rcu: Accelerate grace period if last non-dynticked CPU
[linux-2.6/x86.git] / kernel / rcutree.c
blob29d88c08d8755017189aab1008aba007a2290ff1
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
51 #include "rcutree.h"
53 /* Data structures. */
55 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
57 #define RCU_STATE_INITIALIZER(name) { \
58 .level = { &name.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84 static int rcu_scheduler_active __read_mostly;
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node
90 * structure's ->lock, but of course results can be subject to change.
92 static int rcu_gp_in_progress(struct rcu_state *rsp)
94 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
98 * Note a quiescent state. Because we do not need to know
99 * how many quiescent states passed, just if there was at least
100 * one since the start of the grace period, this just sets a flag.
102 void rcu_sched_qs(int cpu)
104 struct rcu_data *rdp;
106 rdp = &per_cpu(rcu_sched_data, cpu);
107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 barrier();
109 rdp->passed_quiesc = 1;
110 rcu_preempt_note_context_switch(cpu);
113 void rcu_bh_qs(int cpu)
115 struct rcu_data *rdp;
117 rdp = &per_cpu(rcu_bh_data, cpu);
118 rdp->passed_quiesc_completed = rdp->gpnum - 1;
119 barrier();
120 rdp->passed_quiesc = 1;
123 #ifdef CONFIG_NO_HZ
124 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
125 .dynticks_nesting = 1,
126 .dynticks = 1,
128 #endif /* #ifdef CONFIG_NO_HZ */
130 static int blimit = 10; /* Maximum callbacks per softirq. */
131 static int qhimark = 10000; /* If this many pending, ignore blimit. */
132 static int qlowmark = 100; /* Once only this many pending, use blimit. */
134 module_param(blimit, int, 0);
135 module_param(qhimark, int, 0);
136 module_param(qlowmark, int, 0);
138 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
139 static int rcu_pending(int cpu);
142 * Return the number of RCU-sched batches processed thus far for debug & stats.
144 long rcu_batches_completed_sched(void)
146 return rcu_sched_state.completed;
148 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
151 * Return the number of RCU BH batches processed thus far for debug & stats.
153 long rcu_batches_completed_bh(void)
155 return rcu_bh_state.completed;
157 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
160 * Force a quiescent state for RCU BH.
162 void rcu_bh_force_quiescent_state(void)
164 force_quiescent_state(&rcu_bh_state, 0);
166 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
169 * Force a quiescent state for RCU-sched.
171 void rcu_sched_force_quiescent_state(void)
173 force_quiescent_state(&rcu_sched_state, 0);
175 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
178 * Does the CPU have callbacks ready to be invoked?
180 static int
181 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
183 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
187 * Does the current CPU require a yet-as-unscheduled grace period?
189 static int
190 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
192 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
196 * Return the root node of the specified rcu_state structure.
198 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
200 return &rsp->node[0];
203 #ifdef CONFIG_SMP
206 * If the specified CPU is offline, tell the caller that it is in
207 * a quiescent state. Otherwise, whack it with a reschedule IPI.
208 * Grace periods can end up waiting on an offline CPU when that
209 * CPU is in the process of coming online -- it will be added to the
210 * rcu_node bitmasks before it actually makes it online. The same thing
211 * can happen while a CPU is in the process of coming online. Because this
212 * race is quite rare, we check for it after detecting that the grace
213 * period has been delayed rather than checking each and every CPU
214 * each and every time we start a new grace period.
216 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
219 * If the CPU is offline, it is in a quiescent state. We can
220 * trust its state not to change because interrupts are disabled.
222 if (cpu_is_offline(rdp->cpu)) {
223 rdp->offline_fqs++;
224 return 1;
227 /* If preemptable RCU, no point in sending reschedule IPI. */
228 if (rdp->preemptable)
229 return 0;
231 /* The CPU is online, so send it a reschedule IPI. */
232 if (rdp->cpu != smp_processor_id())
233 smp_send_reschedule(rdp->cpu);
234 else
235 set_need_resched();
236 rdp->resched_ipi++;
237 return 0;
240 #endif /* #ifdef CONFIG_SMP */
242 #ifdef CONFIG_NO_HZ
245 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
247 * Enter nohz mode, in other words, -leave- the mode in which RCU
248 * read-side critical sections can occur. (Though RCU read-side
249 * critical sections can occur in irq handlers in nohz mode, a possibility
250 * handled by rcu_irq_enter() and rcu_irq_exit()).
252 void rcu_enter_nohz(void)
254 unsigned long flags;
255 struct rcu_dynticks *rdtp;
257 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
258 local_irq_save(flags);
259 rdtp = &__get_cpu_var(rcu_dynticks);
260 rdtp->dynticks++;
261 rdtp->dynticks_nesting--;
262 WARN_ON_ONCE(rdtp->dynticks & 0x1);
263 local_irq_restore(flags);
267 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
269 * Exit nohz mode, in other words, -enter- the mode in which RCU
270 * read-side critical sections normally occur.
272 void rcu_exit_nohz(void)
274 unsigned long flags;
275 struct rcu_dynticks *rdtp;
277 local_irq_save(flags);
278 rdtp = &__get_cpu_var(rcu_dynticks);
279 rdtp->dynticks++;
280 rdtp->dynticks_nesting++;
281 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
282 local_irq_restore(flags);
283 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
287 * rcu_nmi_enter - inform RCU of entry to NMI context
289 * If the CPU was idle with dynamic ticks active, and there is no
290 * irq handler running, this updates rdtp->dynticks_nmi to let the
291 * RCU grace-period handling know that the CPU is active.
293 void rcu_nmi_enter(void)
295 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
297 if (rdtp->dynticks & 0x1)
298 return;
299 rdtp->dynticks_nmi++;
300 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
301 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
305 * rcu_nmi_exit - inform RCU of exit from NMI context
307 * If the CPU was idle with dynamic ticks active, and there is no
308 * irq handler running, this updates rdtp->dynticks_nmi to let the
309 * RCU grace-period handling know that the CPU is no longer active.
311 void rcu_nmi_exit(void)
313 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
315 if (rdtp->dynticks & 0x1)
316 return;
317 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
318 rdtp->dynticks_nmi++;
319 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
323 * rcu_irq_enter - inform RCU of entry to hard irq context
325 * If the CPU was idle with dynamic ticks active, this updates the
326 * rdtp->dynticks to let the RCU handling know that the CPU is active.
