md/raid10 - avoid reading from known bad blocks - part 3
[linux-2.6/x86.git] / drivers / md / raid10.c
bloba5ecea2672b57dff49ed1b7aa0d616821a38f273
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
38 * far_offset (stored in bit 16 of layout )
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
57 * Number of guaranteed r10bios in case of extreme VM load:
59 #define NR_RAID10_BIOS 256
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 conf_t *conf = data;
67 int size = offsetof(struct r10bio_s, devs[conf->copies]);
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
70 return kzalloc(size, gfp_flags);
73 static void r10bio_pool_free(void *r10_bio, void *data)
75 kfree(r10_bio);
78 /* Maximum size of each resync request */
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
81 /* amount of memory to reserve for resync requests */
82 #define RESYNC_WINDOW (1024*1024)
83 /* maximum number of concurrent requests, memory permitting */
84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
87 * When performing a resync, we need to read and compare, so
88 * we need as many pages are there are copies.
89 * When performing a recovery, we need 2 bios, one for read,
90 * one for write (we recover only one drive per r10buf)
93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
95 conf_t *conf = data;
96 struct page *page;
97 r10bio_t *r10_bio;
98 struct bio *bio;
99 int i, j;
100 int nalloc;
102 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 if (!r10_bio)
104 return NULL;
106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107 nalloc = conf->copies; /* resync */
108 else
109 nalloc = 2; /* recovery */
112 * Allocate bios.
114 for (j = nalloc ; j-- ; ) {
115 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
116 if (!bio)
117 goto out_free_bio;
118 r10_bio->devs[j].bio = bio;
121 * Allocate RESYNC_PAGES data pages and attach them
122 * where needed.
124 for (j = 0 ; j < nalloc; j++) {
125 bio = r10_bio->devs[j].bio;
126 for (i = 0; i < RESYNC_PAGES; i++) {
127 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128 &conf->mddev->recovery)) {
129 /* we can share bv_page's during recovery */
130 struct bio *rbio = r10_bio->devs[0].bio;
131 page = rbio->bi_io_vec[i].bv_page;
132 get_page(page);
133 } else
134 page = alloc_page(gfp_flags);
135 if (unlikely(!page))
136 goto out_free_pages;
138 bio->bi_io_vec[i].bv_page = page;
142 return r10_bio;
144 out_free_pages:
145 for ( ; i > 0 ; i--)
146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
158 static void r10buf_pool_free(void *__r10_bio, void *data)
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
169 safe_put_page(bio->bi_io_vec[i].bv_page);
170 bio->bi_io_vec[i].bv_page = NULL;
172 bio_put(bio);
175 r10bio_pool_free(r10bio, conf);
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 int i;
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
184 if (*bio && *bio != IO_BLOCKED)
185 bio_put(*bio);
186 *bio = NULL;
190 static void free_r10bio(r10bio_t *r10_bio)
192 conf_t *conf = r10_bio->mddev->private;
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
198 static void put_buf(r10bio_t *r10_bio)
200 conf_t *conf = r10_bio->mddev->private;
202 mempool_free(r10_bio, conf->r10buf_pool);
204 lower_barrier(conf);
207 static void reschedule_retry(r10bio_t *r10_bio)
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev->private;
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
215 conf->nr_queued ++;
216 spin_unlock_irqrestore(&conf->device_lock, flags);
218 /* wake up frozen array... */
219 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r10bio_t *r10_bio)
231 struct bio *bio = r10_bio->master_bio;
232 int done;
233 conf_t *conf = r10_bio->mddev->private;
235 if (bio->bi_phys_segments) {
236 unsigned long flags;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 bio->bi_phys_segments--;
239 done = (bio->bi_phys_segments == 0);
240 spin_unlock_irqrestore(&conf->device_lock, flags);
241 } else
242 done = 1;
243 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244 clear_bit(BIO_UPTODATE, &bio->bi_flags);
245 if (done) {
246 bio_endio(bio, 0);
248 * Wake up any possible resync thread that waits for the device
249 * to go idle.
251 allow_barrier(conf);
253 free_r10bio(r10_bio);
257 * Update disk head position estimator based on IRQ completion info.
259 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
261 conf_t *conf = r10_bio->mddev->private;
263 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264 r10_bio->devs[slot].addr + (r10_bio->sectors);
268 * Find the disk number which triggered given bio
270 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio, struct bio *bio)
272 int slot;
274 for (slot = 0; slot < conf->copies; slot++)
275 if (r10_bio->devs[slot].bio == bio)
276 break;
278 BUG_ON(slot == conf->copies);
279 update_head_pos(slot, r10_bio);
281 return r10_bio->devs[slot].devnum;
284 static void raid10_end_read_request(struct bio *bio, int error)
286 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
287 r10bio_t *r10_bio = bio->bi_private;
288 int slot, dev;
289 conf_t *conf = r10_bio->mddev->private;
292 slot = r10_bio->read_slot;
293 dev = r10_bio->devs[slot].devnum;
295 * this branch is our 'one mirror IO has finished' event handler:
297 update_head_pos(slot, r10_bio);
299 if (uptodate) {
301 * Set R10BIO_Uptodate in our master bio, so that
302 * we will return a good error code to the higher
303 * levels even if IO on some other mirrored buffer fails.
305 * The 'master' represents the composite IO operation to
306 * user-side. So if something waits for IO, then it will
307 * wait for the 'master' bio.
309 set_bit(R10BIO_Uptodate, &r10_bio->state);
310 raid_end_bio_io(r10_bio);
311 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
312 } else {
314 * oops, read error - keep the refcount on the rdev
316 char b[BDEVNAME_SIZE];
317 printk_ratelimited(KERN_ERR
318 "md/raid10:%s: %s: rescheduling sector %llu\n",
319 mdname(conf->mddev),
320 bdevname(conf->mirrors[dev].rdev->bdev, b),
321 (unsigned long long)r10_bio->sector);
322 set_bit(R10BIO_ReadError, &r10_bio->state);
323 reschedule_retry(r10_bio);
327 static void raid10_end_write_request(struct bio *bio, int error)
329 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
330 r10bio_t *r10_bio = bio->bi_private;
331 int dev;
332 conf_t *conf = r10_bio->mddev->private;
334 dev = find_bio_disk(conf, r10_bio, bio);
337 * this branch is our 'one mirror IO has finished' event handler:
339 if (!uptodate) {
340 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
341 /* an I/O failed, we can't clear the bitmap */
342 set_bit(R10BIO_Degraded, &r10_bio->state);
343 } else
345 * Set R10BIO_Uptodate in our master bio, so that
346 * we will return a good error code for to the higher
347 * levels even if IO on some other mirrored buffer fails.
349 * The 'master' represents the composite IO operation to
350 * user-side. So if something waits for IO, then it will
351 * wait for the 'master' bio.
353 set_bit(R10BIO_Uptodate, &r10_bio->state);
357 * Let's see if all mirrored write operations have finished
358 * already.
360 if (atomic_dec_and_test(&r10_bio->remaining)) {
361 /* clear the bitmap if all writes complete successfully */
362 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
363 r10_bio->sectors,
364 !test_bit(R10BIO_Degraded, &r10_bio->state),
366 md_write_end(r10_bio->mddev);
367 raid_end_bio_io(r10_bio);
370 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
375 * RAID10 layout manager
376 * As well as the chunksize and raid_disks count, there are two
377 * parameters: near_copies and far_copies.
378 * near_copies * far_copies must be <= raid_disks.
379 * Normally one of these will be 1.
380 * If both are 1, we get raid0.
381 * If near_copies == raid_disks, we get raid1.
383 * Chunks are laid out in raid0 style with near_copies copies of the
384 * first chunk, followed by near_copies copies of the next chunk and
385 * so on.
386 * If far_copies > 1, then after 1/far_copies of the array has been assigned
387 * as described above, we start again with a device offset of near_copies.
388 * So we effectively have another copy of the whole array further down all
389 * the drives, but with blocks on different drives.
390 * With this layout, and block is never stored twice on the one device.
392 * raid10_find_phys finds the sector offset of a given virtual sector
393 * on each device that it is on.
395 * raid10_find_virt does the reverse mapping, from a device and a
396 * sector offset to a virtual address
399 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
401 int n,f;
402 sector_t sector;
403 sector_t chunk;
404 sector_t stripe;
405 int dev;
407 int slot = 0;
409 /* now calculate first sector/dev */
410 chunk = r10bio->sector >> conf->chunk_shift;
411 sector = r10bio->sector & conf->chunk_mask;
413 chunk *= conf->near_copies;
414 stripe = chunk;
415 dev = sector_div(stripe, conf->raid_disks);
416 if (conf->far_offset)
417 stripe *= conf->far_copies;
419 sector += stripe << conf->chunk_shift;
421 /* and calculate all the others */
422 for (n=0; n < conf->near_copies; n++) {
423 int d = dev;
424 sector_t s = sector;
425 r10bio->devs[slot].addr = sector;
426 r10bio->devs[slot].devnum = d;
427 slot++;
429 for (f = 1; f < conf->far_copies; f++) {
430 d += conf->near_copies;
431 if (d >= conf->raid_disks)
432 d -= conf->raid_disks;
433 s += conf->stride;
434 r10bio->devs[slot].devnum = d;
435 r10bio->devs[slot].addr = s;
436 slot++;
438 dev++;
439 if (dev >= conf->raid_disks) {
440 dev = 0;
441 sector += (conf->chunk_mask + 1);
444 BUG_ON(slot != conf->copies);
447 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
449 sector_t offset, chunk, vchunk;
451 offset = sector & conf->chunk_mask;
452 if (conf->far_offset) {
453 int fc;
454 chunk = sector >> conf->chunk_shift;
455 fc = sector_div(chunk, conf->far_copies);
456 dev -= fc * conf->near_copies;
457 if (dev < 0)
458 dev += conf->raid_disks;
459 } else {
460 while (sector >= conf->stride) {
461 sector -= conf->stride;
462 if (dev < conf->near_copies)
463 dev += conf->raid_disks - conf->near_copies;
464 else
465 dev -= conf->near_copies;
467 chunk = sector >> conf->chunk_shift;
469 vchunk = chunk * conf->raid_disks + dev;
470 sector_div(vchunk, conf->near_copies);
471 return (vchunk << conf->chunk_shift) + offset;
475 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
476 * @q: request queue
477 * @bvm: properties of new bio
478 * @biovec: the request that could be merged to it.
