Memory controller: memory accounting
[linux-2.6/x86.git] / mm / swapfile.c
blobfddc4cc4149bce91491ee9d08aa8099969793236
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
36 DEFINE_SPINLOCK(swap_lock);
37 unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
46 struct swap_list_t swap_list = {-1, -1};
48 static struct swap_info_struct swap_info[MAX_SWAPFILES];
50 static DEFINE_MUTEX(swapon_mutex);
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_lock while calling the unplug_fn. And swap_lock
55 * cannot be turned into a mutex.
57 static DECLARE_RWSEM(swap_unplug_sem);
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61 swp_entry_t entry;
63 down_read(&swap_unplug_sem);
64 entry.val = page_private(page);
65 if (PageSwapCache(page)) {
66 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 struct backing_dev_info *bdi;
70 * If the page is removed from swapcache from under us (with a
71 * racy try_to_unuse/swapoff) we need an additional reference
72 * count to avoid reading garbage from page_private(page) above.
73 * If the WARN_ON triggers during a swapoff it maybe the race
74 * condition and it's harmless. However if it triggers without
75 * swapoff it signals a problem.
77 WARN_ON(page_count(page) <= 1);
79 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80 blk_run_backing_dev(bdi, page);
82 up_read(&swap_unplug_sem);
85 #define SWAPFILE_CLUSTER 256
86 #define LATENCY_LIMIT 256
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90 unsigned long offset, last_in_cluster;
91 int latency_ration = LATENCY_LIMIT;
93 /*
94 * We try to cluster swap pages by allocating them sequentially
95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
96 * way, however, we resort to first-free allocation, starting
97 * a new cluster. This prevents us from scattering swap pages
98 * all over the entire swap partition, so that we reduce
99 * overall disk seek times between swap pages. -- sct
100 * But we do now try to find an empty cluster. -Andrea
103 si->flags += SWP_SCANNING;
104 if (unlikely(!si->cluster_nr)) {
105 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 goto lowest;
108 spin_unlock(&swap_lock);
110 offset = si->lowest_bit;
111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113 /* Locate the first empty (unaligned) cluster */
114 for (; last_in_cluster <= si->highest_bit; offset++) {
115 if (si->swap_map[offset])
116 last_in_cluster = offset + SWAPFILE_CLUSTER;
117 else if (offset == last_in_cluster) {
118 spin_lock(&swap_lock);
119 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
120 goto cluster;
122 if (unlikely(--latency_ration < 0)) {
123 cond_resched();
124 latency_ration = LATENCY_LIMIT;
127 spin_lock(&swap_lock);
128 goto lowest;
131 si->cluster_nr--;
132 cluster:
133 offset = si->cluster_next;
134 if (offset > si->highest_bit)
135 lowest: offset = si->lowest_bit;
136 checks: if (!(si->flags & SWP_WRITEOK))
137 goto no_page;
138 if (!si->highest_bit)
139 goto no_page;
140 if (!si->swap_map[offset]) {
141 if (offset == si->lowest_bit)
142 si->lowest_bit++;
143 if (offset == si->highest_bit)
144 si->highest_bit--;
145 si->inuse_pages++;
146 if (si->inuse_pages == si->pages) {
147 si->lowest_bit = si->max;
148 si->highest_bit = 0;
150 si->swap_map[offset] = 1;
151 si->cluster_next = offset + 1;
152 si->flags -= SWP_SCANNING;
153 return offset;
156 spin_unlock(&swap_lock);
157 while (++offset <= si->highest_bit) {
158 if (!si->swap_map[offset]) {
159 spin_lock(&swap_lock);
160 goto checks;
162 if (unlikely(--latency_ration < 0)) {
163 cond_resched();
164 latency_ration = LATENCY_LIMIT;
167 spin_lock(&swap_lock);
168 goto lowest;
170 no_page:
171 si->flags -= SWP_SCANNING;
172 return 0;
175 swp_entry_t get_swap_page(void)
177 struct swap_info_struct *si;
178 pgoff_t offset;
179 int type, next;
180 int wrapped = 0;
182 spin_lock(&swap_lock);
183 if (nr_swap_pages <= 0)
184 goto noswap;
185 nr_swap_pages--;
187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 si = swap_info + type;
189 next = si->next;
190 if (next < 0 ||
191 (!wrapped && si->prio != swap_info[next].prio)) {
192 next = swap_list.head;
193 wrapped++;
196 if (!si->highest_bit)
197 continue;
198 if (!(si->flags & SWP_WRITEOK))
199 continue;
201 swap_list.next = next;
202 offset = scan_swap_map(si);
203 if (offset) {
204 spin_unlock(&swap_lock);
205 return swp_entry(type, offset);
207 next = swap_list.next;
210 nr_swap_pages++;
211 noswap:
212 spin_unlock(&swap_lock);
213 return (swp_entry_t) {0};
216 swp_entry_t get_swap_page_of_type(int type)
218 struct swap_info_struct *si;
219 pgoff_t offset;
221 spin_lock(&swap_lock);
222 si = swap_info + type;
223 if (si->flags & SWP_WRITEOK) {
224 nr_swap_pages--;
225 offset = scan_swap_map(si);
226 if (offset) {
227 spin_unlock(&swap_lock);
228 return swp_entry(type, offset);
230 nr_swap_pages++;
232 spin_unlock(&swap_lock);
233 return (swp_entry_t) {0};
236 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238 struct swap_info_struct * p;
239 unsigned long offset, type;
241 if (!entry.val)
242 goto out;
243 type = swp_type(entry);
244 if (type >= nr_swapfiles)
245 goto bad_nofile;
246 p = & swap_info[type];
247 if (!(p->flags & SWP_USED))
248 goto bad_device;
249 offset = swp_offset(entry);
250 if (offset >= p->max)
251 goto bad_offset;
252 if (!p->swap_map[offset])
253 goto bad_free;
254 spin_lock(&swap_lock);
255 return p;
257 bad_free:
258 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259 goto out;
260 bad_offset:
261 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262 goto out;
263 bad_device:
264 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265 goto out;
266 bad_nofile:
267 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268 out:
269 return NULL;
272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274 int count = p->swap_map[offset];
276 if (count < SWAP_MAP_MAX) {
277 count--;
278 p->swap_map[offset] = count;
279 if (!count) {
280 if (offset < p->lowest_bit)
281 p->lowest_bit = offset;
282 if (offset > p->highest_bit)
283 p->highest_bit = offset;
284 if (p->prio > swap_info[swap_list.next].prio)
285 swap_list.next = p - swap_info;
286 nr_swap_pages++;
287 p->inuse_pages--;
290 return count;
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
297 void swap_free(swp_entry_t entry)
299 struct swap_info_struct * p;
301 p = swap_info_get(entry);
302 if (p) {
303 swap_entry_free(p, swp_offset(entry));
304 spin_unlock(&swap_lock);
309 * How many references to page are currently swapped out?
