clocksource: convert footbridge to generic i8253 clocksource
[linux-2.6/x86.git] / mm / shmem.c
blob8fa27e4e582a236886eba7d875e6c612130468fc
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104 SGP_READ, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE, /* may exceed i_size, may allocate page */
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages / 2;
116 static unsigned long shmem_default_max_inodes(void)
118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
120 #endif
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123 struct page **pagep, enum sgp_type sgp, int *type);
125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
132 * Mobility flags are masked out as swap vectors cannot move
134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135 PAGE_CACHE_SHIFT-PAGE_SHIFT);
138 static inline void shmem_dir_free(struct page *page)
140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
143 static struct page **shmem_dir_map(struct page *page)
145 return (struct page **)kmap_atomic(page, KM_USER0);
148 static inline void shmem_dir_unmap(struct page **dir)
150 kunmap_atomic(dir, KM_USER0);
153 static swp_entry_t *shmem_swp_map(struct page *page)
155 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
158 static inline void shmem_swp_balance_unmap(void)
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
170 static inline void shmem_swp_unmap(swp_entry_t *entry)
172 kunmap_atomic(entry, KM_USER1);
175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
177 return sb->s_fs_info;
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
188 return (flags & VM_NORESERVE) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size));
192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
194 if (!(flags & VM_NORESERVE))
195 vm_unacct_memory(VM_ACCT(size));
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
204 static inline int shmem_acct_block(unsigned long flags)
206 return (flags & VM_NORESERVE) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
225 .ra_pages = 0, /* No readahead */
226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
229 static LIST_HEAD(shmem_swaplist);
230 static DEFINE_MUTEX(shmem_swaplist_mutex);
232 static void shmem_free_blocks(struct inode *inode, long pages)
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks) {
236 percpu_counter_add(&sbinfo->used_blocks, -pages);
237 spin_lock(&inode->i_lock);
238 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 spin_unlock(&inode->i_lock);
243 static int shmem_reserve_inode(struct super_block *sb)
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 if (!sbinfo->free_inodes) {
249 spin_unlock(&sbinfo->stat_lock);
250 return -ENOSPC;
252 sbinfo->free_inodes--;
253 spin_unlock(&sbinfo->stat_lock);
255 return 0;
258 static void shmem_free_inode(struct super_block *sb)
260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 if (sbinfo->max_inodes) {
262 spin_lock(&sbinfo->stat_lock);
263 sbinfo->free_inodes++;
264 spin_unlock(&sbinfo->stat_lock);
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 * It has to be called with the spinlock held.
280 static void shmem_recalc_inode(struct inode *inode)
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 long freed;
285 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 if (freed > 0) {
287 info->alloced -= freed;
288 shmem_unacct_blocks(info->flags, freed);
289 shmem_free_blocks(inode, freed);
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info: info structure for the inode
296 * @index: index of the page to find
297 * @page: optional page to add to the structure. Has to be preset to
298 * all zeros
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
304 * The swap vector is organized the following way:
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
317 * i_indirect -> dir --> 16-19
318 * | +-> 20-23
320 * +-->dir2 --> 24-27
321 * | +-> 28-31
322 * | +-> 32-35
323 * | +-> 36-39
325 * +-->dir3 --> 40-43
326 * +-> 44-47
327 * +-> 48-51
328 * +-> 52-55
330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332 unsigned long offset;
333 struct page **dir;
334 struct page *subdir;
336 if (index < SHMEM_NR_DIRECT) {
337 shmem_swp_balance_unmap();
338 return info->i_direct+index;
340 if (!info->i_indirect) {
341 if (page) {
342 info->i_indirect = *page;
343 *page = NULL;
345 return NULL; /* need another page */
348 index -= SHMEM_NR_DIRECT;
349 offset = index % ENTRIES_PER_PAGE;
350 index /= ENTRIES_PER_PAGE;
351 dir = shmem_dir_map(info->i_indirect);
353 if (index >= ENTRIES_PER_PAGE/2) {
354 index -= ENTRIES_PER_PAGE/2;
355 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 index %= ENTRIES_PER_PAGE;
357 subdir = *dir;
358 if (!subdir) {
359 if (page) {
360 *dir = *page;
361 *page = NULL;
363 shmem_dir_unmap(dir);
364 return NULL; /* need another page */
366 shmem_dir_unmap(dir);
367 dir = shmem_dir_map(subdir);
370 dir += index;
371 subdir = *dir;
372 if (!subdir) {
373 if (!page || !(subdir = *page)) {
374 shmem_dir_unmap(dir);
375 return NULL; /* need a page */
377 *dir = subdir;
378 *page = NULL;
380 shmem_dir_unmap(dir);
381 return shmem_swp_map(subdir) + offset;
384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386 long incdec = value? 1: -1;
388 entry->val = value;
389 info->swapped += incdec;
390 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 struct page *page = kmap_atomic_to_page(entry);
392 set_page_private(page, page_private(page) + incdec);
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info: info structure for the inode
399 * @index: index of the page to find
400 * @sgp: check and recheck i_size? skip allocation?
402 * If the entry does not exist, allocate it.
404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406 struct inode *inode = &info->vfs_inode;
407 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 struct page *page = NULL;
409 swp_entry_t *entry;
411 if (sgp != SGP_WRITE &&
412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 return ERR_PTR(-EINVAL);
415 while (!(entry = shmem_swp_entry(info, index, &page))) {
416 if (sgp == SGP_READ)
417 return shmem_swp_map(ZERO_PAGE(0));
419 * Test used_blocks against 1 less max_blocks, since we have 1 data
420 * page (and perhaps indirect index pages) yet to allocate:
421 * a waste to allocate index if we cannot allocate data.
423 if (sbinfo->max_blocks) {
424 if (percpu_counter_compare(&sbinfo->used_blocks,
425 sbinfo->max_blocks - 1) >= 0)
426 return ERR_PTR(-ENOSPC);
427 percpu_counter_inc(&sbinfo->used_blocks);
428 spin_lock(&inode->i_lock);
429 inode->i_blocks += BLOCKS_PER_PAGE;
430 spin_unlock(&inode->i_lock);
433 spin_unlock(&info->lock);
434 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435 spin_lock(&info->lock);
437 if (!page) {
438 shmem_free_blocks(inode, 1);
439 return ERR_PTR(-ENOMEM);
441 if (sgp != SGP_WRITE &&
442 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443 entry = ERR_PTR(-EINVAL);
444 break;
446 if (info->next_index <= index)
447 info->next_index = index + 1;
449 if (page) {
450 /* another task gave its page, or truncated the file */
451 shmem_free_blocks(inode, 1);
452 shmem_dir_free(page);
454 if (info->next_index <= index && !IS_ERR(entry))
455 info->next_index = index + 1;
456 return entry;
460 * shmem_free_swp - free some swap entries in a directory
461 * @dir: pointer to the directory
462 * @edir: pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
465 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466 spinlock_t *punch_lock)
468 spinlock_t *punch_unlock = NULL;
469 swp_entry_t *ptr;
470 int freed = 0;
472 for (ptr = dir; ptr < edir; ptr++) {
473 if (ptr->val) {
474 if (unlikely(punch_lock)) {
475 punch_unlock = punch_lock;
476 punch_lock = NULL;
477 spin_lock(punch_unlock);
478 if (!ptr->val)
479 continue;
481 free_swap_and_cache(*ptr);
482 *ptr = (swp_entry_t){0};
483 freed++;
486 if (punch_unlock)
487 spin_unlock(punch_unlock);
488 return freed;
491 static int shmem_map_and_free_swp(struct page *subdir, int offset,
492 int limit, struct page ***dir, spinlock_t *punch_lock)
494 swp_entry_t *ptr;
495 int freed = 0;
497 ptr = shmem_swp_map(subdir);
498 for (; offset < limit; offset += LATENCY_LIMIT) {
499 int size = limit - offset;
500 if (size > LATENCY_LIMIT)
501 size = LATENCY_LIMIT;
502 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503 punch_lock);
504 if (need_resched()) {
505 shmem_swp_unmap(ptr);
506 if (*dir) {
507 shmem_dir_unmap(*dir);
508 *dir = NULL;
510 cond_resched();
511 ptr = shmem_swp_map(subdir);
514 shmem_swp_unmap(ptr);
515 return freed;
518 static void shmem_free_pages(struct list_head *next)
520 struct page *page;
521 int freed = 0;
523 do {
524 page = container_of(next, struct page, lru);
525 next = next->next;
526 shmem_dir_free(page);
527 freed++;
528 if (freed >= LATENCY_LIMIT) {
529 cond_resched();
530 freed = 0;
532 } while (next);
535 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
537 struct shmem_inode_info *info = SHMEM_I(inode);
538 unsigned long idx;
539 unsigned long size;
540 unsigned long limit;
541 unsigned long stage;
542 unsigned long diroff;
543 struct page **dir;
544 struct page *topdir;
545 struct page *middir;
546 struct page *subdir;
547 swp_entry_t *ptr;
548 LIST_HEAD(pages_to_free);
549 long nr_pages_to_free = 0;
550 long nr_swaps_freed = 0;
551 int offset;
552 int freed;
553 int punch_hole;
554 spinlock_t *needs_lock;
555 spinlock_t *punch_lock;
556 unsigned long upper_limit;
558 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
560 if (idx >= info->next_index)
561 return;
563 spin_lock(&info->lock);
564 info->flags |= SHMEM_TRUNCATE;
565 if (likely(end == (loff_t) -1)) {
566 limit = info->next_index;
567 upper_limit = SHMEM_MAX_INDEX;
568 info->next_index = idx;
569 needs_lock = NULL;
570 punch_hole = 0;
571 } else {
572 if (end + 1 >= inode->i_size) { /* we may free a little more */
573 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574 PAGE_CACHE_SHIFT;
575 upper_limit = SHMEM_MAX_INDEX;
576 } else {
577 limit = (end + 1) >> PAGE_CACHE_SHIFT;
578 upper_limit = limit;
580 needs_lock = &info->lock;
581 punch_hole = 1;
584 topdir = info->i_indirect;
585 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
586 info->i_indirect = NULL;
587 nr_pages_to_free++;
588 list_add(&topdir->lru, &pages_to_free);
590 spin_unlock(&info->lock);
592 if (info->swapped && idx < SHMEM_NR_DIRECT) {
593 ptr = info->i_direct;
594 size = limit;
595 if (size > SHMEM_NR_DIRECT)
596 size = SHMEM_NR_DIRECT;
597 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
601 * If there are no indirect blocks or we are punching a hole
602 * below indirect blocks, nothing to be done.