480 * Return amount of bytes we can accept at this offset
481 * If near_copies == raid_disk, there are no striping issues,
482 * but in that case, the function isn't called at all.
484 static int raid10_mergeable_bvec(struct request_queue *q,
485 struct bvec_merge_data *bvm,
486 struct bio_vec *biovec)
488 mddev_t *mddev = q->queuedata;
489 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
490 int max;
491 unsigned int chunk_sectors = mddev->chunk_sectors;
492 unsigned int bio_sectors = bvm->bi_size >> 9;
494 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
495 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
496 if (max <= biovec->bv_len && bio_sectors == 0)
497 return biovec->bv_len;
498 else
499 return max;
503 * This routine returns the disk from which the requested read should
504 * be done. There is a per-array 'next expected sequential IO' sector
505 * number - if this matches on the next IO then we use the last disk.
506 * There is also a per-disk 'last know head position' sector that is
507 * maintained from IRQ contexts, both the normal and the resync IO
508 * completion handlers update this position correctly. If there is no
509 * perfect sequential match then we pick the disk whose head is closest.
511 * If there are 2 mirrors in the same 2 devices, performance degrades
512 * because position is mirror, not device based.
514 * The rdev for the device selected will have nr_pending incremented.
518 * FIXME: possibly should rethink readbalancing and do it differently
519 * depending on near_copies / far_copies geometry.
521 static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
523 const sector_t this_sector = r10_bio->sector;
524 int disk, slot;
525 int sectors = r10_bio->sectors;
526 int best_good_sectors;
527 sector_t new_distance, best_dist;
528 mdk_rdev_t *rdev;
529 int do_balance;
530 int best_slot;
532 raid10_find_phys(conf, r10_bio);
533 rcu_read_lock();
534 retry:
535 sectors = r10_bio->sectors;
536 best_slot = -1;
537 best_dist = MaxSector;
538 best_good_sectors = 0;
539 do_balance = 1;
541 * Check if we can balance. We can balance on the whole
542 * device if no resync is going on (recovery is ok), or below
543 * the resync window. We take the first readable disk when
544 * above the resync window.
546 if (conf->mddev->recovery_cp < MaxSector
547 && (this_sector + sectors >= conf->next_resync))
548 do_balance = 0;
550 for (slot = 0; slot < conf->copies ; slot++) {
551 sector_t first_bad;
552 int bad_sectors;
553 sector_t dev_sector;
555 if (r10_bio->devs[slot].bio == IO_BLOCKED)
556 continue;
557 disk = r10_bio->devs[slot].devnum;
558 rdev = rcu_dereference(conf->mirrors[disk].rdev);
559 if (rdev == NULL)
560 continue;
561 if (!test_bit(In_sync, &rdev->flags))
562 continue;
564 dev_sector = r10_bio->devs[slot].addr;
565 if (is_badblock(rdev, dev_sector, sectors,
566 &first_bad, &bad_sectors)) {
567 if (best_dist < MaxSector)
568 /* Already have a better slot */
569 continue;
570 if (first_bad <= dev_sector) {
571 /* Cannot read here. If this is the
572 * 'primary' device, then we must not read
573 * beyond 'bad_sectors' from another device.
575 bad_sectors -= (dev_sector - first_bad);
576 if (!do_balance && sectors > bad_sectors)
577 sectors = bad_sectors;
578 if (best_good_sectors > sectors)
579 best_good_sectors = sectors;
580 } else {
581 sector_t good_sectors =
582 first_bad - dev_sector;
583 if (good_sectors > best_good_sectors) {
584 best_good_sectors = good_sectors;
585 best_slot = slot;
587 if (!do_balance)
588 /* Must read from here */
589 break;
591 continue;
592 } else
593 best_good_sectors = sectors;
595 if (!do_balance)
596 break;
598 /* This optimisation is debatable, and completely destroys
599 * sequential read speed for 'far copies' arrays. So only
600 * keep it for 'near' arrays, and review those later.
602 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
603 break;
605 /* for far > 1 always use the lowest address */
606 if (conf->far_copies > 1)
607 new_distance = r10_bio->devs[slot].addr;
608 else
609 new_distance = abs(r10_bio->devs[slot].addr -
610 conf->mirrors[disk].head_position);
611 if (new_distance < best_dist) {
612 best_dist = new_distance;
613 best_slot = slot;
616 if (slot == conf->copies)
617 slot = best_slot;
619 if (slot >= 0) {
620 disk = r10_bio->devs[slot].devnum;
621 rdev = rcu_dereference(conf->mirrors[disk].rdev);
622 if (!rdev)
623 goto retry;
624 atomic_inc(&rdev->nr_pending);
625 if (test_bit(Faulty, &rdev->flags)) {
626 /* Cannot risk returning a device that failed
627 * before we inc'ed nr_pending
629 rdev_dec_pending(rdev, conf->mddev);
630 goto retry;
632 r10_bio->read_slot = slot;
633 } else
634 disk = -1;
635 rcu_read_unlock();
636 *max_sectors = best_good_sectors;
638 return disk;
641 static int raid10_congested(void *data, int bits)
643 mddev_t *mddev = data;
644 conf_t *conf = mddev->private;
645 int i, ret = 0;
647 if (mddev_congested(mddev, bits))
648 return 1;
649 rcu_read_lock();
650 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
651 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
652 if (rdev && !test_bit(Faulty, &rdev->flags)) {
653 struct request_queue *q = bdev_get_queue(rdev->bdev);
655 ret |= bdi_congested(&q->backing_dev_info, bits);
658 rcu_read_unlock();
659 return ret;
662 static void flush_pending_writes(conf_t *conf)
664 /* Any writes that have been queued but are awaiting
665 * bitmap updates get flushed here.
667 spin_lock_irq(&conf->device_lock);
669 if (conf->pending_bio_list.head) {
670 struct bio *bio;
671 bio = bio_list_get(&conf->pending_bio_list);
672 spin_unlock_irq(&conf->device_lock);
673 /* flush any pending bitmap writes to disk
674 * before proceeding w/ I/O */
675 bitmap_unplug(conf->mddev->bitmap);
677 while (bio) { /* submit pending writes */
678 struct bio *next = bio->bi_next;
679 bio->bi_next = NULL;
680 generic_make_request(bio);
681 bio = next;
683 } else
684 spin_unlock_irq(&conf->device_lock);
687 /* Barriers....
688 * Sometimes we need to suspend IO while we do something else,
689 * either some resync/recovery, or reconfigure the array.
690 * To do this we raise a 'barrier'.
691 * The 'barrier' is a counter that can be raised multiple times
692 * to count how many activities are happening which preclude
693 * normal IO.
694 * We can only raise the barrier if there is no pending IO.
695 * i.e. if nr_pending == 0.
696 * We choose only to raise the barrier if no-one is waiting for the
697 * barrier to go down. This means that as soon as an IO request
698 * is ready, no other operations which require a barrier will start
699 * until the IO request has had a chance.
701 * So: regular IO calls 'wait_barrier'. When that returns there
702 * is no backgroup IO happening, It must arrange to call
703 * allow_barrier when it has finished its IO.
704 * backgroup IO calls must call raise_barrier. Once that returns
705 * there is no normal IO happeing. It must arrange to call
706 * lower_barrier when the particular background IO completes.
709 static void raise_barrier(conf_t *conf, int force)
711 BUG_ON(force && !conf->barrier);
712 spin_lock_irq(&conf->resync_lock);
714 /* Wait until no block IO is waiting (unless 'force') */
715 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
716 conf->resync_lock, );
718 /* block any new IO from starting */
719 conf->barrier++;
721 /* Now wait for all pending IO to complete */
722 wait_event_lock_irq(conf->wait_barrier,
723 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
724 conf->resync_lock, );
726 spin_unlock_irq(&conf->resync_lock);
729 static void lower_barrier(conf_t *conf)
731 unsigned long flags;
732 spin_lock_irqsave(&conf->resync_lock, flags);
733 conf->barrier--;
734 spin_unlock_irqrestore(&conf->resync_lock, flags);
735 wake_up(&conf->wait_barrier);
738 static void wait_barrier(conf_t *conf)
740 spin_lock_irq(&conf->resync_lock);
741 if (conf->barrier) {
742 conf->nr_waiting++;
743 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
744 conf->resync_lock,
746 conf->nr_waiting--;
748 conf->nr_pending++;
749 spin_unlock_irq(&conf->resync_lock);
752 static void allow_barrier(conf_t *conf)
754 unsigned long flags;
755 spin_lock_irqsave(&conf->resync_lock, flags);
756 conf->nr_pending--;
757 spin_unlock_irqrestore(&conf->resync_lock, flags);
758 wake_up(&conf->wait_barrier);
761 static void freeze_array(conf_t *conf)
763 /* stop syncio and normal IO and wait for everything to
764 * go quiet.