311 static inline int page_swapcount(struct page *page)
313 int count = 0;
314 struct swap_info_struct *p;
315 swp_entry_t entry;
317 entry.val = page_private(page);
318 p = swap_info_get(entry);
319 if (p) {
320 /* Subtract the 1 for the swap cache itself */
321 count = p->swap_map[swp_offset(entry)] - 1;
322 spin_unlock(&swap_lock);
324 return count;
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
331 int can_share_swap_page(struct page *page)
333 int count;
335 BUG_ON(!PageLocked(page));
336 count = page_mapcount(page);
337 if (count <= 1 && PageSwapCache(page))
338 count += page_swapcount(page);
339 return count == 1;
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
346 int remove_exclusive_swap_page(struct page *page)
348 int retval;
349 struct swap_info_struct * p;
350 swp_entry_t entry;
352 BUG_ON(PagePrivate(page));
353 BUG_ON(!PageLocked(page));
355 if (!PageSwapCache(page))
356 return 0;
357 if (PageWriteback(page))
358 return 0;
359 if (page_count(page) != 2) /* 2: us + cache */
360 return 0;
362 entry.val = page_private(page);
363 p = swap_info_get(entry);
364 if (!p)
365 return 0;
367 /* Is the only swap cache user the cache itself? */
368 retval = 0;
369 if (p->swap_map[swp_offset(entry)] == 1) {
370 /* Recheck the page count with the swapcache lock held.. */
371 write_lock_irq(&swapper_space.tree_lock);
372 if ((page_count(page) == 2) && !PageWriteback(page)) {
373 __delete_from_swap_cache(page);
374 SetPageDirty(page);
375 retval = 1;
377 write_unlock_irq(&swapper_space.tree_lock);
379 spin_unlock(&swap_lock);
381 if (retval) {
382 swap_free(entry);
383 page_cache_release(page);
386 return retval;
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
393 void free_swap_and_cache(swp_entry_t entry)
395 struct swap_info_struct * p;
396 struct page *page = NULL;
398 if (is_migration_entry(entry))
399 return;
401 p = swap_info_get(entry);
402 if (p) {
403 if (swap_entry_free(p, swp_offset(entry)) == 1) {
404 page = find_get_page(&swapper_space, entry.val);
405 if (page && unlikely(TestSetPageLocked(page))) {
406 page_cache_release(page);
407 page = NULL;
410 spin_unlock(&swap_lock);
412 if (page) {
413 int one_user;
415 BUG_ON(PagePrivate(page));
416 one_user = (page_count(page) == 2);
417 /* Only cache user (+us), or swap space full? Free it! */
418 /* Also recheck PageSwapCache after page is locked (above) */
419 if (PageSwapCache(page) && !PageWriteback(page) &&
420 (one_user || vm_swap_full())) {
421 delete_from_swap_cache(page);
422 SetPageDirty(page);
424 unlock_page(page);
425 page_cache_release(page);
429 #ifdef CONFIG_HIBERNATION
431 * Find the swap type that corresponds to given device (if any).
433 * @offset - number of the PAGE_SIZE-sized block of the device, starting
434 * from 0, in which the swap header is expected to be located.
436 * This is needed for the suspend to disk (aka swsusp).
438 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
440 struct block_device *bdev = NULL;
441 int i;
443 if (device)
444 bdev = bdget(device);
446 spin_lock(&swap_lock);
447 for (i = 0; i < nr_swapfiles; i++) {
448 struct swap_info_struct *sis = swap_info + i;
450 if (!(sis->flags & SWP_WRITEOK))
451 continue;
453 if (!bdev) {
454 if (bdev_p)
455 *bdev_p = sis->bdev;
457 spin_unlock(&swap_lock);
458 return i;
460 if (bdev == sis->bdev) {
461 struct swap_extent *se;
463 se = list_entry(sis->extent_list.next,
464 struct swap_extent, list);
465 if (se->start_block == offset) {
466 if (bdev_p)
467 *bdev_p = sis->bdev;
469 spin_unlock(&swap_lock);
470 bdput(bdev);
471 return i;
475 spin_unlock(&swap_lock);
476 if (bdev)
477 bdput(bdev);
479 return -ENODEV;
483 * Return either the total number of swap pages of given type, or the number
484 * of free pages of that type (depending on @free)
486 * This is needed for software suspend
488 unsigned int count_swap_pages(int type, int free)
490 unsigned int n = 0;
492 if (type < nr_swapfiles) {
493 spin_lock(&swap_lock);
494 if (swap_info[type].flags & SWP_WRITEOK) {
495 n = swap_info[type].pages;
496 if (free)
497 n -= swap_info[type].inuse_pages;
499 spin_unlock(&swap_lock);
501 return n;
503 #endif
506 * No need to decide whether this PTE shares the swap entry with others,
507 * just let do_wp_page work it out if a write is requested later - to
508 * force COW, vm_page_prot omits write permission from any private vma.
510 static int unuse_pte(struct vm_area_struct *vma, pte_t *pte,
511 unsigned long addr, swp_entry_t entry, struct page *page)
513 if (mem_cgroup_charge(page, vma->vm_mm))
514 return -ENOMEM;
516 inc_mm_counter(vma->vm_mm, anon_rss);
517 get_page(page);
518 set_pte_at(vma->vm_mm, addr, pte,
519 pte_mkold(mk_pte(page, vma->vm_page_prot)));
520 page_add_anon_rmap(page, vma, addr);
521 swap_free(entry);
523 * Move the page to the active list so it is not
524 * immediately swapped out again after swapon.