604 if (!topdir || limit <= SHMEM_NR_DIRECT)
605 goto done2;
608 * The truncation case has already dropped info->lock, and we're safe
609 * because i_size and next_index have already been lowered, preventing
610 * access beyond. But in the punch_hole case, we still need to take
611 * the lock when updating the swap directory, because there might be
612 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613 * shmem_writepage. However, whenever we find we can remove a whole
614 * directory page (not at the misaligned start or end of the range),
615 * we first NULLify its pointer in the level above, and then have no
616 * need to take the lock when updating its contents: needs_lock and
617 * punch_lock (either pointing to info->lock or NULL) manage this.
620 upper_limit -= SHMEM_NR_DIRECT;
621 limit -= SHMEM_NR_DIRECT;
622 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623 offset = idx % ENTRIES_PER_PAGE;
624 idx -= offset;
626 dir = shmem_dir_map(topdir);
627 stage = ENTRIES_PER_PAGEPAGE/2;
628 if (idx < ENTRIES_PER_PAGEPAGE/2) {
629 middir = topdir;
630 diroff = idx/ENTRIES_PER_PAGE;
631 } else {
632 dir += ENTRIES_PER_PAGE/2;
633 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634 while (stage <= idx)
635 stage += ENTRIES_PER_PAGEPAGE;
636 middir = *dir;
637 if (*dir) {
638 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
640 if (!diroff && !offset && upper_limit >= stage) {
641 if (needs_lock) {
642 spin_lock(needs_lock);
643 *dir = NULL;
644 spin_unlock(needs_lock);
645 needs_lock = NULL;
646 } else
647 *dir = NULL;
648 nr_pages_to_free++;
649 list_add(&middir->lru, &pages_to_free);
651 shmem_dir_unmap(dir);
652 dir = shmem_dir_map(middir);
653 } else {
654 diroff = 0;
655 offset = 0;
656 idx = stage;
660 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661 if (unlikely(idx == stage)) {
662 shmem_dir_unmap(dir);
663 dir = shmem_dir_map(topdir) +
664 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665 while (!*dir) {
666 dir++;
667 idx += ENTRIES_PER_PAGEPAGE;
668 if (idx >= limit)
669 goto done1;
671 stage = idx + ENTRIES_PER_PAGEPAGE;
672 middir = *dir;
673 if (punch_hole)
674 needs_lock = &info->lock;
675 if (upper_limit >= stage) {
676 if (needs_lock) {
677 spin_lock(needs_lock);
678 *dir = NULL;
679 spin_unlock(needs_lock);
680 needs_lock = NULL;
681 } else
682 *dir = NULL;
683 nr_pages_to_free++;
684 list_add(&middir->lru, &pages_to_free);
686 shmem_dir_unmap(dir);
687 cond_resched();
688 dir = shmem_dir_map(middir);
689 diroff = 0;
691 punch_lock = needs_lock;
692 subdir = dir[diroff];
693 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694 if (needs_lock) {
695 spin_lock(needs_lock);
696 dir[diroff] = NULL;
697 spin_unlock(needs_lock);
698 punch_lock = NULL;
699 } else
700 dir[diroff] = NULL;
701 nr_pages_to_free++;
702 list_add(&subdir->lru, &pages_to_free);
704 if (subdir && page_private(subdir) /* has swap entries */) {
705 size = limit - idx;
706 if (size > ENTRIES_PER_PAGE)
707 size = ENTRIES_PER_PAGE;
708 freed = shmem_map_and_free_swp(subdir,
709 offset, size, &dir, punch_lock);
710 if (!dir)
711 dir = shmem_dir_map(middir);
712 nr_swaps_freed += freed;
713 if (offset || punch_lock) {
714 spin_lock(&info->lock);
715 set_page_private(subdir,
716 page_private(subdir) - freed);
717 spin_unlock(&info->lock);
718 } else
719 BUG_ON(page_private(subdir) != freed);
721 offset = 0;
723 done1:
724 shmem_dir_unmap(dir);
725 done2:
726 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
728 * Call truncate_inode_pages again: racing shmem_unuse_inode
729 * may have swizzled a page in from swap since
730 * truncate_pagecache or generic_delete_inode did it, before we
731 * lowered next_index. Also, though shmem_getpage checks
732 * i_size before adding to cache, no recheck after: so fix the
733 * narrow window there too.
735 * Recalling truncate_inode_pages_range and unmap_mapping_range
736 * every time for punch_hole (which never got a chance to clear
737 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738 * yet hardly ever necessary: try to optimize them out later.
740 truncate_inode_pages_range(inode->i_mapping, start, end);
741 if (punch_hole)
742 unmap_mapping_range(inode->i_mapping, start,
743 end - start, 1);
746 spin_lock(&info->lock);
747 info->flags &= ~SHMEM_TRUNCATE;
748 info->swapped -= nr_swaps_freed;
749 if (nr_pages_to_free)
750 shmem_free_blocks(inode, nr_pages_to_free);
751 shmem_recalc_inode(inode);
752 spin_unlock(&info->lock);
755 * Empty swap vector directory pages to be freed?
757 if (!list_empty(&pages_to_free)) {
758 pages_to_free.prev->next = NULL;
759 shmem_free_pages(pages_to_free.next);
763 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
765 struct inode *inode = dentry->d_inode;
766 loff_t newsize = attr->ia_size;
767 int error;
769 error = inode_change_ok(inode, attr);
770 if (error)
771 return error;
773 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
774 && newsize != inode->i_size) {
775 struct page *page = NULL;
777 if (newsize < inode->i_size) {
779 * If truncating down to a partial page, then
780 * if that page is already allocated, hold it
781 * in memory until the truncation is over, so
782 * truncate_partial_page cannot miss it were
783 * it assigned to swap.
785 if (newsize & (PAGE_CACHE_SIZE-1)) {
786 (void) shmem_getpage(inode,
787 newsize >> PAGE_CACHE_SHIFT,
788 &page, SGP_READ, NULL);
789 if (page)
790 unlock_page(page);
793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794 * detect if any pages might have been added to cache
795 * after truncate_inode_pages. But we needn't bother
796 * if it's being fully truncated to zero-length: the
797 * nrpages check is efficient enough in that case.
