2 * CRIS pgtable.h - macros and functions to manipulate page tables.
5 #ifndef _CRIS_PGTABLE_H
6 #define _CRIS_PGTABLE_H
8 #include <asm-generic/4level-fixup.h>
11 #include <linux/config.h>
12 #include <linux/sched.h>
15 #include <asm/arch/pgtable.h>
18 * The Linux memory management assumes a three-level page table setup. On
19 * CRIS, we use that, but "fold" the mid level into the top-level page
20 * table. Since the MMU TLB is software loaded through an interrupt, it
21 * supports any page table structure, so we could have used a three-level
22 * setup, but for the amounts of memory we normally use, a two-level is
23 * probably more efficient.
25 * This file contains the functions and defines necessary to modify and use
26 * the CRIS page table tree.
29 extern void paging_init(void);
32 /* Certain architectures need to do special things when pte's
33 * within a page table are directly modified. Thus, the following
34 * hook is made available.
36 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
37 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
40 * (pmds are folded into pgds so this doesn't get actually called,
41 * but the define is needed for a generic inline function.)
43 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
44 #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
46 /* PMD_SHIFT determines the size of the area a second-level page table can
47 * map. It is equal to the page size times the number of PTE's that fit in
48 * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number.
51 #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
52 #define PMD_SIZE (1UL << PMD_SHIFT)
53 #define PMD_MASK (~(PMD_SIZE-1))
55 /* PGDIR_SHIFT determines what a third-level page table entry can map.
56 * Since we fold into a two-level structure, this is the same as PMD_SHIFT.
59 #define PGDIR_SHIFT PMD_SHIFT
60 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
61 #define PGDIR_MASK (~(PGDIR_SIZE-1))
64 * entries per page directory level: we use a two-level, so
65 * we don't really have any PMD directory physically.
66 * pointers are 4 bytes so we can use the page size and
67 * divide it by 4 (shift by 2).
69 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
70 #define PTRS_PER_PMD 1
71 #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2))
73 /* calculate how many PGD entries a user-level program can use
74 * the first mappable virtual address is 0
75 * (TASK_SIZE is the maximum virtual address space)
78 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
79 #define FIRST_USER_ADDRESS 0
81 /* zero page used for uninitialized stuff */
83 extern unsigned long empty_zero_page
;
84 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
87 /* number of bits that fit into a memory pointer */
88 #define BITS_PER_PTR (8*sizeof(unsigned long))
90 /* to align the pointer to a pointer address */
91 #define PTR_MASK (~(sizeof(void*)-1))
93 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
94 /* 64-bit machines, beware! SRB. */
95 #define SIZEOF_PTR_LOG2 2
97 /* to find an entry in a page-table */
98 #define PAGE_PTR(address) \
99 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
101 /* to set the page-dir */
102 #define SET_PAGE_DIR(tsk,pgdir)
104 #define pte_none(x) (!pte_val(x))
105 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
106 #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0)
108 #define pmd_none(x) (!pmd_val(x))
109 /* by removing the _PAGE_KERNEL bit from the comparision, the same pmd_bad
110 * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries.
112 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE)
113 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
114 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
119 * The "pgd_xxx()" functions here are trivial for a folded two-level
120 * setup: the pgd is never bad, and a pmd always exists (as it's folded
121 * into the pgd entry)
123 extern inline int pgd_none(pgd_t pgd
) { return 0; }
124 extern inline int pgd_bad(pgd_t pgd
) { return 0; }
125 extern inline int pgd_present(pgd_t pgd
) { return 1; }
126 extern inline void pgd_clear(pgd_t
* pgdp
) { }
129 * The following only work if pte_present() is true.
130 * Undefined behaviour if not..
133 extern inline int pte_read(pte_t pte
) { return pte_val(pte
) & _PAGE_READ
; }
134 extern inline int pte_write(pte_t pte
) { return pte_val(pte
) & _PAGE_WRITE
; }
135 extern inline int pte_exec(pte_t pte
) { return pte_val(pte
) & _PAGE_READ
; }
136 extern inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_MODIFIED
; }
137 extern inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
138 extern inline int pte_file(pte_t pte
) { return pte_val(pte
) & _PAGE_FILE
; }
140 extern inline pte_t
pte_wrprotect(pte_t pte
)
142 pte_val(pte
) &= ~(_PAGE_WRITE
| _PAGE_SILENT_WRITE
);
146 extern inline pte_t
pte_rdprotect(pte_t pte
)
148 pte_val(pte
) &= ~(_PAGE_READ
| _PAGE_SILENT_READ
);
152 extern inline pte_t
pte_exprotect(pte_t pte
)
154 pte_val(pte
) &= ~(_PAGE_READ
| _PAGE_SILENT_READ
);
158 extern inline pte_t
pte_mkclean(pte_t pte
)
160 pte_val(pte
) &= ~(_PAGE_MODIFIED
| _PAGE_SILENT_WRITE
);
164 extern inline pte_t
pte_mkold(pte_t pte
)
166 pte_val(pte
) &= ~(_PAGE_ACCESSED
| _PAGE_SILENT_READ
);
170 extern inline pte_t
pte_mkwrite(pte_t pte
)
172 pte_val(pte
) |= _PAGE_WRITE
;
173 if (pte_val(pte
) & _PAGE_MODIFIED