328 void rcu_irq_enter(void)
330 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
332 if (rdtp->dynticks_nesting++)
333 return;
334 rdtp->dynticks++;
335 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
336 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
340 * rcu_irq_exit - inform RCU of exit from hard irq context
342 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
343 * to put let the RCU handling be aware that the CPU is going back to idle
344 * with no ticks.
346 void rcu_irq_exit(void)
348 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
350 if (--rdtp->dynticks_nesting)
351 return;
352 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
353 rdtp->dynticks++;
354 WARN_ON_ONCE(rdtp->dynticks & 0x1);
356 /* If the interrupt queued a callback, get out of dyntick mode. */
357 if (__get_cpu_var(rcu_sched_data).nxtlist ||
358 __get_cpu_var(rcu_bh_data).nxtlist)
359 set_need_resched();
362 #ifdef CONFIG_SMP
365 * Snapshot the specified CPU's dynticks counter so that we can later
366 * credit them with an implicit quiescent state. Return 1 if this CPU
367 * is in dynticks idle mode, which is an extended quiescent state.
369 static int dyntick_save_progress_counter(struct rcu_data *rdp)
371 int ret;
372 int snap;
373 int snap_nmi;
375 snap = rdp->dynticks->dynticks;
376 snap_nmi = rdp->dynticks->dynticks_nmi;
377 smp_mb(); /* Order sampling of snap with end of grace period. */
378 rdp->dynticks_snap = snap;
379 rdp->dynticks_nmi_snap = snap_nmi;
380 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
381 if (ret)
382 rdp->dynticks_fqs++;
383 return ret;
387 * Return true if the specified CPU has passed through a quiescent
388 * state by virtue of being in or having passed through an dynticks
389 * idle state since the last call to dyntick_save_progress_counter()
390 * for this same CPU.
392 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
394 long curr;
395 long curr_nmi;
396 long snap;
397 long snap_nmi;
399 curr = rdp->dynticks->dynticks;
400 snap = rdp->dynticks_snap;
401 curr_nmi = rdp->dynticks->dynticks_nmi;
402 snap_nmi = rdp->dynticks_nmi_snap;
403 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
406 * If the CPU passed through or entered a dynticks idle phase with
407 * no active irq/NMI handlers, then we can safely pretend that the CPU
408 * already acknowledged the request to pass through a quiescent
409 * state. Either way, that CPU cannot possibly be in an RCU
410 * read-side critical section that started before the beginning
411 * of the current RCU grace period.
413 if ((curr != snap || (curr & 0x1) == 0) &&
414 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
415 rdp->dynticks_fqs++;
416 return 1;
419 /* Go check for the CPU being offline. */
420 return rcu_implicit_offline_qs(rdp);
423 #endif /* #ifdef CONFIG_SMP */
425 #else /* #ifdef CONFIG_NO_HZ */
427 #ifdef CONFIG_SMP
429 static int dyntick_save_progress_counter(struct rcu_data *rdp)
431 return 0;
434 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
436 return rcu_implicit_offline_qs(rdp);
439 #endif /* #ifdef CONFIG_SMP */
441 #endif /* #else #ifdef CONFIG_NO_HZ */
443 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
445 static void record_gp_stall_check_time(struct rcu_state *rsp)
447 rsp->gp_start = jiffies;
448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
451 static void print_other_cpu_stall(struct rcu_state *rsp)
453 int cpu;
454 long delta;
455 unsigned long flags;
456 struct rcu_node *rnp = rcu_get_root(rsp);
458 /* Only let one CPU complain about others per time interval. */
460 spin_lock_irqsave(&rnp->lock, flags);
461 delta = jiffies - rsp->jiffies_stall;
462 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
463 spin_unlock_irqrestore(&rnp->lock, flags);
464 return;
466 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
469 * Now rat on any tasks that got kicked up to the root rcu_node
470 * due to CPU offlining.
472 rcu_print_task_stall(rnp);
473 spin_unlock_irqrestore(&rnp->lock, flags);
475 /* OK, time to rat on our buddy... */
477 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
478 rcu_for_each_leaf_node(rsp, rnp) {
479 rcu_print_task_stall(rnp);
480 if (rnp->qsmask == 0)
481 continue;
482 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
483 if (rnp->qsmask & (1UL << cpu))
484 printk(" %d", rnp->grplo + cpu);
486 printk(" (detected by %d, t=%ld jiffies)\n",
487 smp_processor_id(), (long)(jiffies - rsp->gp_start));
488 trigger_all_cpu_backtrace();
490 force_quiescent_state(rsp, 0); /* Kick them all. */
493 static void print_cpu_stall(struct rcu_state *rsp)
495 unsigned long flags;
496 struct rcu_node *rnp = rcu_get_root(rsp);
498 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
499 smp_processor_id(), jiffies - rsp->gp_start);
500 trigger_all_cpu_backtrace();
502 spin_lock_irqsave(&rnp->lock, flags);
503 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
504 rsp->jiffies_stall =
505 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
506 spin_unlock_irqrestore(&rnp->lock, flags);
508 set_need_resched(); /* kick ourselves to get things going. */
511 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
513 long delta;
514 struct rcu_node *rnp;
516 delta = jiffies - rsp->jiffies_stall;
517 rnp = rdp->mynode;
518 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
520 /* We haven't checked in, so go dump stack. */
521 print_cpu_stall(rsp);
523 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
525 /* They had two time units to dump stack, so complain. */
526 print_other_cpu_stall(rsp);
530 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
532 static void record_gp_stall_check_time(struct rcu_state *rsp)
536 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
540 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
543 * Update CPU-local rcu_data state to record the newly noticed grace period.
544 * This is used both when we started the grace period and when we notice
545 * that someone else started the grace period. The caller must hold the
546 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
547 * and must have irqs disabled.
549 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
551 if (rdp->gpnum != rnp->gpnum) {
552 rdp->qs_pending = 1;
553 rdp->passed_quiesc = 0;
554 rdp->gpnum = rnp->gpnum;
558 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
560 unsigned long flags;
561 struct rcu_node *rnp;
563 local_irq_save(flags);
564 rnp = rdp->mynode;
565 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
566 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
567 local_irq_restore(flags);
568 return;
570 __note_new_gpnum(rsp, rnp, rdp);
571 spin_unlock_irqrestore(&rnp->lock, flags);
575 * Did someone else start a new RCU grace period start since we last
576 * checked? Update local state appropriately if so. Must be called
577 * on the CPU corresponding to rdp.
