->softreset;
1999 ata_reset_fn_t hardreset = ap->ops->hardreset;
2000 struct ata_queued_cmd *qc;
2001 unsigned long flags;
2002 int thaw = 0;
2004 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2005 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2006 qc = NULL;
2008 /* reset PIO HSM and stop DMA engine */
2009 spin_lock_irqsave(ap->lock, flags);
2011 ap->hsm_task_state = HSM_ST_IDLE;
2013 if (ap->ioaddr.bmdma_addr &&
2014 qc && (qc->tf.protocol == ATA_PROT_DMA ||
2015 qc->tf.protocol == ATAPI_PROT_DMA)) {
2016 u8 host_stat;
2018 host_stat = ap->ops->bmdma_status(ap);
2020 /* BMDMA controllers indicate host bus error by
2021 * setting DMA_ERR bit and timing out. As it wasn't
2022 * really a timeout event, adjust error mask and
2023 * cancel frozen state.
2025 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2026 qc->err_mask = AC_ERR_HOST_BUS;
2027 thaw = 1;
2030 ap->ops->bmdma_stop(qc);
2033 ata_sff_altstatus(ap);
2034 ap->ops->sff_check_status(ap);
2035 ap->ops->sff_irq_clear(ap);
2037 spin_unlock_irqrestore(ap->lock, flags);
2039 if (thaw)
2040 ata_eh_thaw_port(ap);
2042 /* PIO and DMA engines have been stopped, perform recovery */
2044 /* Ignore ata_sff_softreset if ctl isn't accessible and
2045 * built-in hardresets if SCR access isn't available.
2047 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2048 softreset = NULL;
2049 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2050 hardreset = NULL;
2052 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2053 ap->ops->postreset);
2057 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2058 * @qc: internal command to clean up
2060 * LOCKING:
2061 * Kernel thread context (may sleep)
2063 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2065 if (qc->ap->ioaddr.bmdma_addr)
2066 ata_bmdma_stop(qc);
2070 * ata_sff_port_start - Set port up for dma.
2071 * @ap: Port to initialize
2073 * Called just after data structures for each port are
2074 * initialized. Allocates space for PRD table if the device
2075 * is DMA capable SFF.
2077 * May be used as the port_start() entry in ata_port_operations.
2079 * LOCKING:
2080 * Inherited from caller.
2082 int ata_sff_port_start(struct ata_port *ap)
2084 if (ap->ioaddr.bmdma_addr)
2085 return ata_port_start(ap);
2086 return 0;
2090 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2091 * @ioaddr: IO address structure to be initialized
2093 * Utility function which initializes data_addr, error_addr,
2094 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2095 * device_addr, status_addr, and command_addr to standard offsets
2096 * relative to cmd_addr.
2098 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2100 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2102 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2103 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2104 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2105 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2106 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2107 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2108 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2109 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2110 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2111 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2114 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2115 unsigned long xfer_mask)
2117 /* Filter out DMA modes if the device has been configured by
2118 the BIOS as PIO only */
2120 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2121 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2122 return xfer_mask;
2126 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2127 * @qc: Info associated with this ATA transaction.
2129 * LOCKING:
2130 * spin_lock_irqsave(host lock)
2132 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2134 struct ata_port *ap = qc->ap;
2135 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2136 u8 dmactl;
2138 /* load PRD table addr. */
2139 mb(); /* make sure PRD table writes are visible to controller */
2140 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2142 /* specify data direction, triple-check start bit is clear */
2143 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2144 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2145 if (!rw)
2146 dmactl |= ATA_DMA_WR;
2147 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2149 /* issue r/w command */
2150 ap->ops->sff_exec_command(ap, &qc->tf);
2154 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2155 * @qc: Info associated with this ATA transaction.
2157 * LOCKING:
2158 * spin_lock_irqsave(host lock)
2160 void ata_bmdma_start(struct ata_queued_cmd *qc)
2162 struct ata_port *ap = qc->ap;
2163 u8 dmactl;
2165 /* start host DMA transaction */
2166 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2167 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2169 /* Strictly, one may wish to issue an ioread8() here, to
2170 * flush the mmio write. However, control also passes
2171 * to the hardware at this point, and it will interrupt
2172 * us when we are to resume control. So, in effect,
2173 * we don't care when the mmio write flushes.