526 activate_page(page);
527 return 1;
530 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
531 unsigned long addr, unsigned long end,
532 swp_entry_t entry, struct page *page)
534 pte_t swp_pte = swp_entry_to_pte(entry);
535 pte_t *pte;
536 spinlock_t *ptl;
537 int ret = 0;
539 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
540 do {
542 * swapoff spends a _lot_ of time in this loop!
543 * Test inline before going to call unuse_pte.
545 if (unlikely(pte_same(*pte, swp_pte))) {
546 ret = unuse_pte(vma, pte++, addr, entry, page);
547 break;
549 } while (pte++, addr += PAGE_SIZE, addr != end);
550 pte_unmap_unlock(pte - 1, ptl);
551 return ret;
554 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
555 unsigned long addr, unsigned long end,
556 swp_entry_t entry, struct page *page)
558 pmd_t *pmd;
559 unsigned long next;
560 int ret;
562 pmd = pmd_offset(pud, addr);
563 do {
564 next = pmd_addr_end(addr, end);
565 if (pmd_none_or_clear_bad(pmd))
566 continue;
567 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
568 if (ret)
569 return ret;
570 } while (pmd++, addr = next, addr != end);
571 return 0;
574 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
575 unsigned long addr, unsigned long end,
576 swp_entry_t entry, struct page *page)
578 pud_t *pud;
579 unsigned long next;
580 int ret;
582 pud = pud_offset(pgd, addr);
583 do {
584 next = pud_addr_end(addr, end);
585 if (pud_none_or_clear_bad(pud))
586 continue;
587 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
588 if (ret)
589 return ret;
590 } while (pud++, addr = next, addr != end);
591 return 0;
594 static int unuse_vma(struct vm_area_struct *vma,
595 swp_entry_t entry, struct page *page)
597 pgd_t *pgd;
598 unsigned long addr, end, next;
599 int ret;
601 if (page->mapping) {
602 addr = page_address_in_vma(page, vma);
603 if (addr == -EFAULT)
604 return 0;
605 else
606 end = addr + PAGE_SIZE;
607 } else {
608 addr = vma->vm_start;
609 end = vma->vm_end;
612 pgd = pgd_offset(vma->vm_mm, addr);
613 do {
614 next = pgd_addr_end(addr, end);
615 if (pgd_none_or_clear_bad(pgd))
616 continue;
617 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
618 if (ret)
619 return ret;
620 } while (pgd++, addr = next, addr != end);
621 return 0;
624 static int unuse_mm(struct mm_struct *mm,
625 swp_entry_t entry, struct page *page)
627 struct vm_area_struct *vma;
628 int ret = 0;
630 if (!down_read_trylock(&mm->mmap_sem)) {
632 * Activate page so shrink_cache is unlikely to unmap its
633 * ptes while lock is dropped, so swapoff can make progress.
635 activate_page(page);
636 unlock_page(page);
637 down_read(&mm->mmap_sem);
638 lock_page(page);
640 for (vma = mm->mmap; vma; vma = vma->vm_next) {
641 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
642 break;
644 up_read(&mm->mmap_sem);
645 return (ret < 0)? ret: 0;
649 * Scan swap_map from current position to next entry still in use.
650 * Recycle to start on reaching the end, returning 0 when empty.
652 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
653 unsigned int prev)
655 unsigned int max = si->max;
656 unsigned int i = prev;
657 int count;
660 * No need for swap_lock here: we're just looking
661 * for whether an entry is in use, not modifying it; false
662 * hits are okay, and sys_swapoff() has already prevented new
663 * allocations from this area (while holding swap_lock).
665 for (;;) {
666 if (++i >= max) {
667 if (!prev) {
668 i = 0;
669 break;
672 * No entries in use at top of swap_map,
673 * loop back to start and recheck there.
675 max = prev + 1;
676 prev = 0;
677 i = 1;
679 count = si->swap_map[i];
680 if (count && count != SWAP_MAP_BAD)
681 break;
683 return i;
687 * We completely avoid races by reading each swap page in advance,
688 * and then search for the process using it. All the necessary
689 * page table adjustments can then be made atomically.
691 static int try_to_unuse(unsigned int type)
693 struct swap_info_struct * si = &swap_info[type];
694 struct mm_struct *start_mm;
695 unsigned short *swap_map;
696 unsigned short swcount;
697 struct page *page;
698 swp_entry_t entry;
699 unsigned int i = 0;
700 int retval = 0;
701 int reset_overflow = 0;
702 int shmem;
705 * When searching mms for an entry, a good strategy is to
706 * start at the first mm we freed the previous entry from
707 * (though actually we don't notice whether we or coincidence
708 * freed the entry). Initialize this start_mm with a hold.
710 * A simpler strategy would be to start at the last mm we
711 * freed the previous entry from; but that would take less
712 * advantage of mmlist ordering, which clusters forked mms
713 * together, child after parent. If we race with dup_mmap(), we
714 * prefer to resolve parent before child, lest we miss entries
715 * duplicated after we scanned child: using last mm would invert
716 * that. Though it's only a serious concern when an overflowed
717 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
719 start_mm = &init_mm;
720 atomic_inc(&init_mm.mm_users);
723 * Keep on scanning until all entries have gone. Usually,
724 * one pass through swap_map is enough, but not necessarily:
725 * there are races when an instance of an entry might be missed.
727 while ((i = find_next_to_unuse(si, i)) != 0) {
728 if (signal_pending(current)) {
729 retval = -EINTR;
730 break;
734 * Get a page for the entry, using the existing swap
735 * cache page if there is one. Otherwise, get a clean
736 * page and read the swap into it.
738 swap_map = &si->swap_map[i];
739 entry = swp_entry(type, i);
740 page = read_swap_cache_async(entry,
741 GFP_HIGHUSER_MOVABLE, NULL, 0);
742 if (!page) {
744 * Either swap_duplicate() failed because entry
745 * has been freed independently, and will not be
746 * reused since sys_swapoff() already disabled
747 * allocation from here, or alloc_page() failed.
749 if (!*swap_map)
750 continue;
751 retval = -ENOMEM;
752 break;
756 * Don't hold on to start_mm if it looks like exiting.