579 static int
580 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
582 unsigned long flags;
583 int ret = 0;
585 local_irq_save(flags);
586 if (rdp->gpnum != rsp->gpnum) {
587 note_new_gpnum(rsp, rdp);
588 ret = 1;
590 local_irq_restore(flags);
591 return ret;
595 * Advance this CPU's callbacks, but only if the current grace period
596 * has ended. This may be called only from the CPU to whom the rdp
597 * belongs. In addition, the corresponding leaf rcu_node structure's
598 * ->lock must be held by the caller, with irqs disabled.
600 static void
601 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
603 /* Did another grace period end? */
604 if (rdp->completed != rnp->completed) {
606 /* Advance callbacks. No harm if list empty. */
607 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
608 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
609 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
611 /* Remember that we saw this grace-period completion. */
612 rdp->completed = rnp->completed;
617 * Advance this CPU's callbacks, but only if the current grace period
618 * has ended. This may be called only from the CPU to whom the rdp
619 * belongs.
621 static void
622 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
624 unsigned long flags;
625 struct rcu_node *rnp;
627 local_irq_save(flags);
628 rnp = rdp->mynode;
629 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
630 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
631 local_irq_restore(flags);
632 return;
634 __rcu_process_gp_end(rsp, rnp, rdp);
635 spin_unlock_irqrestore(&rnp->lock, flags);
639 * Do per-CPU grace-period initialization for running CPU. The caller
640 * must hold the lock of the leaf rcu_node structure corresponding to
641 * this CPU.
643 static void
644 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
646 /* Prior grace period ended, so advance callbacks for current CPU. */
647 __rcu_process_gp_end(rsp, rnp, rdp);
650 * Because this CPU just now started the new grace period, we know
651 * that all of its callbacks will be covered by this upcoming grace
652 * period, even the ones that were registered arbitrarily recently.
653 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
655 * Other CPUs cannot be sure exactly when the grace period started.
656 * Therefore, their recently registered callbacks must pass through
657 * an additional RCU_NEXT_READY stage, so that they will be handled
658 * by the next RCU grace period.
660 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
661 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
663 /* Set state so that this CPU will detect the next quiescent state. */
664 __note_new_gpnum(rsp, rnp, rdp);
668 * Start a new RCU grace period if warranted, re-initializing the hierarchy
669 * in preparation for detecting the next grace period. The caller must hold
670 * the root node's ->lock, which is released before return. Hard irqs must
671 * be disabled.
673 static void
674 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
675 __releases(rcu_get_root(rsp)->lock)
677 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
678 struct rcu_node *rnp = rcu_get_root(rsp);
680 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
681 if (cpu_needs_another_gp(rsp, rdp))
682 rsp->fqs_need_gp = 1;
683 if (rnp->completed == rsp->completed) {
684 spin_unlock_irqrestore(&rnp->lock, flags);
685 return;
687 spin_unlock(&rnp->lock); /* irqs remain disabled. */
690 * Propagate new ->completed value to rcu_node structures
691 * so that other CPUs don't have to wait until the start
692 * of the next grace period to process their callbacks.
694 rcu_for_each_node_breadth_first(rsp, rnp) {
695 spin_lock(&rnp->lock); /* irqs already disabled. */
696 rnp->completed = rsp->completed;
697 spin_unlock(&rnp->lock); /* irqs remain disabled. */
699 local_irq_restore(flags);
700 return;
703 /* Advance to a new grace period and initialize state. */
704 rsp->gpnum++;
705 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
706 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
707 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
708 record_gp_stall_check_time(rsp);
710 /* Special-case the common single-level case. */
711 if (NUM_RCU_NODES == 1) {
712 rcu_preempt_check_blocked_tasks(rnp);
713 rnp->qsmask = rnp->qsmaskinit;
714 rnp->gpnum = rsp->gpnum;
715 rnp->completed = rsp->completed;
716 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
717 rcu_start_gp_per_cpu(rsp, rnp, rdp);
718 spin_unlock_irqrestore(&rnp->lock, flags);
719 return;
722 spin_unlock(&rnp->lock); /* leave irqs disabled. */
725 /* Exclude any concurrent CPU-hotplug operations. */
726 spin_lock(&rsp->onofflock); /* irqs already disabled. */
729 * Set the quiescent-state-needed bits in all the rcu_node
730 * structures for all currently online CPUs in breadth-first
731 * order, starting from the root rcu_node structure. This
732 * operation relies on the layout of the hierarchy within the
733 * rsp->node[] array. Note that other CPUs will access only
734 * the leaves of the hierarchy, which still indicate that no
735 * grace period is in progress, at least until the corresponding
736 * leaf node has been initialized. In addition, we have excluded
737 * CPU-hotplug operations.
739 * Note that the grace period cannot complete until we finish
740 * the initialization process, as there will be at least one
741 * qsmask bit set in the root node until that time, namely the
742 * one corresponding to this CPU, due to the fact that we have
743 * irqs disabled.
745 rcu_for_each_node_breadth_first(rsp, rnp) {
746 spin_lock(&rnp->lock); /* irqs already disabled. */
747 rcu_preempt_check_blocked_tasks(rnp);
748 rnp->qsmask = rnp->qsmaskinit;
749 rnp->gpnum = rsp->gpnum;
750 rnp->completed = rsp->completed;
751 if (rnp == rdp->mynode)
752 rcu_start_gp_per_cpu(rsp, rnp, rdp);
753 spin_unlock(&rnp->lock); /* irqs remain disabled. */
756 rnp = rcu_get_root(rsp);
757 spin_lock(&rnp->lock); /* irqs already disabled. */
758 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
759 spin_unlock(&rnp->lock); /* irqs remain disabled. */
760 spin_unlock_irqrestore(&rsp->onofflock, flags);
764 * Report a full set of quiescent states to the specified rcu_state
765 * data structure. This involves cleaning up after the prior grace
766 * period and letting rcu_start_gp() start up the next grace period
767 * if one is needed. Note that the caller must hold rnp->lock, as
768 * required by rcu_start_gp(), which will release it.
770 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
771 __releases(rcu_get_root(rsp)->lock)
773 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
774 rsp->completed = rsp->gpnum;
775 rsp->signaled = RCU_GP_IDLE;
776 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
780 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
781 * Allows quiescent states for a group of CPUs to be reported at one go
782 * to the specified rcu_node structure, though all the CPUs in the group
783 * must be represented by the same rcu_node structure (which need not be
784 * a leaf rcu_node structure, though it often will be). That structure's
785 * lock must be held upon entry, and it is released before return.