799 if (newsize) {
800 struct shmem_inode_info *info = SHMEM_I(inode);
801 spin_lock(&info->lock);
802 info->flags &= ~SHMEM_PAGEIN;
803 spin_unlock(&info->lock);
807 /* XXX(truncate): truncate_setsize should be called last */
808 truncate_setsize(inode, newsize);
809 if (page)
810 page_cache_release(page);
811 shmem_truncate_range(inode, newsize, (loff_t)-1);
814 setattr_copy(inode, attr);
815 #ifdef CONFIG_TMPFS_POSIX_ACL
816 if (attr->ia_valid & ATTR_MODE)
817 error = generic_acl_chmod(inode);
818 #endif
819 return error;
822 static void shmem_evict_inode(struct inode *inode)
824 struct shmem_inode_info *info = SHMEM_I(inode);
826 if (inode->i_mapping->a_ops == &shmem_aops) {
827 truncate_inode_pages(inode->i_mapping, 0);
828 shmem_unacct_size(info->flags, inode->i_size);
829 inode->i_size = 0;
830 shmem_truncate_range(inode, 0, (loff_t)-1);
831 if (!list_empty(&info->swaplist)) {
832 mutex_lock(&shmem_swaplist_mutex);
833 list_del_init(&info->swaplist);
834 mutex_unlock(&shmem_swaplist_mutex);
837 BUG_ON(inode->i_blocks);
838 shmem_free_inode(inode->i_sb);
839 end_writeback(inode);
842 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
844 swp_entry_t *ptr;
846 for (ptr = dir; ptr < edir; ptr++) {
847 if (ptr->val == entry.val)
848 return ptr - dir;
850 return -1;
853 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
855 struct inode *inode;
856 unsigned long idx;
857 unsigned long size;
858 unsigned long limit;
859 unsigned long stage;
860 struct page **dir;
861 struct page *subdir;
862 swp_entry_t *ptr;
863 int offset;
864 int error;
866 idx = 0;
867 ptr = info->i_direct;
868 spin_lock(&info->lock);
869 if (!info->swapped) {
870 list_del_init(&info->swaplist);
871 goto lost2;
873 limit = info->next_index;
874 size = limit;
875 if (size > SHMEM_NR_DIRECT)
876 size = SHMEM_NR_DIRECT;
877 offset = shmem_find_swp(entry, ptr, ptr+size);
878 if (offset >= 0)
879 goto found;
880 if (!info->i_indirect)
881 goto lost2;
883 dir = shmem_dir_map(info->i_indirect);
884 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
886 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
887 if (unlikely(idx == stage)) {
888 shmem_dir_unmap(dir-1);
889 if (cond_resched_lock(&info->lock)) {
890 /* check it has not been truncated */
891 if (limit > info->next_index) {
892 limit = info->next_index;
893 if (idx >= limit)
894 goto lost2;
897 dir = shmem_dir_map(info->i_indirect) +
898 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
899 while (!*dir) {
900 dir++;
901 idx += ENTRIES_PER_PAGEPAGE;
902 if (idx >= limit)
903 goto lost1;
905 stage = idx + ENTRIES_PER_PAGEPAGE;
906 subdir = *dir;
907 shmem_dir_unmap(dir);
908 dir = shmem_dir_map(subdir);
910 subdir = *dir;
911 if (subdir && page_private(subdir)) {
912 ptr = shmem_swp_map(subdir);
913 size = limit - idx;
914 if (size > ENTRIES_PER_PAGE)
915 size = ENTRIES_PER_PAGE;
916 offset = shmem_find_swp(entry, ptr, ptr+size);
917 shmem_swp_unmap(ptr);
918 if (offset >= 0) {
919 shmem_dir_unmap(dir);
920 goto found;
924 lost1:
925 shmem_dir_unmap(dir-1);
926 lost2:
927 spin_unlock(&info->lock);
928 return 0;
929 found:
930 idx += offset;
931 inode = igrab(&info->vfs_inode);
932 spin_unlock(&info->lock);
935 * Move _head_ to start search for next from here.
936 * But be careful: shmem_evict_inode checks list_empty without taking
937 * mutex, and there's an instant in list_move_tail when info->swaplist
938 * would appear empty, if it were the only one on shmem_swaplist. We
939 * could avoid doing it if inode NULL; or use this minor optimization.
941 if (shmem_swaplist.next != &info->swaplist)
942 list_move_tail(&shmem_swaplist, &info->swaplist);
943 mutex_unlock(&shmem_swaplist_mutex);
945 error = 1;
946 if (!inode)
947 goto out;
949 * Charge page using GFP_KERNEL while we can wait.
950 * Charged back to the user(not to caller) when swap account is used.
951 * add_to_page_cache() will be called with GFP_NOWAIT.
953 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
954 if (error)
955 goto out;
956 error = radix_tree_preload(GFP_KERNEL);
957 if (error) {
958 mem_cgroup_uncharge_cache_page(page);
959 goto out;
961 error = 1;
963 spin_lock(&info->lock);
964 ptr = shmem_swp_entry(info, idx, NULL);
965 if (ptr && ptr->val == entry.val) {
966 error = add_to_page_cache_locked(page, inode->i_mapping,
967 idx, GFP_NOWAIT);
968 /* does mem_cgroup_uncharge_cache_page on error */
969 } else /* we must compensate for our precharge above */
970 mem_cgroup_uncharge_cache_page(page);
972 if (error == -EEXIST) {
973 struct page *filepage = find_get_page(inode->i_mapping, idx);
974 error = 1;
975 if (filepage) {
977 * There might be a more uptodate page coming down
978 * from a stacked writepage: forget our swappage if so.
980 if (PageUptodate(filepage))
981 error = 0;
982 page_cache_release(filepage);
985 if (!error) {
986 delete_from_swap_cache(page);
987 set_page_dirty(page);
988 info->flags |= SHMEM_PAGEIN;
989 shmem_swp_set(info, ptr, 0);
990 swap_free(entry);
991 error = 1; /* not an error, but entry was found */
993 if (ptr)
994 shmem_swp_unmap(ptr);
995 spin_unlock(&info->lock);
996 radix_tree_preload_end();
997 out:
998 unlock_page(page);
999 page_cache_release(page);
1000 iput(inode); /* allows for NULL */
1001 return error;
1005 * shmem_unuse() search for an eventually swapped out shmem page.
1007 int shmem_unuse(swp_entry_t entry, struct page *page)
1009 struct list_head *p, *next;
1010 struct shmem_inode_info *info;
1011 int found = 0;
1013 mutex_lock(&shmem_swaplist_mutex);
1014 list_for_each_safe(p, next, &shmem_swaplist) {
1015 info = list_entry(p, struct shmem_inode_info, swaplist);
1016 found = shmem_unuse_inode(info, entry, page);
1017 cond_resched();
1018 if (found)
1019 goto out;
1021 mutex_unlock(&shmem_swaplist_mutex);
1023 * Can some race bring us here? We've been holding page lock,
1024 * so I think not; but would rather try again later than BUG()
1026 unlock_page(page);
1027 page_cache_release(page);
1028 out:
1029 return (found < 0) ? found : 0;
1033 * Move the page from the page cache to the swap cache.
1035 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1037 struct shmem_inode_info *info;
1038 swp_entry_t *entry, swap;
1039 struct address_space *mapping;
1040 unsigned long index;
1041 struct inode *inode;
1043 BUG_ON(!PageLocked(page));
1044 mapping = page->mapping;
1045 index = page->index;
1046 inode = mapping->host;
1047 info = SHMEM_I(inode);
1048 if (info->flags & VM_LOCKED)
1049 goto redirty;
1050 if (!total_swap_pages)
1051 goto redirty;
1054 * shmem_backing_dev_info's capabilities prevent regular writeback or
1055 * sync from ever calling shmem_writepage; but a stacking filesystem
1056 * may use the ->writepage of its underlying filesystem, in which case
1057 * tmpfs should write out to swap only in response to memory pressure,
1058 * and not for the writeback threads or sync. However, in those cases,
1059 * we do still want to check if there's a redundant swappage to be
1060 * discarded.
1062 if (wbc->for_reclaim)
1063 swap = get_swap_page();
1064 else
1065 swap.val = 0;
1067 spin_lock(&info->lock);
1068 if (index >= info->next_index) {
1069 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1070 goto unlock;
1072 entry = shmem_swp_entry(info, index, NULL);
1073 if (entry->val) {
1075 * The more uptodate page coming down from a stacked
1076 * writepage should replace our old swappage.
1078 free_swap_and_cache(*entry);
1079 shmem_swp_set(info, entry, 0);
1081 shmem_recalc_inode(inode);
1083 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1084 delete_from_page_cache(page);
1085 shmem_swp_set(info, entry, swap.val);
1086 shmem_swp_unmap(entry);
1087 if (list_empty(&info->swaplist))
1088 inode = igrab(inode);
1089 else
1090 inode = NULL;
1091 spin_unlock(&info->lock);
1092 swap_shmem_alloc(swap);
1093 BUG_ON(page_mapped(page));
1094 swap_writepage(page, wbc);
1095 if (inode) {
1096 mutex_lock(&shmem_swaplist_mutex);
1097 /* move instead of add in case we're racing */
1098 list_move_tail(&info->swaplist, &shmem_swaplist);
1099 mutex_unlock(&shmem_swaplist_mutex);
1100 iput(inode);
1102 return 0;
1105 shmem_swp_unmap(entry);
1106 unlock:
1107 spin_unlock(&info->lock);
1109 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1110 * clear SWAP_HAS_CACHE flag.
