Memory controller: memory accounting
[linux-2.6/x86.git] / mm / swap_state.c
blobf96e3ff1e7913472107791f35360c273ab0862a4
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/memcontrol.h>
22 #include <asm/pgtable.h>
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27 * future use of radix_tree tags in the swap cache.
29 static const struct address_space_operations swap_aops = {
30 .writepage = swap_writepage,
31 .sync_page = block_sync_page,
32 .set_page_dirty = __set_page_dirty_nobuffers,
33 .migratepage = migrate_page,
36 static struct backing_dev_info swap_backing_dev_info = {
37 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
38 .unplug_io_fn = swap_unplug_io_fn,
41 struct address_space swapper_space = {
42 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
43 .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
44 .a_ops = &swap_aops,
45 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
46 .backing_dev_info = &swap_backing_dev_info,
49 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
51 static struct {
52 unsigned long add_total;
53 unsigned long del_total;
54 unsigned long find_success;
55 unsigned long find_total;
56 } swap_cache_info;
58 void show_swap_cache_info(void)
60 printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n",
61 swap_cache_info.add_total, swap_cache_info.del_total,
62 swap_cache_info.find_success, swap_cache_info.find_total);
63 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
64 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
68 * add_to_swap_cache resembles add_to_page_cache on swapper_space,
69 * but sets SwapCache flag and private instead of mapping and index.
71 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
73 int error;
75 BUG_ON(!PageLocked(page));
76 BUG_ON(PageSwapCache(page));
77 BUG_ON(PagePrivate(page));
78 error = radix_tree_preload(gfp_mask);
79 if (!error) {
81 error = mem_cgroup_charge(page, current->mm);
82 if (error)
83 goto out;
85 write_lock_irq(&swapper_space.tree_lock);
86 error = radix_tree_insert(&swapper_space.page_tree,
87 entry.val, page);
88 if (!error) {
89 page_cache_get(page);
90 SetPageSwapCache(page);
91 set_page_private(page, entry.val);
92 total_swapcache_pages++;
93 __inc_zone_page_state(page, NR_FILE_PAGES);
94 INC_CACHE_INFO(add_total);
95 } else {
96 mem_cgroup_uncharge_page(page);
98 write_unlock_irq(&swapper_space.tree_lock);
99 radix_tree_preload_end();
101 out:
102 return error;
106 * This must be called only on pages that have
107 * been verified to be in the swap cache.
109 void __delete_from_swap_cache(struct page *page)
111 BUG_ON(!PageLocked(page));
112 BUG_ON(!PageSwapCache(page));
113 BUG_ON(PageWriteback(page));
114 BUG_ON(PagePrivate(page));
116 mem_cgroup_uncharge_page(page);
117 radix_tree_delete(&swapper_space.page_tree, page_private(page));
118 set_page_private(page, 0);
119 ClearPageSwapCache(page);
120 total_swapcache_pages--;
121 __dec_zone_page_state(page, NR_FILE_PAGES);
122 INC_CACHE_INFO(del_total);
126 * add_to_swap - allocate swap space for a page
127 * @page: page we want to move to swap
129 * Allocate swap space for the page and add the page to the
130 * swap cache. Caller needs to hold the page lock.
132 int add_to_swap(struct page * page, gfp_t gfp_mask)
134 swp_entry_t entry;
135 int err;
137 BUG_ON(!PageLocked(page));
138 BUG_ON(!PageUptodate(page));
140 for (;;) {
141 entry = get_swap_page();
142 if (!entry.val)
143 return 0;
146 * Radix-tree node allocations from PF_MEMALLOC contexts could
147 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148 * stops emergency reserves from being allocated.
150 * TODO: this could cause a theoretical memory reclaim
151 * deadlock in the swap out path.
154 * Add it to the swap cache and mark it dirty
156 err = add_to_swap_cache(page, entry,
157 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
159 switch (err) {
160 case 0: /* Success */
161 SetPageDirty(page);
162 return 1;
163 case -EEXIST:
164 /* Raced with "speculative" read_swap_cache_async */
165 swap_free(entry);
166 continue;
167 default:
168 /* -ENOMEM radix-tree allocation failure */
169 swap_free(entry);
170 return 0;
176 * This must be called only on pages that have
177 * been verified to be in the swap cache and locked.
178 * It will never put the page into the free list,
179 * the caller has a reference on the page.
181 void delete_from_swap_cache(struct page *page)
183 swp_entry_t entry;
185 entry.val = page_private(page);
187 write_lock_irq(&swapper_space.tree_lock);
188 __delete_from_swap_cache(page);
189 write_unlock_irq(&swapper_space.tree_lock);
191 swap_free(entry);
192 page_cache_release(page);
196 * If we are the only user, then try to free up the swap cache.