2174 * Further, a read of the DMA status register _immediately_
2175 * following the write may not be what certain flaky hardware
2176 * is expected, so I think it is best to not add a readb()
2177 * without first all the MMIO ATA cards/mobos.
2178 * Or maybe I'm just being paranoid.
2180 * FIXME: The posting of this write means I/O starts are
2181 * unneccessarily delayed for MMIO
2186 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2187 * @qc: Command we are ending DMA for
2189 * Clears the ATA_DMA_START flag in the dma control register
2191 * May be used as the bmdma_stop() entry in ata_port_operations.
2193 * LOCKING:
2194 * spin_lock_irqsave(host lock)
2196 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2198 struct ata_port *ap = qc->ap;
2199 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2201 /* clear start/stop bit */
2202 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2203 mmio + ATA_DMA_CMD);
2205 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2206 ata_sff_altstatus(ap); /* dummy read */
2210 * ata_bmdma_status - Read PCI IDE BMDMA status
2211 * @ap: Port associated with this ATA transaction.
2213 * Read and return BMDMA status register.
2215 * May be used as the bmdma_status() entry in ata_port_operations.
2217 * LOCKING:
2218 * spin_lock_irqsave(host lock)
2220 u8 ata_bmdma_status(struct ata_port *ap)
2222 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2226 * ata_bus_reset - reset host port and associated ATA channel
2227 * @ap: port to reset
2229 * This is typically the first time we actually start issuing
2230 * commands to the ATA channel. We wait for BSY to clear, then
2231 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2232 * result. Determine what devices, if any, are on the channel
2233 * by looking at the device 0/1 error register. Look at the signature
2234 * stored in each device's taskfile registers, to determine if
2235 * the device is ATA or ATAPI.
2237 * LOCKING:
2238 * PCI/etc. bus probe sem.
2239 * Obtains host lock.
2241 * SIDE EFFECTS:
2242 * Sets ATA_FLAG_DISABLED if bus reset fails.
2244 * DEPRECATED:
2245 * This function is only for drivers which still use old EH and
2246 * will be removed soon.
2248 void ata_bus_reset(struct ata_port *ap)
2250 struct ata_device *device = ap->link.device;
2251 struct ata_ioports *ioaddr = &ap->ioaddr;
2252 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2253 u8 err;
2254 unsigned int dev0, dev1 = 0, devmask = 0;
2255 int rc;
2257 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2259 /* determine if device 0/1 are present */
2260 if (ap->flags & ATA_FLAG_SATA_RESET)
2261 dev0 = 1;
2262 else {
2263 dev0 = ata_devchk(ap, 0);
2264 if (slave_possible)
2265 dev1 = ata_devchk(ap, 1);
2268 if (dev0)
2269 devmask |= (1 << 0);
2270 if (dev1)
2271 devmask |= (1 << 1);
2273 /* select device 0 again */
2274 ap->ops->sff_dev_select(ap, 0);
2276 /* issue bus reset */
2277 if (ap->flags & ATA_FLAG_SRST) {
2278 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
2279 if (rc && rc != -ENODEV)
2280 goto err_out;
2284 * determine by signature whether we have ATA or ATAPI devices
2286 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2287 if ((slave_possible) && (err != 0x81))
2288 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2290 /* is double-select really necessary? */
2291 if (device[1].class != ATA_DEV_NONE)
2292 ap->ops->sff_dev_select(ap, 1);
2293 if (device[0].class != ATA_DEV_NONE)
2294 ap->ops->sff_dev_select(ap, 0);
2296 /* if no devices were detected, disable this port */
2297 if ((device[0].class == ATA_DEV_NONE) &&
2298 (device[1].class == ATA_DEV_NONE))
2299 goto err_out;
2301 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2302 /* set up device control for ATA_FLAG_SATA_RESET */
2303 iowrite8(ap->ctl, ioaddr->ctl_addr);
2306 DPRINTK("EXIT\n");
2307 return;
2309 err_out:
2310 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2311 ata_port_disable(ap);
2313 DPRINTK("EXIT\n");
2316 #ifdef CONFIG_PCI
2319 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
2320 * @pdev: PCI device
2322 * Some PCI ATA devices report simplex mode but in fact can be told to
2323 * enter non simplex mode. This implements the necessary logic to
2324 * perform the task on such devices. Calling it on other devices will
2325 * have -undefined- behaviour.
