6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
49 static void unmap_region(struct mm_struct
*mm
,
50 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
51 unsigned long start
, unsigned long end
);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map
[16] = {
75 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
76 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
79 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
81 return __pgprot(pgprot_val(protection_map
[vm_flags
&
82 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
85 EXPORT_SYMBOL(vm_get_page_prot
);
87 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
112 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
114 unsigned long free
, allowed
;
116 vm_acct_memory(pages
);
119 * Sometimes we want to use more memory than we have
121 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
124 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
127 free
= global_page_state(NR_FILE_PAGES
);
128 free
+= nr_swap_pages
;
131 * Any slabs which are created with the
132 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
133 * which are reclaimable, under pressure. The dentry
134 * cache and most inode caches should fall into this
136 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
139 * Leave the last 3% for root
148 * nr_free_pages() is very expensive on large systems,
149 * only call if we're about to fail.
154 * Leave reserved pages. The pages are not for anonymous pages.
156 if (n
<= totalreserve_pages
)
159 n
-= totalreserve_pages
;
162 * Leave the last 3% for root
174 allowed
= (totalram_pages
- hugetlb_total_pages())
175 * sysctl_overcommit_ratio
/ 100;
177 * Leave the last 3% for root
180 allowed
-= allowed
/ 32;
181 allowed
+= total_swap_pages
;
183 /* Don't let a single process grow too big:
184 leave 3% of the size of this process for other processes */
186 allowed
-= mm
->total_vm
/ 32;
188 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
191 vm_unacct_memory(pages
);
197 * Requires inode->i_mapping->i_mmap_mutex
199 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
200 struct file
*file
, struct address_space
*mapping
)
202 if (vma
->vm_flags
& VM_DENYWRITE
)
203 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
204 if (vma
->vm_flags
& VM_SHARED
)
205 mapping
->i_mmap_writable
--;
207 flush_dcache_mmap_lock(mapping
);
208 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
209 list_del_init(&vma
->shared
.vm_set
.list
);
211 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
212 flush_dcache_mmap_unlock(mapping
);
216 * Unlink a file-based vm structure from its prio_tree, to hide
217 * vma from rmap and vmtruncate before freeing its page tables.
219 void unlink_file_vma(struct vm_area_struct
*vma
)
221 struct file
*file
= vma
->vm_file
;
224 struct address_space
*mapping
= file
->f_mapping
;
225 mutex_lock(&mapping
->i_mmap_mutex
);
226 __remove_shared_vm_struct(vma
, file
, mapping
);
227 mutex_unlock(&mapping
->i_mmap_mutex
);
232 * Close a vm structure and free it, returning the next.
234 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
236 struct vm_area_struct
*next
= vma
->vm_next
;
239 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
240 vma
->vm_ops
->close(vma
);
243 if (vma
->vm_flags
& VM_EXECUTABLE
)
244 removed_exe_file_vma(vma
->vm_mm
);
246 mpol_put(vma_policy(vma
));
247 kmem_cache_free(vm_area_cachep
, vma
);
251 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
253 unsigned long rlim
, retval
;
254 unsigned long newbrk
, oldbrk
;
255 struct mm_struct
*mm
= current
->mm
;
256 unsigned long min_brk
;
258 down_write(&mm
->mmap_sem
);
260 #ifdef CONFIG_COMPAT_BRK
262 * CONFIG_COMPAT_BRK can still be overridden by setting
263 * randomize_va_space to 2, which will still cause mm->start_brk
264 * to be arbitrarily shifted
266 if (current
->brk_randomized
)
267 min_brk
= mm
->start_brk
;
269 min_brk
= mm
->end_data
;
271 min_brk
= mm
->start_brk
;
277 * Check against rlimit here. If this check is done later after the test
278 * of oldbrk with newbrk then it can escape the test and let the data
279 * segment grow beyond its set limit the in case where the limit is
280 * not page aligned -Ram Gupta
282 rlim
= rlimit(RLIMIT_DATA
);
283 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
284 (mm
->end_data
- mm
->start_data
) > rlim
)
287 newbrk
= PAGE_ALIGN(brk
);
288 oldbrk
= PAGE_ALIGN(mm
->brk
);
289 if (oldbrk
== newbrk
)
292 /* Always allow shrinking brk. */
293 if (brk
<= mm
->brk
) {
294 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
299 /* Check against existing mmap mappings. */
300 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
303 /* Ok, looks good - let it rip. */
304 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
310 up_write(&mm
->mmap_sem
);
315 static int browse_rb(struct rb_root
*root
)
318 struct rb_node
*nd
, *pn
= NULL
;
319 unsigned long prev
= 0, pend
= 0;
321 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
322 struct vm_area_struct
*vma
;
323 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
324 if (vma
->vm_start
< prev
)
325 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
326 if (vma
->vm_start
< pend
)
327 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
328 if (vma
->vm_start
> vma
->vm_end
)
329 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
332 prev
= vma
->vm_start
;
336 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
340 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
344 void validate_mm(struct mm_struct
*mm
)
348 struct vm_area_struct
*tmp
= mm
->mmap
;
353 if (i
!= mm
->map_count
)
354 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
355 i
= browse_rb(&mm
->mm_rb
);
356 if (i
!= mm
->map_count
)
357 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
361 #define validate_mm(mm) do { } while (0)
364 static struct vm_area_struct
*
365 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
366 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
367 struct rb_node
** rb_parent
)
369 struct vm_area_struct
* vma
;
370 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
372 __rb_link
= &mm
->mm_rb
.rb_node
;
373 rb_prev
= __rb_parent
= NULL
;
377 struct vm_area_struct
*vma_tmp
;
379 __rb_parent
= *__rb_link
;
380 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
382 if (vma_tmp
->vm_end
> addr
) {
384 if (vma_tmp
->vm_start
<= addr
)
386 __rb_link
= &__rb_parent
->rb_left
;
388 rb_prev
= __rb_parent
;
389 __rb_link
= &__rb_parent
->rb_right
;
395 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
396 *rb_link
= __rb_link
;
397 *rb_parent
= __rb_parent
;
401 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
402 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
404 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
405 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
408 static void __vma_link_file(struct vm_area_struct
*vma
)
414 struct address_space
*mapping
= file
->f_mapping
;
416 if (vma
->vm_flags
& VM_DENYWRITE
)
417 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
418 if (vma
->vm_flags
& VM_SHARED
)
419 mapping
->i_mmap_writable
++;
421 flush_dcache_mmap_lock(mapping
);
422 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
423 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
425 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
426 flush_dcache_mmap_unlock(mapping
);
431 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
432 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
433 struct rb_node
*rb_parent
)
435 __vma_link_list(mm
, vma
, prev
, rb_parent
);
436 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
439 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
440 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
441 struct rb_node
*rb_parent
)
443 struct address_space
*mapping
= NULL
;
446 mapping
= vma
->vm_file
->f_mapping
;
449 mutex_lock(&mapping
->i_mmap_mutex
);
451 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
452 __vma_link_file(vma
);
455 mutex_unlock(&mapping
->i_mmap_mutex
);
462 * Helper for vma_adjust in the split_vma insert case:
463 * insert vm structure into list and rbtree and anon_vma,
464 * but it has already been inserted into prio_tree earlier.