1112 swapcache_free(swap, NULL);
1113 redirty:
1114 set_page_dirty(page);
1115 if (wbc->for_reclaim)
1116 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1117 unlock_page(page);
1118 return 0;
1121 #ifdef CONFIG_NUMA
1122 #ifdef CONFIG_TMPFS
1123 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1125 char buffer[64];
1127 if (!mpol || mpol->mode == MPOL_DEFAULT)
1128 return; /* show nothing */
1130 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1132 seq_printf(seq, ",mpol=%s", buffer);
1135 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1137 struct mempolicy *mpol = NULL;
1138 if (sbinfo->mpol) {
1139 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1140 mpol = sbinfo->mpol;
1141 mpol_get(mpol);
1142 spin_unlock(&sbinfo->stat_lock);
1144 return mpol;
1146 #endif /* CONFIG_TMPFS */
1148 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1149 struct shmem_inode_info *info, unsigned long idx)
1151 struct mempolicy mpol, *spol;
1152 struct vm_area_struct pvma;
1153 struct page *page;
1155 spol = mpol_cond_copy(&mpol,
1156 mpol_shared_policy_lookup(&info->policy, idx));
1158 /* Create a pseudo vma that just contains the policy */
1159 pvma.vm_start = 0;
1160 pvma.vm_pgoff = idx;
1161 pvma.vm_ops = NULL;
1162 pvma.vm_policy = spol;
1163 page = swapin_readahead(entry, gfp, &pvma, 0);
1164 return page;
1167 static struct page *shmem_alloc_page(gfp_t gfp,
1168 struct shmem_inode_info *info, unsigned long idx)
1170 struct vm_area_struct pvma;
1172 /* Create a pseudo vma that just contains the policy */
1173 pvma.vm_start = 0;
1174 pvma.vm_pgoff = idx;
1175 pvma.vm_ops = NULL;
1176 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1179 * alloc_page_vma() will drop the shared policy reference
1181 return alloc_page_vma(gfp, &pvma, 0);
1183 #else /* !CONFIG_NUMA */
1184 #ifdef CONFIG_TMPFS
1185 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1188 #endif /* CONFIG_TMPFS */
1190 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1191 struct shmem_inode_info *info, unsigned long idx)
1193 return swapin_readahead(entry, gfp, NULL, 0);
1196 static inline struct page *shmem_alloc_page(gfp_t gfp,
1197 struct shmem_inode_info *info, unsigned long idx)
1199 return alloc_page(gfp);
1201 #endif /* CONFIG_NUMA */
1203 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1204 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1206 return NULL;
1208 #endif
1211 * shmem_getpage - either get the page from swap or allocate a new one
1213 * If we allocate a new one we do not mark it dirty. That's up to the
1214 * vm. If we swap it in we mark it dirty since we also free the swap
1215 * entry since a page cannot live in both the swap and page cache
1217 static int shmem_getpage(struct inode *inode, unsigned long idx,
1218 struct page **pagep, enum sgp_type sgp, int *type)
1220 struct address_space *mapping = inode->i_mapping;
1221 struct shmem_inode_info *info = SHMEM_I(inode);
1222 struct shmem_sb_info *sbinfo;
1223 struct page *filepage = *pagep;
1224 struct page *swappage;
1225 struct page *prealloc_page = NULL;
1226 swp_entry_t *entry;
1227 swp_entry_t swap;
1228 gfp_t gfp;
1229 int error;
1231 if (idx >= SHMEM_MAX_INDEX)
1232 return -EFBIG;
1234 if (type)
1235 *type = 0;
1238 * Normally, filepage is NULL on entry, and either found
1239 * uptodate immediately, or allocated and zeroed, or read
1240 * in under swappage, which is then assigned to filepage.
1241 * But shmem_readpage (required for splice) passes in a locked
1242 * filepage, which may be found not uptodate by other callers
1243 * too, and may need to be copied from the swappage read in.
1245 repeat:
1246 if (!filepage)
1247 filepage = find_lock_page(mapping, idx);
1248 if (filepage && PageUptodate(filepage))
1249 goto done;
1250 gfp = mapping_gfp_mask(mapping);
1251 if (!filepage) {
1253 * Try to preload while we can wait, to not make a habit of
1254 * draining atomic reserves; but don't latch on to this cpu.
1256 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1257 if (error)
1258 goto failed;
1259 radix_tree_preload_end();
1260 if (sgp != SGP_READ && !prealloc_page) {
1261 /* We don't care if this fails */
1262 prealloc_page = shmem_alloc_page(gfp, info, idx);
1263 if (prealloc_page) {
1264 if (mem_cgroup_cache_charge(prealloc_page,
1265 current->mm, GFP_KERNEL)) {
1266 page_cache_release(prealloc_page);
1267 prealloc_page = NULL;
1272 error = 0;
1274 spin_lock(&info->lock);
1275 shmem_recalc_inode(inode);
1276 entry = shmem_swp_alloc(info, idx, sgp);
1277 if (IS_ERR(entry)) {
1278 spin_unlock(&info->lock);
1279 error = PTR_ERR(entry);
1280 goto failed;
1282 swap = *entry;
1284 if (swap.val) {
1285 /* Look it up and read it in.. */
1286 swappage = lookup_swap_cache(swap);
1287 if (!swappage) {
1288 shmem_swp_unmap(entry);
1289 /* here we actually do the io */
1290 if (type && !(*type & VM_FAULT_MAJOR)) {
1291 __count_vm_event(PGMAJFAULT);
1292 *type |= VM_FAULT_MAJOR;
1294 spin_unlock(&info->lock);
1295 swappage = shmem_swapin(swap, gfp, info, idx);
1296 if (!swappage) {
1297 spin_lock(&info->lock);
1298 entry = shmem_swp_alloc(info, idx, sgp);
1299 if (IS_ERR(entry))
1300 error = PTR_ERR(entry);
1301 else {
1302 if (entry->val == swap.val)
1303 error = -ENOMEM;
1304 shmem_swp_unmap(entry);
1306 spin_unlock(&info->lock);
1307 if (error)
1308 goto failed;
1309 goto repeat;
1311 wait_on_page_locked(swappage);
1312 page_cache_release(swappage);
1313 goto repeat;
1316 /* We have to do this with page locked to prevent races */
1317 if (!trylock_page(swappage)) {
1318 shmem_swp_unmap(entry);
1319 spin_unlock(&info->lock);
1320 wait_on_page_locked(swappage);
1321 page_cache_release(swappage);
1322 goto repeat;
1324 if (PageWriteback(swappage)) {
1325 shmem_swp_unmap(entry);
1326 spin_unlock(&info->lock);
1327 wait_on_page_writeback(swappage);
1328 unlock_page(swappage);
1329 page_cache_release(swappage);
1330 goto repeat;
1332 if (!PageUptodate(swappage)) {
1333 shmem_swp_unmap(entry);
1334 spin_unlock(&info->lock);
1335 unlock_page(swappage);
1336 page_cache_release(swappage);
1337 error = -EIO;
1338 goto failed;
1341 if (filepage) {
1342 shmem_swp_set(info, entry, 0);
1343 shmem_swp_unmap(entry);
1344 delete_from_swap_cache(swappage);
1345 spin_unlock(&info->lock);
1346 copy_highpage(filepage, swappage);
1347 unlock_page(swappage);
1348 page_cache_release(swappage);
1349 flush_dcache_page(filepage);
1350 SetPageUptodate(filepage);
1351 set_page_dirty(filepage);
1352 swap_free(swap);
1353 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1354 idx, GFP_NOWAIT))) {
1355 info->flags |= SHMEM_PAGEIN;
1356 shmem_swp_set(info, entry, 0);
1357 shmem_swp_unmap(entry);
1358 delete_from_swap_cache(swappage);
1359 spin_unlock(&info->lock);
1360 filepage = swappage;
1361 set_page_dirty(filepage);
1362 swap_free(swap);
1363 } else {
1364 shmem_swp_unmap(entry);
1365 spin_unlock(&info->lock);
1366 if (error == -ENOMEM) {
1368 * reclaim from proper memory cgroup and
1369 * call memcg's OOM if needed.
1371 error = mem_cgroup_shmem_charge_fallback(
1372 swappage,
1373 current->mm,
1374 gfp);
1375 if (error) {
1376 unlock_page(swappage);
1377 page_cache_release(swappage);
1378 goto failed;
1381 unlock_page(swappage);
1382 page_cache_release(swappage);
1383 goto repeat;
1385 } else if (sgp == SGP_READ && !filepage) {
1386 shmem_swp_unmap(entry);
1387 filepage = find_get_page(mapping, idx);
1388 if (filepage &&
1389 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1390 spin_unlock(&info->lock);
1391 wait_on_page_locked(filepage);
1392 page_cache_release(filepage);
1393 filepage = NULL;
1394 goto repeat;
1396 spin_unlock(&info->lock);
1397 } else {
1398 shmem_swp_unmap(entry);
1399 sbinfo = SHMEM_SB(inode->i_sb);
1400 if (sbinfo->max_blocks) {
1401 if (percpu_counter_compare(&sbinfo->used_blocks,
1402 sbinfo->max_blocks) >= 0 ||
1403 shmem_acct_block(info->flags)) {
1404 spin_unlock(&info->lock);
1405 error = -ENOSPC;
1406 goto failed;
1408 percpu_counter_inc(&sbinfo->used_blocks);
1409 spin_lock(&inode->i_lock);
1410 inode->i_blocks += BLOCKS_PER_PAGE;
1411 spin_unlock(&inode->i_lock);
1412 } else if (shmem_acct_block(info->flags)) {
1413 spin_unlock(&info->lock);
1414 error = -ENOSPC;
1415 goto failed;
1418 if (!filepage) {
1419 int ret;
1421 if (!prealloc_page) {
1422 spin_unlock(&info->lock);
1423 filepage = shmem_alloc_page(gfp, info, idx);
1424 if (!filepage) {
1425 shmem_unacct_blocks(info->flags, 1);
1426 shmem_free_blocks(inode, 1);
1427 error = -ENOMEM;
1428 goto failed;
1430 SetPageSwapBacked(filepage);
1433 * Precharge page while we can wait, compensate
1434 * after
1436 error = mem_cgroup_cache_charge(filepage,
1437 current->mm, GFP_KERNEL);
1438 if (error) {
1439 page_cache_release(filepage);
1440 shmem_unacct_blocks(info->flags, 1);
1441 shmem_free_blocks(inode, 1);
1442 filepage = NULL;
1443 goto failed;
1446 spin_lock(&info->lock);
1447 } else {
1448 filepage = prealloc_page;
1449 prealloc_page = NULL;
1450 SetPageSwapBacked(filepage);
1453 entry = shmem_swp_alloc(info, idx, sgp);
1454 if (IS_ERR(entry))
1455 error = PTR_ERR(entry);
1456 else {
1457 swap = *entry;
1458 shmem_swp_unmap(entry);
1460 ret = error || swap.val;
1461 if (ret)
1462 mem_cgroup_uncharge_cache_page(filepage);
1463 else
1464 ret = add_to_page_cache_lru(filepage, mapping,
1465 idx, GFP_NOWAIT);
1467 * At add_to_page_cache_lru() failure, uncharge will
1468 * be done automatically.