787 static void
788 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
789 struct rcu_node *rnp, unsigned long flags)
790 __releases(rnp->lock)
792 struct rcu_node *rnp_c;
794 /* Walk up the rcu_node hierarchy. */
795 for (;;) {
796 if (!(rnp->qsmask & mask)) {
798 /* Our bit has already been cleared, so done. */
799 spin_unlock_irqrestore(&rnp->lock, flags);
800 return;
802 rnp->qsmask &= ~mask;
803 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
805 /* Other bits still set at this level, so done. */
806 spin_unlock_irqrestore(&rnp->lock, flags);
807 return;
809 mask = rnp->grpmask;
810 if (rnp->parent == NULL) {
812 /* No more levels. Exit loop holding root lock. */
814 break;
816 spin_unlock_irqrestore(&rnp->lock, flags);
817 rnp_c = rnp;
818 rnp = rnp->parent;
819 spin_lock_irqsave(&rnp->lock, flags);
820 WARN_ON_ONCE(rnp_c->qsmask);
824 * Get here if we are the last CPU to pass through a quiescent
825 * state for this grace period. Invoke rcu_report_qs_rsp()
826 * to clean up and start the next grace period if one is needed.
828 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
832 * Record a quiescent state for the specified CPU to that CPU's rcu_data
833 * structure. This must be either called from the specified CPU, or
834 * called when the specified CPU is known to be offline (and when it is
835 * also known that no other CPU is concurrently trying to help the offline
836 * CPU). The lastcomp argument is used to make sure we are still in the
837 * grace period of interest. We don't want to end the current grace period
838 * based on quiescent states detected in an earlier grace period!
840 static void
841 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
843 unsigned long flags;
844 unsigned long mask;
845 struct rcu_node *rnp;
847 rnp = rdp->mynode;
848 spin_lock_irqsave(&rnp->lock, flags);
849 if (lastcomp != rnp->completed) {
852 * Someone beat us to it for this grace period, so leave.
853 * The race with GP start is resolved by the fact that we
854 * hold the leaf rcu_node lock, so that the per-CPU bits
855 * cannot yet be initialized -- so we would simply find our
856 * CPU's bit already cleared in rcu_report_qs_rnp() if this
857 * race occurred.
859 rdp->passed_quiesc = 0; /* try again later! */
860 spin_unlock_irqrestore(&rnp->lock, flags);
861 return;
863 mask = rdp->grpmask;
864 if ((rnp->qsmask & mask) == 0) {
865 spin_unlock_irqrestore(&rnp->lock, flags);
866 } else {
867 rdp->qs_pending = 0;
870 * This GP can't end until cpu checks in, so all of our
871 * callbacks can be processed during the next GP.
873 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
875 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
880 * Check to see if there is a new grace period of which this CPU
881 * is not yet aware, and if so, set up local rcu_data state for it.
882 * Otherwise, see if this CPU has just passed through its first
883 * quiescent state for this grace period, and record that fact if so.
885 static void
886 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
888 /* If there is now a new grace period, record and return. */
889 if (check_for_new_grace_period(rsp, rdp))
890 return;
893 * Does this CPU still need to do its part for current grace period?
894 * If no, return and let the other CPUs do their part as well.
896 if (!rdp->qs_pending)
897 return;
900 * Was there a quiescent state since the beginning of the grace
901 * period? If no, then exit and wait for the next call.
903 if (!rdp->passed_quiesc)
904 return;
907 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
908 * judge of that).
910 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
913 #ifdef CONFIG_HOTPLUG_CPU
916 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
917 * specified flavor of RCU. The callbacks will be adopted by the next
918 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
919 * comes first. Because this is invoked from the CPU_DYING notifier,
920 * irqs are already disabled.
922 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
924 int i;
925 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
927 if (rdp->nxtlist == NULL)
928 return; /* irqs disabled, so comparison is stable. */
929 spin_lock(&rsp->onofflock); /* irqs already disabled. */
930 *rsp->orphan_cbs_tail = rdp->nxtlist;
931 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
932 rdp->nxtlist = NULL;
933 for (i = 0; i < RCU_NEXT_SIZE; i++)
934 rdp->nxttail[i] = &rdp->nxtlist;
935 rsp->orphan_qlen += rdp->qlen;
936 rdp->qlen = 0;
937 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
941 * Adopt previously orphaned RCU callbacks.
943 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
945 unsigned long flags;
946 struct rcu_data *rdp;
948 spin_lock_irqsave(&rsp->onofflock, flags);
949 rdp = rsp->rda[smp_processor_id()];
950 if (rsp->orphan_cbs_list == NULL) {
951 spin_unlock_irqrestore(&rsp->onofflock, flags);
952 return;
954 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
955 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
956 rdp->qlen += rsp->orphan_qlen;
957 rsp->orphan_cbs_list = NULL;
958 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
959 rsp->orphan_qlen = 0;
960 spin_unlock_irqrestore(&rsp->onofflock, flags);
964 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
965 * and move all callbacks from the outgoing CPU to the current one.
967 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
969 unsigned long flags;
970 unsigned long mask;
971 int need_report = 0;
972 struct rcu_data *rdp = rsp->rda[cpu];
973 struct rcu_node *rnp;
975 /* Exclude any attempts to start a new grace period. */
976 spin_lock_irqsave(&rsp->onofflock, flags);
978 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
979 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
980 mask = rdp->grpmask; /* rnp->grplo is constant. */
981 do {
982 spin_lock(&rnp->lock); /* irqs already disabled. */
983 rnp->qsmaskinit &= ~mask;
984 if (rnp->qsmaskinit != 0) {
985 if (rnp != rdp->mynode)
986 spin_unlock(&rnp->lock); /* irqs remain disabled. */
987 break;
989 if (rnp == rdp->mynode)
990 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
991 else
992 spin_unlock(&rnp->lock); /* irqs remain disabled. */
993 mask = rnp->grpmask;
994 rnp = rnp->parent;
995 } while (rnp != NULL);
998 * We still hold the leaf rcu_node structure lock here, and
999 * irqs are still disabled. The reason for this subterfuge is
1000 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1001 * held leads to deadlock.
