net/core: Remove unnecessary casts of private_data
[linux-2.6/x86.git] / drivers / net / 3c59x.c
blob069a03f717d304e1c9e2b1e0387181b612118661
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
32 #define DRV_NAME "3c59x"
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
63 #define tx_interrupt_mitigation 1
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
100 #define RUN_AT(x) (jiffies + (x))
102 #include <linux/delay.h>
105 static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
113 /* Operational parameter that usually are not changed. */
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
127 #define PFX DRV_NAME ": "
132 Theory of Operation
134 I. Board Compatibility
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
145 II. Board-specific settings
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
155 III. Driver operation
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
194 IV. Notes
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
266 CH_905BT4,
267 CH_920B_EMB_WNM,
271 /* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
275 static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280 } vortex_info_tbl[] __devinitdata = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
374 {NULL,}, /* NULL terminated list. */
378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
426 {0,} /* 0 terminated list. */
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
431 /* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
441 /* The top five bits written to EL3_CMD are a command, the lower
442 11 bits are the parameter, if applicable.
443 Note that 11 parameters bits was fine for ethernet, but the new chip
444 can handle FDDI length frames (~4500 octets) and now parameters count
445 32-bit 'Dwords' rather than octets. */
447 enum vortex_cmd {
448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
463 /* Bits in the general status register. */
464 enum vortex_status {
465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 IntReq = 0x0040, StatsFull = 0x0080,
468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
473 /* Register window 1 offsets, the window used in normal operation.
474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
480 enum Window0 {
481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
483 IntrStatus=0x0E, /* Valid in all windows. */
485 enum Win0_EEPROM_bits {
486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 DriverTune=13, Checksum=15};
497 enum Window2 { /* Window 2. */
498 Wn2_ResetOptions=12,
500 enum Window3 { /* Window 3: MAC/config bits. */
501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
504 #define BFEXT(value, offset, bitcount) \
505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
507 #define BFINS(lhs, rhs, offset, bitcount) \
508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
511 #define RAM_SIZE(v) BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
513 #define RAM_SPEED(v) BFEXT(v, 4, 2)
514 #define ROM_SIZE(v) BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
516 #define XCVR(v) BFEXT(v, 20, 4)
517 #define AUTOSELECT(v) BFEXT(v, 24, 1)
519 enum Window4 { /* Window 4: Xcvr/media bits. */
520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
522 enum Win4_Media_bits {
523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
526 Media_LnkBeat = 0x0800,
528 enum Window7 { /* Window 7: Bus Master control. */
529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 Wn7_MasterStatus = 12,
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
538 /* The Rx and Tx descriptor lists.
539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
540 alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
543 struct boom_rx_desc {
544 __le32 next; /* Last entry points to 0. */
545 __le32 status;
546 __le32 addr; /* Up to 63 addr/len pairs possible. */
547 __le32 length; /* Set LAST_FRAG to indicate last pair. */
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 RxDComplete=0x00008000, RxDError=0x4000,
552 /* See boomerang_rx() for actual error bits */
553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
563 struct boom_tx_desc {
564 __le32 next; /* Last entry points to 0. */
565 __le32 status; /* bits 0:12 length, others see below. */
566 #if DO_ZEROCOPY
567 struct {
568 __le32 addr;
569 __le32 length;
570 } frag[1+MAX_SKB_FRAGS];
571 #else
572 __le32 addr;
573 __le32 length;
574 #endif
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 CRCDisable=0x2000, TxDComplete=0x8000,
580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
587 struct vortex_extra_stats {
588 unsigned long tx_deferred;
589 unsigned long tx_max_collisions;
590 unsigned long tx_multiple_collisions;
591 unsigned long tx_single_collisions;
592 unsigned long rx_bad_ssd;
595 struct vortex_private {
596 /* The Rx and Tx rings should be quad-word-aligned. */
597 struct boom_rx_desc* rx_ring;
598 struct boom_tx_desc* tx_ring;
599 dma_addr_t rx_ring_dma;
600 dma_addr_t tx_ring_dma;
601 /* The addresses of transmit- and receive-in-place skbuffs. */
602 struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 unsigned int cur_rx, cur_tx; /* The next free ring entry */
605 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
610 /* PCI configuration space information. */
611 struct device *gendev;
612 void __iomem *ioaddr; /* IO address space */
613 void __iomem *cb_fn_base; /* CardBus function status addr space. */
615 /* Some values here only for performance evaluation and path-coverage */
616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 int card_idx;
619 /* The remainder are related to chip state, mostly media selection. */
620 struct timer_list timer; /* Media selection timer. */
621 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
622 int options; /* User-settable misc. driver options. */
623 unsigned int media_override:4, /* Passed-in media type. */
624 default_media:4, /* Read from the EEPROM/Wn3_Config. */
625 full_duplex:1, autoselect:1,
626 bus_master:1, /* Vortex can only do a fragment bus-m. */
627 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
628 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
629 partner_flow_ctrl:1, /* Partner supports flow control */
630 has_nway:1,
631 enable_wol:1, /* Wake-on-LAN is enabled */
632 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
633 open:1,
634 medialock:1,
635 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
636 large_frames:1; /* accept large frames */
637 int drv_flags;
638 u16 status_enable;
639 u16 intr_enable;
640 u16 available_media; /* From Wn3_Options. */
641 u16 capabilities, info1, info2; /* Various, from EEPROM. */
642 u16 advertising; /* NWay media advertisement */
643 unsigned char phys[2]; /* MII device addresses. */
644 u16 deferred; /* Resend these interrupts when we
645 * bale from the ISR */
646 u16 io_size; /* Size of PCI region (for release_region) */
648 /* Serialises access to hardware other than MII and variables below.