1470 if (ret) {
1471 spin_unlock(&info->lock);
1472 page_cache_release(filepage);
1473 shmem_unacct_blocks(info->flags, 1);
1474 shmem_free_blocks(inode, 1);
1475 filepage = NULL;
1476 if (error)
1477 goto failed;
1478 goto repeat;
1480 info->flags |= SHMEM_PAGEIN;
1483 info->alloced++;
1484 spin_unlock(&info->lock);
1485 clear_highpage(filepage);
1486 flush_dcache_page(filepage);
1487 SetPageUptodate(filepage);
1488 if (sgp == SGP_DIRTY)
1489 set_page_dirty(filepage);
1491 done:
1492 *pagep = filepage;
1493 error = 0;
1494 goto out;
1496 failed:
1497 if (*pagep != filepage) {
1498 unlock_page(filepage);
1499 page_cache_release(filepage);
1501 out:
1502 if (prealloc_page) {
1503 mem_cgroup_uncharge_cache_page(prealloc_page);
1504 page_cache_release(prealloc_page);
1506 return error;
1509 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1511 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1512 int error;
1513 int ret;
1515 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1516 return VM_FAULT_SIGBUS;
1518 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1519 if (error)
1520 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1522 return ret | VM_FAULT_LOCKED;
1525 #ifdef CONFIG_NUMA
1526 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1528 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1529 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1532 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1533 unsigned long addr)
1535 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1536 unsigned long idx;
1538 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1539 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1541 #endif
1543 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1545 struct inode *inode = file->f_path.dentry->d_inode;
1546 struct shmem_inode_info *info = SHMEM_I(inode);
1547 int retval = -ENOMEM;
1549 spin_lock(&info->lock);
1550 if (lock && !(info->flags & VM_LOCKED)) {
1551 if (!user_shm_lock(inode->i_size, user))
1552 goto out_nomem;
1553 info->flags |= VM_LOCKED;
1554 mapping_set_unevictable(file->f_mapping);
1556 if (!lock && (info->flags & VM_LOCKED) && user) {
1557 user_shm_unlock(inode->i_size, user);
1558 info->flags &= ~VM_LOCKED;
1559 mapping_clear_unevictable(file->f_mapping);
1560 scan_mapping_unevictable_pages(file->f_mapping);
1562 retval = 0;
1564 out_nomem:
1565 spin_unlock(&info->lock);
1566 return retval;
1569 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1571 file_accessed(file);
1572 vma->vm_ops = &shmem_vm_ops;
1573 vma->vm_flags |= VM_CAN_NONLINEAR;
1574 return 0;
1577 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1578 int mode, dev_t dev, unsigned long flags)
1580 struct inode *inode;
1581 struct shmem_inode_info *info;
1582 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1584 if (shmem_reserve_inode(sb))
1585 return NULL;
1587 inode = new_inode(sb);
1588 if (inode) {
1589 inode->i_ino = get_next_ino();
1590 inode_init_owner(inode, dir, mode);
1591 inode->i_blocks = 0;
1592 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1593 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1594 inode->i_generation = get_seconds();
1595 info = SHMEM_I(inode);
1596 memset(info, 0, (char *)inode - (char *)info);
1597 spin_lock_init(&info->lock);
1598 info->flags = flags & VM_NORESERVE;
1599 INIT_LIST_HEAD(&info->swaplist);
1600 cache_no_acl(inode);
1602 switch (mode & S_IFMT) {
1603 default:
1604 inode->i_op = &shmem_special_inode_operations;
1605 init_special_inode(inode, mode, dev);
1606 break;
1607 case S_IFREG:
1608 inode->i_mapping->a_ops = &shmem_aops;
1609 inode->i_op = &shmem_inode_operations;
1610 inode->i_fop = &shmem_file_operations;
1611 mpol_shared_policy_init(&info->policy,
1612 shmem_get_sbmpol(sbinfo));
1613 break;
1614 case S_IFDIR:
1615 inc_nlink(inode);
1616 /* Some things misbehave if size == 0 on a directory */
1617 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1618 inode->i_op = &shmem_dir_inode_operations;
1619 inode->i_fop = &simple_dir_operations;
1620 break;
1621 case S_IFLNK:
1623 * Must not load anything in the rbtree,
1624 * mpol_free_shared_policy will not be called.
1626 mpol_shared_policy_init(&info->policy, NULL);
1627 break;
1629 } else
1630 shmem_free_inode(sb);
1631 return inode;
1634 #ifdef CONFIG_TMPFS
1635 static const struct inode_operations shmem_symlink_inode_operations;
1636 static const struct inode_operations shmem_symlink_inline_operations;
1639 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1640 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1641 * below the loop driver, in the generic fashion that many filesystems support.
1643 static int shmem_readpage(struct file *file, struct page *page)
1645 struct inode *inode = page->mapping->host;
1646 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1647 unlock_page(page);
1648 return error;
1651 static int
1652 shmem_write_begin(struct file *file, struct address_space *mapping,
1653 loff_t pos, unsigned len, unsigned flags,
1654 struct page **pagep, void **fsdata)
1656 struct inode *inode = mapping->host;
1657 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1658 *pagep = NULL;
1659 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1662 static int
1663 shmem_write_end(struct file *file, struct address_space *mapping,
1664 loff_t pos, unsigned len, unsigned copied,
1665 struct page *page, void *fsdata)
1667 struct inode *inode = mapping->host;
1669 if (pos + copied > inode->i_size)
1670 i_size_write(inode, pos + copied);
1672 set_page_dirty(page);
1673 unlock_page(page);
1674 page_cache_release(page);
1676 return copied;
1679 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1681 struct inode *inode = filp->f_path.dentry->d_inode;
1682 struct address_space *mapping = inode->i_mapping;
1683 unsigned long index, offset;
1684 enum sgp_type sgp = SGP_READ;
1687 * Might this read be for a stacking filesystem? Then when reading
1688 * holes of a sparse file, we actually need to allocate those pages,
1689 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1691 if (segment_eq(get_fs(), KERNEL_DS))
1692 sgp = SGP_DIRTY;
1694 index = *ppos >> PAGE_CACHE_SHIFT;
1695 offset = *ppos & ~PAGE_CACHE_MASK;
1697 for (;;) {
1698 struct page *page = NULL;
1699 unsigned long end_index, nr, ret;
1700 loff_t i_size = i_size_read(inode);
1702 end_index = i_size >> PAGE_CACHE_SHIFT;
1703 if (index > end_index)
1704 break;
1705 if (index == end_index) {
1706 nr = i_size & ~PAGE_CACHE_MASK;
1707 if (nr <= offset)
1708 break;
1711 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1712 if (desc->error) {
1713 if (desc->error == -EINVAL)
1714 desc->error = 0;
1715 break;
1717 if (page)
1718 unlock_page(page);
1721 * We must evaluate after, since reads (unlike writes)
1722 * are called without i_mutex protection against truncate
1724 nr = PAGE_CACHE_SIZE;
1725 i_size = i_size_read(inode);
1726 end_index = i_size >> PAGE_CACHE_SHIFT;
1727 if (index == end_index) {
1728 nr = i_size & ~PAGE_CACHE_MASK;
1729 if (nr <= offset) {
1730 if (page)
1731 page_cache_release(page);
1732 break;
1735 nr -= offset;
1737 if (page) {
1739 * If users can be writing to this page using arbitrary
1740 * virtual addresses, take care about potential aliasing
1741 * before reading the page on the kernel side.
1743 if (mapping_writably_mapped(mapping))
1744 flush_dcache_page(page);
1746 * Mark the page accessed if we read the beginning.
1748 if (!offset)
1749 mark_page_accessed(page);
1750 } else {
1751 page = ZERO_PAGE(0);
1752 page_cache_get(page);
1756 * Ok, we have the page, and it's up-to-date, so
1757 * now we can copy it to user space...
1759 * The actor routine returns how many bytes were actually used..
1760 * NOTE! This may not be the same as how much of a user buffer
1761 * we filled up (we may be padding etc), so we can only update
1762 * "pos" here (the actor routine has to update the user buffer
1763 * pointers and the remaining count).