466 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
468 struct vm_area_struct
*__vma
, *prev
;
469 struct rb_node
**rb_link
, *rb_parent
;
471 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
472 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
473 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
478 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
479 struct vm_area_struct
*prev
)
481 struct vm_area_struct
*next
= vma
->vm_next
;
483 prev
->vm_next
= next
;
485 next
->vm_prev
= prev
;
486 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
487 if (mm
->mmap_cache
== vma
)
488 mm
->mmap_cache
= prev
;
492 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
493 * is already present in an i_mmap tree without adjusting the tree.
494 * The following helper function should be used when such adjustments
495 * are necessary. The "insert" vma (if any) is to be inserted
496 * before we drop the necessary locks.
498 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
499 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
501 struct mm_struct
*mm
= vma
->vm_mm
;
502 struct vm_area_struct
*next
= vma
->vm_next
;
503 struct vm_area_struct
*importer
= NULL
;
504 struct address_space
*mapping
= NULL
;
505 struct prio_tree_root
*root
= NULL
;
506 struct anon_vma
*anon_vma
= NULL
;
507 struct file
*file
= vma
->vm_file
;
508 long adjust_next
= 0;
511 if (next
&& !insert
) {
512 struct vm_area_struct
*exporter
= NULL
;
514 if (end
>= next
->vm_end
) {
516 * vma expands, overlapping all the next, and
517 * perhaps the one after too (mprotect case 6).
519 again
: remove_next
= 1 + (end
> next
->vm_end
);
523 } else if (end
> next
->vm_start
) {
525 * vma expands, overlapping part of the next:
526 * mprotect case 5 shifting the boundary up.
528 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
531 } else if (end
< vma
->vm_end
) {
533 * vma shrinks, and !insert tells it's not
534 * split_vma inserting another: so it must be
535 * mprotect case 4 shifting the boundary down.
537 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
543 * Easily overlooked: when mprotect shifts the boundary,
544 * make sure the expanding vma has anon_vma set if the
545 * shrinking vma had, to cover any anon pages imported.
547 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
548 if (anon_vma_clone(importer
, exporter
))
550 importer
->anon_vma
= exporter
->anon_vma
;
555 mapping
= file
->f_mapping
;
556 if (!(vma
->vm_flags
& VM_NONLINEAR
))
557 root
= &mapping
->i_mmap
;
558 mutex_lock(&mapping
->i_mmap_mutex
);
561 * Put into prio_tree now, so instantiated pages
562 * are visible to arm/parisc __flush_dcache_page
563 * throughout; but we cannot insert into address
564 * space until vma start or end is updated.
566 __vma_link_file(insert
);
570 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
573 * When changing only vma->vm_end, we don't really need anon_vma
574 * lock. This is a fairly rare case by itself, but the anon_vma
575 * lock may be shared between many sibling processes. Skipping
576 * the lock for brk adjustments makes a difference sometimes.
578 if (vma
->anon_vma
&& (importer
|| start
!= vma
->vm_start
)) {
579 anon_vma
= vma
->anon_vma
;
580 anon_vma_lock(anon_vma
);
584 flush_dcache_mmap_lock(mapping
);
585 vma_prio_tree_remove(vma
, root
);
587 vma_prio_tree_remove(next
, root
);
590 vma
->vm_start
= start
;
592 vma
->vm_pgoff
= pgoff
;
594 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
595 next
->vm_pgoff
+= adjust_next
;
600 vma_prio_tree_insert(next
, root
);
601 vma_prio_tree_insert(vma
, root
);
602 flush_dcache_mmap_unlock(mapping
);
607 * vma_merge has merged next into vma, and needs
608 * us to remove next before dropping the locks.
610 __vma_unlink(mm
, next
, vma
);
612 __remove_shared_vm_struct(next
, file
, mapping
);
615 * split_vma has split insert from vma, and needs
616 * us to insert it before dropping the locks
617 * (it may either follow vma or precede it).
619 __insert_vm_struct(mm
, insert
);
623 anon_vma_unlock(anon_vma
);
625 mutex_unlock(&mapping
->i_mmap_mutex
);
630 if (next
->vm_flags
& VM_EXECUTABLE
)
631 removed_exe_file_vma(mm
);
634 anon_vma_merge(vma
, next
);
636 mpol_put(vma_policy(next
));
637 kmem_cache_free(vm_area_cachep
, next
);
639 * In mprotect's case 6 (see comments on vma_merge),
640 * we must remove another next too. It would clutter
641 * up the code too much to do both in one go.
643 if (remove_next
== 2) {
655 * If the vma has a ->close operation then the driver probably needs to release
656 * per-vma resources, so we don't attempt to merge those.
658 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
659 struct file
*file
, unsigned long vm_flags
)
661 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
662 if ((vma
->vm_flags
^ vm_flags
) & ~VM_CAN_NONLINEAR
)
664 if (vma
->vm_file
!= file
)
666 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
671 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
672 struct anon_vma
*anon_vma2
,
673 struct vm_area_struct
*vma
)
676 * The list_is_singular() test is to avoid merging VMA cloned from
677 * parents. This can improve scalability caused by anon_vma lock.
679 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
680 list_is_singular(&vma
->anon_vma_chain
)))
682 return anon_vma1
== anon_vma2
;
686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687 * in front of (at a lower virtual address and file offset than) the vma.
689 * We cannot merge two vmas if they have differently assigned (non-NULL)
690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
692 * We don't check here for the merged mmap wrapping around the end of pagecache
693 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
694 * wrap, nor mmaps which cover the final page at index -1UL.
697 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
698 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
700 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
701 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
702 if (vma
->vm_pgoff
== vm_pgoff
)
709 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
710 * beyond (at a higher virtual address and file offset than) the vma.
712 * We cannot merge two vmas if they have differently assigned (non-NULL)
713 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
716 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
717 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
719 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
720 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
722 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
723 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
730 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
731 * whether that can be merged with its predecessor or its successor.
732 * Or both (it neatly fills a hole).
734 * In most cases - when called for mmap, brk or mremap - [addr,end) is
735 * certain not to be mapped by the time vma_merge is called; but when
736 * called for mprotect, it is certain to be already mapped (either at
737 * an offset within prev, or at the start of next), and the flags of
738 * this area are about to be changed to vm_flags - and the no-change
739 * case has already been eliminated.
741 * The following mprotect cases have to be considered, where AAAA is
742 * the area passed down from mprotect_fixup, never extending beyond one
743 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
745 * AAAA AAAA AAAA AAAA
746 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
747 * cannot merge might become might become might become
748 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
749 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
750 * mremap move: PPPPNNNNNNNN 8
752 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
753 * might become case 1 below case 2 below case 3 below
755 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
756 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
758 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
759 struct vm_area_struct
*prev
, unsigned long addr
,
760 unsigned long end
, unsigned long vm_flags
,
761 struct anon_vma
*anon_vma
, struct file
*file
,
762 pgoff_t pgoff
, struct mempolicy
*policy
)
764 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
765 struct vm_area_struct
*area
, *next
;
769 * We later require that vma->vm_flags == vm_flags,
770 * so this tests vma->vm_flags & VM_SPECIAL, too.