649 * The lock hierarchy is rtnl_lock > lock > mii_lock > window_lock. */
650 spinlock_t lock;
652 spinlock_t mii_lock; /* Serialises access to MII */
653 struct mii_if_info mii; /* MII lib hooks/info */
654 spinlock_t window_lock; /* Serialises access to windowed regs */
655 int window; /* Register window */
658 static void window_set(struct vortex_private *vp, int window)
660 if (window != vp->window) {
661 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
662 vp->window = window;
666 #define DEFINE_WINDOW_IO(size) \
667 static u ## size \
668 window_read ## size(struct vortex_private *vp, int window, int addr) \
670 unsigned long flags; \
671 u ## size ret; \
672 spin_lock_irqsave(&vp->window_lock, flags); \
673 window_set(vp, window); \
674 ret = ioread ## size(vp->ioaddr + addr); \
675 spin_unlock_irqrestore(&vp->window_lock, flags); \
676 return ret; \
678 static void \
679 window_write ## size(struct vortex_private *vp, u ## size value, \
680 int window, int addr) \
682 unsigned long flags; \
683 spin_lock_irqsave(&vp->window_lock, flags); \
684 window_set(vp, window); \
685 iowrite ## size(value, vp->ioaddr + addr); \
686 spin_unlock_irqrestore(&vp->window_lock, flags); \
688 DEFINE_WINDOW_IO(8)
689 DEFINE_WINDOW_IO(16)
690 DEFINE_WINDOW_IO(32)
692 #ifdef CONFIG_PCI
693 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
694 #else
695 #define DEVICE_PCI(dev) NULL
696 #endif
698 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
700 #ifdef CONFIG_EISA
701 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
702 #else
703 #define DEVICE_EISA(dev) NULL
704 #endif
706 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
708 /* The action to take with a media selection timer tick.
709 Note that we deviate from the 3Com order by checking 10base2 before AUI.
711 enum xcvr_types {
712 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
713 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
716 static const struct media_table {
717 char *name;
718 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
719 mask:8, /* The transceiver-present bit in Wn3_Config.*/
720 next:8; /* The media type to try next. */
721 int wait; /* Time before we check media status. */
722 } media_tbl[] = {
723 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
724 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
725 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
726 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
727 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
728 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
729 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
730 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
731 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
732 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
733 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
736 static struct {
737 const char str[ETH_GSTRING_LEN];
738 } ethtool_stats_keys[] = {
739 { "tx_deferred" },
740 { "tx_max_collisions" },
741 { "tx_multiple_collisions" },
742 { "tx_single_collisions" },
743 { "rx_bad_ssd" },
746 /* number of ETHTOOL_GSTATS u64's */
747 #define VORTEX_NUM_STATS 5
749 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
750 int chip_idx, int card_idx);
751 static int vortex_up(struct net_device *dev);
752 static void vortex_down(struct net_device *dev, int final);
753 static int vortex_open(struct net_device *dev);
754 static void mdio_sync(struct vortex_private *vp, int bits);
755 static int mdio_read(struct net_device *dev, int phy_id, int location);
756 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
757 static void vortex_timer(unsigned long arg);
758 static void rx_oom_timer(unsigned long arg);
759 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
760 struct net_device *dev);
761 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
762 struct net_device *dev);
763 static int vortex_rx(struct net_device *dev);
764 static int boomerang_rx(struct net_device *dev);
765 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
766 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
767 static int vortex_close(struct net_device *dev);
768 static void dump_tx_ring(struct net_device *dev);
769 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
770 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
771 static void set_rx_mode(struct net_device *dev);
772 #ifdef CONFIG_PCI
773 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
774 #endif
775 static void vortex_tx_timeout(struct net_device *dev);
776 static void acpi_set_WOL(struct net_device *dev);
777 static const struct ethtool_ops vortex_ethtool_ops;
778 static void set_8021q_mode(struct net_device *dev, int enable);
780 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
781 /* Option count limit only -- unlimited interfaces are supported. */
782 #define MAX_UNITS 8
783 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
784 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
785 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
786 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
787 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
788 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
789 static int global_options = -1;
790 static int global_full_duplex = -1;
791 static int global_enable_wol = -1;
792 static int global_use_mmio = -1;
794 /* Variables to work-around the Compaq PCI BIOS32 problem. */
795 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
796 static struct net_device *compaq_net_device;
798 static int vortex_cards_found;
800 module_param(debug, int, 0);
801 module_param(global_options, int, 0);
802 module_param_array(options, int, NULL, 0);
803 module_param(global_full_duplex, int, 0);
804 module_param_array(full_duplex, int, NULL, 0);
805 module_param_array(hw_checksums, int, NULL, 0);
806 module_param_array(flow_ctrl, int, NULL, 0);
807 module_param(global_enable_wol, int, 0);
808 module_param_array(enable_wol, int, NULL, 0);
809 module_param(rx_copybreak, int, 0);
810 module_param(max_interrupt_work, int, 0);
811 module_param(compaq_ioaddr, int, 0);
812 module_param(compaq_irq, int, 0);
813 module_param(compaq_device_id, int, 0);
814 module_param(watchdog, int, 0);
815 module_param(global_use_mmio, int, 0);
816 module_param_array(use_mmio, int, NULL, 0);
817 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
818 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
819 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
820 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
821 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