1003 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1004 rnp = rdp->mynode;
1005 if (need_report & RCU_OFL_TASKS_NORM_GP)
1006 rcu_report_unblock_qs_rnp(rnp, flags);
1007 else
1008 spin_unlock_irqrestore(&rnp->lock, flags);
1009 if (need_report & RCU_OFL_TASKS_EXP_GP)
1010 rcu_report_exp_rnp(rsp, rnp);
1012 rcu_adopt_orphan_cbs(rsp);
1016 * Remove the specified CPU from the RCU hierarchy and move any pending
1017 * callbacks that it might have to the current CPU. This code assumes
1018 * that at least one CPU in the system will remain running at all times.
1019 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1021 static void rcu_offline_cpu(int cpu)
1023 __rcu_offline_cpu(cpu, &rcu_sched_state);
1024 __rcu_offline_cpu(cpu, &rcu_bh_state);
1025 rcu_preempt_offline_cpu(cpu);
1028 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1030 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1034 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1038 static void rcu_offline_cpu(int cpu)
1042 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1045 * Invoke any RCU callbacks that have made it to the end of their grace
1046 * period. Thottle as specified by rdp->blimit.
1048 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1050 unsigned long flags;
1051 struct rcu_head *next, *list, **tail;
1052 int count;
1054 /* If no callbacks are ready, just return.*/
1055 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1056 return;
1059 * Extract the list of ready callbacks, disabling to prevent
1060 * races with call_rcu() from interrupt handlers.
1062 local_irq_save(flags);
1063 list = rdp->nxtlist;
1064 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1065 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1066 tail = rdp->nxttail[RCU_DONE_TAIL];
1067 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1068 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1069 rdp->nxttail[count] = &rdp->nxtlist;
1070 local_irq_restore(flags);
1072 /* Invoke callbacks. */
1073 count = 0;
1074 while (list) {
1075 next = list->next;
1076 prefetch(next);
1077 list->func(list);
1078 list = next;
1079 if (++count >= rdp->blimit)
1080 break;
1083 local_irq_save(flags);
1085 /* Update count, and requeue any remaining callbacks. */
1086 rdp->qlen -= count;
1087 if (list != NULL) {
1088 *tail = rdp->nxtlist;
1089 rdp->nxtlist = list;
1090 for (count = 0; count < RCU_NEXT_SIZE; count++)
1091 if (&rdp->nxtlist == rdp->nxttail[count])
1092 rdp->nxttail[count] = tail;
1093 else
1094 break;
1097 /* Reinstate batch limit if we have worked down the excess. */
1098 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1099 rdp->blimit = blimit;
1101 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1102 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1103 rdp->qlen_last_fqs_check = 0;
1104 rdp->n_force_qs_snap = rsp->n_force_qs;
1105 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1106 rdp->qlen_last_fqs_check = rdp->qlen;
1108 local_irq_restore(flags);
1110 /* Re-raise the RCU softirq if there are callbacks remaining. */
1111 if (cpu_has_callbacks_ready_to_invoke(rdp))
1112 raise_softirq(RCU_SOFTIRQ);
1116 * Check to see if this CPU is in a non-context-switch quiescent state
1117 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1118 * Also schedule the RCU softirq handler.
1120 * This function must be called with hardirqs disabled. It is normally
1121 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1122 * false, there is no point in invoking rcu_check_callbacks().
1124 void rcu_check_callbacks(int cpu, int user)
1126 if (!rcu_pending(cpu))
1127 return; /* if nothing for RCU to do. */
1128 if (user ||
1129 (idle_cpu(cpu) && rcu_scheduler_active &&
1130 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1133 * Get here if this CPU took its interrupt from user
1134 * mode or from the idle loop, and if this is not a
1135 * nested interrupt. In this case, the CPU is in
1136 * a quiescent state, so note it.
1138 * No memory barrier is required here because both
1139 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1140 * variables that other CPUs neither access nor modify,
1141 * at least not while the corresponding CPU is online.
1144 rcu_sched_qs(cpu);
1145 rcu_bh_qs(cpu);
1147 } else if (!in_softirq()) {
1150 * Get here if this CPU did not take its interrupt from
1151 * softirq, in other words, if it is not interrupting
1152 * a rcu_bh read-side critical section. This is an _bh
1153 * critical section, so note it.
1156 rcu_bh_qs(cpu);
1158 rcu_preempt_check_callbacks(cpu);
1159 raise_softirq(RCU_SOFTIRQ);
1162 #ifdef CONFIG_SMP
1165 * Scan the leaf rcu_node structures, processing dyntick state for any that
1166 * have not yet encountered a quiescent state, using the function specified.
1167 * The caller must have suppressed start of new grace periods.
1169 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1171 unsigned long bit;
1172 int cpu;
1173 unsigned long flags;
1174 unsigned long mask;
1175 struct rcu_node *rnp;
1177 rcu_for_each_leaf_node(rsp, rnp) {
1178 mask = 0;
1179 spin_lock_irqsave(&rnp->lock, flags);
1180 if (!rcu_gp_in_progress(rsp)) {
1181 spin_unlock_irqrestore(&rnp->lock, flags);
1182 return;
1184 if (rnp->qsmask == 0) {
1185 spin_unlock_irqrestore(&rnp->lock, flags);
1186 continue;
1188 cpu = rnp->grplo;
1189 bit = 1;
1190 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1191 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1192 mask |= bit;
1194 if (mask != 0) {
1196 /* rcu_report_qs_rnp() releases rnp->lock. */
1197 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1198 continue;
1200 spin_unlock_irqrestore(&rnp->lock, flags);
1205 * Force quiescent states on reluctant CPUs, and also detect which
1206 * CPUs are in dyntick-idle mode.