772 if (vm_flags
& VM_SPECIAL
)
776 next
= prev
->vm_next
;
780 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
781 next
= next
->vm_next
;
784 * Can it merge with the predecessor?
786 if (prev
&& prev
->vm_end
== addr
&&
787 mpol_equal(vma_policy(prev
), policy
) &&
788 can_vma_merge_after(prev
, vm_flags
,
789 anon_vma
, file
, pgoff
)) {
791 * OK, it can. Can we now merge in the successor as well?
793 if (next
&& end
== next
->vm_start
&&
794 mpol_equal(policy
, vma_policy(next
)) &&
795 can_vma_merge_before(next
, vm_flags
,
796 anon_vma
, file
, pgoff
+pglen
) &&
797 is_mergeable_anon_vma(prev
->anon_vma
,
798 next
->anon_vma
, NULL
)) {
800 err
= vma_adjust(prev
, prev
->vm_start
,
801 next
->vm_end
, prev
->vm_pgoff
, NULL
);
802 } else /* cases 2, 5, 7 */
803 err
= vma_adjust(prev
, prev
->vm_start
,
804 end
, prev
->vm_pgoff
, NULL
);
807 khugepaged_enter_vma_merge(prev
);
812 * Can this new request be merged in front of next?
814 if (next
&& end
== next
->vm_start
&&
815 mpol_equal(policy
, vma_policy(next
)) &&
816 can_vma_merge_before(next
, vm_flags
,
817 anon_vma
, file
, pgoff
+pglen
)) {
818 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
819 err
= vma_adjust(prev
, prev
->vm_start
,
820 addr
, prev
->vm_pgoff
, NULL
);
821 else /* cases 3, 8 */
822 err
= vma_adjust(area
, addr
, next
->vm_end
,
823 next
->vm_pgoff
- pglen
, NULL
);
826 khugepaged_enter_vma_merge(area
);
834 * Rough compatbility check to quickly see if it's even worth looking
835 * at sharing an anon_vma.
837 * They need to have the same vm_file, and the flags can only differ
838 * in things that mprotect may change.
840 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
841 * we can merge the two vma's. For example, we refuse to merge a vma if
842 * there is a vm_ops->close() function, because that indicates that the
843 * driver is doing some kind of reference counting. But that doesn't
844 * really matter for the anon_vma sharing case.
846 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
848 return a
->vm_end
== b
->vm_start
&&
849 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
850 a
->vm_file
== b
->vm_file
&&
851 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
)) &&
852 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
856 * Do some basic sanity checking to see if we can re-use the anon_vma
857 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
858 * the same as 'old', the other will be the new one that is trying
859 * to share the anon_vma.
861 * NOTE! This runs with mm_sem held for reading, so it is possible that
862 * the anon_vma of 'old' is concurrently in the process of being set up
863 * by another page fault trying to merge _that_. But that's ok: if it
864 * is being set up, that automatically means that it will be a singleton
865 * acceptable for merging, so we can do all of this optimistically. But
866 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
868 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
869 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
870 * is to return an anon_vma that is "complex" due to having gone through
873 * We also make sure that the two vma's are compatible (adjacent,
874 * and with the same memory policies). That's all stable, even with just
875 * a read lock on the mm_sem.
877 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
879 if (anon_vma_compatible(a
, b
)) {
880 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
882 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
889 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
890 * neighbouring vmas for a suitable anon_vma, before it goes off
891 * to allocate a new anon_vma. It checks because a repetitive
892 * sequence of mprotects and faults may otherwise lead to distinct
893 * anon_vmas being allocated, preventing vma merge in subsequent
896 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
898 struct anon_vma
*anon_vma
;
899 struct vm_area_struct
*near
;
905 anon_vma
= reusable_anon_vma(near
, vma
, near
);
910 * It is potentially slow to have to call find_vma_prev here.
911 * But it's only on the first write fault on the vma, not
912 * every time, and we could devise a way to avoid it later
913 * (e.g. stash info in next's anon_vma_node when assigning
914 * an anon_vma, or when trying vma_merge). Another time.
916 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
920 anon_vma
= reusable_anon_vma(near
, near
, vma
);
925 * There's no absolute need to look only at touching neighbours:
926 * we could search further afield for "compatible" anon_vmas.
927 * But it would probably just be a waste of time searching,
928 * or lead to too many vmas hanging off the same anon_vma.
929 * We're trying to allow mprotect remerging later on,
930 * not trying to minimize memory used for anon_vmas.
935 #ifdef CONFIG_PROC_FS
936 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
937 struct file
*file
, long pages
)
939 const unsigned long stack_flags
940 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
943 mm
->shared_vm
+= pages
;
944 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
945 mm
->exec_vm
+= pages
;
946 } else if (flags
& stack_flags
)
947 mm
->stack_vm
+= pages
;
948 if (flags
& (VM_RESERVED
|VM_IO
))
949 mm
->reserved_vm
+= pages
;
951 #endif /* CONFIG_PROC_FS */
954 * The caller must hold down_write(¤t->mm->mmap_sem).
957 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
958 unsigned long len
, unsigned long prot
,
959 unsigned long flags
, unsigned long pgoff
)
961 struct mm_struct
* mm
= current
->mm
;
965 unsigned long reqprot
= prot
;
968 * Does the application expect PROT_READ to imply PROT_EXEC?
970 * (the exception is when the underlying filesystem is noexec
971 * mounted, in which case we dont add PROT_EXEC.)
973 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
974 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
980 if (!(flags
& MAP_FIXED
))
981 addr
= round_hint_to_min(addr
);
983 /* Careful about overflows.. */
984 len
= PAGE_ALIGN(len
);
988 /* offset overflow? */
989 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
992 /* Too many mappings? */
993 if (mm
->map_count
> sysctl_max_map_count
)
996 /* Obtain the address to map to. we verify (or select) it and ensure
997 * that it represents a valid section of the address space.
999 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1000 if (addr
& ~PAGE_MASK
)
1003 /* Do simple checking here so the lower-level routines won't have
1004 * to. we assume access permissions have been handled by the open
1005 * of the memory object, so we don't do any here.
1007 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1008 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1010 if (flags
& MAP_LOCKED
)
1011 if (!can_do_mlock())
1014 /* mlock MCL_FUTURE? */
1015 if (vm_flags
& VM_LOCKED
) {
1016 unsigned long locked
, lock_limit
;
1017 locked
= len
>> PAGE_SHIFT
;
1018 locked
+= mm
->locked_vm
;
1019 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1020 lock_limit
>>= PAGE_SHIFT
;
1021 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1025 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1028 switch (flags
& MAP_TYPE
) {
1030 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1034 * Make sure we don't allow writing to an append-only
1037 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1041 * Make sure there are no mandatory locks on the file.
1043 if (locks_verify_locked(inode
))
1046 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1047 if (!(file
->f_mode
& FMODE_WRITE
))
1048 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1052 if (!(file
->f_mode
& FMODE_READ
))
1054 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1055 if (vm_flags
& VM_EXEC
)
1057 vm_flags
&= ~VM_MAYEXEC
;
1060 if (!file
->f_op
|| !file
->f_op
->mmap
)
1068 switch (flags
& MAP_TYPE
) {
1074 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1078 * Set pgoff according to addr for anon_vma.