822 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
823 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
824 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
825 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
826 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
827 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
828 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
829 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
830 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
831 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
832 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
833 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
835 #ifdef CONFIG_NET_POLL_CONTROLLER
836 static void poll_vortex(struct net_device *dev)
838 struct vortex_private *vp = netdev_priv(dev);
839 unsigned long flags;
840 local_irq_save(flags);
841 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
842 local_irq_restore(flags);
844 #endif
846 #ifdef CONFIG_PM
848 static int vortex_suspend(struct device *dev)
850 struct pci_dev *pdev = to_pci_dev(dev);
851 struct net_device *ndev = pci_get_drvdata(pdev);
853 if (!ndev || !netif_running(ndev))
854 return 0;
856 netif_device_detach(ndev);
857 vortex_down(ndev, 1);
859 return 0;
862 static int vortex_resume(struct device *dev)
864 struct pci_dev *pdev = to_pci_dev(dev);
865 struct net_device *ndev = pci_get_drvdata(pdev);
866 int err;
868 if (!ndev || !netif_running(ndev))
869 return 0;
871 err = vortex_up(ndev);
872 if (err)
873 return err;
875 netif_device_attach(ndev);
877 return 0;
880 static const struct dev_pm_ops vortex_pm_ops = {
881 .suspend = vortex_suspend,
882 .resume = vortex_resume,
883 .freeze = vortex_suspend,
884 .thaw = vortex_resume,
885 .poweroff = vortex_suspend,
886 .restore = vortex_resume,
889 #define VORTEX_PM_OPS (&vortex_pm_ops)
891 #else /* !CONFIG_PM */
893 #define VORTEX_PM_OPS NULL
895 #endif /* !CONFIG_PM */
897 #ifdef CONFIG_EISA
898 static struct eisa_device_id vortex_eisa_ids[] = {
899 { "TCM5920", CH_3C592 },
900 { "TCM5970", CH_3C597 },
901 { "" }
903 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
905 static int __init vortex_eisa_probe(struct device *device)
907 void __iomem *ioaddr;
908 struct eisa_device *edev;
910 edev = to_eisa_device(device);
912 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
913 return -EBUSY;
915 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
917 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
918 edev->id.driver_data, vortex_cards_found)) {
919 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
920 return -ENODEV;
923 vortex_cards_found++;
925 return 0;
928 static int __devexit vortex_eisa_remove(struct device *device)
930 struct eisa_device *edev;
931 struct net_device *dev;
932 struct vortex_private *vp;
933 void __iomem *ioaddr;
935 edev = to_eisa_device(device);
936 dev = eisa_get_drvdata(edev);
938 if (!dev) {
939 pr_err("vortex_eisa_remove called for Compaq device!\n");
940 BUG();
943 vp = netdev_priv(dev);
944 ioaddr = vp->ioaddr;
946 unregister_netdev(dev);
947 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
948 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
950 free_netdev(dev);
951 return 0;
954 static struct eisa_driver vortex_eisa_driver = {
955 .id_table = vortex_eisa_ids,
956 .driver = {
957 .name = "3c59x",
958 .probe = vortex_eisa_probe,
959 .remove = __devexit_p(vortex_eisa_remove)
963 #endif /* CONFIG_EISA */
965 /* returns count found (>= 0), or negative on error */
966 static int __init vortex_eisa_init(void)
968 int eisa_found = 0;
969 int orig_cards_found = vortex_cards_found;
971 #ifdef CONFIG_EISA
972 int err;
974 err = eisa_driver_register (&vortex_eisa_driver);
975 if (!err) {
977 * Because of the way EISA bus is probed, we cannot assume
978 * any device have been found when we exit from
979 * eisa_driver_register (the bus root driver may not be
980 * initialized yet). So we blindly assume something was
981 * found, and let the sysfs magic happend...
983 eisa_found = 1;
985 #endif
987 /* Special code to work-around the Compaq PCI BIOS32 problem. */
988 if (compaq_ioaddr) {
989 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
990 compaq_irq, compaq_device_id, vortex_cards_found++);
993 return vortex_cards_found - orig_cards_found + eisa_found;
996 /* returns count (>= 0), or negative on error */
997 static int __devinit vortex_init_one(struct pci_dev *pdev,
998 const struct pci_device_id *ent)
1000 int rc, unit, pci_bar;
1001 struct vortex_chip_info *vci;
1002 void __iomem *ioaddr;
1004 /* wake up and enable device */
1005 rc = pci_enable_device(pdev);
1006 if (rc < 0)
1007 goto out;
1009 unit = vortex_cards_found;
1011 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1012 /* Determine the default if the user didn't override us */
1013 vci = &vortex_info_tbl[ent->driver_data];
1014 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1015 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1016 pci_bar = use_mmio[unit] ? 1 : 0;
1017 else
1018 pci_bar = global_use_mmio ? 1 : 0;
1020 ioaddr = pci_iomap(pdev, pci_bar, 0);
1021 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1022 ioaddr = pci_iomap(pdev, 0, 0);
1024 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1025 ent->driver_data, unit);
1026 if (rc < 0) {
1027 pci_disable_device(pdev);
1028 goto out;
1031 vortex_cards_found++;
1033 out:
1034 return rc;
1037 static const struct net_device_ops boomrang_netdev_ops = {
1038 .ndo_open = vortex_open,
1039 .ndo_stop = vortex_close,
1040 .ndo_start_xmit = boomerang_start_xmit,
1041 .ndo_tx_timeout = vortex_tx_timeout,
1042 .ndo_get_stats = vortex_get_stats,
1043 #ifdef CONFIG_PCI
1044 .ndo_do_ioctl = vortex_ioctl,
1045 #endif
1046 .ndo_set_multicast_list = set_rx_mode,
1047 .ndo_change_mtu = eth_change_mtu,
1048 .ndo_set_mac_address = eth_mac_addr,
1049 .ndo_validate_addr = eth_validate_addr,
1050 #ifdef CONFIG_NET_POLL_CONTROLLER
1051 .ndo_poll_controller = poll_vortex,
1052 #endif
1055 static const struct net_device_ops vortex_netdev_ops = {
1056 .ndo_open = vortex_open,
1057 .ndo_stop = vortex_close,
1058 .ndo_start_xmit = vortex_start_xmit,
1059 .ndo_tx_timeout = vortex_tx_timeout,
1060 .ndo_get_stats = vortex_get_stats,
1061 #ifdef CONFIG_PCI
1062 .ndo_do_ioctl = vortex_ioctl,
1063 #endif
1064 .ndo_set_multicast_list = set_rx_mode,
1065 .ndo_change_mtu = eth_change_mtu,
1066 .ndo_set_mac_address = eth_mac_addr,
1067 .ndo_validate_addr = eth_validate_addr,
1068 #ifdef CONFIG_NET_POLL_CONTROLLER
1069 .ndo_poll_controller = poll_vortex,
1070 #endif
1074 * Start up the PCI/EISA device which is described by *gendev.