765 * We increment barrier and nr_waiting, and then
766 * wait until nr_pending match nr_queued+1
767 * This is called in the context of one normal IO request
768 * that has failed. Thus any sync request that might be pending
769 * will be blocked by nr_pending, and we need to wait for
770 * pending IO requests to complete or be queued for re-try.
771 * Thus the number queued (nr_queued) plus this request (1)
772 * must match the number of pending IOs (nr_pending) before
773 * we continue.
775 spin_lock_irq(&conf->resync_lock);
776 conf->barrier++;
777 conf->nr_waiting++;
778 wait_event_lock_irq(conf->wait_barrier,
779 conf->nr_pending == conf->nr_queued+1,
780 conf->resync_lock,
781 flush_pending_writes(conf));
783 spin_unlock_irq(&conf->resync_lock);
786 static void unfreeze_array(conf_t *conf)
788 /* reverse the effect of the freeze */
789 spin_lock_irq(&conf->resync_lock);
790 conf->barrier--;
791 conf->nr_waiting--;
792 wake_up(&conf->wait_barrier);
793 spin_unlock_irq(&conf->resync_lock);
796 static int make_request(mddev_t *mddev, struct bio * bio)
798 conf_t *conf = mddev->private;
799 mirror_info_t *mirror;
800 r10bio_t *r10_bio;
801 struct bio *read_bio;
802 int i;
803 int chunk_sects = conf->chunk_mask + 1;
804 const int rw = bio_data_dir(bio);
805 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
806 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
807 unsigned long flags;
808 mdk_rdev_t *blocked_rdev;
809 int plugged;
811 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
812 md_flush_request(mddev, bio);
813 return 0;
816 /* If this request crosses a chunk boundary, we need to
817 * split it. This will only happen for 1 PAGE (or less) requests.
819 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
820 > chunk_sects &&
821 conf->near_copies < conf->raid_disks)) {
822 struct bio_pair *bp;
823 /* Sanity check -- queue functions should prevent this happening */
824 if (bio->bi_vcnt != 1 ||
825 bio->bi_idx != 0)
826 goto bad_map;
827 /* This is a one page bio that upper layers
828 * refuse to split for us, so we need to split it.
830 bp = bio_split(bio,
831 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
833 /* Each of these 'make_request' calls will call 'wait_barrier'.
834 * If the first succeeds but the second blocks due to the resync
835 * thread raising the barrier, we will deadlock because the
836 * IO to the underlying device will be queued in generic_make_request
837 * and will never complete, so will never reduce nr_pending.
838 * So increment nr_waiting here so no new raise_barriers will
839 * succeed, and so the second wait_barrier cannot block.
841 spin_lock_irq(&conf->resync_lock);
842 conf->nr_waiting++;
843 spin_unlock_irq(&conf->resync_lock);
845 if (make_request(mddev, &bp->bio1))
846 generic_make_request(&bp->bio1);
847 if (make_request(mddev, &bp->bio2))
848 generic_make_request(&bp->bio2);
850 spin_lock_irq(&conf->resync_lock);
851 conf->nr_waiting--;
852 wake_up(&conf->wait_barrier);
853 spin_unlock_irq(&conf->resync_lock);
855 bio_pair_release(bp);
856 return 0;
857 bad_map:
858 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
859 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
860 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
862 bio_io_error(bio);
863 return 0;
866 md_write_start(mddev, bio);
869 * Register the new request and wait if the reconstruction
870 * thread has put up a bar for new requests.
871 * Continue immediately if no resync is active currently.
873 wait_barrier(conf);
875 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
877 r10_bio->master_bio = bio;
878 r10_bio->sectors = bio->bi_size >> 9;
880 r10_bio->mddev = mddev;
881 r10_bio->sector = bio->bi_sector;
882 r10_bio->state = 0;
884 /* We might need to issue multiple reads to different
885 * devices if there are bad blocks around, so we keep
886 * track of the number of reads in bio->bi_phys_segments.
887 * If this is 0, there is only one r10_bio and no locking
888 * will be needed when the request completes. If it is
889 * non-zero, then it is the number of not-completed requests.
891 bio->bi_phys_segments = 0;
892 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
894 if (rw == READ) {
896 * read balancing logic:
898 int max_sectors;
899 int disk;
900 int slot;
902 read_again:
903 disk = read_balance(conf, r10_bio, &max_sectors);
904 slot = r10_bio->read_slot;
905 if (disk < 0) {
906 raid_end_bio_io(r10_bio);
907 return 0;
909 mirror = conf->mirrors + disk;
911 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
912 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
913 max_sectors);
915 r10_bio->devs[slot].bio = read_bio;
917 read_bio->bi_sector = r10_bio->devs[slot].addr +
918 mirror->rdev->data_offset;
919 read_bio->bi_bdev = mirror->rdev->bdev;
920 read_bio->bi_end_io = raid10_end_read_request;
921 read_bio->bi_rw = READ | do_sync;
922 read_bio->bi_private = r10_bio;
924 if (max_sectors < r10_bio->sectors) {
925 /* Could not read all from this device, so we will
926 * need another r10_bio.
928 int sectors_handled;
930 sectors_handled = (r10_bio->sectors + max_sectors
931 - bio->bi_sector);
932 r10_bio->sectors = max_sectors;
933 spin_lock_irq(&conf->device_lock);
934 if (bio->bi_phys_segments == 0)
935 bio->bi_phys_segments = 2;
936 else
937 bio->bi_phys_segments++;
938 spin_unlock(&conf->device_lock);
939 /* Cannot call generic_make_request directly
940 * as that will be queued in __generic_make_request
941 * and subsequent mempool_alloc might block
942 * waiting for it. so hand bio over to raid10d.
944 reschedule_retry(r10_bio);
946 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
948 r10_bio->master_bio = bio;
949 r10_bio->sectors = ((bio->bi_size >> 9)
950 - sectors_handled);
951 r10_bio->state = 0;
952 r10_bio->mddev = mddev;
953 r10_bio->sector = bio->bi_sector + sectors_handled;
954 goto read_again;
955 } else
956 generic_make_request(read_bio);
957 return 0;
961 * WRITE:
963 /* first select target devices under rcu_lock and
964 * inc refcount on their rdev. Record them by setting
965 * bios[x] to bio
967 plugged = mddev_check_plugged(mddev);
969 raid10_find_phys(conf, r10_bio);
970 retry_write:
971 blocked_rdev = NULL;
972 rcu_read_lock();
973 for (i = 0; i < conf->copies; i++) {
974 int d = r10_bio->devs[i].devnum;
975 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
976 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
977 atomic_inc(&rdev->nr_pending);
978 blocked_rdev = rdev;
979 break;
981 if (rdev && !test_bit(Faulty, &rdev->flags)) {
982 atomic_inc(&rdev->nr_pending);
983 r10_bio->devs[i].bio = bio;
984 } else {
985 r10_bio->devs[i].bio = NULL;
986 set_bit(R10BIO_Degraded, &r10_bio->state);
989 rcu_read_unlock();
991 if (unlikely(blocked_rdev)) {
992 /* Have to wait for this device to get unblocked, then retry */
993 int j;
994 int d;
996 for (j = 0; j < i; j++)
997 if (r10_bio->devs[j].bio) {
998 d = r10_bio->devs[j].devnum;
999 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1001 allow_barrier(conf);
1002 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1003 wait_barrier(conf);
1004 goto retry_write;
1007 atomic_set(&r10_bio->remaining, 1);
1008 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
1010 for (i = 0; i < conf->copies; i++) {
1011 struct bio *mbio;
1012 int d = r10_bio->devs[i].devnum;
1013 if (!r10_bio->devs[i].bio)
1014 continue;
1016 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1017 r10_bio->devs[i].bio = mbio;
1019 mbio->bi_sector = r10_bio->devs[i].addr+
1020 conf->mirrors[d].rdev->data_offset;
1021 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1022 mbio->bi_end_io = raid10_end_write_request;
1023 mbio->bi_rw = WRITE | do_sync | do_fua;
1024 mbio->bi_private = r10_bio;
1026 atomic_inc(&r10_bio->remaining);
1027 spin_lock_irqsave(&conf->device_lock, flags);
1028 bio_list_add(&conf->pending_bio_list, mbio);
1029 spin_unlock_irqrestore(&conf->device_lock, flags);
1032 if (atomic_dec_and_test(&r10_bio->remaining)) {
1033 /* This matches the end of raid10_end_write_request() */
1034 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
1035 r10_bio->sectors,
1036 !test_bit(R10BIO_Degraded, &r10_bio->state),
1038 md_write_end(mddev);
1039 raid_end_bio_io(r10_bio);
1042 /* In case raid10d snuck in to freeze_array */
1043 wake_up(&conf->wait_barrier);
1045 if (do_sync || !mddev->bitmap || !plugged)
1046 md_wakeup_thread(mddev->thread);
1047 return 0;
1050 static void status(struct seq_file *seq, mddev_t *mddev)
1052 conf_t *conf = mddev->private;
1053 int i;
1055 if (conf->near_copies < conf->raid_disks)
1056 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1057 if (conf->near_copies > 1)
1058 seq_printf(seq, " %d near-copies", conf->near_copies);
1059 if (conf->far_copies > 1) {
1060 if (conf->far_offset)
1061 seq_printf(seq, " %d offset-copies", conf->far_copies);
1062 else
1063 seq_printf(seq, " %d far-copies", conf->far_copies);
1065 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1066 conf->raid_disks - mddev->degraded);
1067 for (i = 0; i < conf->raid_disks; i++)
1068 seq_printf(seq, "%s",
1069 conf->mirrors[i].rdev &&
1070 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1071 seq_printf(seq, "]");
1074 /* check if there are enough drives for
1075 * every block to appear on atleast one.