1080 pgoff
= addr
>> PAGE_SHIFT
;
1087 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1091 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1093 EXPORT_SYMBOL(do_mmap_pgoff
);
1095 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1096 unsigned long, prot
, unsigned long, flags
,
1097 unsigned long, fd
, unsigned long, pgoff
)
1099 struct file
*file
= NULL
;
1100 unsigned long retval
= -EBADF
;
1102 if (!(flags
& MAP_ANONYMOUS
)) {
1103 audit_mmap_fd(fd
, flags
);
1104 if (unlikely(flags
& MAP_HUGETLB
))
1109 } else if (flags
& MAP_HUGETLB
) {
1110 struct user_struct
*user
= NULL
;
1112 * VM_NORESERVE is used because the reservations will be
1113 * taken when vm_ops->mmap() is called
1114 * A dummy user value is used because we are not locking
1115 * memory so no accounting is necessary
1117 len
= ALIGN(len
, huge_page_size(&default_hstate
));
1118 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
, VM_NORESERVE
,
1119 &user
, HUGETLB_ANONHUGE_INODE
);
1121 return PTR_ERR(file
);
1124 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1126 down_write(¤t
->mm
->mmap_sem
);
1127 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1128 up_write(¤t
->mm
->mmap_sem
);
1136 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1137 struct mmap_arg_struct
{
1141 unsigned long flags
;
1143 unsigned long offset
;
1146 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1148 struct mmap_arg_struct a
;
1150 if (copy_from_user(&a
, arg
, sizeof(a
)))
1152 if (a
.offset
& ~PAGE_MASK
)
1155 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1156 a
.offset
>> PAGE_SHIFT
);
1158 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1161 * Some shared mappigns will want the pages marked read-only
1162 * to track write events. If so, we'll downgrade vm_page_prot
1163 * to the private version (using protection_map[] without the
1166 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1168 vm_flags_t vm_flags
= vma
->vm_flags
;
1170 /* If it was private or non-writable, the write bit is already clear */
1171 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1174 /* The backer wishes to know when pages are first written to? */
1175 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1178 /* The open routine did something to the protections already? */
1179 if (pgprot_val(vma
->vm_page_prot
) !=
1180 pgprot_val(vm_get_page_prot(vm_flags
)))
1183 /* Specialty mapping? */
1184 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1187 /* Can the mapping track the dirty pages? */
1188 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1189 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1193 * We account for memory if it's a private writeable mapping,
1194 * not hugepages and VM_NORESERVE wasn't set.
1196 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1199 * hugetlb has its own accounting separate from the core VM
1200 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1202 if (file
&& is_file_hugepages(file
))
1205 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1208 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1209 unsigned long len
, unsigned long flags
,
1210 vm_flags_t vm_flags
, unsigned long pgoff
)
1212 struct mm_struct
*mm
= current
->mm
;
1213 struct vm_area_struct
*vma
, *prev
;
1214 int correct_wcount
= 0;
1216 struct rb_node
**rb_link
, *rb_parent
;
1217 unsigned long charged
= 0;
1218 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1220 /* Clear old maps */
1223 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1224 if (vma
&& vma
->vm_start
< addr
+ len
) {
1225 if (do_munmap(mm
, addr
, len
))
1230 /* Check against address space limit. */
1231 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1235 * Set 'VM_NORESERVE' if we should not account for the
1236 * memory use of this mapping.
1238 if ((flags
& MAP_NORESERVE
)) {
1239 /* We honor MAP_NORESERVE if allowed to overcommit */
1240 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1241 vm_flags
|= VM_NORESERVE
;
1243 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1244 if (file
&& is_file_hugepages(file
))
1245 vm_flags
|= VM_NORESERVE
;
1249 * Private writable mapping: check memory availability
1251 if (accountable_mapping(file
, vm_flags
)) {
1252 charged
= len
>> PAGE_SHIFT
;
1253 if (security_vm_enough_memory(charged
))
1255 vm_flags
|= VM_ACCOUNT
;
1259 * Can we just expand an old mapping?
1261 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1266 * Determine the object being mapped and call the appropriate
1267 * specific mapper. the address has already been validated, but
1268 * not unmapped, but the maps are removed from the list.
1270 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1277 vma
->vm_start
= addr
;
1278 vma
->vm_end
= addr
+ len
;
1279 vma
->vm_flags
= vm_flags
;
1280 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1281 vma
->vm_pgoff
= pgoff
;
1282 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1286 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1288 if (vm_flags
& VM_DENYWRITE
) {
1289 error
= deny_write_access(file
);
1294 vma
->vm_file
= file
;
1296 error
= file
->f_op
->mmap(file
, vma
);
1298 goto unmap_and_free_vma
;
1299 if (vm_flags
& VM_EXECUTABLE
)
1300 added_exe_file_vma(mm
);
1302 /* Can addr have changed??
1304 * Answer: Yes, several device drivers can do it in their
1305 * f_op->mmap method. -DaveM
1307 addr
= vma
->vm_start
;
1308 pgoff
= vma
->vm_pgoff
;
1309 vm_flags
= vma
->vm_flags
;
1310 } else if (vm_flags
& VM_SHARED
) {
1311 error
= shmem_zero_setup(vma
);
1316 if (vma_wants_writenotify(vma
)) {
1317 pgprot_t pprot
= vma
->vm_page_prot
;
1319 /* Can vma->vm_page_prot have changed??
1321 * Answer: Yes, drivers may have changed it in their
1322 * f_op->mmap method.
1324 * Ensures that vmas marked as uncached stay that way.
1326 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1327 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1328 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1331 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1332 file
= vma
->vm_file
;
1334 /* Once vma denies write, undo our temporary denial count */
1336 atomic_inc(&inode
->i_writecount
);
1338 perf_event_mmap(vma
);
1340 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1341 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1342 if (vm_flags
& VM_LOCKED
) {
1343 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
1344 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1345 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1346 make_pages_present(addr
, addr
+ len
);
1351 atomic_inc(&inode
->i_writecount
);
1352 vma
->vm_file
= NULL
;
1355 /* Undo any partial mapping done by a device driver. */
1356 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1359 kmem_cache_free(vm_area_cachep
, vma
);
1362 vm_unacct_memory(charged
);
1366 /* Get an address range which is currently unmapped.
1367 * For shmat() with addr=0.
1369 * Ugly calling convention alert:
1370 * Return value with the low bits set means error value,
1372 * if (ret & ~PAGE_MASK)
1375 * This function "knows" that -ENOMEM has the bits set.
1377 #ifndef HAVE_ARCH_UNMAPPED_AREA
1379 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1380 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1382 struct mm_struct
*mm
= current
->mm
;
1383 struct vm_area_struct
*vma
;
1384 unsigned long start_addr
;
1386 if (len
> TASK_SIZE
)
1389 if (flags
& MAP_FIXED
)
1393 addr
= PAGE_ALIGN(addr
);
1394 vma
= find_vma(mm
, addr
);
1395 if (TASK_SIZE
- len
>= addr
&&
1396 (!vma
|| addr
+ len
<= vma
->vm_start
))
1399 if (len
> mm
->cached_hole_size
) {
1400 start_addr
= addr
= mm
->free_area_cache
;
1402 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1403 mm
->cached_hole_size
= 0;
1407 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1408 /* At this point: (!vma || addr < vma->vm_end). */
1409 if (TASK_SIZE
- len
< addr
) {
1411 * Start a new search - just in case we missed
1414 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1415 addr
= TASK_UNMAPPED_BASE
;
1417 mm
->cached_hole_size
= 0;
1422 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1424 * Remember the place where we stopped the search:
1426 mm
->free_area_cache
= addr
+ len
;
1429 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1430 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1436 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1439 * Is this a new hole at the lowest possible address?