2327 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2329 unsigned long bmdma = pci_resource_start(pdev, 4);
2330 u8 simplex;
2332 if (bmdma == 0)
2333 return -ENOENT;
2335 simplex = inb(bmdma + 0x02);
2336 outb(simplex & 0x60, bmdma + 0x02);
2337 simplex = inb(bmdma + 0x02);
2338 if (simplex & 0x80)
2339 return -EOPNOTSUPP;
2340 return 0;
2344 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2345 * @host: target ATA host
2347 * Acquire PCI BMDMA resources and initialize @host accordingly.
2349 * LOCKING:
2350 * Inherited from calling layer (may sleep).
2352 * RETURNS:
2353 * 0 on success, -errno otherwise.
2355 int ata_pci_bmdma_init(struct ata_host *host)
2357 struct device *gdev = host->dev;
2358 struct pci_dev *pdev = to_pci_dev(gdev);
2359 int i, rc;
2361 /* No BAR4 allocation: No DMA */
2362 if (pci_resource_start(pdev, 4) == 0)
2363 return 0;
2365 /* TODO: If we get no DMA mask we should fall back to PIO */
2366 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2367 if (rc)
2368 return rc;
2369 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2370 if (rc)
2371 return rc;
2373 /* request and iomap DMA region */
2374 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2375 if (rc) {
2376 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2377 return -ENOMEM;
2379 host->iomap = pcim_iomap_table(pdev);
2381 for (i = 0; i < 2; i++) {
2382 struct ata_port *ap = host->ports[i];
2383 void __iomem *bmdma = host->iomap[4] + 8 * i;
2385 if (ata_port_is_dummy(ap))
2386 continue;
2388 ap->ioaddr.bmdma_addr = bmdma;
2389 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2390 (ioread8(bmdma + 2) & 0x80))
2391 host->flags |= ATA_HOST_SIMPLEX;
2393 ata_port_desc(ap, "bmdma 0x%llx",
2394 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2397 return 0;
2400 static int ata_resources_present(struct pci_dev *pdev, int port)
2402 int i;
2404 /* Check the PCI resources for this channel are enabled */
2405 port = port * 2;
2406 for (i = 0; i < 2; i ++) {
2407 if (pci_resource_start(pdev, port + i) == 0 ||
2408 pci_resource_len(pdev, port + i) == 0)
2409 return 0;
2411 return 1;
2415 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2416 * @host: target ATA host
2418 * Acquire native PCI ATA resources for @host and initialize the
2419 * first two ports of @host accordingly. Ports marked dummy are
2420 * skipped and allocation failure makes the port dummy.
2422 * Note that native PCI resources are valid even for legacy hosts
2423 * as we fix up pdev resources array early in boot, so this
2424 * function can be used for both native and legacy SFF hosts.
2426 * LOCKING:
2427 * Inherited from calling layer (may sleep).
2429 * RETURNS:
2430 * 0 if at least one port is initialized, -ENODEV if no port is
2431 * available.
2433 int ata_pci_sff_init_host(struct ata_host *host)
2435 struct device *gdev = host->dev;
2436 struct pci_dev *pdev = to_pci_dev(gdev);
2437 unsigned int mask = 0;
2438 int i, rc;
2440 /* request, iomap BARs and init port addresses accordingly */
2441 for (i = 0; i < 2; i++) {
2442 struct ata_port *ap = host->ports[i];
2443 int base = i * 2;
2444 void __iomem * const *iomap;
2446 if (ata_port_is_dummy(ap))
2447 continue;
2449 /* Discard disabled ports. Some controllers show
2450 * their unused channels this way. Disabled ports are
2451 * made dummy.