758 if (atomic_read(&start_mm->mm_users) == 1) {
759 mmput(start_mm);
760 start_mm = &init_mm;
761 atomic_inc(&init_mm.mm_users);
765 * Wait for and lock page. When do_swap_page races with
766 * try_to_unuse, do_swap_page can handle the fault much
767 * faster than try_to_unuse can locate the entry. This
768 * apparently redundant "wait_on_page_locked" lets try_to_unuse
769 * defer to do_swap_page in such a case - in some tests,
770 * do_swap_page and try_to_unuse repeatedly compete.
772 wait_on_page_locked(page);
773 wait_on_page_writeback(page);
774 lock_page(page);
775 wait_on_page_writeback(page);
778 * Remove all references to entry.
779 * Whenever we reach init_mm, there's no address space
780 * to search, but use it as a reminder to search shmem.
782 shmem = 0;
783 swcount = *swap_map;
784 if (swcount > 1) {
785 if (start_mm == &init_mm)
786 shmem = shmem_unuse(entry, page);
787 else
788 retval = unuse_mm(start_mm, entry, page);
790 if (*swap_map > 1) {
791 int set_start_mm = (*swap_map >= swcount);
792 struct list_head *p = &start_mm->mmlist;
793 struct mm_struct *new_start_mm = start_mm;
794 struct mm_struct *prev_mm = start_mm;
795 struct mm_struct *mm;
797 atomic_inc(&new_start_mm->mm_users);
798 atomic_inc(&prev_mm->mm_users);
799 spin_lock(&mmlist_lock);
800 while (*swap_map > 1 && !retval && !shmem &&
801 (p = p->next) != &start_mm->mmlist) {
802 mm = list_entry(p, struct mm_struct, mmlist);
803 if (!atomic_inc_not_zero(&mm->mm_users))
804 continue;
805 spin_unlock(&mmlist_lock);
806 mmput(prev_mm);
807 prev_mm = mm;
809 cond_resched();
811 swcount = *swap_map;
812 if (swcount <= 1)
814 else if (mm == &init_mm) {
815 set_start_mm = 1;
816 shmem = shmem_unuse(entry, page);
817 } else
818 retval = unuse_mm(mm, entry, page);
819 if (set_start_mm && *swap_map < swcount) {
820 mmput(new_start_mm);
821 atomic_inc(&mm->mm_users);
822 new_start_mm = mm;
823 set_start_mm = 0;
825 spin_lock(&mmlist_lock);
827 spin_unlock(&mmlist_lock);
828 mmput(prev_mm);
829 mmput(start_mm);
830 start_mm = new_start_mm;
832 if (shmem) {
833 /* page has already been unlocked and released */
834 if (shmem > 0)
835 continue;
836 retval = shmem;
837 break;
839 if (retval) {
840 unlock_page(page);
841 page_cache_release(page);
842 break;
846 * How could swap count reach 0x7fff when the maximum
847 * pid is 0x7fff, and there's no way to repeat a swap
848 * page within an mm (except in shmem, where it's the
849 * shared object which takes the reference count)?
850 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
852 * If that's wrong, then we should worry more about
853 * exit_mmap() and do_munmap() cases described above:
854 * we might be resetting SWAP_MAP_MAX too early here.
855 * We know "Undead"s can happen, they're okay, so don't
856 * report them; but do report if we reset SWAP_MAP_MAX.
858 if (*swap_map == SWAP_MAP_MAX) {
859 spin_lock(&swap_lock);
860 *swap_map = 1;
861 spin_unlock(&swap_lock);
862 reset_overflow = 1;
866 * If a reference remains (rare), we would like to leave
867 * the page in the swap cache; but try_to_unmap could
868 * then re-duplicate the entry once we drop page lock,
869 * so we might loop indefinitely; also, that page could
870 * not be swapped out to other storage meanwhile. So:
871 * delete from cache even if there's another reference,
872 * after ensuring that the data has been saved to disk -
873 * since if the reference remains (rarer), it will be
874 * read from disk into another page. Splitting into two
875 * pages would be incorrect if swap supported "shared
876 * private" pages, but they are handled by tmpfs files.
878 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
879 struct writeback_control wbc = {
880 .sync_mode = WB_SYNC_NONE,
883 swap_writepage(page, &wbc);
884 lock_page(page);
885 wait_on_page_writeback(page);
887 if (PageSwapCache(page))
888 delete_from_swap_cache(page);
891 * So we could skip searching mms once swap count went
892 * to 1, we did not mark any present ptes as dirty: must
893 * mark page dirty so shrink_page_list will preserve it.
895 SetPageDirty(page);
896 unlock_page(page);
897 page_cache_release(page);
900 * Make sure that we aren't completely killing
901 * interactive performance.
903 cond_resched();
906 mmput(start_mm);
907 if (reset_overflow) {
908 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
909 swap_overflow = 0;
911 return retval;
915 * After a successful try_to_unuse, if no swap is now in use, we know
916 * we can empty the mmlist. swap_lock must be held on entry and exit.
917 * Note that mmlist_lock nests inside swap_lock, and an mm must be
918 * added to the mmlist just after page_duplicate - before would be racy.
920 static void drain_mmlist(void)
922 struct list_head *p, *next;
923 unsigned int i;
925 for (i = 0; i < nr_swapfiles; i++)
926 if (swap_info[i].inuse_pages)
927 return;
928 spin_lock(&mmlist_lock);
929 list_for_each_safe(p, next, &init_mm.mmlist)
930 list_del_init(p);
931 spin_unlock(&mmlist_lock);
935 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
936 * corresponds to page offset `offset'.
938 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
940 struct swap_extent *se = sis->curr_swap_extent;
941 struct swap_extent *start_se = se;
943 for ( ; ; ) {
944 struct list_head *lh;
946 if (se->start_page <= offset &&
947 offset < (se->start_page + se->nr_pages)) {
948 return se->start_block + (offset - se->start_page);
950 lh = se->list.next;
951 if (lh == &sis->extent_list)
952 lh = lh->next;
953 se = list_entry(lh, struct swap_extent, list);
954 sis->curr_swap_extent = se;
955 BUG_ON(se == start_se); /* It *must* be present */
959 #ifdef CONFIG_HIBERNATION
961 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
962 * corresponding to given index in swap_info (swap type).