1441 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1442 mm
->free_area_cache
= addr
;
1443 mm
->cached_hole_size
= ~0UL;
1448 * This mmap-allocator allocates new areas top-down from below the
1449 * stack's low limit (the base):
1451 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1453 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1454 const unsigned long len
, const unsigned long pgoff
,
1455 const unsigned long flags
)
1457 struct vm_area_struct
*vma
;
1458 struct mm_struct
*mm
= current
->mm
;
1459 unsigned long addr
= addr0
;
1461 /* requested length too big for entire address space */
1462 if (len
> TASK_SIZE
)
1465 if (flags
& MAP_FIXED
)
1468 /* requesting a specific address */
1470 addr
= PAGE_ALIGN(addr
);
1471 vma
= find_vma(mm
, addr
);
1472 if (TASK_SIZE
- len
>= addr
&&
1473 (!vma
|| addr
+ len
<= vma
->vm_start
))
1477 /* check if free_area_cache is useful for us */
1478 if (len
<= mm
->cached_hole_size
) {
1479 mm
->cached_hole_size
= 0;
1480 mm
->free_area_cache
= mm
->mmap_base
;
1483 /* either no address requested or can't fit in requested address hole */
1484 addr
= mm
->free_area_cache
;
1486 /* make sure it can fit in the remaining address space */
1488 vma
= find_vma(mm
, addr
-len
);
1489 if (!vma
|| addr
<= vma
->vm_start
)
1490 /* remember the address as a hint for next time */
1491 return (mm
->free_area_cache
= addr
-len
);
1494 if (mm
->mmap_base
< len
)
1497 addr
= mm
->mmap_base
-len
;
1501 * Lookup failure means no vma is above this address,
1502 * else if new region fits below vma->vm_start,
1503 * return with success:
1505 vma
= find_vma(mm
, addr
);
1506 if (!vma
|| addr
+len
<= vma
->vm_start
)
1507 /* remember the address as a hint for next time */
1508 return (mm
->free_area_cache
= addr
);
1510 /* remember the largest hole we saw so far */
1511 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1512 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1514 /* try just below the current vma->vm_start */
1515 addr
= vma
->vm_start
-len
;
1516 } while (len
< vma
->vm_start
);
1520 * A failed mmap() very likely causes application failure,
1521 * so fall back to the bottom-up function here. This scenario
1522 * can happen with large stack limits and large mmap()
1525 mm
->cached_hole_size
= ~0UL;
1526 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1527 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1529 * Restore the topdown base:
1531 mm
->free_area_cache
= mm
->mmap_base
;
1532 mm
->cached_hole_size
= ~0UL;
1538 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1541 * Is this a new hole at the highest possible address?
1543 if (addr
> mm
->free_area_cache
)
1544 mm
->free_area_cache
= addr
;
1546 /* dont allow allocations above current base */
1547 if (mm
->free_area_cache
> mm
->mmap_base
)
1548 mm
->free_area_cache
= mm
->mmap_base
;
1552 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1553 unsigned long pgoff
, unsigned long flags
)
1555 unsigned long (*get_area
)(struct file
*, unsigned long,
1556 unsigned long, unsigned long, unsigned long);
1558 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1562 /* Careful about overflows.. */
1563 if (len
> TASK_SIZE
)
1566 get_area
= current
->mm
->get_unmapped_area
;
1567 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1568 get_area
= file
->f_op
->get_unmapped_area
;
1569 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1570 if (IS_ERR_VALUE(addr
))
1573 if (addr
> TASK_SIZE
- len
)
1575 if (addr
& ~PAGE_MASK
)
1578 return arch_rebalance_pgtables(addr
, len
);
1581 EXPORT_SYMBOL(get_unmapped_area
);
1583 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1584 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1586 struct vm_area_struct
*vma
= NULL
;
1589 /* Check the cache first. */
1590 /* (Cache hit rate is typically around 35%.) */
1591 vma
= mm
->mmap_cache
;
1592 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1593 struct rb_node
* rb_node
;
1595 rb_node
= mm
->mm_rb
.rb_node
;
1599 struct vm_area_struct
* vma_tmp
;
1601 vma_tmp
= rb_entry(rb_node
,
1602 struct vm_area_struct
, vm_rb
);
1604 if (vma_tmp
->vm_end
> addr
) {
1606 if (vma_tmp
->vm_start
<= addr
)
1608 rb_node
= rb_node
->rb_left
;
1610 rb_node
= rb_node
->rb_right
;
1613 mm
->mmap_cache
= vma
;
1619 EXPORT_SYMBOL(find_vma
);
1621 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1622 struct vm_area_struct
*
1623 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1624 struct vm_area_struct
**pprev
)
1626 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1627 struct rb_node
*rb_node
;
1631 /* Guard against addr being lower than the first VMA */
1634 /* Go through the RB tree quickly. */
1635 rb_node
= mm
->mm_rb
.rb_node
;
1638 struct vm_area_struct
*vma_tmp
;
1639 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1641 if (addr
< vma_tmp
->vm_end
) {
1642 rb_node
= rb_node
->rb_left
;
1645 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1647 rb_node
= rb_node
->rb_right
;
1653 return prev
? prev
->vm_next
: vma
;
1657 * Verify that the stack growth is acceptable and
1658 * update accounting. This is shared with both the
1659 * grow-up and grow-down cases.
1661 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1663 struct mm_struct
*mm
= vma
->vm_mm
;
1664 struct rlimit
*rlim
= current
->signal
->rlim
;
1665 unsigned long new_start
;
1667 /* address space limit tests */
1668 if (!may_expand_vm(mm
, grow
))
1671 /* Stack limit test */
1672 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1675 /* mlock limit tests */
1676 if (vma
->vm_flags
& VM_LOCKED
) {
1677 unsigned long locked
;
1678 unsigned long limit
;
1679 locked
= mm
->locked_vm
+ grow
;
1680 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
1681 limit
>>= PAGE_SHIFT
;
1682 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1686 /* Check to ensure the stack will not grow into a hugetlb-only region */
1687 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1689 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1693 * Overcommit.. This must be the final test, as it will
1694 * update security statistics.
1696 if (security_vm_enough_memory_mm(mm
, grow
))
1699 /* Ok, everything looks good - let it rip */
1700 mm
->total_vm
+= grow
;
1701 if (vma
->vm_flags
& VM_LOCKED
)
1702 mm
->locked_vm
+= grow
;
1703 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1707 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1709 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1710 * vma is the last one with address > vma->vm_end. Have to extend vma.
1712 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1716 if (!(vma
->vm_flags
& VM_GROWSUP
))
1720 * We must make sure the anon_vma is allocated
1721 * so that the anon_vma locking is not a noop.