2453 if (!ata_resources_present(pdev, i)) {
2454 ap->ops = &ata_dummy_port_ops;
2455 continue;
2458 rc = pcim_iomap_regions(pdev, 0x3 << base,
2459 dev_driver_string(gdev));
2460 if (rc) {
2461 dev_printk(KERN_WARNING, gdev,
2462 "failed to request/iomap BARs for port %d "
2463 "(errno=%d)\n", i, rc);
2464 if (rc == -EBUSY)
2465 pcim_pin_device(pdev);
2466 ap->ops = &ata_dummy_port_ops;
2467 continue;
2469 host->iomap = iomap = pcim_iomap_table(pdev);
2471 ap->ioaddr.cmd_addr = iomap[base];
2472 ap->ioaddr.altstatus_addr =
2473 ap->ioaddr.ctl_addr = (void __iomem *)
2474 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2475 ata_sff_std_ports(&ap->ioaddr);
2477 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2478 (unsigned long long)pci_resource_start(pdev, base),
2479 (unsigned long long)pci_resource_start(pdev, base + 1));
2481 mask |= 1 << i;
2484 if (!mask) {
2485 dev_printk(KERN_ERR, gdev, "no available native port\n");
2486 return -ENODEV;
2489 return 0;
2493 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2494 * @pdev: target PCI device
2495 * @ppi: array of port_info, must be enough for two ports
2496 * @r_host: out argument for the initialized ATA host
2498 * Helper to allocate ATA host for @pdev, acquire all native PCI
2499 * resources and initialize it accordingly in one go.
2501 * LOCKING:
2502 * Inherited from calling layer (may sleep).
2504 * RETURNS:
2505 * 0 on success, -errno otherwise.
2507 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2508 const struct ata_port_info * const * ppi,
2509 struct ata_host **r_host)
2511 struct ata_host *host;
2512 int rc;
2514 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2515 return -ENOMEM;
2517 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2518 if (!host) {
2519 dev_printk(KERN_ERR, &pdev->dev,
2520 "failed to allocate ATA host\n");
2521 rc = -ENOMEM;
2522 goto err_out;
2525 rc = ata_pci_sff_init_host(host);
2526 if (rc)
2527 goto err_out;
2529 /* init DMA related stuff */
2530 rc = ata_pci_bmdma_init(host);
2531 if (rc)
2532 goto err_bmdma;
2534 devres_remove_group(&pdev->dev, NULL);
2535 *r_host = host;
2536 return 0;
2538 err_bmdma:
2539 /* This is necessary because PCI and iomap resources are
2540 * merged and releasing the top group won't release the
2541 * acquired resources if some of those have been acquired
2542 * before entering this function.
2544 pcim_iounmap_regions(pdev, 0xf);
2545 err_out:
2546 devres_release_group(&pdev->dev, NULL);
2547 return rc;
2551 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2552 * @host: target SFF ATA host
2553 * @irq_handler: irq_handler used when requesting IRQ(s)
2554 * @sht: scsi_host_template to use when registering the host
2556 * This is the counterpart of ata_host_activate() for SFF ATA
2557 * hosts. This separate helper is necessary because SFF hosts
2558 * use two separate interrupts in legacy mode.
2560 * LOCKING:
2561 * Inherited from calling layer (may sleep).
2563 * RETURNS:
2564 * 0 on success, -errno otherwise.