1075 * Return 0 on success.
1077 * NOTE: pdev can be NULL, for the case of a Compaq device
1079 static int __devinit vortex_probe1(struct device *gendev,
1080 void __iomem *ioaddr, int irq,
1081 int chip_idx, int card_idx)
1083 struct vortex_private *vp;
1084 int option;
1085 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1086 int i, step;
1087 struct net_device *dev;
1088 static int printed_version;
1089 int retval, print_info;
1090 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1091 const char *print_name = "3c59x";
1092 struct pci_dev *pdev = NULL;
1093 struct eisa_device *edev = NULL;
1095 if (!printed_version) {
1096 pr_info("%s", version);
1097 printed_version = 1;
1100 if (gendev) {
1101 if ((pdev = DEVICE_PCI(gendev))) {
1102 print_name = pci_name(pdev);
1105 if ((edev = DEVICE_EISA(gendev))) {
1106 print_name = dev_name(&edev->dev);
1110 dev = alloc_etherdev(sizeof(*vp));
1111 retval = -ENOMEM;
1112 if (!dev) {
1113 pr_err(PFX "unable to allocate etherdev, aborting\n");
1114 goto out;
1116 SET_NETDEV_DEV(dev, gendev);
1117 vp = netdev_priv(dev);
1119 option = global_options;
1121 /* The lower four bits are the media type. */
1122 if (dev->mem_start) {
1124 * The 'options' param is passed in as the third arg to the
1125 * LILO 'ether=' argument for non-modular use
1127 option = dev->mem_start;
1129 else if (card_idx < MAX_UNITS) {
1130 if (options[card_idx] >= 0)
1131 option = options[card_idx];
1134 if (option > 0) {
1135 if (option & 0x8000)
1136 vortex_debug = 7;
1137 if (option & 0x4000)
1138 vortex_debug = 2;
1139 if (option & 0x0400)
1140 vp->enable_wol = 1;
1143 print_info = (vortex_debug > 1);
1144 if (print_info)
1145 pr_info("See Documentation/networking/vortex.txt\n");
1147 pr_info("%s: 3Com %s %s at %p.\n",
1148 print_name,
1149 pdev ? "PCI" : "EISA",
1150 vci->name,
1151 ioaddr);
1153 dev->base_addr = (unsigned long)ioaddr;
1154 dev->irq = irq;
1155 dev->mtu = mtu;
1156 vp->ioaddr = ioaddr;
1157 vp->large_frames = mtu > 1500;
1158 vp->drv_flags = vci->drv_flags;
1159 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1160 vp->io_size = vci->io_size;
1161 vp->card_idx = card_idx;
1162 vp->window = -1;
1164 /* module list only for Compaq device */
1165 if (gendev == NULL) {
1166 compaq_net_device = dev;
1169 /* PCI-only startup logic */
1170 if (pdev) {
1171 /* EISA resources already marked, so only PCI needs to do this here */
1172 /* Ignore return value, because Cardbus drivers already allocate for us */
1173 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1174 vp->must_free_region = 1;
1176 /* enable bus-mastering if necessary */
1177 if (vci->flags & PCI_USES_MASTER)
1178 pci_set_master(pdev);
1180 if (vci->drv_flags & IS_VORTEX) {
1181 u8 pci_latency;
1182 u8 new_latency = 248;
1184 /* Check the PCI latency value. On the 3c590 series the latency timer
1185 must be set to the maximum value to avoid data corruption that occurs
1186 when the timer expires during a transfer. This bug exists the Vortex
1187 chip only. */
1188 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1189 if (pci_latency < new_latency) {
1190 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1191 print_name, pci_latency, new_latency);
1192 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1197 spin_lock_init(&vp->lock);
1198 spin_lock_init(&vp->mii_lock);
1199 spin_lock_init(&vp->window_lock);
1200 vp->gendev = gendev;
1201 vp->mii.dev = dev;
1202 vp->mii.mdio_read = mdio_read;
1203 vp->mii.mdio_write = mdio_write;
1204 vp->mii.phy_id_mask = 0x1f;
1205 vp->mii.reg_num_mask = 0x1f;
1207 /* Makes sure rings are at least 16 byte aligned. */
1208 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1209 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1210 &vp->rx_ring_dma);
1211 retval = -ENOMEM;
1212 if (!vp->rx_ring)
1213 goto free_region;
1215 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1216 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1218 /* if we are a PCI driver, we store info in pdev->driver_data
1219 * instead of a module list */
1220 if (pdev)
1221 pci_set_drvdata(pdev, dev);
1222 if (edev)
1223 eisa_set_drvdata(edev, dev);
1225 vp->media_override = 7;
1226 if (option >= 0) {
1227 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1228 if (vp->media_override != 7)
1229 vp->medialock = 1;
1230 vp->full_duplex = (option & 0x200) ? 1 : 0;
1231 vp->bus_master = (option & 16) ? 1 : 0;
1234 if (global_full_duplex > 0)
1235 vp->full_duplex = 1;
1236 if (global_enable_wol > 0)
1237 vp->enable_wol = 1;
1239 if (card_idx < MAX_UNITS) {
1240 if (full_duplex[card_idx] > 0)
1241 vp->full_duplex = 1;
1242 if (flow_ctrl[card_idx] > 0)
1243 vp->flow_ctrl = 1;
1244 if (enable_wol[card_idx] > 0)
1245 vp->enable_wol = 1;
1248 vp->mii.force_media = vp->full_duplex;
1249 vp->options = option;
1250 /* Read the station address from the EEPROM. */
1252 int base;
1254 if (vci->drv_flags & EEPROM_8BIT)
1255 base = 0x230;
1256 else if (vci->drv_flags & EEPROM_OFFSET)
1257 base = EEPROM_Read + 0x30;
1258 else
1259 base = EEPROM_Read;
1261 for (i = 0; i < 0x40; i++) {
1262 int timer;
1263 window_write16(vp, base + i, 0, Wn0EepromCmd);
1264 /* Pause for at least 162 us. for the read to take place. */
1265 for (timer = 10; timer >= 0; timer--) {
1266 udelay(162);
1267 if ((window_read16(vp, 0, Wn0EepromCmd) &
1268 0x8000) == 0)
1269 break;
1271 eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1274 for (i = 0; i < 0x18; i++)
1275 checksum ^= eeprom[i];
1276 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1277 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1278 while (i < 0x21)
1279 checksum ^= eeprom[i++];
1280 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1282 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1283 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1284 for (i = 0; i < 3; i++)