1723 if (unlikely(anon_vma_prepare(vma
)))
1725 vma_lock_anon_vma(vma
);
1728 * vma->vm_start/vm_end cannot change under us because the caller
1729 * is required to hold the mmap_sem in read mode. We need the
1730 * anon_vma lock to serialize against concurrent expand_stacks.
1731 * Also guard against wrapping around to address 0.
1733 if (address
< PAGE_ALIGN(address
+4))
1734 address
= PAGE_ALIGN(address
+4);
1736 vma_unlock_anon_vma(vma
);
1741 /* Somebody else might have raced and expanded it already */
1742 if (address
> vma
->vm_end
) {
1743 unsigned long size
, grow
;
1745 size
= address
- vma
->vm_start
;
1746 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1749 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
1750 error
= acct_stack_growth(vma
, size
, grow
);
1752 vma
->vm_end
= address
;
1753 perf_event_mmap(vma
);
1757 vma_unlock_anon_vma(vma
);
1758 khugepaged_enter_vma_merge(vma
);
1761 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1764 * vma is the first one with address < vma->vm_start. Have to extend vma.
1766 int expand_downwards(struct vm_area_struct
*vma
,
1767 unsigned long address
)
1772 * We must make sure the anon_vma is allocated
1773 * so that the anon_vma locking is not a noop.
1775 if (unlikely(anon_vma_prepare(vma
)))
1778 address
&= PAGE_MASK
;
1779 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1783 vma_lock_anon_vma(vma
);
1786 * vma->vm_start/vm_end cannot change under us because the caller
1787 * is required to hold the mmap_sem in read mode. We need the
1788 * anon_vma lock to serialize against concurrent expand_stacks.
1791 /* Somebody else might have raced and expanded it already */
1792 if (address
< vma
->vm_start
) {
1793 unsigned long size
, grow
;
1795 size
= vma
->vm_end
- address
;
1796 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1799 if (grow
<= vma
->vm_pgoff
) {
1800 error
= acct_stack_growth(vma
, size
, grow
);
1802 vma
->vm_start
= address
;
1803 vma
->vm_pgoff
-= grow
;
1804 perf_event_mmap(vma
);
1808 vma_unlock_anon_vma(vma
);
1809 khugepaged_enter_vma_merge(vma
);
1813 #ifdef CONFIG_STACK_GROWSUP
1814 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1816 return expand_upwards(vma
, address
);
1819 struct vm_area_struct
*
1820 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1822 struct vm_area_struct
*vma
, *prev
;
1825 vma
= find_vma_prev(mm
, addr
, &prev
);
1826 if (vma
&& (vma
->vm_start
<= addr
))
1828 if (!prev
|| expand_stack(prev
, addr
))
1830 if (prev
->vm_flags
& VM_LOCKED
) {
1831 mlock_vma_pages_range(prev
, addr
, prev
->vm_end
);
1836 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1838 return expand_downwards(vma
, address
);
1841 struct vm_area_struct
*
1842 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1844 struct vm_area_struct
* vma
;
1845 unsigned long start
;
1848 vma
= find_vma(mm
,addr
);
1851 if (vma
->vm_start
<= addr
)
1853 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1855 start
= vma
->vm_start
;
1856 if (expand_stack(vma
, addr
))
1858 if (vma
->vm_flags
& VM_LOCKED
) {
1859 mlock_vma_pages_range(vma
, addr
, start
);
1866 * Ok - we have the memory areas we should free on the vma list,
1867 * so release them, and do the vma updates.
1869 * Called with the mm semaphore held.
1871 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1873 /* Update high watermark before we lower total_vm */
1874 update_hiwater_vm(mm
);
1876 long nrpages
= vma_pages(vma
);
1878 mm
->total_vm
-= nrpages
;
1879 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1880 vma
= remove_vma(vma
);
1886 * Get rid of page table information in the indicated region.
1888 * Called with the mm semaphore held.
1890 static void unmap_region(struct mm_struct
*mm
,
1891 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1892 unsigned long start
, unsigned long end
)
1894 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1895 struct mmu_gather tlb
;
1896 unsigned long nr_accounted
= 0;
1899 tlb_gather_mmu(&tlb
, mm
, 0);
1900 update_hiwater_rss(mm
);
1901 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1902 vm_unacct_memory(nr_accounted
);
1903 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1904 next
? next
->vm_start
: 0);
1905 tlb_finish_mmu(&tlb
, start
, end
);
1909 * Create a list of vma's touched by the unmap, removing them from the mm's
1910 * vma list as we go..
1913 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1914 struct vm_area_struct
*prev
, unsigned long end
)
1916 struct vm_area_struct
**insertion_point
;
1917 struct vm_area_struct
*tail_vma
= NULL
;
1920 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1921 vma
->vm_prev
= NULL
;
1923 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1927 } while (vma
&& vma
->vm_start
< end
);
1928 *insertion_point
= vma
;
1930 vma
->vm_prev
= prev
;
1931 tail_vma
->vm_next
= NULL
;
1932 if (mm
->unmap_area
== arch_unmap_area
)
1933 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1935 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1936 mm
->unmap_area(mm
, addr
);
1937 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1941 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1942 * munmap path where it doesn't make sense to fail.
1944 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1945 unsigned long addr
, int new_below
)
1947 struct mempolicy
*pol
;
1948 struct vm_area_struct
*new;
1951 if (is_vm_hugetlb_page(vma
) && (addr
&
1952 ~(huge_page_mask(hstate_vma(vma
)))))
1955 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1959 /* most fields are the same, copy all, and then fixup */
1962 INIT_LIST_HEAD(&new->anon_vma_chain
);
1967 new->vm_start
= addr
;
1968 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1971 pol
= mpol_dup(vma_policy(vma
));
1976 vma_set_policy(new, pol
);
1978 if (anon_vma_clone(new, vma
))
1982 get_file(new->vm_file
);
1983 if (vma
->vm_flags
& VM_EXECUTABLE
)
1984 added_exe_file_vma(mm
);
1987 if (new->vm_ops
&& new->vm_ops
->open
)
1988 new->vm_ops
->open(new);
1991 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1992 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1994 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2000 /* Clean everything up if vma_adjust failed. */
2001 if (new->vm_ops
&& new->vm_ops
->close
)
2002 new->vm_ops
->close(new);
2004 if (vma
->vm_flags
& VM_EXECUTABLE
)
2005 removed_exe_file_vma(mm
);
2008 unlink_anon_vmas(new);
2012 kmem_cache_free(vm_area_cachep
, new);
2018 * Split a vma into two pieces at address 'addr', a new vma is allocated
2019 * either for the first part or the tail.
2021 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2022 unsigned long addr
, int new_below
)
2024 if (mm
->map_count
>= sysctl_max_map_count
)
2027 return __split_vma(mm
, vma
, addr
, new_below
);
2030 /* Munmap is split into 2 main parts -- this part which finds
2031 * what needs doing, and the areas themselves, which do the
2032 * work. This now handles partial unmappings.