198 * Its ok to check for PageSwapCache without the page lock
199 * here because we are going to recheck again inside
200 * exclusive_swap_page() _with_ the lock.
201 * - Marcelo
203 static inline void free_swap_cache(struct page *page)
205 if (PageSwapCache(page) && !TestSetPageLocked(page)) {
206 remove_exclusive_swap_page(page);
207 unlock_page(page);
212 * Perform a free_page(), also freeing any swap cache associated with
213 * this page if it is the last user of the page.
215 void free_page_and_swap_cache(struct page *page)
217 free_swap_cache(page);
218 page_cache_release(page);
222 * Passed an array of pages, drop them all from swapcache and then release
223 * them. They are removed from the LRU and freed if this is their last use.
225 void free_pages_and_swap_cache(struct page **pages, int nr)
227 struct page **pagep = pages;
229 lru_add_drain();
230 while (nr) {
231 int todo = min(nr, PAGEVEC_SIZE);
232 int i;
234 for (i = 0; i < todo; i++)
235 free_swap_cache(pagep[i]);
236 release_pages(pagep, todo, 0);
237 pagep += todo;
238 nr -= todo;
243 * Lookup a swap entry in the swap cache. A found page will be returned
244 * unlocked and with its refcount incremented - we rely on the kernel
245 * lock getting page table operations atomic even if we drop the page
246 * lock before returning.
248 struct page * lookup_swap_cache(swp_entry_t entry)
250 struct page *page;
252 page = find_get_page(&swapper_space, entry.val);
254 if (page)
255 INC_CACHE_INFO(find_success);
257 INC_CACHE_INFO(find_total);
258 return page;
262 * Locate a page of swap in physical memory, reserving swap cache space
263 * and reading the disk if it is not already cached.
264 * A failure return means that either the page allocation failed or that
265 * the swap entry is no longer in use.
267 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
268 struct vm_area_struct *vma, unsigned long addr)
270 struct page *found_page, *new_page = NULL;
271 int err;
273 do {
275 * First check the swap cache. Since this is normally
276 * called after lookup_swap_cache() failed, re-calling
277 * that would confuse statistics.
279 found_page = find_get_page(&swapper_space, entry.val);
280 if (found_page)
281 break;
284 * Get a new page to read into from swap.
286 if (!new_page) {
287 new_page = alloc_page_vma(gfp_mask, vma, addr);
288 if (!new_page)
289 break; /* Out of memory */
293 * Swap entry may have been freed since our caller observed it.
295 if (!swap_duplicate(entry))
296 break;
299 * Associate the page with swap entry in the swap cache.
300 * May fail (-EEXIST) if there is already a page associated
301 * with this entry in the swap cache: added by a racing
302 * read_swap_cache_async, or add_to_swap or shmem_writepage
303 * re-using the just freed swap entry for an existing page.
304 * May fail (-ENOMEM) if radix-tree node allocation failed.
306 SetPageLocked(new_page);
307 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
308 if (!err) {
310 * Initiate read into locked page and return.
312 lru_cache_add_active(new_page);
313 swap_readpage(NULL, new_page);
314 return new_page;
316 ClearPageLocked(new_page);
317 swap_free(entry);
318 } while (err != -ENOMEM);
320 if (new_page)
321 page_cache_release(new_page);
322 return found_page;
326 * swapin_readahead - swap in pages in hope we need them soon
327 * @entry: swap entry of this memory
328 * @vma: user vma this address belongs to
329 * @addr: target address for mempolicy
331 * Returns the struct page for entry and addr, after queueing swapin.
333 * Primitive swap readahead code. We simply read an aligned block of
334 * (1 << page_cluster) entries in the swap area. This method is chosen
335 * because it doesn't cost us any seek time. We also make sure to queue
336 * the 'original' request together with the readahead ones...
338 * This has been extended to use the NUMA policies from the mm triggering
339 * the readahead.
341 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
343 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
344 struct vm_area_struct *vma, unsigned long addr)
346 int nr_pages;
347 struct page *page;
348 unsigned long offset;
349 unsigned long end_offset;
352 * Get starting offset for readaround, and number of pages to read.
353 * Adjust starting address by readbehind (for NUMA interleave case)?
354 * No, it's very unlikely that swap layout would follow vma layout,
355 * more likely that neighbouring swap pages came from the same node:
356 * so use the same "addr" to choose the same node for each swap read.
358 nr_pages = valid_swaphandles(entry, &offset);
359 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
360 /* Ok, do the async read-ahead now */
361 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
362 gfp_mask, vma, addr);
363 if (!page)
364 break;
365 page_cache_release(page);
367 lru_add_drain(); /* Push any new pages onto the LRU now */
368 return read_swap_cache_async(entry, gfp_mask, vma, addr);