1285 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1286 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1287 if (print_info)
1288 pr_cont(" %pM", dev->dev_addr);
1289 /* Unfortunately an all zero eeprom passes the checksum and this
1290 gets found in the wild in failure cases. Crypto is hard 8) */
1291 if (!is_valid_ether_addr(dev->dev_addr)) {
1292 retval = -EINVAL;
1293 pr_err("*** EEPROM MAC address is invalid.\n");
1294 goto free_ring; /* With every pack */
1296 for (i = 0; i < 6; i++)
1297 window_write8(vp, dev->dev_addr[i], 2, i);
1299 if (print_info)
1300 pr_cont(", IRQ %d\n", dev->irq);
1301 /* Tell them about an invalid IRQ. */
1302 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1303 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1304 dev->irq);
1306 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1307 if (print_info) {
1308 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1309 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1310 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1314 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1315 unsigned short n;
1317 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1318 if (!vp->cb_fn_base) {
1319 retval = -ENOMEM;
1320 goto free_ring;
1323 if (print_info) {
1324 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1325 print_name,
1326 (unsigned long long)pci_resource_start(pdev, 2),
1327 vp->cb_fn_base);
1330 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1331 if (vp->drv_flags & INVERT_LED_PWR)
1332 n |= 0x10;
1333 if (vp->drv_flags & INVERT_MII_PWR)
1334 n |= 0x4000;
1335 window_write16(vp, n, 2, Wn2_ResetOptions);
1336 if (vp->drv_flags & WNO_XCVR_PWR) {
1337 window_write16(vp, 0x0800, 0, 0);
1341 /* Extract our information from the EEPROM data. */
1342 vp->info1 = eeprom[13];
1343 vp->info2 = eeprom[15];
1344 vp->capabilities = eeprom[16];
1346 if (vp->info1 & 0x8000) {
1347 vp->full_duplex = 1;
1348 if (print_info)
1349 pr_info("Full duplex capable\n");
1353 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1354 unsigned int config;
1355 vp->available_media = window_read16(vp, 3, Wn3_Options);
1356 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1357 vp->available_media = 0x40;
1358 config = window_read32(vp, 3, Wn3_Config);
1359 if (print_info) {
1360 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1361 config, window_read16(vp, 3, Wn3_Options));
1362 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1363 8 << RAM_SIZE(config),
1364 RAM_WIDTH(config) ? "word" : "byte",
1365 ram_split[RAM_SPLIT(config)],
1366 AUTOSELECT(config) ? "autoselect/" : "",
1367 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1368 media_tbl[XCVR(config)].name);
1370 vp->default_media = XCVR(config);
1371 if (vp->default_media == XCVR_NWAY)
1372 vp->has_nway = 1;
1373 vp->autoselect = AUTOSELECT(config);
1376 if (vp->media_override != 7) {
1377 pr_info("%s: Media override to transceiver type %d (%s).\n",
1378 print_name, vp->media_override,
1379 media_tbl[vp->media_override].name);
1380 dev->if_port = vp->media_override;
1381 } else
1382 dev->if_port = vp->default_media;
1384 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1385 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1386 int phy, phy_idx = 0;
1387 mii_preamble_required++;
1388 if (vp->drv_flags & EXTRA_PREAMBLE)
1389 mii_preamble_required++;
1390 mdio_sync(ioaddr, 32);
1391 mdio_read(dev, 24, MII_BMSR);
1392 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1393 int mii_status, phyx;
1396 * For the 3c905CX we look at index 24 first, because it bogusly
1397 * reports an external PHY at all indices
1399 if (phy == 0)
1400 phyx = 24;
1401 else if (phy <= 24)
1402 phyx = phy - 1;
1403 else
1404 phyx = phy;
1405 mii_status = mdio_read(dev, phyx, MII_BMSR);
1406 if (mii_status && mii_status != 0xffff) {
1407 vp->phys[phy_idx++] = phyx;
1408 if (print_info) {
1409 pr_info(" MII transceiver found at address %d, status %4x.\n",
1410 phyx, mii_status);
1412 if ((mii_status & 0x0040) == 0)
1413 mii_preamble_required++;
1416 mii_preamble_required--;
1417 if (phy_idx == 0) {
1418 pr_warning(" ***WARNING*** No MII transceivers found!\n");
1419 vp->phys[0] = 24;
1420 } else {
1421 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1422 if (vp->full_duplex) {
1423 /* Only advertise the FD media types. */
1424 vp->advertising &= ~0x02A0;
1425 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1428 vp->mii.phy_id = vp->phys[0];
1431 if (vp->capabilities & CapBusMaster) {
1432 vp->full_bus_master_tx = 1;
1433 if (print_info) {
1434 pr_info(" Enabling bus-master transmits and %s receives.\n",
1435 (vp->info2 & 1) ? "early" : "whole-frame" );
1437 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1438 vp->bus_master = 0; /* AKPM: vortex only */
1441 /* The 3c59x-specific entries in the device structure. */
1442 if (vp->full_bus_master_tx) {
1443 dev->netdev_ops = &boomrang_netdev_ops;
1444 /* Actually, it still should work with iommu. */
1445 if (card_idx < MAX_UNITS &&
1446 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1447 hw_checksums[card_idx] == 1)) {
1448 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1450 } else
1451 dev->netdev_ops = &vortex_netdev_ops;
1453 if (print_info) {
1454 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1455 print_name,
1456 (dev->features & NETIF_F_SG) ? "en":"dis",
1457 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1460 dev->ethtool_ops = &vortex_ethtool_ops;
1461 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1463 if (pdev) {
1464 vp->pm_state_valid = 1;
1465 pci_save_state(VORTEX_PCI(vp));
1466 acpi_set_WOL(dev);
1468 retval = register_netdev(dev);
1469 if (retval == 0)
1470 return 0;
1472 free_ring:
1473 pci_free_consistent(pdev,