2033 * Jeremy Fitzhardinge <jeremy@goop.org>
2035 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2038 struct vm_area_struct
*vma
, *prev
, *last
;
2040 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2043 if ((len
= PAGE_ALIGN(len
)) == 0)
2046 /* Find the first overlapping VMA */
2047 vma
= find_vma_prev(mm
, start
, &prev
);
2050 /* we have start < vma->vm_end */
2052 /* if it doesn't overlap, we have nothing.. */
2054 if (vma
->vm_start
>= end
)
2058 * If we need to split any vma, do it now to save pain later.
2060 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2061 * unmapped vm_area_struct will remain in use: so lower split_vma
2062 * places tmp vma above, and higher split_vma places tmp vma below.
2064 if (start
> vma
->vm_start
) {
2068 * Make sure that map_count on return from munmap() will
2069 * not exceed its limit; but let map_count go just above
2070 * its limit temporarily, to help free resources as expected.
2072 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2075 error
= __split_vma(mm
, vma
, start
, 0);
2081 /* Does it split the last one? */
2082 last
= find_vma(mm
, end
);
2083 if (last
&& end
> last
->vm_start
) {
2084 int error
= __split_vma(mm
, last
, end
, 1);
2088 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2091 * unlock any mlock()ed ranges before detaching vmas
2093 if (mm
->locked_vm
) {
2094 struct vm_area_struct
*tmp
= vma
;
2095 while (tmp
&& tmp
->vm_start
< end
) {
2096 if (tmp
->vm_flags
& VM_LOCKED
) {
2097 mm
->locked_vm
-= vma_pages(tmp
);
2098 munlock_vma_pages_all(tmp
);
2105 * Remove the vma's, and unmap the actual pages
2107 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2108 unmap_region(mm
, vma
, prev
, start
, end
);
2110 /* Fix up all other VM information */
2111 remove_vma_list(mm
, vma
);
2116 EXPORT_SYMBOL(do_munmap
);
2118 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2121 struct mm_struct
*mm
= current
->mm
;
2123 profile_munmap(addr
);
2125 down_write(&mm
->mmap_sem
);
2126 ret
= do_munmap(mm
, addr
, len
);
2127 up_write(&mm
->mmap_sem
);
2131 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2133 #ifdef CONFIG_DEBUG_VM
2134 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2136 up_read(&mm
->mmap_sem
);
2142 * this is really a simplified "do_mmap". it only handles
2143 * anonymous maps. eventually we may be able to do some
2144 * brk-specific accounting here.
2146 unsigned long do_brk(unsigned long addr
, unsigned long len
)
2148 struct mm_struct
* mm
= current
->mm
;
2149 struct vm_area_struct
* vma
, * prev
;
2150 unsigned long flags
;
2151 struct rb_node
** rb_link
, * rb_parent
;
2152 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2155 len
= PAGE_ALIGN(len
);
2159 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2163 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2165 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2166 if (error
& ~PAGE_MASK
)
2172 if (mm
->def_flags
& VM_LOCKED
) {
2173 unsigned long locked
, lock_limit
;
2174 locked
= len
>> PAGE_SHIFT
;
2175 locked
+= mm
->locked_vm
;
2176 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2177 lock_limit
>>= PAGE_SHIFT
;
2178 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2183 * mm->mmap_sem is required to protect against another thread
2184 * changing the mappings in case we sleep.
2186 verify_mm_writelocked(mm
);
2189 * Clear old maps. this also does some error checking for us
2192 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2193 if (vma
&& vma
->vm_start
< addr
+ len
) {
2194 if (do_munmap(mm
, addr
, len
))
2199 /* Check against address space limits *after* clearing old maps... */
2200 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2203 if (mm
->map_count
> sysctl_max_map_count
)
2206 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2209 /* Can we just expand an old private anonymous mapping? */
2210 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2211 NULL
, NULL
, pgoff
, NULL
);
2216 * create a vma struct for an anonymous mapping
2218 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2220 vm_unacct_memory(len
>> PAGE_SHIFT
);
2224 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2226 vma
->vm_start
= addr
;
2227 vma
->vm_end
= addr
+ len
;
2228 vma
->vm_pgoff
= pgoff
;
2229 vma
->vm_flags
= flags
;
2230 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2231 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2233 perf_event_mmap(vma
);
2234 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2235 if (flags
& VM_LOCKED
) {
2236 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2237 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2242 EXPORT_SYMBOL(do_brk
);
2244 /* Release all mmaps. */
2245 void exit_mmap(struct mm_struct
*mm
)
2247 struct mmu_gather tlb
;
2248 struct vm_area_struct
*vma
;
2249 unsigned long nr_accounted
= 0;
2252 /* mm's last user has gone, and its about to be pulled down */
2253 mmu_notifier_release(mm
);
2255 if (mm
->locked_vm
) {
2258 if (vma
->vm_flags
& VM_LOCKED
)
2259 munlock_vma_pages_all(vma
);
2267 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2272 tlb_gather_mmu(&tlb
, mm
, 1);
2273 /* update_hiwater_rss(mm) here? but nobody should be looking */
2274 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2275 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2276 vm_unacct_memory(nr_accounted
);
2278 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2279 tlb_finish_mmu(&tlb
, 0, end
);
2282 * Walk the list again, actually closing and freeing it,
2283 * with preemption enabled, without holding any MM locks.
2286 vma
= remove_vma(vma
);
2288 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2291 /* Insert vm structure into process list sorted by address
2292 * and into the inode's i_mmap tree. If vm_file is non-NULL
2293 * then i_mmap_mutex is taken here.
2295 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2297 struct vm_area_struct
* __vma
, * prev
;
2298 struct rb_node
** rb_link
, * rb_parent
;
2301 * The vm_pgoff of a purely anonymous vma should be irrelevant
2302 * until its first write fault, when page's anon_vma and index
2303 * are set. But now set the vm_pgoff it will almost certainly
2304 * end up with (unless mremap moves it elsewhere before that
2305 * first wfault), so /proc/pid/maps tells a consistent story.
2307 * By setting it to reflect the virtual start address of the
2308 * vma, merges and splits can happen in a seamless way, just
2309 * using the existing file pgoff checks and manipulations.
2310 * Similarly in do_mmap_pgoff and in do_brk.
2312 if (!vma
->vm_file
) {
2313 BUG_ON(vma
->anon_vma
);
2314 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2316 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2317 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2319 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2320 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2322 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2327 * Copy the vma structure to a new location in the same mm,
2328 * prior to moving page table entries, to effect an mremap move.
2330 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2331 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2333 struct vm_area_struct
*vma
= *vmap
;
2334 unsigned long vma_start
= vma
->vm_start
;
2335 struct mm_struct
*mm
= vma
->vm_mm
;
2336 struct vm_area_struct
*new_vma
, *prev
;
2337 struct rb_node
**rb_link
, *rb_parent
;
2338 struct mempolicy
*pol
;
2341 * If anonymous vma has not yet been faulted, update new pgoff
2342 * to match new location, to increase its chance of merging.