964 sector_t swapdev_block(int swap_type, pgoff_t offset)
966 struct swap_info_struct *sis;
968 if (swap_type >= nr_swapfiles)
969 return 0;
971 sis = swap_info + swap_type;
972 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
974 #endif /* CONFIG_HIBERNATION */
977 * Free all of a swapdev's extent information
979 static void destroy_swap_extents(struct swap_info_struct *sis)
981 while (!list_empty(&sis->extent_list)) {
982 struct swap_extent *se;
984 se = list_entry(sis->extent_list.next,
985 struct swap_extent, list);
986 list_del(&se->list);
987 kfree(se);
992 * Add a block range (and the corresponding page range) into this swapdev's
993 * extent list. The extent list is kept sorted in page order.
995 * This function rather assumes that it is called in ascending page order.
997 static int
998 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
999 unsigned long nr_pages, sector_t start_block)
1001 struct swap_extent *se;
1002 struct swap_extent *new_se;
1003 struct list_head *lh;
1005 lh = sis->extent_list.prev; /* The highest page extent */
1006 if (lh != &sis->extent_list) {
1007 se = list_entry(lh, struct swap_extent, list);
1008 BUG_ON(se->start_page + se->nr_pages != start_page);
1009 if (se->start_block + se->nr_pages == start_block) {
1010 /* Merge it */
1011 se->nr_pages += nr_pages;
1012 return 0;
1017 * No merge. Insert a new extent, preserving ordering.
1019 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1020 if (new_se == NULL)
1021 return -ENOMEM;
1022 new_se->start_page = start_page;
1023 new_se->nr_pages = nr_pages;
1024 new_se->start_block = start_block;
1026 list_add_tail(&new_se->list, &sis->extent_list);
1027 return 1;
1031 * A `swap extent' is a simple thing which maps a contiguous range of pages
1032 * onto a contiguous range of disk blocks. An ordered list of swap extents
1033 * is built at swapon time and is then used at swap_writepage/swap_readpage
1034 * time for locating where on disk a page belongs.
1036 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1037 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1038 * swap files identically.
1040 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1041 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1042 * swapfiles are handled *identically* after swapon time.
1044 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1045 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1046 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1047 * requirements, they are simply tossed out - we will never use those blocks
1048 * for swapping.
1050 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1051 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1052 * which will scribble on the fs.
1054 * The amount of disk space which a single swap extent represents varies.
1055 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1056 * extents in the list. To avoid much list walking, we cache the previous
1057 * search location in `curr_swap_extent', and start new searches from there.
1058 * This is extremely effective. The average number of iterations in
1059 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1061 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1063 struct inode *inode;
1064 unsigned blocks_per_page;
1065 unsigned long page_no;
1066 unsigned blkbits;
1067 sector_t probe_block;
1068 sector_t last_block;
1069 sector_t lowest_block = -1;
1070 sector_t highest_block = 0;
1071 int nr_extents = 0;
1072 int ret;
1074 inode = sis->swap_file->f_mapping->host;
1075 if (S_ISBLK(inode->i_mode)) {
1076 ret = add_swap_extent(sis, 0, sis->max, 0);
1077 *span = sis->pages;
1078 goto done;
1081 blkbits = inode->i_blkbits;
1082 blocks_per_page = PAGE_SIZE >> blkbits;
1085 * Map all the blocks into the extent list. This code doesn't try
1086 * to be very smart.
1088 probe_block = 0;
1089 page_no = 0;
1090 last_block = i_size_read(inode) >> blkbits;
1091 while ((probe_block + blocks_per_page) <= last_block &&
1092 page_no < sis->max) {
1093 unsigned block_in_page;
1094 sector_t first_block;
1096 first_block = bmap(inode, probe_block);
1097 if (first_block == 0)
1098 goto bad_bmap;
1101 * It must be PAGE_SIZE aligned on-disk
1103 if (first_block & (blocks_per_page - 1)) {
1104 probe_block++;
1105 goto reprobe;
1108 for (block_in_page = 1; block_in_page < blocks_per_page;
1109 block_in_page++) {
1110 sector_t block;
1112 block = bmap(inode, probe_block + block_in_page);
1113 if (block == 0)
1114 goto bad_bmap;
1115 if (block != first_block + block_in_page) {
1116 /* Discontiguity */
1117 probe_block++;
1118 goto reprobe;
1122 first_block >>= (PAGE_SHIFT - blkbits);
1123 if (page_no) { /* exclude the header page */
1124 if (first_block < lowest_block)
1125 lowest_block = first_block;
1126 if (first_block > highest_block)
1127 highest_block = first_block;
1131 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1133 ret = add_swap_extent(sis, page_no, 1, first_block);
1134 if (ret < 0)
1135 goto out;
1136 nr_extents += ret;
1137 page_no++;
1138 probe_block += blocks_per_page;
1139 reprobe:
1140 continue;
1142 ret = nr_extents;
1143 *span = 1 + highest_block - lowest_block;
1144 if (page_no == 0)
1145 page_no = 1; /* force Empty message */
1146 sis->max = page_no;
1147 sis->pages = page_no - 1;
1148 sis->highest_bit = page_no - 1;
1149 done:
1150 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1151 struct swap_extent, list);