1076 * Don't consider the device numbered 'ignore'
1077 * as we might be about to remove it.
1079 static int enough(conf_t *conf, int ignore)
1081 int first = 0;
1083 do {
1084 int n = conf->copies;
1085 int cnt = 0;
1086 while (n--) {
1087 if (conf->mirrors[first].rdev &&
1088 first != ignore)
1089 cnt++;
1090 first = (first+1) % conf->raid_disks;
1092 if (cnt == 0)
1093 return 0;
1094 } while (first != 0);
1095 return 1;
1098 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1100 char b[BDEVNAME_SIZE];
1101 conf_t *conf = mddev->private;
1104 * If it is not operational, then we have already marked it as dead
1105 * else if it is the last working disks, ignore the error, let the
1106 * next level up know.
1107 * else mark the drive as failed
1109 if (test_bit(In_sync, &rdev->flags)
1110 && !enough(conf, rdev->raid_disk))
1112 * Don't fail the drive, just return an IO error.
1114 return;
1115 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1116 unsigned long flags;
1117 spin_lock_irqsave(&conf->device_lock, flags);
1118 mddev->degraded++;
1119 spin_unlock_irqrestore(&conf->device_lock, flags);
1121 * if recovery is running, make sure it aborts.
1123 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1125 set_bit(Blocked, &rdev->flags);
1126 set_bit(Faulty, &rdev->flags);
1127 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1128 printk(KERN_ALERT
1129 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1130 "md/raid10:%s: Operation continuing on %d devices.\n",
1131 mdname(mddev), bdevname(rdev->bdev, b),
1132 mdname(mddev), conf->raid_disks - mddev->degraded);
1135 static void print_conf(conf_t *conf)
1137 int i;
1138 mirror_info_t *tmp;
1140 printk(KERN_DEBUG "RAID10 conf printout:\n");
1141 if (!conf) {
1142 printk(KERN_DEBUG "(!conf)\n");
1143 return;
1145 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1146 conf->raid_disks);
1148 for (i = 0; i < conf->raid_disks; i++) {
1149 char b[BDEVNAME_SIZE];
1150 tmp = conf->mirrors + i;
1151 if (tmp->rdev)
1152 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1153 i, !test_bit(In_sync, &tmp->rdev->flags),
1154 !test_bit(Faulty, &tmp->rdev->flags),
1155 bdevname(tmp->rdev->bdev,b));
1159 static void close_sync(conf_t *conf)
1161 wait_barrier(conf);
1162 allow_barrier(conf);
1164 mempool_destroy(conf->r10buf_pool);
1165 conf->r10buf_pool = NULL;
1168 static int raid10_spare_active(mddev_t *mddev)
1170 int i;
1171 conf_t *conf = mddev->private;
1172 mirror_info_t *tmp;
1173 int count = 0;
1174 unsigned long flags;
1177 * Find all non-in_sync disks within the RAID10 configuration
1178 * and mark them in_sync
1180 for (i = 0; i < conf->raid_disks; i++) {
1181 tmp = conf->mirrors + i;
1182 if (tmp->rdev
1183 && !test_bit(Faulty, &tmp->rdev->flags)
1184 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1185 count++;
1186 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1189 spin_lock_irqsave(&conf->device_lock, flags);
1190 mddev->degraded -= count;
1191 spin_unlock_irqrestore(&conf->device_lock, flags);
1193 print_conf(conf);
1194 return count;
1198 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1200 conf_t *conf = mddev->private;
1201 int err = -EEXIST;
1202 int mirror;
1203 int first = 0;
1204 int last = conf->raid_disks - 1;
1206 if (rdev->badblocks.count)
1207 return -EINVAL;
1209 if (mddev->recovery_cp < MaxSector)
1210 /* only hot-add to in-sync arrays, as recovery is
1211 * very different from resync
1213 return -EBUSY;
1214 if (!enough(conf, -1))
1215 return -EINVAL;
1217 if (rdev->raid_disk >= 0)
1218 first = last = rdev->raid_disk;
1220 if (rdev->saved_raid_disk >= first &&
1221 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1222 mirror = rdev->saved_raid_disk;
1223 else
1224 mirror = first;
1225 for ( ; mirror <= last ; mirror++) {
1226 mirror_info_t *p = &conf->mirrors[mirror];
1227 if (p->recovery_disabled == mddev->recovery_disabled)
1228 continue;
1229 if (!p->rdev)
1230 continue;
1232 disk_stack_limits(mddev->gendisk, rdev->bdev,
1233 rdev->data_offset << 9);
1234 /* as we don't honour merge_bvec_fn, we must
1235 * never risk violating it, so limit
1236 * ->max_segments to one lying with a single
1237 * page, as a one page request is never in
1238 * violation.
1240 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1241 blk_queue_max_segments(mddev->queue, 1);
1242 blk_queue_segment_boundary(mddev->queue,
1243 PAGE_CACHE_SIZE - 1);
1246 p->head_position = 0;
1247 rdev->raid_disk = mirror;
1248 err = 0;
1249 if (rdev->saved_raid_disk != mirror)
1250 conf->fullsync = 1;
1251 rcu_assign_pointer(p->rdev, rdev);
1252 break;
1255 md_integrity_add_rdev(rdev, mddev);
1256 print_conf(conf);
1257 return err;
1260 static int raid10_remove_disk(mddev_t *mddev, int number)
1262 conf_t *conf = mddev->private;
1263 int err = 0;
1264 mdk_rdev_t *rdev;
1265 mirror_info_t *p = conf->mirrors+ number;
1267 print_conf(conf);
1268 rdev = p->rdev;
1269 if (rdev) {
1270 if (test_bit(In_sync, &rdev->flags) ||
1271 atomic_read(&rdev->nr_pending)) {
1272 err = -EBUSY;
1273 goto abort;
1275 /* Only remove faulty devices in recovery
1276 * is not possible.
1278 if (!test_bit(Faulty, &rdev->flags) &&
1279 mddev->recovery_disabled != p->recovery_disabled &&
1280 enough(conf, -1)) {
1281 err = -EBUSY;
1282 goto abort;
1284 p->rdev = NULL;
1285 synchronize_rcu();
1286 if (atomic_read(&rdev->nr_pending)) {
1287 /* lost the race, try later */
1288 err = -EBUSY;
1289 p->rdev = rdev;
1290 goto abort;
1292 err = md_integrity_register(mddev);
1294 abort:
1296 print_conf(conf);
1297 return err;
1301 static void end_sync_read(struct bio *bio, int error)
1303 r10bio_t *r10_bio = bio->bi_private;
1304 conf_t *conf = r10_bio->mddev->private;
1305 int d;
1307 d = find_bio_disk(conf, r10_bio, bio);
1309 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1310 set_bit(R10BIO_Uptodate, &r10_bio->state);
1311 else {
1312 atomic_add(r10_bio->sectors,
1313 &conf->mirrors[d].rdev->corrected_errors);
1314 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1315 md_error(r10_bio->mddev,
1316 conf->mirrors[d].rdev);
1319 /* for reconstruct, we always reschedule after a read.
1320 * for resync, only after all reads
1322 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1323 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1324 atomic_dec_and_test(&r10_bio->remaining)) {
1325 /* we have read all the blocks,
1326 * do the comparison in process context in raid10d
1328 reschedule_retry(r10_bio);
1332 static void end_sync_write(struct bio *bio, int error)
1334 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1335 r10bio_t *r10_bio = bio->bi_private;
1336 mddev_t *mddev = r10_bio->mddev;
1337 conf_t *conf = mddev->private;
1338 int d;
1340 d = find_bio_disk(conf, r10_bio, bio);
1342 if (!uptodate)
1343 md_error(mddev, conf->mirrors[d].rdev);
1345 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1346 while (atomic_dec_and_test(&r10_bio->remaining)) {
1347 if (r10_bio->master_bio == NULL) {
1348 /* the primary of several recovery bios */
1349 sector_t s = r10_bio->sectors;
1350 put_buf(r10_bio);
1351 md_done_sync(mddev, s, 1);
1352 break;
1353 } else {
1354 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1355 put_buf(r10_bio);
1356 r10_bio = r10_bio2;
1362 * Note: sync and recover and handled very differently for raid10
1363 * This code is for resync.
1364 * For resync, we read through virtual addresses and read all blocks.
1365 * If there is any error, we schedule a write. The lowest numbered
1366 * drive is authoritative.
1367 * However requests come for physical address, so we need to map.
1368 * For every physical address there are raid_disks/copies virtual addresses,
1369 * which is always are least one, but is not necessarly an integer.
1370 * This means that a physical address can span multiple chunks, so we may
1371 * have to submit multiple io requests for a single sync request.
1374 * We check if all blocks are in-sync and only write to blocks that
1375 * aren't in sync
1377 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1379 conf_t *conf = mddev->private;
1380 int i, first;
1381 struct bio *tbio, *fbio;
1383 atomic_set(&r10_bio->remaining, 1);
1385 /* find the first device with a block */
1386 for (i=0; i<conf->copies; i++)
1387 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1388 break;
1390 if (i == conf->copies)
1391 goto done;
1393 first = i;
1394 fbio = r10_bio->devs[i].bio;
1396 /* now find blocks with errors */
1397 for (i=0 ; i < conf->copies ; i++) {
1398 int j, d;
1399 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1401 tbio = r10_bio->devs[i].bio;
1403 if (tbio->bi_end_io != end_sync_read)
1404 continue;
1405 if (i == first)
1406 continue;
1407 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1408 /* We know that the bi_io_vec layout is the same for
1409 * both 'first' and 'i', so we just compare them.