2566 int ata_pci_sff_activate_host(struct ata_host *host,
2567 irq_handler_t irq_handler,
2568 struct scsi_host_template *sht)
2570 struct device *dev = host->dev;
2571 struct pci_dev *pdev = to_pci_dev(dev);
2572 const char *drv_name = dev_driver_string(host->dev);
2573 int legacy_mode = 0, rc;
2575 rc = ata_host_start(host);
2576 if (rc)
2577 return rc;
2579 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2580 u8 tmp8, mask;
2582 /* TODO: What if one channel is in native mode ... */
2583 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2584 mask = (1 << 2) | (1 << 0);
2585 if ((tmp8 & mask) != mask)
2586 legacy_mode = 1;
2587 #if defined(CONFIG_NO_ATA_LEGACY)
2588 /* Some platforms with PCI limits cannot address compat
2589 port space. In that case we punt if their firmware has
2590 left a device in compatibility mode */
2591 if (legacy_mode) {
2592 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2593 return -EOPNOTSUPP;
2595 #endif
2598 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2599 return -ENOMEM;
2601 if (!legacy_mode && pdev->irq) {
2602 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2603 IRQF_SHARED, drv_name, host);
2604 if (rc)
2605 goto out;
2607 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2608 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2609 } else if (legacy_mode) {
2610 if (!ata_port_is_dummy(host->ports[0])) {
2611 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2612 irq_handler, IRQF_SHARED,
2613 drv_name, host);
2614 if (rc)
2615 goto out;
2617 ata_port_desc(host->ports[0], "irq %d",
2618 ATA_PRIMARY_IRQ(pdev));
2621 if (!ata_port_is_dummy(host->ports[1])) {
2622 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2623 irq_handler, IRQF_SHARED,
2624 drv_name, host);
2625 if (rc)
2626 goto out;
2628 ata_port_desc(host->ports[1], "irq %d",
2629 ATA_SECONDARY_IRQ(pdev));
2633 rc = ata_host_register(host, sht);
2634 out:
2635 if (rc == 0)
2636 devres_remove_group(dev, NULL);
2637 else
2638 devres_release_group(dev, NULL);
2640 return rc;
2644 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2645 * @pdev: Controller to be initialized
2646 * @ppi: array of port_info, must be enough for two ports
2647 * @sht: scsi_host_template to use when registering the host
2648 * @host_priv: host private_data
2650 * This is a helper function which can be called from a driver's
2651 * xxx_init_one() probe function if the hardware uses traditional
2652 * IDE taskfile registers.
2654 * This function calls pci_enable_device(), reserves its register
2655 * regions, sets the dma mask, enables bus master mode, and calls
2656 * ata_device_add()
2658 * ASSUMPTION:
2659 * Nobody makes a single channel controller that appears solely as
2660 * the secondary legacy port on PCI.
2662 * LOCKING:
2663 * Inherited from PCI layer (may sleep).
2665 * RETURNS:
2666 * Zero on success, negative on errno-based value on error.
2668 int ata_pci_sff_init_one(struct pci_dev *pdev,
2669 const struct ata_port_info * const * ppi,
2670 struct scsi_host_template *sht, void *host_priv)
2672 struct device *dev = &pdev->dev;
2673 const struct ata_port_info *pi = NULL;
2674 struct ata_host *host = NULL;
2675 int i, rc;
2677 DPRINTK("ENTER\n");
2679 /* look up the first valid port_info */
2680 for (i = 0; i < 2 && ppi[i]; i++) {
2681 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2682 pi = ppi[i];
2683 break;
2687 if (!pi) {
2688 dev_printk(KERN_ERR, &pdev->dev,
2689 "no valid port_info specified\n");
2690 return -EINVAL;
2693 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2694 return -ENOMEM;
2696 rc = pcim_enable_device(pdev);
2697 if (rc)
2698 goto out;
2700 /* prepare and activate SFF host */
2701 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2702 if (rc)
2703 goto out;
2704 host->private_data = host_priv;
2706 pci_set_master(pdev);
2707 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2708 out:
2709 if (rc == 0)
2710 devres_remove_group(&pdev->dev, NULL);
2711 else
2712 devres_release_group(&pdev->dev, NULL);
2714 return rc;
2717 #endif /* CONFIG_PCI */
2719 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
2720 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2721 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
2722 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
2723 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
2724 EXPORT_SYMBOL_GPL(ata_sff_check_status);
2725 EXPORT_SYMBOL_GPL(ata_sff_altstatus);
2726 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
2727 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
2728 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
2729 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
2730 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
2731 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
2732 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
2733 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
2734 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
2735 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
2736 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
2737 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
2738 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
2739 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
2740 EXPORT_SYMBOL_GPL(ata_sff_freeze);
2741 EXPORT_SYMBOL_GPL(ata_sff_thaw);
2742 EXPORT_SYMBOL_GPL(ata_sff_prereset);
2743 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2744 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2745 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2746 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2747 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2748 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2749 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2750 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2751 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2752 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2753 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2754 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2755 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2756 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2757 EXPORT_SYMBOL_GPL(ata_bus_reset);
2758 #ifdef CONFIG_PCI
2759 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2760 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2761 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2762 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2763 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2764 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2765 #endif /* CONFIG_PCI */