1152 goto out;
1153 bad_bmap:
1154 printk(KERN_ERR "swapon: swapfile has holes\n");
1155 ret = -EINVAL;
1156 out:
1157 return ret;
1160 #if 0 /* We don't need this yet */
1161 #include <linux/backing-dev.h>
1162 int page_queue_congested(struct page *page)
1164 struct backing_dev_info *bdi;
1166 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1168 if (PageSwapCache(page)) {
1169 swp_entry_t entry = { .val = page_private(page) };
1170 struct swap_info_struct *sis;
1172 sis = get_swap_info_struct(swp_type(entry));
1173 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1174 } else
1175 bdi = page->mapping->backing_dev_info;
1176 return bdi_write_congested(bdi);
1178 #endif
1180 asmlinkage long sys_swapoff(const char __user * specialfile)
1182 struct swap_info_struct * p = NULL;
1183 unsigned short *swap_map;
1184 struct file *swap_file, *victim;
1185 struct address_space *mapping;
1186 struct inode *inode;
1187 char * pathname;
1188 int i, type, prev;
1189 int err;
1191 if (!capable(CAP_SYS_ADMIN))
1192 return -EPERM;
1194 pathname = getname(specialfile);
1195 err = PTR_ERR(pathname);
1196 if (IS_ERR(pathname))
1197 goto out;
1199 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1200 putname(pathname);
1201 err = PTR_ERR(victim);
1202 if (IS_ERR(victim))
1203 goto out;
1205 mapping = victim->f_mapping;
1206 prev = -1;
1207 spin_lock(&swap_lock);
1208 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1209 p = swap_info + type;
1210 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1211 if (p->swap_file->f_mapping == mapping)
1212 break;
1214 prev = type;
1216 if (type < 0) {
1217 err = -EINVAL;
1218 spin_unlock(&swap_lock);
1219 goto out_dput;
1221 if (!security_vm_enough_memory(p->pages))
1222 vm_unacct_memory(p->pages);
1223 else {
1224 err = -ENOMEM;
1225 spin_unlock(&swap_lock);
1226 goto out_dput;
1228 if (prev < 0) {
1229 swap_list.head = p->next;
1230 } else {
1231 swap_info[prev].next = p->next;
1233 if (type == swap_list.next) {
1234 /* just pick something that's safe... */
1235 swap_list.next = swap_list.head;
1237 nr_swap_pages -= p->pages;
1238 total_swap_pages -= p->pages;
1239 p->flags &= ~SWP_WRITEOK;
1240 spin_unlock(&swap_lock);
1242 current->flags |= PF_SWAPOFF;
1243 err = try_to_unuse(type);
1244 current->flags &= ~PF_SWAPOFF;
1246 if (err) {
1247 /* re-insert swap space back into swap_list */
1248 spin_lock(&swap_lock);
1249 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1250 if (p->prio >= swap_info[i].prio)
1251 break;
1252 p->next = i;
1253 if (prev < 0)
1254 swap_list.head = swap_list.next = p - swap_info;
1255 else
1256 swap_info[prev].next = p - swap_info;
1257 nr_swap_pages += p->pages;
1258 total_swap_pages += p->pages;
1259 p->flags |= SWP_WRITEOK;
1260 spin_unlock(&swap_lock);
1261 goto out_dput;
1264 /* wait for any unplug function to finish */
1265 down_write(&swap_unplug_sem);
1266 up_write(&swap_unplug_sem);
1268 destroy_swap_extents(p);
1269 mutex_lock(&swapon_mutex);
1270 spin_lock(&swap_lock);
1271 drain_mmlist();
1273 /* wait for anyone still in scan_swap_map */
1274 p->highest_bit = 0; /* cuts scans short */
1275 while (p->flags >= SWP_SCANNING) {
1276 spin_unlock(&swap_lock);
1277 schedule_timeout_uninterruptible(1);
1278 spin_lock(&swap_lock);
1281 swap_file = p->swap_file;
1282 p->swap_file = NULL;
1283 p->max = 0;
1284 swap_map = p->swap_map;
1285 p->swap_map = NULL;
1286 p->flags = 0;
1287 spin_unlock(&swap_lock);
1288 mutex_unlock(&swapon_mutex);
1289 vfree(swap_map);
1290 inode = mapping->host;
1291 if (S_ISBLK(inode->i_mode)) {
1292 struct block_device *bdev = I_BDEV(inode);
1293 set_blocksize(bdev, p->old_block_size);
1294 bd_release(bdev);
1295 } else {
1296 mutex_lock(&inode->i_mutex);
1297 inode->i_flags &= ~S_SWAPFILE;
1298 mutex_unlock(&inode->i_mutex);
1300 filp_close(swap_file, NULL);
1301 err = 0;
1303 out_dput:
1304 filp_close(victim, NULL);
1305 out:
1306 return err;
1309 #ifdef CONFIG_PROC_FS
1310 /* iterator */
1311 static void *swap_start(struct seq_file *swap, loff_t *pos)
1313 struct swap_info_struct *ptr = swap_info;
1314 int i;
1315 loff_t l = *pos;
1317 mutex_lock(&swapon_mutex);
1319 if (!l)
1320 return SEQ_START_TOKEN;
1322 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1323 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1324 continue;
1325 if (!--l)
1326 return ptr;
1329 return NULL;
1332 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1334 struct swap_info_struct *ptr;
1335 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1337 if (v == SEQ_START_TOKEN)
1338 ptr = swap_info;
1339 else {
1340 ptr = v;
1341 ptr++;
1344 for (; ptr < endptr; ptr++) {
1345 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1346 continue;
1347 ++*pos;
1348 return ptr;
1351 return NULL;
1354 static void swap_stop(struct seq_file *swap, void *v)
1356 mutex_unlock(&swapon_mutex);
1359 static int swap_show(struct seq_file *swap, void *v)
1361 struct swap_info_struct *ptr = v;
1362 struct file *file;
1363 int len;
1365 if (ptr == SEQ_START_TOKEN) {
1366 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1367 return 0;
1370 file = ptr->swap_file;
1371 len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
1372 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1373 len < 40 ? 40 - len : 1, " ",
1374 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1375 "partition" : "file\t",
1376 ptr->pages << (PAGE_SHIFT - 10),