1410 * All vec entries are PAGE_SIZE;
1412 for (j = 0; j < vcnt; j++)
1413 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1414 page_address(tbio->bi_io_vec[j].bv_page),
1415 PAGE_SIZE))
1416 break;
1417 if (j == vcnt)
1418 continue;
1419 mddev->resync_mismatches += r10_bio->sectors;
1421 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1422 /* Don't fix anything. */
1423 continue;
1424 /* Ok, we need to write this bio
1425 * First we need to fixup bv_offset, bv_len and
1426 * bi_vecs, as the read request might have corrupted these
1428 tbio->bi_vcnt = vcnt;
1429 tbio->bi_size = r10_bio->sectors << 9;
1430 tbio->bi_idx = 0;
1431 tbio->bi_phys_segments = 0;
1432 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1433 tbio->bi_flags |= 1 << BIO_UPTODATE;
1434 tbio->bi_next = NULL;
1435 tbio->bi_rw = WRITE;
1436 tbio->bi_private = r10_bio;
1437 tbio->bi_sector = r10_bio->devs[i].addr;
1439 for (j=0; j < vcnt ; j++) {
1440 tbio->bi_io_vec[j].bv_offset = 0;
1441 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1443 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1444 page_address(fbio->bi_io_vec[j].bv_page),
1445 PAGE_SIZE);
1447 tbio->bi_end_io = end_sync_write;
1449 d = r10_bio->devs[i].devnum;
1450 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1451 atomic_inc(&r10_bio->remaining);
1452 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1454 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1455 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1456 generic_make_request(tbio);
1459 done:
1460 if (atomic_dec_and_test(&r10_bio->remaining)) {
1461 md_done_sync(mddev, r10_bio->sectors, 1);
1462 put_buf(r10_bio);
1467 * Now for the recovery code.
1468 * Recovery happens across physical sectors.
1469 * We recover all non-is_sync drives by finding the virtual address of
1470 * each, and then choose a working drive that also has that virt address.
1471 * There is a separate r10_bio for each non-in_sync drive.
1472 * Only the first two slots are in use. The first for reading,
1473 * The second for writing.
1477 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1479 conf_t *conf = mddev->private;
1480 int d;
1481 struct bio *wbio;
1484 * share the pages with the first bio
1485 * and submit the write request
1487 wbio = r10_bio->devs[1].bio;
1488 d = r10_bio->devs[1].devnum;
1490 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1491 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1492 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1493 generic_make_request(wbio);
1494 else {
1495 printk(KERN_NOTICE
1496 "md/raid10:%s: recovery aborted due to read error\n",
1497 mdname(mddev));
1498 conf->mirrors[d].recovery_disabled = mddev->recovery_disabled;
1499 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1500 bio_endio(wbio, 0);
1506 * Used by fix_read_error() to decay the per rdev read_errors.
1507 * We halve the read error count for every hour that has elapsed
1508 * since the last recorded read error.
1511 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1513 struct timespec cur_time_mon;
1514 unsigned long hours_since_last;
1515 unsigned int read_errors = atomic_read(&rdev->read_errors);
1517 ktime_get_ts(&cur_time_mon);
1519 if (rdev->last_read_error.tv_sec == 0 &&
1520 rdev->last_read_error.tv_nsec == 0) {
1521 /* first time we've seen a read error */
1522 rdev->last_read_error = cur_time_mon;
1523 return;
1526 hours_since_last = (cur_time_mon.tv_sec -
1527 rdev->last_read_error.tv_sec) / 3600;
1529 rdev->last_read_error = cur_time_mon;
1532 * if hours_since_last is > the number of bits in read_errors
1533 * just set read errors to 0. We do this to avoid
1534 * overflowing the shift of read_errors by hours_since_last.
1536 if (hours_since_last >= 8 * sizeof(read_errors))
1537 atomic_set(&rdev->read_errors, 0);
1538 else
1539 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1543 * This is a kernel thread which:
1545 * 1. Retries failed read operations on working mirrors.
1546 * 2. Updates the raid superblock when problems encounter.
1547 * 3. Performs writes following reads for array synchronising.
1550 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1552 int sect = 0; /* Offset from r10_bio->sector */
1553 int sectors = r10_bio->sectors;
1554 mdk_rdev_t*rdev;
1555 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1556 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1558 /* still own a reference to this rdev, so it cannot
1559 * have been cleared recently.
1561 rdev = conf->mirrors[d].rdev;
1563 if (test_bit(Faulty, &rdev->flags))
1564 /* drive has already been failed, just ignore any
1565 more fix_read_error() attempts */
1566 return;
1568 check_decay_read_errors(mddev, rdev);
1569 atomic_inc(&rdev->read_errors);
1570 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1571 char b[BDEVNAME_SIZE];
1572 bdevname(rdev->bdev, b);
1574 printk(KERN_NOTICE
1575 "md/raid10:%s: %s: Raid device exceeded "
1576 "read_error threshold [cur %d:max %d]\n",
1577 mdname(mddev), b,
1578 atomic_read(&rdev->read_errors), max_read_errors);
1579 printk(KERN_NOTICE
1580 "md/raid10:%s: %s: Failing raid device\n",
1581 mdname(mddev), b);
1582 md_error(mddev, conf->mirrors[d].rdev);
1583 return;
1586 while(sectors) {
1587 int s = sectors;
1588 int sl = r10_bio->read_slot;
1589 int success = 0;
1590 int start;
1592 if (s > (PAGE_SIZE>>9))
1593 s = PAGE_SIZE >> 9;
1595 rcu_read_lock();
1596 do {
1597 sector_t first_bad;
1598 int bad_sectors;
1600 d = r10_bio->devs[sl].devnum;
1601 rdev = rcu_dereference(conf->mirrors[d].rdev);
1602 if (rdev &&
1603 test_bit(In_sync, &rdev->flags) &&
1604 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1605 &first_bad, &bad_sectors) == 0) {
1606 atomic_inc(&rdev->nr_pending);
1607 rcu_read_unlock();
1608 success = sync_page_io(rdev,
1609 r10_bio->devs[sl].addr +
1610 sect,
1611 s<<9,
1612 conf->tmppage, READ, false);
1613 rdev_dec_pending(rdev, mddev);
1614 rcu_read_lock();
1615 if (success)
1616 break;
1618 sl++;
1619 if (sl == conf->copies)
1620 sl = 0;
1621 } while (!success && sl != r10_bio->read_slot);
1622 rcu_read_unlock();
1624 if (!success) {
1625 /* Cannot read from anywhere -- bye bye array */
1626 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1627 md_error(mddev, conf->mirrors[dn].rdev);
1628 break;
1631 start = sl;
1632 /* write it back and re-read */
1633 rcu_read_lock();
1634 while (sl != r10_bio->read_slot) {
1635 char b[BDEVNAME_SIZE];
1637 if (sl==0)
1638 sl = conf->copies;
1639 sl--;
1640 d = r10_bio->devs[sl].devnum;
1641 rdev = rcu_dereference(conf->mirrors[d].rdev);
1642 if (!rdev ||
1643 !test_bit(In_sync, &rdev->flags))
1644 continue;
1646 atomic_inc(&rdev->nr_pending);
1647 rcu_read_unlock();
1648 if (sync_page_io(rdev,
1649 r10_bio->devs[sl].addr +
1650 sect,
1651 s<<9, conf->tmppage, WRITE, false)
1652 == 0) {
1653 /* Well, this device is dead */
1654 printk(KERN_NOTICE
1655 "md/raid10:%s: read correction "
1656 "write failed"
1657 " (%d sectors at %llu on %s)\n",
1658 mdname(mddev), s,
1659 (unsigned long long)(
1660 sect + rdev->data_offset),
1661 bdevname(rdev->bdev, b));
1662 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1663 "drive\n",
1664 mdname(mddev),
1665 bdevname(rdev->bdev, b));
1666 md_error(mddev, rdev);
1668 rdev_dec_pending(rdev, mddev);
1669 rcu_read_lock();
1671 sl = start;
1672 while (sl != r10_bio->read_slot) {
1673 char b[BDEVNAME_SIZE];
1675 if (sl==0)
1676 sl = conf->copies;
1677 sl--;
1678 d = r10_bio->devs[sl].devnum;
1679 rdev = rcu_dereference(conf->mirrors[d].rdev);
1680 if (!rdev ||
1681 !test_bit(In_sync, &rdev->flags))
1682 continue;
1684 atomic_inc(&rdev->nr_pending);
1685 rcu_read_unlock();
1686 if (sync_page_io(rdev,
1687 r10_bio->devs[sl].addr +
1688 sect,
1689 s<<9, conf->tmppage,
1690 READ, false) == 0) {
1691 /* Well, this device is dead */
1692 printk(KERN_NOTICE
1693 "md/raid10:%s: unable to read back "
1694 "corrected sectors"
1695 " (%d sectors at %llu on %s)\n",
1696 mdname(mddev), s,
1697 (unsigned long long)(
1698 sect + rdev->data_offset),
1699 bdevname(rdev->bdev, b));
1700 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1701 "drive\n",
1702 mdname(mddev),
1703 bdevname(rdev->bdev, b));
1705 md_error(mddev, rdev);
1706 } else {
1707 printk(KERN_INFO
1708 "md/raid10:%s: read error corrected"
1709 " (%d sectors at %llu on %s)\n",
1710 mdname(mddev), s,
1711 (unsigned long long)(
1712 sect + rdev->data_offset),
1713 bdevname(rdev->bdev, b));
1714 atomic_add(s, &rdev->corrected_errors);
1717 rdev_dec_pending(rdev, mddev);
1718 rcu_read_lock();
1720 rcu_read_unlock();
1722 sectors -= s;
1723 sect += s;
1727 static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
1729 int slot = r10_bio->read_slot;
1730 int mirror = r10_bio->devs[slot].devnum;
1731 struct bio *bio;
1732 conf_t *conf = mddev->private;
1733 mdk_rdev_t *rdev;
1734 char b[BDEVNAME_SIZE];
1735 unsigned long do_sync;
1736 int max_sectors;
1738 /* we got a read error. Maybe the drive is bad. Maybe just
1739 * the block and we can fix it.