1474 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1475 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1476 vp->rx_ring,
1477 vp->rx_ring_dma);
1478 free_region:
1479 if (vp->must_free_region)
1480 release_region(dev->base_addr, vci->io_size);
1481 free_netdev(dev);
1482 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1483 out:
1484 return retval;
1487 static void
1488 issue_and_wait(struct net_device *dev, int cmd)
1490 struct vortex_private *vp = netdev_priv(dev);
1491 void __iomem *ioaddr = vp->ioaddr;
1492 int i;
1494 iowrite16(cmd, ioaddr + EL3_CMD);
1495 for (i = 0; i < 2000; i++) {
1496 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1497 return;
1500 /* OK, that didn't work. Do it the slow way. One second */
1501 for (i = 0; i < 100000; i++) {
1502 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1503 if (vortex_debug > 1)
1504 pr_info("%s: command 0x%04x took %d usecs\n",
1505 dev->name, cmd, i * 10);
1506 return;
1508 udelay(10);
1510 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1511 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1514 static void
1515 vortex_set_duplex(struct net_device *dev)
1517 struct vortex_private *vp = netdev_priv(dev);
1519 pr_info("%s: setting %s-duplex.\n",
1520 dev->name, (vp->full_duplex) ? "full" : "half");
1522 /* Set the full-duplex bit. */
1523 window_write16(vp,
1524 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1525 (vp->large_frames ? 0x40 : 0) |
1526 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1527 0x100 : 0),
1528 3, Wn3_MAC_Ctrl);
1531 static void vortex_check_media(struct net_device *dev, unsigned int init)
1533 struct vortex_private *vp = netdev_priv(dev);
1534 unsigned int ok_to_print = 0;
1536 if (vortex_debug > 3)
1537 ok_to_print = 1;
1539 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1540 vp->full_duplex = vp->mii.full_duplex;
1541 vortex_set_duplex(dev);
1542 } else if (init) {
1543 vortex_set_duplex(dev);
1547 static int
1548 vortex_up(struct net_device *dev)
1550 struct vortex_private *vp = netdev_priv(dev);
1551 void __iomem *ioaddr = vp->ioaddr;
1552 unsigned int config;
1553 int i, mii_reg1, mii_reg5, err = 0;
1555 if (VORTEX_PCI(vp)) {
1556 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1557 if (vp->pm_state_valid)
1558 pci_restore_state(VORTEX_PCI(vp));
1559 err = pci_enable_device(VORTEX_PCI(vp));
1560 if (err) {
1561 pr_warning("%s: Could not enable device\n",
1562 dev->name);
1563 goto err_out;
1567 /* Before initializing select the active media port. */
1568 config = window_read32(vp, 3, Wn3_Config);
1570 if (vp->media_override != 7) {
1571 pr_info("%s: Media override to transceiver %d (%s).\n",
1572 dev->name, vp->media_override,
1573 media_tbl[vp->media_override].name);
1574 dev->if_port = vp->media_override;
1575 } else if (vp->autoselect) {
1576 if (vp->has_nway) {
1577 if (vortex_debug > 1)
1578 pr_info("%s: using NWAY device table, not %d\n",
1579 dev->name, dev->if_port);
1580 dev->if_port = XCVR_NWAY;
1581 } else {
1582 /* Find first available media type, starting with 100baseTx. */
1583 dev->if_port = XCVR_100baseTx;
1584 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1585 dev->if_port = media_tbl[dev->if_port].next;
1586 if (vortex_debug > 1)
1587 pr_info("%s: first available media type: %s\n",
1588 dev->name, media_tbl[dev->if_port].name);
1590 } else {
1591 dev->if_port = vp->default_media;
1592 if (vortex_debug > 1)
1593 pr_info("%s: using default media %s\n",
1594 dev->name, media_tbl[dev->if_port].name);
1597 init_timer(&vp->timer);
1598 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1599 vp->timer.data = (unsigned long)dev;
1600 vp->timer.function = vortex_timer; /* timer handler */
1601 add_timer(&vp->timer);
1603 init_timer(&vp->rx_oom_timer);
1604 vp->rx_oom_timer.data = (unsigned long)dev;
1605 vp->rx_oom_timer.function = rx_oom_timer;
1607 if (vortex_debug > 1)
1608 pr_debug("%s: Initial media type %s.\n",
1609 dev->name, media_tbl[dev->if_port].name);
1611 vp->full_duplex = vp->mii.force_media;
1612 config = BFINS(config, dev->if_port, 20, 4);
1613 if (vortex_debug > 6)
1614 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1615 window_write32(vp, config, 3, Wn3_Config);
1617 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1618 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1619 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1620 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1621 vp->mii.full_duplex = vp->full_duplex;
1623 vortex_check_media(dev, 1);
1625 else
1626 vortex_set_duplex(dev);
1628 issue_and_wait(dev, TxReset);
1630 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1632 issue_and_wait(dev, RxReset|0x04);
1635 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1637 if (vortex_debug > 1) {
1638 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1639 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1642 /* Set the station address and mask in window 2 each time opened. */
1643 for (i = 0; i < 6; i++)
1644 window_write8(vp, dev->dev_addr[i], 2, i);
1645 for (; i < 12; i+=2)
1646 window_write16(vp, 0, 2, i);
1648 if (vp->cb_fn_base) {
1649 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1650 if (vp->drv_flags & INVERT_LED_PWR)
1651 n |= 0x10;
1652 if (vp->drv_flags & INVERT_MII_PWR)
1653 n |= 0x4000;
1654 window_write16(vp, n, 2, Wn2_ResetOptions);
1657 if (dev->if_port == XCVR_10base2)
1658 /* Start the thinnet transceiver. We should really wait 50ms...*/
1659 iowrite16(StartCoax, ioaddr + EL3_CMD);
1660 if (dev->if_port != XCVR_NWAY) {
1661 window_write16(vp,
1662 (window_read16(vp, 4, Wn4_Media) &
1663 ~(Media_10TP|Media_SQE)) |
1664 media_tbl[dev->if_port].media_bits,
1665 4, Wn4_Media);
1668 /* Switch to the stats window, and clear all stats by reading. */
1669 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1670 for (i = 0; i < 10; i++)
1671 window_read8(vp, 6, i);