1377 ptr->inuse_pages << (PAGE_SHIFT - 10),
1378 ptr->prio);
1379 return 0;
1382 static const struct seq_operations swaps_op = {
1383 .start = swap_start,
1384 .next = swap_next,
1385 .stop = swap_stop,
1386 .show = swap_show
1389 static int swaps_open(struct inode *inode, struct file *file)
1391 return seq_open(file, &swaps_op);
1394 static const struct file_operations proc_swaps_operations = {
1395 .open = swaps_open,
1396 .read = seq_read,
1397 .llseek = seq_lseek,
1398 .release = seq_release,
1401 static int __init procswaps_init(void)
1403 struct proc_dir_entry *entry;
1405 entry = create_proc_entry("swaps", 0, NULL);
1406 if (entry)
1407 entry->proc_fops = &proc_swaps_operations;
1408 return 0;
1410 __initcall(procswaps_init);
1411 #endif /* CONFIG_PROC_FS */
1414 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1416 * The swapon system call
1418 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1420 struct swap_info_struct * p;
1421 char *name = NULL;
1422 struct block_device *bdev = NULL;
1423 struct file *swap_file = NULL;
1424 struct address_space *mapping;
1425 unsigned int type;
1426 int i, prev;
1427 int error;
1428 static int least_priority;
1429 union swap_header *swap_header = NULL;
1430 int swap_header_version;
1431 unsigned int nr_good_pages = 0;
1432 int nr_extents = 0;
1433 sector_t span;
1434 unsigned long maxpages = 1;
1435 int swapfilesize;
1436 unsigned short *swap_map;
1437 struct page *page = NULL;
1438 struct inode *inode = NULL;
1439 int did_down = 0;
1441 if (!capable(CAP_SYS_ADMIN))
1442 return -EPERM;
1443 spin_lock(&swap_lock);
1444 p = swap_info;
1445 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1446 if (!(p->flags & SWP_USED))
1447 break;
1448 error = -EPERM;
1449 if (type >= MAX_SWAPFILES) {
1450 spin_unlock(&swap_lock);
1451 goto out;
1453 if (type >= nr_swapfiles)
1454 nr_swapfiles = type+1;
1455 INIT_LIST_HEAD(&p->extent_list);
1456 p->flags = SWP_USED;
1457 p->swap_file = NULL;
1458 p->old_block_size = 0;
1459 p->swap_map = NULL;
1460 p->lowest_bit = 0;
1461 p->highest_bit = 0;
1462 p->cluster_nr = 0;
1463 p->inuse_pages = 0;
1464 p->next = -1;
1465 if (swap_flags & SWAP_FLAG_PREFER) {
1466 p->prio =
1467 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1468 } else {
1469 p->prio = --least_priority;
1471 spin_unlock(&swap_lock);
1472 name = getname(specialfile);
1473 error = PTR_ERR(name);
1474 if (IS_ERR(name)) {
1475 name = NULL;
1476 goto bad_swap_2;
1478 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1479 error = PTR_ERR(swap_file);
1480 if (IS_ERR(swap_file)) {
1481 swap_file = NULL;
1482 goto bad_swap_2;
1485 p->swap_file = swap_file;
1486 mapping = swap_file->f_mapping;
1487 inode = mapping->host;
1489 error = -EBUSY;
1490 for (i = 0; i < nr_swapfiles; i++) {
1491 struct swap_info_struct *q = &swap_info[i];
1493 if (i == type || !q->swap_file)
1494 continue;
1495 if (mapping == q->swap_file->f_mapping)
1496 goto bad_swap;
1499 error = -EINVAL;
1500 if (S_ISBLK(inode->i_mode)) {
1501 bdev = I_BDEV(inode);
1502 error = bd_claim(bdev, sys_swapon);
1503 if (error < 0) {
1504 bdev = NULL;
1505 error = -EINVAL;
1506 goto bad_swap;
1508 p->old_block_size = block_size(bdev);
1509 error = set_blocksize(bdev, PAGE_SIZE);
1510 if (error < 0)
1511 goto bad_swap;
1512 p->bdev = bdev;
1513 } else if (S_ISREG(inode->i_mode)) {
1514 p->bdev = inode->i_sb->s_bdev;
1515 mutex_lock(&inode->i_mutex);
1516 did_down = 1;
1517 if (IS_SWAPFILE(inode)) {
1518 error = -EBUSY;
1519 goto bad_swap;
1521 } else {
1522 goto bad_swap;
1525 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1528 * Read the swap header.
1530 if (!mapping->a_ops->readpage) {
1531 error = -EINVAL;
1532 goto bad_swap;
1534 page = read_mapping_page(mapping, 0, swap_file);
1535 if (IS_ERR(page)) {
1536 error = PTR_ERR(page);
1537 goto bad_swap;
1539 kmap(page);
1540 swap_header = page_address(page);
1542 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1543 swap_header_version = 1;
1544 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1545 swap_header_version = 2;
1546 else {
1547 printk(KERN_ERR "Unable to find swap-space signature\n");
1548 error = -EINVAL;
1549 goto bad_swap;
1552 switch (swap_header_version) {
1553 case 1:
1554 printk(KERN_ERR "version 0 swap is no longer supported. "
1555 "Use mkswap -v1 %s\n", name);
1556 error = -EINVAL;
1557 goto bad_swap;
1558 case 2:
1559 /* Check the swap header's sub-version and the size of
1560 the swap file and bad block lists */
1561 if (swap_header->info.version != 1) {
1562 printk(KERN_WARNING
1563 "Unable to handle swap header version %d\n",
1564 swap_header->info.version);
1565 error = -EINVAL;
1566 goto bad_swap;
1569 p->lowest_bit = 1;
1570 p->cluster_next = 1;
1573 * Find out how many pages are allowed for a single swap
1574 * device. There are two limiting factors: 1) the number of
1575 * bits for the swap offset in the swp_entry_t type and
1576 * 2) the number of bits in the a swap pte as defined by
1577 * the different architectures. In order to find the
1578 * largest possible bit mask a swap entry with swap type 0
1579 * and swap offset ~0UL is created, encoded to a swap pte,
1580 * decoded to a swp_entry_t again and finally the swap
1581 * offset is extracted. This will mask all the bits from
1582 * the initial ~0UL mask that can't be encoded in either
1583 * the swp_entry_t or the architecture definition of a
1584 * swap pte.