1740 * We freeze all other IO, and try reading the block from
1741 * other devices. When we find one, we re-write
1742 * and check it that fixes the read error.
1743 * This is all done synchronously while the array is
1744 * frozen.
1746 if (mddev->ro == 0) {
1747 freeze_array(conf);
1748 fix_read_error(conf, mddev, r10_bio);
1749 unfreeze_array(conf);
1751 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1753 bio = r10_bio->devs[slot].bio;
1754 bdevname(bio->bi_bdev, b);
1755 r10_bio->devs[slot].bio =
1756 mddev->ro ? IO_BLOCKED : NULL;
1757 read_more:
1758 mirror = read_balance(conf, r10_bio, &max_sectors);
1759 if (mirror == -1) {
1760 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1761 " read error for block %llu\n",
1762 mdname(mddev), b,
1763 (unsigned long long)r10_bio->sector);
1764 raid_end_bio_io(r10_bio);
1765 bio_put(bio);
1766 return;
1769 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1770 if (bio)
1771 bio_put(bio);
1772 slot = r10_bio->read_slot;
1773 rdev = conf->mirrors[mirror].rdev;
1774 printk_ratelimited(
1775 KERN_ERR
1776 "md/raid10:%s: %s: redirecting"
1777 "sector %llu to another mirror\n",
1778 mdname(mddev),
1779 bdevname(rdev->bdev, b),
1780 (unsigned long long)r10_bio->sector);
1781 bio = bio_clone_mddev(r10_bio->master_bio,
1782 GFP_NOIO, mddev);
1783 md_trim_bio(bio,
1784 r10_bio->sector - bio->bi_sector,
1785 max_sectors);
1786 r10_bio->devs[slot].bio = bio;
1787 bio->bi_sector = r10_bio->devs[slot].addr
1788 + rdev->data_offset;
1789 bio->bi_bdev = rdev->bdev;
1790 bio->bi_rw = READ | do_sync;
1791 bio->bi_private = r10_bio;
1792 bio->bi_end_io = raid10_end_read_request;
1793 if (max_sectors < r10_bio->sectors) {
1794 /* Drat - have to split this up more */
1795 struct bio *mbio = r10_bio->master_bio;
1796 int sectors_handled =
1797 r10_bio->sector + max_sectors
1798 - mbio->bi_sector;
1799 r10_bio->sectors = max_sectors;
1800 spin_lock_irq(&conf->device_lock);
1801 if (mbio->bi_phys_segments == 0)
1802 mbio->bi_phys_segments = 2;
1803 else
1804 mbio->bi_phys_segments++;
1805 spin_unlock_irq(&conf->device_lock);
1806 generic_make_request(bio);
1807 bio = NULL;
1809 r10_bio = mempool_alloc(conf->r10bio_pool,
1810 GFP_NOIO);
1811 r10_bio->master_bio = mbio;
1812 r10_bio->sectors = (mbio->bi_size >> 9)
1813 - sectors_handled;
1814 r10_bio->state = 0;
1815 set_bit(R10BIO_ReadError,
1816 &r10_bio->state);
1817 r10_bio->mddev = mddev;
1818 r10_bio->sector = mbio->bi_sector
1819 + sectors_handled;
1821 goto read_more;
1822 } else
1823 generic_make_request(bio);
1826 static void raid10d(mddev_t *mddev)
1828 r10bio_t *r10_bio;
1829 unsigned long flags;
1830 conf_t *conf = mddev->private;
1831 struct list_head *head = &conf->retry_list;
1832 struct blk_plug plug;
1834 md_check_recovery(mddev);
1836 blk_start_plug(&plug);
1837 for (;;) {
1839 flush_pending_writes(conf);
1841 spin_lock_irqsave(&conf->device_lock, flags);
1842 if (list_empty(head)) {
1843 spin_unlock_irqrestore(&conf->device_lock, flags);
1844 break;
1846 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1847 list_del(head->prev);
1848 conf->nr_queued--;
1849 spin_unlock_irqrestore(&conf->device_lock, flags);
1851 mddev = r10_bio->mddev;
1852 conf = mddev->private;
1853 if (test_bit(R10BIO_IsSync, &r10_bio->state))
1854 sync_request_write(mddev, r10_bio);
1855 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1856 recovery_request_write(mddev, r10_bio);
1857 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
1858 handle_read_error(mddev, r10_bio);
1859 else {
1860 /* just a partial read to be scheduled from a
1861 * separate context
1863 int slot = r10_bio->read_slot;
1864 generic_make_request(r10_bio->devs[slot].bio);
1867 cond_resched();
1868 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
1869 md_check_recovery(mddev);
1871 blk_finish_plug(&plug);
1875 static int init_resync(conf_t *conf)
1877 int buffs;
1879 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1880 BUG_ON(conf->r10buf_pool);
1881 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1882 if (!conf->r10buf_pool)
1883 return -ENOMEM;
1884 conf->next_resync = 0;
1885 return 0;
1889 * perform a "sync" on one "block"
1891 * We need to make sure that no normal I/O request - particularly write
1892 * requests - conflict with active sync requests.
1894 * This is achieved by tracking pending requests and a 'barrier' concept
1895 * that can be installed to exclude normal IO requests.
1897 * Resync and recovery are handled very differently.
1898 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1900 * For resync, we iterate over virtual addresses, read all copies,
1901 * and update if there are differences. If only one copy is live,
1902 * skip it.
1903 * For recovery, we iterate over physical addresses, read a good
1904 * value for each non-in_sync drive, and over-write.
1906 * So, for recovery we may have several outstanding complex requests for a
1907 * given address, one for each out-of-sync device. We model this by allocating
1908 * a number of r10_bio structures, one for each out-of-sync device.
1909 * As we setup these structures, we collect all bio's together into a list
1910 * which we then process collectively to add pages, and then process again
1911 * to pass to generic_make_request.
1913 * The r10_bio structures are linked using a borrowed master_bio pointer.
1914 * This link is counted in ->remaining. When the r10_bio that points to NULL
1915 * has its remaining count decremented to 0, the whole complex operation
1916 * is complete.
1920 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
1921 int *skipped, int go_faster)
1923 conf_t *conf = mddev->private;
1924 r10bio_t *r10_bio;
1925 struct bio *biolist = NULL, *bio;
1926 sector_t max_sector, nr_sectors;
1927 int i;
1928 int max_sync;
1929 sector_t sync_blocks;
1931 sector_t sectors_skipped = 0;
1932 int chunks_skipped = 0;
1934 if (!conf->r10buf_pool)
1935 if (init_resync(conf))
1936 return 0;
1938 skipped:
1939 max_sector = mddev->dev_sectors;
1940 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1941 max_sector = mddev->resync_max_sectors;
1942 if (sector_nr >= max_sector) {
1943 /* If we aborted, we need to abort the
1944 * sync on the 'current' bitmap chucks (there can
1945 * be several when recovering multiple devices).
1946 * as we may have started syncing it but not finished.
1947 * We can find the current address in
1948 * mddev->curr_resync, but for recovery,
1949 * we need to convert that to several
1950 * virtual addresses.
1952 if (mddev->curr_resync < max_sector) { /* aborted */
1953 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1954 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1955 &sync_blocks, 1);
1956 else for (i=0; i<conf->raid_disks; i++) {
1957 sector_t sect =
1958 raid10_find_virt(conf, mddev->curr_resync, i);
1959 bitmap_end_sync(mddev->bitmap, sect,
1960 &sync_blocks, 1);
1962 } else /* completed sync */
1963 conf->fullsync = 0;
1965 bitmap_close_sync(mddev->bitmap);
1966 close_sync(conf);
1967 *skipped = 1;
1968 return sectors_skipped;
1970 if (chunks_skipped >= conf->raid_disks) {
1971 /* if there has been nothing to do on any drive,
1972 * then there is nothing to do at all..
1974 *skipped = 1;
1975 return (max_sector - sector_nr) + sectors_skipped;
1978 if (max_sector > mddev->resync_max)
1979 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1981 /* make sure whole request will fit in a chunk - if chunks
1982 * are meaningful
1984 if (conf->near_copies < conf->raid_disks &&
1985 max_sector > (sector_nr | conf->chunk_mask))
1986 max_sector = (sector_nr | conf->chunk_mask) + 1;
1988 * If there is non-resync activity waiting for us then
1989 * put in a delay to throttle resync.
1991 if (!go_faster && conf->nr_waiting)
1992 msleep_interruptible(1000);
1994 /* Again, very different code for resync and recovery.
1995 * Both must result in an r10bio with a list of bios that
1996 * have bi_end_io, bi_sector, bi_bdev set,
1997 * and bi_private set to the r10bio.
1998 * For recovery, we may actually create several r10bios
1999 * with 2 bios in each, that correspond to the bios in the main one.
2000 * In this case, the subordinate r10bios link back through a
2001 * borrowed master_bio pointer, and the counter in the master
2002 * includes a ref from each subordinate.
2004 /* First, we decide what to do and set ->bi_end_io
2005 * To end_sync_read if we want to read, and
2006 * end_sync_write if we will want to write.