1208 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1210 unsigned long flags;
1211 struct rcu_node *rnp = rcu_get_root(rsp);
1213 if (!rcu_gp_in_progress(rsp))
1214 return; /* No grace period in progress, nothing to force. */
1215 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1216 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1217 return; /* Someone else is already on the job. */
1219 if (relaxed &&
1220 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1221 goto unlock_fqs_ret; /* no emergency and done recently. */
1222 rsp->n_force_qs++;
1223 spin_lock(&rnp->lock); /* irqs already disabled */
1224 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1225 if(!rcu_gp_in_progress(rsp)) {
1226 rsp->n_force_qs_ngp++;
1227 spin_unlock(&rnp->lock); /* irqs remain disabled */
1228 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1230 rsp->fqs_active = 1;
1231 switch (rsp->signaled) {
1232 case RCU_GP_IDLE:
1233 case RCU_GP_INIT:
1235 break; /* grace period idle or initializing, ignore. */
1237 case RCU_SAVE_DYNTICK:
1239 spin_unlock(&rnp->lock); /* irqs remain disabled */
1240 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1241 break; /* So gcc recognizes the dead code. */
1243 /* Record dyntick-idle state. */
1244 force_qs_rnp(rsp, dyntick_save_progress_counter);
1245 spin_lock(&rnp->lock); /* irqs already disabled */
1246 if (rcu_gp_in_progress(rsp))
1247 rsp->signaled = RCU_FORCE_QS;
1248 break;
1250 case RCU_FORCE_QS:
1252 /* Check dyntick-idle state, send IPI to laggarts. */
1253 spin_unlock(&rnp->lock); /* irqs remain disabled */
1254 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1256 /* Leave state in case more forcing is required. */
1258 spin_lock(&rnp->lock); /* irqs already disabled */
1259 break;
1261 rsp->fqs_active = 0;
1262 if (rsp->fqs_need_gp) {
1263 spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1264 rsp->fqs_need_gp = 0;
1265 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1266 return;
1268 spin_unlock(&rnp->lock); /* irqs remain disabled */
1269 unlock_fqs_ret:
1270 spin_unlock_irqrestore(&rsp->fqslock, flags);
1273 #else /* #ifdef CONFIG_SMP */
1275 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1277 set_need_resched();
1280 #endif /* #else #ifdef CONFIG_SMP */
1283 * This does the RCU processing work from softirq context for the
1284 * specified rcu_state and rcu_data structures. This may be called
1285 * only from the CPU to whom the rdp belongs.
1287 static void
1288 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1290 unsigned long flags;
1292 WARN_ON_ONCE(rdp->beenonline == 0);
1295 * If an RCU GP has gone long enough, go check for dyntick
1296 * idle CPUs and, if needed, send resched IPIs.
1298 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1299 force_quiescent_state(rsp, 1);
1302 * Advance callbacks in response to end of earlier grace
1303 * period that some other CPU ended.
1305 rcu_process_gp_end(rsp, rdp);
1307 /* Update RCU state based on any recent quiescent states. */
1308 rcu_check_quiescent_state(rsp, rdp);
1310 /* Does this CPU require a not-yet-started grace period? */
1311 if (cpu_needs_another_gp(rsp, rdp)) {
1312 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1313 rcu_start_gp(rsp, flags); /* releases above lock */
1316 /* If there are callbacks ready, invoke them. */
1317 rcu_do_batch(rsp, rdp);
1321 * Do softirq processing for the current CPU.
1323 static void rcu_process_callbacks(struct softirq_action *unused)
1326 * Memory references from any prior RCU read-side critical sections
1327 * executed by the interrupted code must be seen before any RCU
1328 * grace-period manipulations below.
1330 smp_mb(); /* See above block comment. */
1332 __rcu_process_callbacks(&rcu_sched_state,
1333 &__get_cpu_var(rcu_sched_data));
1334 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1335 rcu_preempt_process_callbacks();
1338 * Memory references from any later RCU read-side critical sections
1339 * executed by the interrupted code must be seen after any RCU
1340 * grace-period manipulations above.
1342 smp_mb(); /* See above block comment. */
1345 static void
1346 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1347 struct rcu_state *rsp)
1349 unsigned long flags;
1350 struct rcu_data *rdp;
1352 head->func = func;
1353 head->next = NULL;
1355 smp_mb(); /* Ensure RCU update seen before callback registry. */
1358 * Opportunistically note grace-period endings and beginnings.
1359 * Note that we might see a beginning right after we see an
1360 * end, but never vice versa, since this CPU has to pass through
1361 * a quiescent state betweentimes.
1363 local_irq_save(flags);
1364 rdp = rsp->rda[smp_processor_id()];
1365 rcu_process_gp_end(rsp, rdp);
1366 check_for_new_grace_period(rsp, rdp);
1368 /* Add the callback to our list. */
1369 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1370 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1372 /* Start a new grace period if one not already started. */
1373 if (!rcu_gp_in_progress(rsp)) {
1374 unsigned long nestflag;
1375 struct rcu_node *rnp_root = rcu_get_root(rsp);
1377 spin_lock_irqsave(&rnp_root->lock, nestflag);
1378 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1382 * Force the grace period if too many callbacks or too long waiting.
1383 * Enforce hysteresis, and don't invoke force_quiescent_state()
1384 * if some other CPU has recently done so. Also, don't bother
1385 * invoking force_quiescent_state() if the newly enqueued callback
1386 * is the only one waiting for a grace period to complete.
1388 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1389 rdp->blimit = LONG_MAX;
1390 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1391 *rdp->nxttail[RCU_DONE_TAIL] != head)
1392 force_quiescent_state(rsp, 0);
1393 rdp->n_force_qs_snap = rsp->n_force_qs;
1394 rdp->qlen_last_fqs_check = rdp->qlen;
1395 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1396 force_quiescent_state(rsp, 1);
1397 local_irq_restore(flags);
1401 * Queue an RCU-sched callback for invocation after a grace period.
1403 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1405 __call_rcu(head, func, &rcu_sched_state);
1407 EXPORT_SYMBOL_GPL(call_rcu_sched);
1410 * Queue an RCU for invocation after a quicker grace period.
1412 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1414 __call_rcu(head, func, &rcu_bh_state);
1416 EXPORT_SYMBOL_GPL(call_rcu_bh);
1419 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1421 * Control will return to the caller some time after a full rcu-sched
1422 * grace period has elapsed, in other words after all currently executing
1423 * rcu-sched read-side critical sections have completed. These read-side
1424 * critical sections are delimited by rcu_read_lock_sched() and
1425 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1426 * local_irq_disable(), and so on may be used in place of
1427 * rcu_read_lock_sched().
1429 * This means that all preempt_disable code sequences, including NMI and
1430 * hardware-interrupt handlers, in progress on entry will have completed
1431 * before this primitive returns. However, this does not guarantee that
1432 * softirq handlers will have completed, since in some kernels, these
1433 * handlers can run in process context, and can block.
1435 * This primitive provides the guarantees made by the (now removed)
1436 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1437 * guarantees that rcu_read_lock() sections will have completed.
1438 * In "classic RCU", these two guarantees happen to be one and
1439 * the same, but can differ in realtime RCU implementations.