1586 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1587 if (maxpages > swap_header->info.last_page)
1588 maxpages = swap_header->info.last_page;
1589 p->highest_bit = maxpages - 1;
1591 error = -EINVAL;
1592 if (!maxpages)
1593 goto bad_swap;
1594 if (swapfilesize && maxpages > swapfilesize) {
1595 printk(KERN_WARNING
1596 "Swap area shorter than signature indicates\n");
1597 goto bad_swap;
1599 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1600 goto bad_swap;
1601 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1602 goto bad_swap;
1604 /* OK, set up the swap map and apply the bad block list */
1605 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1606 error = -ENOMEM;
1607 goto bad_swap;
1610 error = 0;
1611 memset(p->swap_map, 0, maxpages * sizeof(short));
1612 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1613 int page_nr = swap_header->info.badpages[i];
1614 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1615 error = -EINVAL;
1616 else
1617 p->swap_map[page_nr] = SWAP_MAP_BAD;
1619 nr_good_pages = swap_header->info.last_page -
1620 swap_header->info.nr_badpages -
1621 1 /* header page */;
1622 if (error)
1623 goto bad_swap;
1626 if (nr_good_pages) {
1627 p->swap_map[0] = SWAP_MAP_BAD;
1628 p->max = maxpages;
1629 p->pages = nr_good_pages;
1630 nr_extents = setup_swap_extents(p, &span);
1631 if (nr_extents < 0) {
1632 error = nr_extents;
1633 goto bad_swap;
1635 nr_good_pages = p->pages;
1637 if (!nr_good_pages) {
1638 printk(KERN_WARNING "Empty swap-file\n");
1639 error = -EINVAL;
1640 goto bad_swap;
1643 mutex_lock(&swapon_mutex);
1644 spin_lock(&swap_lock);
1645 p->flags = SWP_ACTIVE;
1646 nr_swap_pages += nr_good_pages;
1647 total_swap_pages += nr_good_pages;
1649 printk(KERN_INFO "Adding %uk swap on %s. "
1650 "Priority:%d extents:%d across:%lluk\n",
1651 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1652 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1654 /* insert swap space into swap_list: */
1655 prev = -1;
1656 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1657 if (p->prio >= swap_info[i].prio) {
1658 break;
1660 prev = i;
1662 p->next = i;
1663 if (prev < 0) {
1664 swap_list.head = swap_list.next = p - swap_info;
1665 } else {
1666 swap_info[prev].next = p - swap_info;
1668 spin_unlock(&swap_lock);
1669 mutex_unlock(&swapon_mutex);
1670 error = 0;
1671 goto out;
1672 bad_swap:
1673 if (bdev) {
1674 set_blocksize(bdev, p->old_block_size);
1675 bd_release(bdev);
1677 destroy_swap_extents(p);
1678 bad_swap_2:
1679 spin_lock(&swap_lock);
1680 swap_map = p->swap_map;
1681 p->swap_file = NULL;
1682 p->swap_map = NULL;
1683 p->flags = 0;
1684 if (!(swap_flags & SWAP_FLAG_PREFER))
1685 ++least_priority;
1686 spin_unlock(&swap_lock);
1687 vfree(swap_map);
1688 if (swap_file)
1689 filp_close(swap_file, NULL);
1690 out:
1691 if (page && !IS_ERR(page)) {
1692 kunmap(page);
1693 page_cache_release(page);
1695 if (name)
1696 putname(name);
1697 if (did_down) {
1698 if (!error)
1699 inode->i_flags |= S_SWAPFILE;
1700 mutex_unlock(&inode->i_mutex);
1702 return error;
1705 void si_swapinfo(struct sysinfo *val)
1707 unsigned int i;
1708 unsigned long nr_to_be_unused = 0;
1710 spin_lock(&swap_lock);
1711 for (i = 0; i < nr_swapfiles; i++) {
1712 if (!(swap_info[i].flags & SWP_USED) ||
1713 (swap_info[i].flags & SWP_WRITEOK))
1714 continue;
1715 nr_to_be_unused += swap_info[i].inuse_pages;
1717 val->freeswap = nr_swap_pages + nr_to_be_unused;
1718 val->totalswap = total_swap_pages + nr_to_be_unused;
1719 spin_unlock(&swap_lock);
1723 * Verify that a swap entry is valid and increment its swap map count.
1725 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1726 * "permanent", but will be reclaimed by the next swapoff.
1728 int swap_duplicate(swp_entry_t entry)
1730 struct swap_info_struct * p;
1731 unsigned long offset, type;
1732 int result = 0;
1734 if (is_migration_entry(entry))
1735 return 1;
1737 type = swp_type(entry);
1738 if (type >= nr_swapfiles)
1739 goto bad_file;
1740 p = type + swap_info;
1741 offset = swp_offset(entry);
1743 spin_lock(&swap_lock);
1744 if (offset < p->max && p->swap_map[offset]) {
1745 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1746 p->swap_map[offset]++;
1747 result = 1;
1748 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1749 if (swap_overflow++ < 5)
1750 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1751 p->swap_map[offset] = SWAP_MAP_MAX;
1752 result = 1;
1755 spin_unlock(&swap_lock);
1756 out:
1757 return result;
1759 bad_file:
1760 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1761 goto out;
1764 struct swap_info_struct *
1765 get_swap_info_struct(unsigned type)
1767 return &swap_info[type];
1771 * swap_lock prevents swap_map being freed. Don't grab an extra
1772 * reference on the swaphandle, it doesn't matter if it becomes unused.
1774 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1776 struct swap_info_struct *si;
1777 int our_page_cluster = page_cluster;
1778 pgoff_t target, toff;
1779 pgoff_t base, end;
1780 int nr_pages = 0;
1782 if (!our_page_cluster) /* no readahead */
1783 return 0;
1785 si = &swap_info[swp_type(entry)];
1786 target = swp_offset(entry);
1787 base = (target >> our_page_cluster) << our_page_cluster;
1788 end = base + (1 << our_page_cluster);
1789 if (!base) /* first page is swap header */
1790 base++;
1792 spin_lock(&swap_lock);
1793 if (end > si->max) /* don't go beyond end of map */
1794 end = si->max;
1796 /* Count contiguous allocated slots above our target */
1797 for (toff = target; ++toff < end; nr_pages++) {
1798 /* Don't read in free or bad pages */
1799 if (!si->swap_map[toff])
1800 break;
1801 if (si->swap_map[toff] == SWAP_MAP_BAD)
1802 break;
1804 /* Count contiguous allocated slots below our target */
1805 for (toff = target; --toff >= base; nr_pages++) {
1806 /* Don't read in free or bad pages */
1807 if (!si->swap_map[toff])
1808 break;
1809 if (si->swap_map[toff] == SWAP_MAP_BAD)
1810 break;
1812 spin_unlock(&swap_lock);
1815 * Indicate starting offset, and return number of pages to get:
1816 * if only 1, say 0, since there's then no readahead to be done.
1818 *offset = ++toff;
1819 return nr_pages? ++nr_pages: 0;