2009 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2010 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2011 /* recovery... the complicated one */
2012 int j, k;
2013 r10_bio = NULL;
2015 for (i=0 ; i<conf->raid_disks; i++) {
2016 int still_degraded;
2017 r10bio_t *rb2;
2018 sector_t sect;
2019 int must_sync;
2021 if (conf->mirrors[i].rdev == NULL ||
2022 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2023 continue;
2025 still_degraded = 0;
2026 /* want to reconstruct this device */
2027 rb2 = r10_bio;
2028 sect = raid10_find_virt(conf, sector_nr, i);
2029 /* Unless we are doing a full sync, we only need
2030 * to recover the block if it is set in the bitmap
2032 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2033 &sync_blocks, 1);
2034 if (sync_blocks < max_sync)
2035 max_sync = sync_blocks;
2036 if (!must_sync &&
2037 !conf->fullsync) {
2038 /* yep, skip the sync_blocks here, but don't assume
2039 * that there will never be anything to do here
2041 chunks_skipped = -1;
2042 continue;
2045 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2046 raise_barrier(conf, rb2 != NULL);
2047 atomic_set(&r10_bio->remaining, 0);
2049 r10_bio->master_bio = (struct bio*)rb2;
2050 if (rb2)
2051 atomic_inc(&rb2->remaining);
2052 r10_bio->mddev = mddev;
2053 set_bit(R10BIO_IsRecover, &r10_bio->state);
2054 r10_bio->sector = sect;
2056 raid10_find_phys(conf, r10_bio);
2058 /* Need to check if the array will still be
2059 * degraded
2061 for (j=0; j<conf->raid_disks; j++)
2062 if (conf->mirrors[j].rdev == NULL ||
2063 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2064 still_degraded = 1;
2065 break;
2068 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2069 &sync_blocks, still_degraded);
2071 for (j=0; j<conf->copies;j++) {
2072 int d = r10_bio->devs[j].devnum;
2073 if (!conf->mirrors[d].rdev ||
2074 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2075 continue;
2076 /* This is where we read from */
2077 bio = r10_bio->devs[0].bio;
2078 bio->bi_next = biolist;
2079 biolist = bio;
2080 bio->bi_private = r10_bio;
2081 bio->bi_end_io = end_sync_read;
2082 bio->bi_rw = READ;
2083 bio->bi_sector = r10_bio->devs[j].addr +
2084 conf->mirrors[d].rdev->data_offset;
2085 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2086 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2087 atomic_inc(&r10_bio->remaining);
2088 /* and we write to 'i' */
2090 for (k=0; k<conf->copies; k++)
2091 if (r10_bio->devs[k].devnum == i)
2092 break;
2093 BUG_ON(k == conf->copies);
2094 bio = r10_bio->devs[1].bio;
2095 bio->bi_next = biolist;
2096 biolist = bio;
2097 bio->bi_private = r10_bio;
2098 bio->bi_end_io = end_sync_write;
2099 bio->bi_rw = WRITE;
2100 bio->bi_sector = r10_bio->devs[k].addr +
2101 conf->mirrors[i].rdev->data_offset;
2102 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2104 r10_bio->devs[0].devnum = d;
2105 r10_bio->devs[1].devnum = i;
2107 break;
2109 if (j == conf->copies) {
2110 /* Cannot recover, so abort the recovery */
2111 put_buf(r10_bio);
2112 if (rb2)
2113 atomic_dec(&rb2->remaining);
2114 r10_bio = rb2;
2115 if (!test_and_set_bit(MD_RECOVERY_INTR,
2116 &mddev->recovery))
2117 printk(KERN_INFO "md/raid10:%s: insufficient "
2118 "working devices for recovery.\n",
2119 mdname(mddev));
2120 break;
2123 if (biolist == NULL) {
2124 while (r10_bio) {
2125 r10bio_t *rb2 = r10_bio;
2126 r10_bio = (r10bio_t*) rb2->master_bio;
2127 rb2->master_bio = NULL;
2128 put_buf(rb2);
2130 goto giveup;
2132 } else {
2133 /* resync. Schedule a read for every block at this virt offset */
2134 int count = 0;
2136 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2138 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2139 &sync_blocks, mddev->degraded) &&
2140 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2141 &mddev->recovery)) {
2142 /* We can skip this block */
2143 *skipped = 1;
2144 return sync_blocks + sectors_skipped;
2146 if (sync_blocks < max_sync)
2147 max_sync = sync_blocks;
2148 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2150 r10_bio->mddev = mddev;
2151 atomic_set(&r10_bio->remaining, 0);
2152 raise_barrier(conf, 0);
2153 conf->next_resync = sector_nr;
2155 r10_bio->master_bio = NULL;
2156 r10_bio->sector = sector_nr;
2157 set_bit(R10BIO_IsSync, &r10_bio->state);
2158 raid10_find_phys(conf, r10_bio);
2159 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2161 for (i=0; i<conf->copies; i++) {
2162 int d = r10_bio->devs[i].devnum;
2163 bio = r10_bio->devs[i].bio;
2164 bio->bi_end_io = NULL;
2165 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2166 if (conf->mirrors[d].rdev == NULL ||
2167 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2168 continue;
2169 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2170 atomic_inc(&r10_bio->remaining);
2171 bio->bi_next = biolist;
2172 biolist = bio;
2173 bio->bi_private = r10_bio;
2174 bio->bi_end_io = end_sync_read;
2175 bio->bi_rw = READ;
2176 bio->bi_sector = r10_bio->devs[i].addr +
2177 conf->mirrors[d].rdev->data_offset;
2178 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2179 count++;
2182 if (count < 2) {
2183 for (i=0; i<conf->copies; i++) {
2184 int d = r10_bio->devs[i].devnum;
2185 if (r10_bio->devs[i].bio->bi_end_io)
2186 rdev_dec_pending(conf->mirrors[d].rdev,
2187 mddev);
2189 put_buf(r10_bio);
2190 biolist = NULL;
2191 goto giveup;
2195 for (bio = biolist; bio ; bio=bio->bi_next) {
2197 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2198 if (bio->bi_end_io)
2199 bio->bi_flags |= 1 << BIO_UPTODATE;
2200 bio->bi_vcnt = 0;
2201 bio->bi_idx = 0;
2202 bio->bi_phys_segments = 0;
2203 bio->bi_size = 0;
2206 nr_sectors = 0;
2207 if (sector_nr + max_sync < max_sector)
2208 max_sector = sector_nr + max_sync;
2209 do {
2210 struct page *page;
2211 int len = PAGE_SIZE;
2212 if (sector_nr + (len>>9) > max_sector)
2213 len = (max_sector - sector_nr) << 9;
2214 if (len == 0)
2215 break;
2216 for (bio= biolist ; bio ; bio=bio->bi_next) {
2217 struct bio *bio2;
2218 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2219 if (bio_add_page(bio, page, len, 0))
2220 continue;
2222 /* stop here */
2223 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2224 for (bio2 = biolist;
2225 bio2 && bio2 != bio;
2226 bio2 = bio2->bi_next) {
2227 /* remove last page from this bio */
2228 bio2->bi_vcnt--;
2229 bio2->bi_size -= len;
2230 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2232 goto bio_full;
2234 nr_sectors += len>>9;
2235 sector_nr += len>>9;
2236 } while (biolist->bi_vcnt < RESYNC_PAGES);
2237 bio_full:
2238 r10_bio->sectors = nr_sectors;
2240 while (biolist) {
2241 bio = biolist;
2242 biolist = biolist->bi_next;
2244 bio->bi_next = NULL;
2245 r10_bio = bio->bi_private;
2246 r10_bio->sectors = nr_sectors;
2248 if (bio->bi_end_io == end_sync_read) {
2249 md_sync_acct(bio->bi_bdev, nr_sectors);
2250 generic_make_request(bio);
2254 if (sectors_skipped)
2255 /* pretend they weren't skipped, it makes
2256 * no important difference in this case
2258 md_done_sync(mddev, sectors_skipped, 1);
2260 return sectors_skipped + nr_sectors;
2261 giveup:
2262 /* There is nowhere to write, so all non-sync
2263 * drives must be failed, so try the next chunk...
2265 if (sector_nr + max_sync < max_sector)
2266 max_sector = sector_nr + max_sync;
2268 sectors_skipped += (max_sector - sector_nr);
2269 chunks_skipped ++;
2270 sector_nr = max_sector;
2271 goto skipped;
2274 static sector_t
2275 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2277 sector_t size;
2278 conf_t *conf = mddev->private;
2280 if (!raid_disks)
2281 raid_disks = conf->raid_disks;
2282 if (!sectors)
2283 sectors = conf->dev_sectors;
2285 size = sectors >> conf->chunk_shift;
2286 sector_div(size, conf->far_copies);
2287 size = size * raid_disks;
2288 sector_div(size, conf->near_copies);
2290 return size << conf->chunk_shift;
2294 static conf_t *setup_conf(mddev_t *mddev)
2296 conf_t *conf = NULL;
2297 int nc, fc, fo;
2298 sector_t stride, size;
2299 int err = -EINVAL;
2301 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2302 !is_power_of_2(mddev->new_chunk_sectors)) {
2303 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2304 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2305 mdname(mddev), PAGE_SIZE);
2306 goto out;
2309 nc = mddev->new_layout & 255;
2310 fc = (mddev->new_layout >> 8) & 255;
2311 fo = mddev->new_layout & (1<<16);
2313 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2314 (mddev->new_layout >> 17)) {
2315 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2316 mdname(mddev), mddev->new_layout);
2317 goto out;
2320 err = -ENOMEM;
2321 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2322 if (!conf)
2323 goto out;
2325 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2326 GFP_KERNEL);
2327 if (!conf->mirrors)
2328 goto out;
2330 conf->tmppage = alloc_page(GFP_KERNEL);
2331 if (!conf->tmppage)
2332 goto out;
2335 conf->raid_disks = mddev->raid_disks;
2336 conf->near_copies = nc;
2337 conf->far_copies = fc;
2338 conf->copies = nc*fc;
2339 conf->far_offset = fo;
2340 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2341 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2343 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2344 r10bio_pool_free, conf);
2345 if (!conf->r10bio_pool)
2346 goto out;
2348 size = mddev->dev_sectors >> conf->chunk_shift;
2349 sector_div(size, fc);
2350 size = size * conf->raid_disks;
2351 sector_div(size, nc);
2352 /* 'size' is now the number of chunks in the array */
2353 /* calculate "used chunks per device" in 'stride' */
2354 stride = size * conf->copies;
2356 /* We need to round up when dividing by raid_disks to
2357 * get the stride size.