1765 ret = actor(desc, page, offset, nr);
1766 offset += ret;
1767 index += offset >> PAGE_CACHE_SHIFT;
1768 offset &= ~PAGE_CACHE_MASK;
1770 page_cache_release(page);
1771 if (ret != nr || !desc->count)
1772 break;
1774 cond_resched();
1777 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1778 file_accessed(filp);
1781 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1782 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1784 struct file *filp = iocb->ki_filp;
1785 ssize_t retval;
1786 unsigned long seg;
1787 size_t count;
1788 loff_t *ppos = &iocb->ki_pos;
1790 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1791 if (retval)
1792 return retval;
1794 for (seg = 0; seg < nr_segs; seg++) {
1795 read_descriptor_t desc;
1797 desc.written = 0;
1798 desc.arg.buf = iov[seg].iov_base;
1799 desc.count = iov[seg].iov_len;
1800 if (desc.count == 0)
1801 continue;
1802 desc.error = 0;
1803 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1804 retval += desc.written;
1805 if (desc.error) {
1806 retval = retval ?: desc.error;
1807 break;
1809 if (desc.count > 0)
1810 break;
1812 return retval;
1815 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1817 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1819 buf->f_type = TMPFS_MAGIC;
1820 buf->f_bsize = PAGE_CACHE_SIZE;
1821 buf->f_namelen = NAME_MAX;
1822 if (sbinfo->max_blocks) {
1823 buf->f_blocks = sbinfo->max_blocks;
1824 buf->f_bavail = buf->f_bfree =
1825 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1827 if (sbinfo->max_inodes) {
1828 buf->f_files = sbinfo->max_inodes;
1829 buf->f_ffree = sbinfo->free_inodes;
1831 /* else leave those fields 0 like simple_statfs */
1832 return 0;
1836 * File creation. Allocate an inode, and we're done..
1838 static int
1839 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1841 struct inode *inode;
1842 int error = -ENOSPC;
1844 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1845 if (inode) {
1846 error = security_inode_init_security(inode, dir,
1847 &dentry->d_name, NULL,
1848 NULL, NULL);
1849 if (error) {
1850 if (error != -EOPNOTSUPP) {
1851 iput(inode);
1852 return error;
1855 #ifdef CONFIG_TMPFS_POSIX_ACL
1856 error = generic_acl_init(inode, dir);
1857 if (error) {
1858 iput(inode);
1859 return error;
1861 #else
1862 error = 0;
1863 #endif
1864 dir->i_size += BOGO_DIRENT_SIZE;
1865 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1866 d_instantiate(dentry, inode);
1867 dget(dentry); /* Extra count - pin the dentry in core */
1869 return error;
1872 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1874 int error;
1876 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1877 return error;
1878 inc_nlink(dir);
1879 return 0;
1882 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1883 struct nameidata *nd)
1885 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1889 * Link a file..
1891 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1893 struct inode *inode = old_dentry->d_inode;
1894 int ret;
1897 * No ordinary (disk based) filesystem counts links as inodes;
1898 * but each new link needs a new dentry, pinning lowmem, and
1899 * tmpfs dentries cannot be pruned until they are unlinked.
1901 ret = shmem_reserve_inode(inode->i_sb);
1902 if (ret)
1903 goto out;
1905 dir->i_size += BOGO_DIRENT_SIZE;
1906 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1907 inc_nlink(inode);
1908 ihold(inode); /* New dentry reference */
1909 dget(dentry); /* Extra pinning count for the created dentry */
1910 d_instantiate(dentry, inode);
1911 out:
1912 return ret;
1915 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1917 struct inode *inode = dentry->d_inode;
1919 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1920 shmem_free_inode(inode->i_sb);
1922 dir->i_size -= BOGO_DIRENT_SIZE;
1923 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1924 drop_nlink(inode);
1925 dput(dentry); /* Undo the count from "create" - this does all the work */
1926 return 0;
1929 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1931 if (!simple_empty(dentry))
1932 return -ENOTEMPTY;
1934 drop_nlink(dentry->d_inode);
1935 drop_nlink(dir);
1936 return shmem_unlink(dir, dentry);
1940 * The VFS layer already does all the dentry stuff for rename,
1941 * we just have to decrement the usage count for the target if
1942 * it exists so that the VFS layer correctly free's it when it
1943 * gets overwritten.
1945 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1947 struct inode *inode = old_dentry->d_inode;
1948 int they_are_dirs = S_ISDIR(inode->i_mode);
1950 if (!simple_empty(new_dentry))
1951 return -ENOTEMPTY;
1953 if (new_dentry->d_inode) {
1954 (void) shmem_unlink(new_dir, new_dentry);
1955 if (they_are_dirs)
1956 drop_nlink(old_dir);
1957 } else if (they_are_dirs) {
1958 drop_nlink(old_dir);
1959 inc_nlink(new_dir);
1962 old_dir->i_size -= BOGO_DIRENT_SIZE;
1963 new_dir->i_size += BOGO_DIRENT_SIZE;
1964 old_dir->i_ctime = old_dir->i_mtime =
1965 new_dir->i_ctime = new_dir->i_mtime =
1966 inode->i_ctime = CURRENT_TIME;
1967 return 0;
1970 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1972 int error;
1973 int len;
1974 struct inode *inode;
1975 struct page *page = NULL;
1976 char *kaddr;
1977 struct shmem_inode_info *info;
1979 len = strlen(symname) + 1;
1980 if (len > PAGE_CACHE_SIZE)
1981 return -ENAMETOOLONG;
1983 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1984 if (!inode)
1985 return -ENOSPC;
1987 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1988 NULL, NULL);
1989 if (error) {
1990 if (error != -EOPNOTSUPP) {
1991 iput(inode);
1992 return error;
1994 error = 0;
1997 info = SHMEM_I(inode);
1998 inode->i_size = len-1;
1999 if (len <= (char *)inode - (char *)info) {
2000 /* do it inline */
2001 memcpy(info, symname, len);
2002 inode->i_op = &shmem_symlink_inline_operations;
2003 } else {
2004 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2005 if (error) {
2006 iput(inode);
2007 return error;
2009 inode->i_mapping->a_ops = &shmem_aops;
2010 inode->i_op = &shmem_symlink_inode_operations;
2011 kaddr = kmap_atomic(page, KM_USER0);
2012 memcpy(kaddr, symname, len);
2013 kunmap_atomic(kaddr, KM_USER0);
2014 set_page_dirty(page);
2015 unlock_page(page);
2016 page_cache_release(page);
2018 dir->i_size += BOGO_DIRENT_SIZE;
2019 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2020 d_instantiate(dentry, inode);
2021 dget(dentry);
2022 return 0;
2025 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2027 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2028 return NULL;
2031 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2033 struct page *page = NULL;
2034 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2035 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2036 if (page)
2037 unlock_page(page);
2038 return page;
2041 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2043 if (!IS_ERR(nd_get_link(nd))) {
2044 struct page *page = cookie;
2045 kunmap(page);
2046 mark_page_accessed(page);
2047 page_cache_release(page);
2051 static const struct inode_operations shmem_symlink_inline_operations = {
2052 .readlink = generic_readlink,
2053 .follow_link = shmem_follow_link_inline,
2056 static const struct inode_operations shmem_symlink_inode_operations = {
2057 .readlink = generic_readlink,
2058 .follow_link = shmem_follow_link,
2059 .put_link = shmem_put_link,
2062 #ifdef CONFIG_TMPFS_POSIX_ACL
2064 * Superblocks without xattr inode operations will get security.* xattr
2065 * support from the VFS "for free". As soon as we have any other xattrs
2066 * like ACLs, we also need to implement the security.* handlers at
2067 * filesystem level, though.
2070 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2071 size_t list_len, const char *name,
2072 size_t name_len, int handler_flags)
2074 return security_inode_listsecurity(dentry->d_inode, list, list_len);
2077 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2078 void *buffer, size_t size, int handler_flags)
2080 if (strcmp(name, "") == 0)
2081 return -EINVAL;
2082 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2085 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2086 const void *value, size_t size, int flags, int handler_flags)
2088 if (strcmp(name, "") == 0)
2089 return -EINVAL;
2090 return security_inode_setsecurity(dentry->d_inode, name, value,
2091 size, flags);
2094 static const struct xattr_handler shmem_xattr_security_handler = {
2095 .prefix = XATTR_SECURITY_PREFIX,
2096 .list = shmem_xattr_security_list,
2097 .get = shmem_xattr_security_get,
2098 .set = shmem_xattr_security_set,
2101 static const struct xattr_handler *shmem_xattr_handlers[] = {
2102 &generic_acl_access_handler,
2103 &generic_acl_default_handler,
2104 &shmem_xattr_security_handler,
2105 NULL
2107 #endif
2109 static struct dentry *shmem_get_parent(struct dentry *child)
2111 return ERR_PTR(-ESTALE);
2114 static int shmem_match(struct inode *ino, void *vfh)
2116 __u32 *fh = vfh;
2117 __u64 inum = fh[2];
2118 inum = (inum << 32) | fh[1];
2119 return ino->i_ino == inum && fh[0] == ino->i_generation;
2122 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2123 struct fid *fid, int fh_len, int fh_type)
2125 struct inode *inode;
2126 struct dentry *dentry = NULL;
2127 u64 inum = fid->raw[2];
2128 inum = (inum << 32) | fid->raw[1];
2130 if (fh_len < 3)
2131 return NULL;
2133 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2134 shmem_match, fid->raw);
2135 if (inode) {
2136 dentry = d_find_alias(inode);
2137 iput(inode);
2140 return dentry;
2143 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2144 int connectable)
2146 struct inode *inode = dentry->d_inode;
2148 if (*len < 3) {
2149 *len = 3;
2150 return 255;
2153 if (inode_unhashed(inode)) {
2154 /* Unfortunately insert_inode_hash is not idempotent,
2155 * so as we hash inodes here rather than at creation
2156 * time, we need a lock to ensure we only try
2157 * to do it once
2159 static DEFINE_SPINLOCK(lock);
2160 spin_lock(&lock);
2161 if (inode_unhashed(inode))
2162 __insert_inode_hash(inode,
2163 inode->i_ino + inode->i_generation);
2164 spin_unlock(&lock);
2167 fh[0] = inode->i_generation;
2168 fh[1] = inode->i_ino;
2169 fh[2] = ((__u64)inode->i_ino) >> 32;
2171 *len = 3;
2172 return 1;
2175 static const struct export_operations shmem_export_ops = {
2176 .get_parent = shmem_get_parent,
2177 .encode_fh = shmem_encode_fh,
2178 .fh_to_dentry = shmem_fh_to_dentry,
2181 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2182 bool remount)
2184 char *this_char, *value, *rest;
2186 while (options != NULL) {
2187 this_char = options;
2188 for (;;) {
2190 * NUL-terminate this option: unfortunately,
2191 * mount options form a comma-separated list,
2192 * but mpol's nodelist may also contain commas.