1672 window_read16(vp, 6, 10);
1673 window_read16(vp, 6, 12);
1674 /* New: On the Vortex we must also clear the BadSSD counter. */
1675 window_read8(vp, 4, 12);
1676 /* ..and on the Boomerang we enable the extra statistics bits. */
1677 window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1679 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1680 vp->cur_rx = vp->dirty_rx = 0;
1681 /* Initialize the RxEarly register as recommended. */
1682 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1683 iowrite32(0x0020, ioaddr + PktStatus);
1684 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1686 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1687 vp->cur_tx = vp->dirty_tx = 0;
1688 if (vp->drv_flags & IS_BOOMERANG)
1689 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1690 /* Clear the Rx, Tx rings. */
1691 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1692 vp->rx_ring[i].status = 0;
1693 for (i = 0; i < TX_RING_SIZE; i++)
1694 vp->tx_skbuff[i] = NULL;
1695 iowrite32(0, ioaddr + DownListPtr);
1697 /* Set receiver mode: presumably accept b-case and phys addr only. */
1698 set_rx_mode(dev);
1699 /* enable 802.1q tagged frames */
1700 set_8021q_mode(dev, 1);
1701 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1703 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1704 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1705 /* Allow status bits to be seen. */
1706 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1707 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1708 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1709 (vp->bus_master ? DMADone : 0);
1710 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1711 (vp->full_bus_master_rx ? 0 : RxComplete) |
1712 StatsFull | HostError | TxComplete | IntReq
1713 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1714 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1715 /* Ack all pending events, and set active indicator mask. */
1716 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1717 ioaddr + EL3_CMD);
1718 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1719 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1720 iowrite32(0x8000, vp->cb_fn_base + 4);
1721 netif_start_queue (dev);
1722 err_out:
1723 return err;
1726 static int
1727 vortex_open(struct net_device *dev)
1729 struct vortex_private *vp = netdev_priv(dev);
1730 int i;
1731 int retval;
1733 /* Use the now-standard shared IRQ implementation. */
1734 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1735 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1736 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1737 goto err;
1740 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1741 if (vortex_debug > 2)
1742 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1743 for (i = 0; i < RX_RING_SIZE; i++) {
1744 struct sk_buff *skb;
1745 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1746 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1747 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1749 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1750 GFP_KERNEL);
1751 vp->rx_skbuff[i] = skb;
1752 if (skb == NULL)
1753 break; /* Bad news! */
1755 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1756 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1758 if (i != RX_RING_SIZE) {
1759 int j;
1760 pr_emerg("%s: no memory for rx ring\n", dev->name);
1761 for (j = 0; j < i; j++) {
1762 if (vp->rx_skbuff[j]) {
1763 dev_kfree_skb(vp->rx_skbuff[j]);
1764 vp->rx_skbuff[j] = NULL;
1767 retval = -ENOMEM;
1768 goto err_free_irq;
1770 /* Wrap the ring. */
1771 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1774 retval = vortex_up(dev);
1775 if (!retval)
1776 goto out;
1778 err_free_irq:
1779 free_irq(dev->irq, dev);
1780 err:
1781 if (vortex_debug > 1)
1782 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1783 out:
1784 return retval;
1787 static void
1788 vortex_timer(unsigned long data)
1790 struct net_device *dev = (struct net_device *)data;
1791 struct vortex_private *vp = netdev_priv(dev);
1792 void __iomem *ioaddr = vp->ioaddr;
1793 int next_tick = 60*HZ;
1794 int ok = 0;
1795 int media_status;
1797 if (vortex_debug > 2) {
1798 pr_debug("%s: Media selection timer tick happened, %s.\n",
1799 dev->name, media_tbl[dev->if_port].name);
1800 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1803 media_status = window_read16(vp, 4, Wn4_Media);
1804 switch (dev->if_port) {
1805 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1806 if (media_status & Media_LnkBeat) {
1807 netif_carrier_on(dev);
1808 ok = 1;
1809 if (vortex_debug > 1)
1810 pr_debug("%s: Media %s has link beat, %x.\n",
1811 dev->name, media_tbl[dev->if_port].name, media_status);
1812 } else {
1813 netif_carrier_off(dev);
1814 if (vortex_debug > 1) {
1815 pr_debug("%s: Media %s has no link beat, %x.\n",
1816 dev->name, media_tbl[dev->if_port].name, media_status);
1819 break;
1820 case XCVR_MII: case XCVR_NWAY:
1822 ok = 1;
1823 vortex_check_media(dev, 0);
1825 break;
1826 default: /* Other media types handled by Tx timeouts. */
1827 if (vortex_debug > 1)
1828 pr_debug("%s: Media %s has no indication, %x.\n",
1829 dev->name, media_tbl[dev->if_port].name, media_status);
1830 ok = 1;
1833 if (!netif_carrier_ok(dev))
1834 next_tick = 5*HZ;
1836 if (vp->medialock)
1837 goto leave_media_alone;
1839 if (!ok) {
1840 unsigned int config;
1842 spin_lock_irq(&vp->lock);
1844 do {
1845 dev->if_port = media_tbl[dev->if_port].next;
1846 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1847 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1848 dev->if_port = vp->default_media;
1849 if (vortex_debug > 1)
1850 pr_debug("%s: Media selection failing, using default %s port.\n",
1851 dev->name, media_tbl[dev->if_port].name);
1852 } else {
1853 if (vortex_debug > 1)