1441 void synchronize_sched(void)
1443 struct rcu_synchronize rcu;
1445 if (rcu_blocking_is_gp())
1446 return;
1448 init_completion(&rcu.completion);
1449 /* Will wake me after RCU finished. */
1450 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1451 /* Wait for it. */
1452 wait_for_completion(&rcu.completion);
1454 EXPORT_SYMBOL_GPL(synchronize_sched);
1457 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1459 * Control will return to the caller some time after a full rcu_bh grace
1460 * period has elapsed, in other words after all currently executing rcu_bh
1461 * read-side critical sections have completed. RCU read-side critical
1462 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1463 * and may be nested.
1465 void synchronize_rcu_bh(void)
1467 struct rcu_synchronize rcu;
1469 if (rcu_blocking_is_gp())
1470 return;
1472 init_completion(&rcu.completion);
1473 /* Will wake me after RCU finished. */
1474 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1475 /* Wait for it. */
1476 wait_for_completion(&rcu.completion);
1478 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1481 * Check to see if there is any immediate RCU-related work to be done
1482 * by the current CPU, for the specified type of RCU, returning 1 if so.
1483 * The checks are in order of increasing expense: checks that can be
1484 * carried out against CPU-local state are performed first. However,
1485 * we must check for CPU stalls first, else we might not get a chance.
1487 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1489 struct rcu_node *rnp = rdp->mynode;
1491 rdp->n_rcu_pending++;
1493 /* Check for CPU stalls, if enabled. */
1494 check_cpu_stall(rsp, rdp);
1496 /* Is the RCU core waiting for a quiescent state from this CPU? */
1497 if (rdp->qs_pending) {
1498 rdp->n_rp_qs_pending++;
1499 return 1;
1502 /* Does this CPU have callbacks ready to invoke? */
1503 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1504 rdp->n_rp_cb_ready++;
1505 return 1;
1508 /* Has RCU gone idle with this CPU needing another grace period? */
1509 if (cpu_needs_another_gp(rsp, rdp)) {
1510 rdp->n_rp_cpu_needs_gp++;
1511 return 1;
1514 /* Has another RCU grace period completed? */
1515 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1516 rdp->n_rp_gp_completed++;
1517 return 1;
1520 /* Has a new RCU grace period started? */
1521 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1522 rdp->n_rp_gp_started++;
1523 return 1;
1526 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1527 if (rcu_gp_in_progress(rsp) &&
1528 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1529 rdp->n_rp_need_fqs++;
1530 return 1;
1533 /* nothing to do */
1534 rdp->n_rp_need_nothing++;
1535 return 0;
1539 * Check to see if there is any immediate RCU-related work to be done
1540 * by the current CPU, returning 1 if so. This function is part of the
1541 * RCU implementation; it is -not- an exported member of the RCU API.
1543 static int rcu_pending(int cpu)
1545 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1546 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1547 rcu_preempt_pending(cpu);
1551 * Check to see if any future RCU-related work will need to be done
1552 * by the current CPU, even if none need be done immediately, returning
1553 * 1 if so.
1555 static int rcu_needs_cpu_quick_check(int cpu)
1557 /* RCU callbacks either ready or pending? */
1558 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1559 per_cpu(rcu_bh_data, cpu).nxtlist ||
1560 rcu_preempt_needs_cpu(cpu);
1564 * This function is invoked towards the end of the scheduler's initialization
1565 * process. Before this is called, the idle task might contain
1566 * RCU read-side critical sections (during which time, this idle
1567 * task is booting the system). After this function is called, the
1568 * idle tasks are prohibited from containing RCU read-side critical
1569 * sections.
1571 void rcu_scheduler_starting(void)
1573 WARN_ON(num_online_cpus() != 1);
1574 WARN_ON(nr_context_switches() > 0);
1575 rcu_scheduler_active = 1;
1578 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1579 static atomic_t rcu_barrier_cpu_count;
1580 static DEFINE_MUTEX(rcu_barrier_mutex);
1581 static struct completion rcu_barrier_completion;
1583 static void rcu_barrier_callback(struct rcu_head *notused)
1585 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1586 complete(&rcu_barrier_completion);
1590 * Called with preemption disabled, and from cross-cpu IRQ context.
1592 static void rcu_barrier_func(void *type)
1594 int cpu = smp_processor_id();
1595 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1596 void (*call_rcu_func)(struct rcu_head *head,
1597 void (*func)(struct rcu_head *head));
1599 atomic_inc(&rcu_barrier_cpu_count);
1600 call_rcu_func = type;
1601 call_rcu_func(head, rcu_barrier_callback);
1605 * Orchestrate the specified type of RCU barrier, waiting for all
1606 * RCU callbacks of the specified type to complete.
1608 static void _rcu_barrier(struct rcu_state *rsp,
1609 void (*call_rcu_func)(struct rcu_head *head,
1610 void (*func)(struct rcu_head *head)))
1612 BUG_ON(in_interrupt());
1613 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1614 mutex_lock(&rcu_barrier_mutex);
1615 init_completion(&rcu_barrier_completion);
1617 * Initialize rcu_barrier_cpu_count to 1, then invoke
1618 * rcu_barrier_func() on each CPU, so that each CPU also has
1619 * incremented rcu_barrier_cpu_count. Only then is it safe to
1620 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1621 * might complete its grace period before all of the other CPUs
1622 * did their increment, causing this function to return too
1623 * early.
1625 atomic_set(&rcu_barrier_cpu_count, 1);
1626 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1627 rcu_adopt_orphan_cbs(rsp);
1628 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1629 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1630 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1631 complete(&rcu_barrier_completion);
1632 wait_for_completion(&rcu_barrier_completion);
1633 mutex_unlock(&rcu_barrier_mutex);
1637 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1639 void rcu_barrier_bh(void)
1641 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1643 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1646 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1648 void rcu_barrier_sched(void)
1650 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1652 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1655 * Do boot-time initialization of a CPU's per-CPU RCU data.