2359 stride += conf->raid_disks - 1;
2360 sector_div(stride, conf->raid_disks);
2362 conf->dev_sectors = stride << conf->chunk_shift;
2364 if (fo)
2365 stride = 1;
2366 else
2367 sector_div(stride, fc);
2368 conf->stride = stride << conf->chunk_shift;
2371 spin_lock_init(&conf->device_lock);
2372 INIT_LIST_HEAD(&conf->retry_list);
2374 spin_lock_init(&conf->resync_lock);
2375 init_waitqueue_head(&conf->wait_barrier);
2377 conf->thread = md_register_thread(raid10d, mddev, NULL);
2378 if (!conf->thread)
2379 goto out;
2381 conf->mddev = mddev;
2382 return conf;
2384 out:
2385 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2386 mdname(mddev));
2387 if (conf) {
2388 if (conf->r10bio_pool)
2389 mempool_destroy(conf->r10bio_pool);
2390 kfree(conf->mirrors);
2391 safe_put_page(conf->tmppage);
2392 kfree(conf);
2394 return ERR_PTR(err);
2397 static int run(mddev_t *mddev)
2399 conf_t *conf;
2400 int i, disk_idx, chunk_size;
2401 mirror_info_t *disk;
2402 mdk_rdev_t *rdev;
2403 sector_t size;
2406 * copy the already verified devices into our private RAID10
2407 * bookkeeping area. [whatever we allocate in run(),
2408 * should be freed in stop()]
2411 if (mddev->private == NULL) {
2412 conf = setup_conf(mddev);
2413 if (IS_ERR(conf))
2414 return PTR_ERR(conf);
2415 mddev->private = conf;
2417 conf = mddev->private;
2418 if (!conf)
2419 goto out;
2421 mddev->thread = conf->thread;
2422 conf->thread = NULL;
2424 chunk_size = mddev->chunk_sectors << 9;
2425 blk_queue_io_min(mddev->queue, chunk_size);
2426 if (conf->raid_disks % conf->near_copies)
2427 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2428 else
2429 blk_queue_io_opt(mddev->queue, chunk_size *
2430 (conf->raid_disks / conf->near_copies));
2432 list_for_each_entry(rdev, &mddev->disks, same_set) {
2434 if (rdev->badblocks.count) {
2435 printk(KERN_ERR "md/raid10: cannot handle bad blocks yet\n");
2436 goto out_free_conf;
2438 disk_idx = rdev->raid_disk;
2439 if (disk_idx >= conf->raid_disks
2440 || disk_idx < 0)
2441 continue;
2442 disk = conf->mirrors + disk_idx;
2444 disk->rdev = rdev;
2445 disk_stack_limits(mddev->gendisk, rdev->bdev,
2446 rdev->data_offset << 9);
2447 /* as we don't honour merge_bvec_fn, we must never risk
2448 * violating it, so limit max_segments to 1 lying
2449 * within a single page.
2451 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2452 blk_queue_max_segments(mddev->queue, 1);
2453 blk_queue_segment_boundary(mddev->queue,
2454 PAGE_CACHE_SIZE - 1);
2457 disk->head_position = 0;
2459 /* need to check that every block has at least one working mirror */
2460 if (!enough(conf, -1)) {
2461 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2462 mdname(mddev));
2463 goto out_free_conf;
2466 mddev->degraded = 0;
2467 for (i = 0; i < conf->raid_disks; i++) {
2469 disk = conf->mirrors + i;
2471 if (!disk->rdev ||
2472 !test_bit(In_sync, &disk->rdev->flags)) {
2473 disk->head_position = 0;
2474 mddev->degraded++;
2475 if (disk->rdev)
2476 conf->fullsync = 1;
2480 if (mddev->recovery_cp != MaxSector)
2481 printk(KERN_NOTICE "md/raid10:%s: not clean"
2482 " -- starting background reconstruction\n",
2483 mdname(mddev));
2484 printk(KERN_INFO
2485 "md/raid10:%s: active with %d out of %d devices\n",
2486 mdname(mddev), conf->raid_disks - mddev->degraded,
2487 conf->raid_disks);
2489 * Ok, everything is just fine now
2491 mddev->dev_sectors = conf->dev_sectors;
2492 size = raid10_size(mddev, 0, 0);
2493 md_set_array_sectors(mddev, size);
2494 mddev->resync_max_sectors = size;
2496 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2497 mddev->queue->backing_dev_info.congested_data = mddev;
2499 /* Calculate max read-ahead size.
2500 * We need to readahead at least twice a whole stripe....
2501 * maybe...
2504 int stripe = conf->raid_disks *
2505 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2506 stripe /= conf->near_copies;
2507 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2508 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2511 if (conf->near_copies < conf->raid_disks)
2512 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2514 if (md_integrity_register(mddev))
2515 goto out_free_conf;
2517 return 0;
2519 out_free_conf:
2520 md_unregister_thread(mddev->thread);
2521 if (conf->r10bio_pool)
2522 mempool_destroy(conf->r10bio_pool);
2523 safe_put_page(conf->tmppage);
2524 kfree(conf->mirrors);
2525 kfree(conf);
2526 mddev->private = NULL;
2527 out:
2528 return -EIO;
2531 static int stop(mddev_t *mddev)
2533 conf_t *conf = mddev->private;
2535 raise_barrier(conf, 0);
2536 lower_barrier(conf);
2538 md_unregister_thread(mddev->thread);
2539 mddev->thread = NULL;
2540 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2541 if (conf->r10bio_pool)
2542 mempool_destroy(conf->r10bio_pool);
2543 kfree(conf->mirrors);
2544 kfree(conf);
2545 mddev->private = NULL;
2546 return 0;
2549 static void raid10_quiesce(mddev_t *mddev, int state)
2551 conf_t *conf = mddev->private;
2553 switch(state) {
2554 case 1:
2555 raise_barrier(conf, 0);
2556 break;
2557 case 0:
2558 lower_barrier(conf);
2559 break;
2563 static void *raid10_takeover_raid0(mddev_t *mddev)
2565 mdk_rdev_t *rdev;
2566 conf_t *conf;
2568 if (mddev->degraded > 0) {
2569 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2570 mdname(mddev));
2571 return ERR_PTR(-EINVAL);
2574 /* Set new parameters */
2575 mddev->new_level = 10;
2576 /* new layout: far_copies = 1, near_copies = 2 */
2577 mddev->new_layout = (1<<8) + 2;
2578 mddev->new_chunk_sectors = mddev->chunk_sectors;
2579 mddev->delta_disks = mddev->raid_disks;
2580 mddev->raid_disks *= 2;
2581 /* make sure it will be not marked as dirty */
2582 mddev->recovery_cp = MaxSector;
2584 conf = setup_conf(mddev);
2585 if (!IS_ERR(conf)) {
2586 list_for_each_entry(rdev, &mddev->disks, same_set)
2587 if (rdev->raid_disk >= 0)
2588 rdev->new_raid_disk = rdev->raid_disk * 2;
2589 conf->barrier = 1;
2592 return conf;
2595 static void *raid10_takeover(mddev_t *mddev)
2597 struct raid0_private_data *raid0_priv;
2599 /* raid10 can take over:
2600 * raid0 - providing it has only two drives
2602 if (mddev->level == 0) {
2603 /* for raid0 takeover only one zone is supported */
2604 raid0_priv = mddev->private;
2605 if (raid0_priv->nr_strip_zones > 1) {
2606 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2607 " with more than one zone.\n",
2608 mdname(mddev));
2609 return ERR_PTR(-EINVAL);
2611 return raid10_takeover_raid0(mddev);
2613 return ERR_PTR(-EINVAL);
2616 static struct mdk_personality raid10_personality =
2618 .name = "raid10",
2619 .level = 10,
2620 .owner = THIS_MODULE,
2621 .make_request = make_request,
2622 .run = run,
2623 .stop = stop,
2624 .status = status,
2625 .error_handler = error,
2626 .hot_add_disk = raid10_add_disk,
2627 .hot_remove_disk= raid10_remove_disk,
2628 .spare_active = raid10_spare_active,
2629 .sync_request = sync_request,
2630 .quiesce = raid10_quiesce,
2631 .size = raid10_size,
2632 .takeover = raid10_takeover,
2635 static int __init raid_init(void)
2637 return register_md_personality(&raid10_personality);
2640 static void raid_exit(void)
2642 unregister_md_personality(&raid10_personality);
2645 module_init(raid_init);
2646 module_exit(raid_exit);
2647 MODULE_LICENSE("GPL");
2648 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2649 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2650 MODULE_ALIAS("md-raid10");
2651 MODULE_ALIAS("md-level-10");