2194 options = strchr(options, ',');
2195 if (options == NULL)
2196 break;
2197 options++;
2198 if (!isdigit(*options)) {
2199 options[-1] = '\0';
2200 break;
2203 if (!*this_char)
2204 continue;
2205 if ((value = strchr(this_char,'=')) != NULL) {
2206 *value++ = 0;
2207 } else {
2208 printk(KERN_ERR
2209 "tmpfs: No value for mount option '%s'\n",
2210 this_char);
2211 return 1;
2214 if (!strcmp(this_char,"size")) {
2215 unsigned long long size;
2216 size = memparse(value,&rest);
2217 if (*rest == '%') {
2218 size <<= PAGE_SHIFT;
2219 size *= totalram_pages;
2220 do_div(size, 100);
2221 rest++;
2223 if (*rest)
2224 goto bad_val;
2225 sbinfo->max_blocks =
2226 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2227 } else if (!strcmp(this_char,"nr_blocks")) {
2228 sbinfo->max_blocks = memparse(value, &rest);
2229 if (*rest)
2230 goto bad_val;
2231 } else if (!strcmp(this_char,"nr_inodes")) {
2232 sbinfo->max_inodes = memparse(value, &rest);
2233 if (*rest)
2234 goto bad_val;
2235 } else if (!strcmp(this_char,"mode")) {
2236 if (remount)
2237 continue;
2238 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2239 if (*rest)
2240 goto bad_val;
2241 } else if (!strcmp(this_char,"uid")) {
2242 if (remount)
2243 continue;
2244 sbinfo->uid = simple_strtoul(value, &rest, 0);
2245 if (*rest)
2246 goto bad_val;
2247 } else if (!strcmp(this_char,"gid")) {
2248 if (remount)
2249 continue;
2250 sbinfo->gid = simple_strtoul(value, &rest, 0);
2251 if (*rest)
2252 goto bad_val;
2253 } else if (!strcmp(this_char,"mpol")) {
2254 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2255 goto bad_val;
2256 } else {
2257 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2258 this_char);
2259 return 1;
2262 return 0;
2264 bad_val:
2265 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2266 value, this_char);
2267 return 1;
2271 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2274 struct shmem_sb_info config = *sbinfo;
2275 unsigned long inodes;
2276 int error = -EINVAL;
2278 if (shmem_parse_options(data, &config, true))
2279 return error;
2281 spin_lock(&sbinfo->stat_lock);
2282 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2283 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2284 goto out;
2285 if (config.max_inodes < inodes)
2286 goto out;
2288 * Those tests also disallow limited->unlimited while any are in
2289 * use, so i_blocks will always be zero when max_blocks is zero;
2290 * but we must separately disallow unlimited->limited, because
2291 * in that case we have no record of how much is already in use.
2293 if (config.max_blocks && !sbinfo->max_blocks)
2294 goto out;
2295 if (config.max_inodes && !sbinfo->max_inodes)
2296 goto out;
2298 error = 0;
2299 sbinfo->max_blocks = config.max_blocks;
2300 sbinfo->max_inodes = config.max_inodes;
2301 sbinfo->free_inodes = config.max_inodes - inodes;
2303 mpol_put(sbinfo->mpol);
2304 sbinfo->mpol = config.mpol; /* transfers initial ref */
2305 out:
2306 spin_unlock(&sbinfo->stat_lock);
2307 return error;
2310 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2312 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2314 if (sbinfo->max_blocks != shmem_default_max_blocks())
2315 seq_printf(seq, ",size=%luk",
2316 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2317 if (sbinfo->max_inodes != shmem_default_max_inodes())
2318 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2319 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2320 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2321 if (sbinfo->uid != 0)
2322 seq_printf(seq, ",uid=%u", sbinfo->uid);
2323 if (sbinfo->gid != 0)
2324 seq_printf(seq, ",gid=%u", sbinfo->gid);
2325 shmem_show_mpol(seq, sbinfo->mpol);
2326 return 0;
2328 #endif /* CONFIG_TMPFS */
2330 static void shmem_put_super(struct super_block *sb)
2332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2334 percpu_counter_destroy(&sbinfo->used_blocks);
2335 kfree(sbinfo);
2336 sb->s_fs_info = NULL;
2339 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2341 struct inode *inode;
2342 struct dentry *root;
2343 struct shmem_sb_info *sbinfo;
2344 int err = -ENOMEM;
2346 /* Round up to L1_CACHE_BYTES to resist false sharing */
2347 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2348 L1_CACHE_BYTES), GFP_KERNEL);
2349 if (!sbinfo)
2350 return -ENOMEM;
2352 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2353 sbinfo->uid = current_fsuid();
2354 sbinfo->gid = current_fsgid();
2355 sb->s_fs_info = sbinfo;
2357 #ifdef CONFIG_TMPFS
2359 * Per default we only allow half of the physical ram per
2360 * tmpfs instance, limiting inodes to one per page of lowmem;
2361 * but the internal instance is left unlimited.
2363 if (!(sb->s_flags & MS_NOUSER)) {
2364 sbinfo->max_blocks = shmem_default_max_blocks();
2365 sbinfo->max_inodes = shmem_default_max_inodes();
2366 if (shmem_parse_options(data, sbinfo, false)) {
2367 err = -EINVAL;
2368 goto failed;
2371 sb->s_export_op = &shmem_export_ops;
2372 #else
2373 sb->s_flags |= MS_NOUSER;
2374 #endif
2376 spin_lock_init(&sbinfo->stat_lock);
2377 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2378 goto failed;
2379 sbinfo->free_inodes = sbinfo->max_inodes;
2381 sb->s_maxbytes = SHMEM_MAX_BYTES;
2382 sb->s_blocksize = PAGE_CACHE_SIZE;
2383 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2384 sb->s_magic = TMPFS_MAGIC;
2385 sb->s_op = &shmem_ops;
2386 sb->s_time_gran = 1;
2387 #ifdef CONFIG_TMPFS_POSIX_ACL
2388 sb->s_xattr = shmem_xattr_handlers;
2389 sb->s_flags |= MS_POSIXACL;
2390 #endif
2392 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2393 if (!inode)
2394 goto failed;
2395 inode->i_uid = sbinfo->uid;
2396 inode->i_gid = sbinfo->gid;
2397 root = d_alloc_root(inode);
2398 if (!root)
2399 goto failed_iput;
2400 sb->s_root = root;
2401 return 0;
2403 failed_iput:
2404 iput(inode);
2405 failed:
2406 shmem_put_super(sb);
2407 return err;
2410 static struct kmem_cache *shmem_inode_cachep;
2412 static struct inode *shmem_alloc_inode(struct super_block *sb)
2414 struct shmem_inode_info *p;
2415 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2416 if (!p)
2417 return NULL;
2418 return &p->vfs_inode;
2421 static void shmem_i_callback(struct rcu_head *head)
2423 struct inode *inode = container_of(head, struct inode, i_rcu);
2424 INIT_LIST_HEAD(&inode->i_dentry);
2425 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2428 static void shmem_destroy_inode(struct inode *inode)
2430 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2431 /* only struct inode is valid if it's an inline symlink */
2432 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2434 call_rcu(&inode->i_rcu, shmem_i_callback);
2437 static void init_once(void *foo)
2439 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2441 inode_init_once(&p->vfs_inode);
2444 static int init_inodecache(void)
2446 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2447 sizeof(struct shmem_inode_info),
2448 0, SLAB_PANIC, init_once);
2449 return 0;
2452 static void destroy_inodecache(void)
2454 kmem_cache_destroy(shmem_inode_cachep);
2457 static const struct address_space_operations shmem_aops = {
2458 .writepage = shmem_writepage,
2459 .set_page_dirty = __set_page_dirty_no_writeback,
2460 #ifdef CONFIG_TMPFS
2461 .readpage = shmem_readpage,
2462 .write_begin = shmem_write_begin,
2463 .write_end = shmem_write_end,
2464 #endif
2465 .migratepage = migrate_page,
2466 .error_remove_page = generic_error_remove_page,
2469 static const struct file_operations shmem_file_operations = {
2470 .mmap = shmem_mmap,
2471 #ifdef CONFIG_TMPFS
2472 .llseek = generic_file_llseek,
2473 .read = do_sync_read,
2474 .write = do_sync_write,
2475 .aio_read = shmem_file_aio_read,
2476 .aio_write = generic_file_aio_write,
2477 .fsync = noop_fsync,
2478 .splice_read = generic_file_splice_read,
2479 .splice_write = generic_file_splice_write,
2480 #endif
2483 static const struct inode_operations shmem_inode_operations = {
2484 .setattr = shmem_notify_change,
2485 .truncate_range = shmem_truncate_range,
2486 #ifdef CONFIG_TMPFS_POSIX_ACL
2487 .setxattr = generic_setxattr,