)
174 pte_val(pte
) |= _PAGE_SILENT_WRITE
;
178 extern inline pte_t
pte_mkread(pte_t pte
)
180 pte_val(pte
) |= _PAGE_READ
;
181 if (pte_val(pte
) & _PAGE_ACCESSED
)
182 pte_val(pte
) |= _PAGE_SILENT_READ
;
186 extern inline pte_t
pte_mkexec(pte_t pte
)
188 pte_val(pte
) |= _PAGE_READ
;
189 if (pte_val(pte
) & _PAGE_ACCESSED
)
190 pte_val(pte
) |= _PAGE_SILENT_READ
;
194 extern inline pte_t
pte_mkdirty(pte_t pte
)
196 pte_val(pte
) |= _PAGE_MODIFIED
;
197 if (pte_val(pte
) & _PAGE_WRITE
)
198 pte_val(pte
) |= _PAGE_SILENT_WRITE
;
202 extern inline pte_t
pte_mkyoung(pte_t pte
)
204 pte_val(pte
) |= _PAGE_ACCESSED
;
205 if (pte_val(pte
) & _PAGE_READ
)
207 pte_val(pte
) |= _PAGE_SILENT_READ
;
208 if ((pte_val(pte
) & (_PAGE_WRITE
| _PAGE_MODIFIED
)) ==
209 (_PAGE_WRITE
| _PAGE_MODIFIED
))
210 pte_val(pte
) |= _PAGE_SILENT_WRITE
;
216 * Conversion functions: convert a page and protection to a page entry,
217 * and a page entry and page directory to the page they refer to.
220 /* What actually goes as arguments to the various functions is less than
221 * obvious, but a rule of thumb is that struct page's goes as struct page *,
222 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
223 * addresses (the 0xc0xxxxxx's) goes as void *'s.
226 extern inline pte_t
__mk_pte(void * page
, pgprot_t pgprot
)
229 /* the PTE needs a physical address */
230 pte_val(pte
) = __pa(page
) | pgprot_val(pgprot
);
234 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
236 #define mk_pte_phys(physpage, pgprot) \
240 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
244 extern inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
245 { pte_val(pte
) = (pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
); return pte
; }
248 /* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval
249 * __pte_page(pte_val) refers to the "virtual" DRAM interval
250 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start
253 extern inline unsigned long __pte_page(pte_t pte
)
255 /* the PTE contains a physical address */
256 return (unsigned long)__va(pte_val(pte
) & PAGE_MASK
);
259 #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
261 /* permanent address of a page */
263 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
264 #define pte_page(pte) (mem_map+pte_pagenr(pte))
266 /* only the pte's themselves need to point to physical DRAM (see above)
267 * the pagetable links are purely handled within the kernel SW and thus
268 * don't need the __pa and __va transformations.
271 extern inline void pmd_set(pmd_t
* pmdp
, pte_t
* ptep
)
272 { pmd_val(*pmdp
) = _PAGE_TABLE
| (unsigned long) ptep
; }
274 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
275 #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
277 /* to find an entry in a page-table-directory. */
278 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
280 /* to find an entry in a page-table-directory */
281 extern inline pgd_t
* pgd_offset(struct mm_struct
* mm
, unsigned long address
)
283 return mm
->pgd
+ pgd_index(address
);
286 /* to find an entry in a kernel page-table-directory */
287 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
289 /* Find an entry in the second-level page table.. */
290 extern inline pmd_t
* pmd_offset(pgd_t
* dir
, unsigned long address
)
292 return (pmd_t
*) dir
;
295 /* Find an entry in the third-level page table.. */
296 #define __pte_offset(address) \
297 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
298 #define pte_offset_kernel(dir, address) \
299 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
300 #define pte_offset_map(dir, address) \
301 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
302 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
304 #define pte_unmap(pte) do { } while (0)
305 #define pte_unmap_nested(pte) do { } while (0)
306 #define pte_pfn(x) ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT)
307 #define pfn_pte(pfn, prot) __pte((__pa((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
309 #define pte_ERROR(e) \
310 printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
311 #define pmd_ERROR(e) \
312 printk("%s:%d: bad pmd %p(%08lx).\n", __FILE__, __LINE__, &(e), pmd_val(e))
313 #define pgd_ERROR(e) \
314 printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
317 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
]; /* defined in head.S */
320 * CRIS doesn't have any external MMU info: the kernel page
321 * tables contain all the necessary information.
323 * Actually I am not sure on what this could be used for.
325 extern inline void update_mmu_cache(struct vm_area_struct
* vma
,
326 unsigned long address
, pte_t pte
)
330 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
331 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
333 #define __swp_type(x) (((x).val >> 5) & 0x7f)
334 #define __swp_offset(x) ((x).val >> 12)
335 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
336 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
337 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
339 #define kern_addr_valid(addr) (1)
341 #include <asm-generic/pgtable.h>
344 * No page table caches to initialise
346 #define pgtable_cache_init() do { } while (0)
348 #define pte_to_pgoff(x) (pte_val(x) >> 6)
349 #define pgoff_to_pte(x) __pte(((x) << 6) | _PAGE_FILE)
351 #endif /* __ASSEMBLY__ */
352 #endif /* _CRIS_PGTABLE_H */