1657 static void __init
1658 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1660 unsigned long flags;
1661 int i;
1662 struct rcu_data *rdp = rsp->rda[cpu];
1663 struct rcu_node *rnp = rcu_get_root(rsp);
1665 /* Set up local state, ensuring consistent view of global state. */
1666 spin_lock_irqsave(&rnp->lock, flags);
1667 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1668 rdp->nxtlist = NULL;
1669 for (i = 0; i < RCU_NEXT_SIZE; i++)
1670 rdp->nxttail[i] = &rdp->nxtlist;
1671 rdp->qlen = 0;
1672 #ifdef CONFIG_NO_HZ
1673 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1674 #endif /* #ifdef CONFIG_NO_HZ */
1675 rdp->cpu = cpu;
1676 spin_unlock_irqrestore(&rnp->lock, flags);
1680 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1681 * offline event can be happening at a given time. Note also that we
1682 * can accept some slop in the rsp->completed access due to the fact
1683 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1685 static void __cpuinit
1686 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1688 unsigned long flags;
1689 unsigned long mask;
1690 struct rcu_data *rdp = rsp->rda[cpu];
1691 struct rcu_node *rnp = rcu_get_root(rsp);
1693 /* Set up local state, ensuring consistent view of global state. */
1694 spin_lock_irqsave(&rnp->lock, flags);
1695 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1696 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1697 rdp->beenonline = 1; /* We have now been online. */
1698 rdp->preemptable = preemptable;
1699 rdp->qlen_last_fqs_check = 0;
1700 rdp->n_force_qs_snap = rsp->n_force_qs;
1701 rdp->blimit = blimit;
1702 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1705 * A new grace period might start here. If so, we won't be part
1706 * of it, but that is OK, as we are currently in a quiescent state.
1709 /* Exclude any attempts to start a new GP on large systems. */
1710 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1712 /* Add CPU to rcu_node bitmasks. */
1713 rnp = rdp->mynode;
1714 mask = rdp->grpmask;
1715 do {
1716 /* Exclude any attempts to start a new GP on small systems. */
1717 spin_lock(&rnp->lock); /* irqs already disabled. */
1718 rnp->qsmaskinit |= mask;
1719 mask = rnp->grpmask;
1720 if (rnp == rdp->mynode) {
1721 rdp->gpnum = rnp->completed; /* if GP in progress... */
1722 rdp->completed = rnp->completed;
1723 rdp->passed_quiesc_completed = rnp->completed - 1;
1725 spin_unlock(&rnp->lock); /* irqs already disabled. */
1726 rnp = rnp->parent;
1727 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1729 spin_unlock_irqrestore(&rsp->onofflock, flags);
1732 static void __cpuinit rcu_online_cpu(int cpu)
1734 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1735 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1736 rcu_preempt_init_percpu_data(cpu);
1740 * Handle CPU online/offline notification events.
1742 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1743 unsigned long action, void *hcpu)
1745 long cpu = (long)hcpu;
1747 switch (action) {
1748 case CPU_UP_PREPARE:
1749 case CPU_UP_PREPARE_FROZEN:
1750 rcu_online_cpu(cpu);
1751 break;
1752 case CPU_DYING:
1753 case CPU_DYING_FROZEN:
1755 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1756 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1757 * returns, all online cpus have queued rcu_barrier_func().
1758 * The dying CPU clears its cpu_online_mask bit and
1759 * moves all of its RCU callbacks to ->orphan_cbs_list
1760 * in the context of stop_machine(), so subsequent calls
1761 * to _rcu_barrier() will adopt these callbacks and only
1762 * then queue rcu_barrier_func() on all remaining CPUs.
1764 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1765 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1766 rcu_preempt_send_cbs_to_orphanage();
1767 break;
1768 case CPU_DEAD:
1769 case CPU_DEAD_FROZEN:
1770 case CPU_UP_CANCELED:
1771 case CPU_UP_CANCELED_FROZEN:
1772 rcu_offline_cpu(cpu);
1773 break;
1774 default:
1775 break;
1777 return NOTIFY_OK;
1781 * Compute the per-level fanout, either using the exact fanout specified
1782 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1784 #ifdef CONFIG_RCU_FANOUT_EXACT
1785 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1787 int i;
1789 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1790 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1792 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1793 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1795 int ccur;
1796 int cprv;
1797 int i;
1799 cprv = NR_CPUS;
1800 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1801 ccur = rsp->levelcnt[i];
1802 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1803 cprv = ccur;
1806 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1809 * Helper function for rcu_init() that initializes one rcu_state structure.
1811 static void __init rcu_init_one(struct rcu_state *rsp)
1813 static char *buf[] = { "rcu_node_level_0",
1814 "rcu_node_level_1",
1815 "rcu_node_level_2",
1816 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1817 int cpustride = 1;
1818 int i;
1819 int j;
1820 struct rcu_node *rnp;
1822 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1824 /* Initialize the level-tracking arrays. */
1826 for (i = 1; i < NUM_RCU_LVLS; i++)
1827 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1828 rcu_init_levelspread(rsp);
1830 /* Initialize the elements themselves, starting from the leaves. */
1832 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1833 cpustride *= rsp->levelspread[i];
1834 rnp = rsp->level[i];
1835 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1836 spin_lock_init(&rnp->lock);
1837 lockdep_set_class_and_name(&rnp->lock,
1838 &rcu_node_class[i], buf[i]);
1839 rnp->gpnum = 0;
1840 rnp->qsmask = 0;
1841 rnp->qsmaskinit = 0;
1842 rnp->grplo = j * cpustride;
1843 rnp->grphi = (j + 1) * cpustride - 1;
1844 if (rnp->grphi >= NR_CPUS)
1845 rnp->grphi = NR_CPUS - 1;
1846 if (i == 0) {
1847 rnp->grpnum = 0;
1848 rnp->grpmask = 0;
1849 rnp->parent = NULL;
1850 } else {
1851 rnp->grpnum = j % rsp->levelspread[i - 1];
1852 rnp->grpmask = 1UL << rnp->grpnum;
1853 rnp->parent = rsp->level[i - 1] +
1854 j / rsp->levelspread[i - 1];
1856 rnp->level = i;
1857 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1858 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1859 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1860 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1866 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1867 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1868 * structure.
1870 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1871 do { \
1872 int i; \
1873 int j; \
1874 struct rcu_node *rnp; \
1876 rcu_init_one(rsp); \
1877 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1878 j = 0; \
1879 for_each_possible_cpu(i) { \
1880 if (i > rnp[j].grphi) \
1881 j++; \
1882 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1883 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1884 rcu_boot_init_percpu_data(i, rsp); \
1886 } while (0)
1888 void __init rcu_init(void)
1890 int cpu;
1892 rcu_bootup_announce();
1893 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1894 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1895 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1896 #if NUM_RCU_LVL_4 != 0
1897 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1898 #endif /* #if NUM_RCU_LVL_4 != 0 */
1899 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1900 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1901 __rcu_init_preempt();
1902 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1905 * We don't need protection against CPU-hotplug here because
1906 * this is called early in boot, before either interrupts
1907 * or the scheduler are operational.
1909 cpu_notifier(rcu_cpu_notify, 0);
1910 for_each_online_cpu(cpu)
1911 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1914 #include "rcutree_plugin.h"