2488 .getxattr = generic_getxattr,
2489 .listxattr = generic_listxattr,
2490 .removexattr = generic_removexattr,
2491 .check_acl = generic_check_acl,
2492 #endif
2496 static const struct inode_operations shmem_dir_inode_operations = {
2497 #ifdef CONFIG_TMPFS
2498 .create = shmem_create,
2499 .lookup = simple_lookup,
2500 .link = shmem_link,
2501 .unlink = shmem_unlink,
2502 .symlink = shmem_symlink,
2503 .mkdir = shmem_mkdir,
2504 .rmdir = shmem_rmdir,
2505 .mknod = shmem_mknod,
2506 .rename = shmem_rename,
2507 #endif
2508 #ifdef CONFIG_TMPFS_POSIX_ACL
2509 .setattr = shmem_notify_change,
2510 .setxattr = generic_setxattr,
2511 .getxattr = generic_getxattr,
2512 .listxattr = generic_listxattr,
2513 .removexattr = generic_removexattr,
2514 .check_acl = generic_check_acl,
2515 #endif
2518 static const struct inode_operations shmem_special_inode_operations = {
2519 #ifdef CONFIG_TMPFS_POSIX_ACL
2520 .setattr = shmem_notify_change,
2521 .setxattr = generic_setxattr,
2522 .getxattr = generic_getxattr,
2523 .listxattr = generic_listxattr,
2524 .removexattr = generic_removexattr,
2525 .check_acl = generic_check_acl,
2526 #endif
2529 static const struct super_operations shmem_ops = {
2530 .alloc_inode = shmem_alloc_inode,
2531 .destroy_inode = shmem_destroy_inode,
2532 #ifdef CONFIG_TMPFS
2533 .statfs = shmem_statfs,
2534 .remount_fs = shmem_remount_fs,
2535 .show_options = shmem_show_options,
2536 #endif
2537 .evict_inode = shmem_evict_inode,
2538 .drop_inode = generic_delete_inode,
2539 .put_super = shmem_put_super,
2542 static const struct vm_operations_struct shmem_vm_ops = {
2543 .fault = shmem_fault,
2544 #ifdef CONFIG_NUMA
2545 .set_policy = shmem_set_policy,
2546 .get_policy = shmem_get_policy,
2547 #endif
2551 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2552 int flags, const char *dev_name, void *data)
2554 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2557 static struct file_system_type tmpfs_fs_type = {
2558 .owner = THIS_MODULE,
2559 .name = "tmpfs",
2560 .mount = shmem_mount,
2561 .kill_sb = kill_litter_super,
2564 int __init init_tmpfs(void)
2566 int error;
2568 error = bdi_init(&shmem_backing_dev_info);
2569 if (error)
2570 goto out4;
2572 error = init_inodecache();
2573 if (error)
2574 goto out3;
2576 error = register_filesystem(&tmpfs_fs_type);
2577 if (error) {
2578 printk(KERN_ERR "Could not register tmpfs\n");
2579 goto out2;
2582 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2583 tmpfs_fs_type.name, NULL);
2584 if (IS_ERR(shm_mnt)) {
2585 error = PTR_ERR(shm_mnt);
2586 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2587 goto out1;
2589 return 0;
2591 out1:
2592 unregister_filesystem(&tmpfs_fs_type);
2593 out2:
2594 destroy_inodecache();
2595 out3:
2596 bdi_destroy(&shmem_backing_dev_info);
2597 out4:
2598 shm_mnt = ERR_PTR(error);
2599 return error;
2602 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2604 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2605 * @inode: the inode to be searched
2606 * @pgoff: the offset to be searched
2607 * @pagep: the pointer for the found page to be stored
2608 * @ent: the pointer for the found swap entry to be stored
2610 * If a page is found, refcount of it is incremented. Callers should handle
2611 * these refcount.
2613 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2614 struct page **pagep, swp_entry_t *ent)
2616 swp_entry_t entry = { .val = 0 }, *ptr;
2617 struct page *page = NULL;
2618 struct shmem_inode_info *info = SHMEM_I(inode);
2620 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2621 goto out;
2623 spin_lock(&info->lock);
2624 ptr = shmem_swp_entry(info, pgoff, NULL);
2625 #ifdef CONFIG_SWAP
2626 if (ptr && ptr->val) {
2627 entry.val = ptr->val;
2628 page = find_get_page(&swapper_space, entry.val);
2629 } else
2630 #endif
2631 page = find_get_page(inode->i_mapping, pgoff);
2632 if (ptr)
2633 shmem_swp_unmap(ptr);
2634 spin_unlock(&info->lock);
2635 out:
2636 *pagep = page;
2637 *ent = entry;
2639 #endif
2641 #else /* !CONFIG_SHMEM */
2644 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2646 * This is intended for small system where the benefits of the full
2647 * shmem code (swap-backed and resource-limited) are outweighed by
2648 * their complexity. On systems without swap this code should be
2649 * effectively equivalent, but much lighter weight.
2652 #include <linux/ramfs.h>
2654 static struct file_system_type tmpfs_fs_type = {
2655 .name = "tmpfs",
2656 .mount = ramfs_mount,
2657 .kill_sb = kill_litter_super,
2660 int __init init_tmpfs(void)
2662 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2664 shm_mnt = kern_mount(&tmpfs_fs_type);
2665 BUG_ON(IS_ERR(shm_mnt));
2667 return 0;
2670 int shmem_unuse(swp_entry_t entry, struct page *page)
2672 return 0;
2675 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2677 return 0;
2680 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2682 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2683 * @inode: the inode to be searched
2684 * @pgoff: the offset to be searched
2685 * @pagep: the pointer for the found page to be stored
2686 * @ent: the pointer for the found swap entry to be stored
2688 * If a page is found, refcount of it is incremented. Callers should handle
2689 * these refcount.
2691 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2692 struct page **pagep, swp_entry_t *ent)
2694 struct page *page = NULL;
2696 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2697 goto out;
2698 page = find_get_page(inode->i_mapping, pgoff);
2699 out:
2700 *pagep = page;
2701 *ent = (swp_entry_t){ .val = 0 };
2703 #endif
2705 #define shmem_vm_ops generic_file_vm_ops
2706 #define shmem_file_operations ramfs_file_operations
2707 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2708 #define shmem_acct_size(flags, size) 0
2709 #define shmem_unacct_size(flags, size) do {} while (0)
2710 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2712 #endif /* CONFIG_SHMEM */
2714 /* common code */
2717 * shmem_file_setup - get an unlinked file living in tmpfs
2718 * @name: name for dentry (to be seen in /proc/<pid>/maps
2719 * @size: size to be set for the file
2720 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2722 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2724 int error;
2725 struct file *file;
2726 struct inode *inode;
2727 struct path path;
2728 struct dentry *root;
2729 struct qstr this;
2731 if (IS_ERR(shm_mnt))
2732 return (void *)shm_mnt;
2734 if (size < 0 || size > SHMEM_MAX_BYTES)
2735 return ERR_PTR(-EINVAL);
2737 if (shmem_acct_size(flags, size))
2738 return ERR_PTR(-ENOMEM);
2740 error = -ENOMEM;
2741 this.name = name;
2742 this.len = strlen(name);
2743 this.hash = 0; /* will go */
2744 root = shm_mnt->mnt_root;
2745 path.dentry = d_alloc(root, &this);
2746 if (!path.dentry)
2747 goto put_memory;
2748 path.mnt = mntget(shm_mnt);
2750 error = -ENOSPC;
2751 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2752 if (!inode)
2753 goto put_dentry;
2755 d_instantiate(path.dentry, inode);
2756 inode->i_size = size;
2757 inode->i_nlink = 0; /* It is unlinked */
2758 #ifndef CONFIG_MMU
2759 error = ramfs_nommu_expand_for_mapping(inode, size);
2760 if (error)
2761 goto put_dentry;
2762 #endif
2764 error = -ENFILE;
2765 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2766 &shmem_file_operations);
2767 if (!file)
2768 goto put_dentry;
2770 return file;
2772 put_dentry:
2773 path_put(&path);
2774 put_memory:
2775 shmem_unacct_size(flags, size);
2776 return ERR_PTR(error);
2778 EXPORT_SYMBOL_GPL(shmem_file_setup);
2781 * shmem_zero_setup - setup a shared anonymous mapping
2782 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2784 int shmem_zero_setup(struct vm_area_struct *vma)
2786 struct file *file;
2787 loff_t size = vma->vm_end - vma->vm_start;
2789 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2790 if (IS_ERR(file))
2791 return PTR_ERR(file);
2793 if (vma->vm_file)
2794 fput(vma->vm_file);
2795 vma->vm_file = file;
2796 vma->vm_ops = &shmem_vm_ops;
2797 vma->vm_flags |= VM_CAN_NONLINEAR;
2798 return 0;