2344 if (!vma
->vm_file
&& !vma
->anon_vma
)
2345 pgoff
= addr
>> PAGE_SHIFT
;
2347 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2348 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2349 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2352 * Source vma may have been merged into new_vma
2354 if (vma_start
>= new_vma
->vm_start
&&
2355 vma_start
< new_vma
->vm_end
)
2358 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2361 pol
= mpol_dup(vma_policy(vma
));
2364 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2365 if (anon_vma_clone(new_vma
, vma
))
2366 goto out_free_mempol
;
2367 vma_set_policy(new_vma
, pol
);
2368 new_vma
->vm_start
= addr
;
2369 new_vma
->vm_end
= addr
+ len
;
2370 new_vma
->vm_pgoff
= pgoff
;
2371 if (new_vma
->vm_file
) {
2372 get_file(new_vma
->vm_file
);
2373 if (vma
->vm_flags
& VM_EXECUTABLE
)
2374 added_exe_file_vma(mm
);
2376 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2377 new_vma
->vm_ops
->open(new_vma
);
2378 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2386 kmem_cache_free(vm_area_cachep
, new_vma
);
2391 * Return true if the calling process may expand its vm space by the passed
2394 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2396 unsigned long cur
= mm
->total_vm
; /* pages */
2399 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2401 if (cur
+ npages
> lim
)
2407 static int special_mapping_fault(struct vm_area_struct
*vma
,
2408 struct vm_fault
*vmf
)
2411 struct page
**pages
;
2414 * special mappings have no vm_file, and in that case, the mm
2415 * uses vm_pgoff internally. So we have to subtract it from here.
2416 * We are allowed to do this because we are the mm; do not copy
2417 * this code into drivers!
2419 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2421 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2425 struct page
*page
= *pages
;
2431 return VM_FAULT_SIGBUS
;
2435 * Having a close hook prevents vma merging regardless of flags.
2437 static void special_mapping_close(struct vm_area_struct
*vma
)
2441 static const struct vm_operations_struct special_mapping_vmops
= {
2442 .close
= special_mapping_close
,
2443 .fault
= special_mapping_fault
,
2447 * Called with mm->mmap_sem held for writing.
2448 * Insert a new vma covering the given region, with the given flags.
2449 * Its pages are supplied by the given array of struct page *.
2450 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2451 * The region past the last page supplied will always produce SIGBUS.
2452 * The array pointer and the pages it points to are assumed to stay alive
2453 * for as long as this mapping might exist.
2455 int install_special_mapping(struct mm_struct
*mm
,
2456 unsigned long addr
, unsigned long len
,
2457 unsigned long vm_flags
, struct page
**pages
)
2460 struct vm_area_struct
*vma
;
2462 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2463 if (unlikely(vma
== NULL
))
2466 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2468 vma
->vm_start
= addr
;
2469 vma
->vm_end
= addr
+ len
;
2471 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2472 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2474 vma
->vm_ops
= &special_mapping_vmops
;
2475 vma
->vm_private_data
= pages
;
2477 ret
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
2481 ret
= insert_vm_struct(mm
, vma
);
2485 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2487 perf_event_mmap(vma
);
2492 kmem_cache_free(vm_area_cachep
, vma
);
2496 static DEFINE_MUTEX(mm_all_locks_mutex
);
2498 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2500 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2502 * The LSB of head.next can't change from under us
2503 * because we hold the mm_all_locks_mutex.
2505 mutex_lock_nest_lock(&anon_vma
->root
->mutex
, &mm
->mmap_sem
);
2507 * We can safely modify head.next after taking the
2508 * anon_vma->root->mutex. If some other vma in this mm shares
2509 * the same anon_vma we won't take it again.
2511 * No need of atomic instructions here, head.next
2512 * can't change from under us thanks to the
2513 * anon_vma->root->mutex.
2515 if (__test_and_set_bit(0, (unsigned long *)
2516 &anon_vma
->root
->head
.next
))
2521 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2523 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2525 * AS_MM_ALL_LOCKS can't change from under us because
2526 * we hold the mm_all_locks_mutex.
2528 * Operations on ->flags have to be atomic because
2529 * even if AS_MM_ALL_LOCKS is stable thanks to the
2530 * mm_all_locks_mutex, there may be other cpus
2531 * changing other bitflags in parallel to us.
2533 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2535 mutex_lock_nest_lock(&mapping
->i_mmap_mutex
, &mm
->mmap_sem
);
2540 * This operation locks against the VM for all pte/vma/mm related
2541 * operations that could ever happen on a certain mm. This includes
2542 * vmtruncate, try_to_unmap, and all page faults.
2544 * The caller must take the mmap_sem in write mode before calling
2545 * mm_take_all_locks(). The caller isn't allowed to release the
2546 * mmap_sem until mm_drop_all_locks() returns.
2548 * mmap_sem in write mode is required in order to block all operations
2549 * that could modify pagetables and free pages without need of
2550 * altering the vma layout (for example populate_range() with
2551 * nonlinear vmas). It's also needed in write mode to avoid new
2552 * anon_vmas to be associated with existing vmas.
2554 * A single task can't take more than one mm_take_all_locks() in a row
2555 * or it would deadlock.
2557 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2558 * mapping->flags avoid to take the same lock twice, if more than one
2559 * vma in this mm is backed by the same anon_vma or address_space.
2561 * We can take all the locks in random order because the VM code
2562 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2563 * takes more than one of them in a row. Secondly we're protected
2564 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2566 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2567 * that may have to take thousand of locks.
2569 * mm_take_all_locks() can fail if it's interrupted by signals.
2571 int mm_take_all_locks(struct mm_struct
*mm
)
2573 struct vm_area_struct
*vma
;
2574 struct anon_vma_chain
*avc
;
2577 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2579 mutex_lock(&mm_all_locks_mutex
);
2581 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2582 if (signal_pending(current
))
2584 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2585 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2588 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2589 if (signal_pending(current
))
2592 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2593 vm_lock_anon_vma(mm
, avc
->anon_vma
);
2600 mm_drop_all_locks(mm
);
2605 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2607 if (test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2609 * The LSB of head.next can't change to 0 from under
2610 * us because we hold the mm_all_locks_mutex.
2612 * We must however clear the bitflag before unlocking
2613 * the vma so the users using the anon_vma->head will
2614 * never see our bitflag.
2616 * No need of atomic instructions here, head.next
2617 * can't change from under us until we release the
2618 * anon_vma->root->mutex.
2620 if (!__test_and_clear_bit(0, (unsigned long *)
2621 &anon_vma
->root
->head
.next
))
2623 anon_vma_unlock(anon_vma
);
2627 static void vm_unlock_mapping(struct address_space
*mapping
)
2629 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2631 * AS_MM_ALL_LOCKS can't change to 0 from under us
2632 * because we hold the mm_all_locks_mutex.
2634 mutex_unlock(&mapping
->i_mmap_mutex
);
2635 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2642 * The mmap_sem cannot be released by the caller until
2643 * mm_drop_all_locks() returns.
2645 void mm_drop_all_locks(struct mm_struct
*mm
)
2647 struct vm_area_struct
*vma
;
2648 struct anon_vma_chain
*avc
;
2650 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2651 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2653 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2655 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2656 vm_unlock_anon_vma(avc
->anon_vma
);
2657 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2658 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2661 mutex_unlock(&mm_all_locks_mutex
);
2665 * initialise the VMA slab
2667 void __init
mmap_init(void)
2671 ret
= percpu_counter_init(&vm_committed_as
, 0);