1854 pr_debug("%s: Media selection failed, now trying %s port.\n",
1855 dev->name, media_tbl[dev->if_port].name);
1856 next_tick = media_tbl[dev->if_port].wait;
1858 window_write16(vp,
1859 (media_status & ~(Media_10TP|Media_SQE)) |
1860 media_tbl[dev->if_port].media_bits,
1861 4, Wn4_Media);
1863 config = window_read32(vp, 3, Wn3_Config);
1864 config = BFINS(config, dev->if_port, 20, 4);
1865 window_write32(vp, config, 3, Wn3_Config);
1867 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1868 ioaddr + EL3_CMD);
1869 if (vortex_debug > 1)
1870 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1871 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1873 spin_unlock_irq(&vp->lock);
1876 leave_media_alone:
1877 if (vortex_debug > 2)
1878 pr_debug("%s: Media selection timer finished, %s.\n",
1879 dev->name, media_tbl[dev->if_port].name);
1881 mod_timer(&vp->timer, RUN_AT(next_tick));
1882 if (vp->deferred)
1883 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1886 static void vortex_tx_timeout(struct net_device *dev)
1888 struct vortex_private *vp = netdev_priv(dev);
1889 void __iomem *ioaddr = vp->ioaddr;
1891 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1892 dev->name, ioread8(ioaddr + TxStatus),
1893 ioread16(ioaddr + EL3_STATUS));
1894 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1895 window_read16(vp, 4, Wn4_NetDiag),
1896 window_read16(vp, 4, Wn4_Media),
1897 ioread32(ioaddr + PktStatus),
1898 window_read16(vp, 4, Wn4_FIFODiag));
1899 /* Slight code bloat to be user friendly. */
1900 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1901 pr_err("%s: Transmitter encountered 16 collisions --"
1902 " network cable problem?\n", dev->name);
1903 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1904 pr_err("%s: Interrupt posted but not delivered --"
1905 " IRQ blocked by another device?\n", dev->name);
1906 /* Bad idea here.. but we might as well handle a few events. */
1909 * Block interrupts because vortex_interrupt does a bare spin_lock()
1911 unsigned long flags;
1912 local_irq_save(flags);
1913 if (vp->full_bus_master_tx)
1914 boomerang_interrupt(dev->irq, dev);
1915 else
1916 vortex_interrupt(dev->irq, dev);
1917 local_irq_restore(flags);
1921 if (vortex_debug > 0)
1922 dump_tx_ring(dev);
1924 issue_and_wait(dev, TxReset);
1926 dev->stats.tx_errors++;
1927 if (vp->full_bus_master_tx) {
1928 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1929 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1930 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1931 ioaddr + DownListPtr);
1932 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1933 netif_wake_queue (dev);
1934 if (vp->drv_flags & IS_BOOMERANG)
1935 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1936 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1937 } else {
1938 dev->stats.tx_dropped++;
1939 netif_wake_queue(dev);
1942 /* Issue Tx Enable */
1943 iowrite16(TxEnable, ioaddr + EL3_CMD);
1944 dev->trans_start = jiffies; /* prevent tx timeout */
1948 * Handle uncommon interrupt sources. This is a separate routine to minimize
1949 * the cache impact.
1951 static void
1952 vortex_error(struct net_device *dev, int status)
1954 struct vortex_private *vp = netdev_priv(dev);
1955 void __iomem *ioaddr = vp->ioaddr;
1956 int do_tx_reset = 0, reset_mask = 0;
1957 unsigned char tx_status = 0;
1959 if (vortex_debug > 2) {
1960 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1963 if (status & TxComplete) { /* Really "TxError" for us. */
1964 tx_status = ioread8(ioaddr + TxStatus);
1965 /* Presumably a tx-timeout. We must merely re-enable. */
1966 if (vortex_debug > 2 ||
1967 (tx_status != 0x88 && vortex_debug > 0)) {
1968 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1969 dev->name, tx_status);
1970 if (tx_status == 0x82) {
1971 pr_err("Probably a duplex mismatch. See "
1972 "Documentation/networking/vortex.txt\n");
1974 dump_tx_ring(dev);
1976 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1977 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1978 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1979 iowrite8(0, ioaddr + TxStatus);
1980 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1981 do_tx_reset = 1;
1982 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1983 do_tx_reset = 1;
1984 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1985 } else { /* Merely re-enable the transmitter. */
1986 iowrite16(TxEnable, ioaddr + EL3_CMD);
1990 if (status & RxEarly) { /* Rx early is unused. */
1991 vortex_rx(dev);
1992 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1994 if (status & StatsFull) { /* Empty statistics. */
1995 static int DoneDidThat;
1996 if (vortex_debug > 4)
1997 pr_debug("%s: Updating stats.\n", dev->name);
1998 update_stats(ioaddr, dev);
1999 /* HACK: Disable statistics as an interrupt source. */
2000 /* This occurs when we have the wrong media type! */
2001 if (DoneDidThat == 0 &&
2002 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2003 pr_warning("%s: Updating statistics failed, disabling "
2004 "stats as an interrupt source.\n", dev->name);
2005 iowrite16(SetIntrEnb |
2006 (window_read16(vp, 5, 10) & ~StatsFull),
2007 ioaddr + EL3_CMD);
2008 vp->intr_enable &= ~StatsFull;
2009 DoneDidThat++;
2012 if (status & IntReq) { /* Restore all interrupt sources. */
2013 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2014 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2016 if (status & HostError) {
2017 u16 fifo_diag;
2018 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2019 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2020 dev->name, fifo_diag);
2021 /* Adapter failure requires Tx/Rx reset and reinit. */
2022 if (vp->full_bus_master_tx) {
2023 int bus_status = ioread32(ioaddr + PktStatus);
2024 /* 0x80000000 PCI master abort. */
2025 /* 0x40000000 PCI target abort. */
2026 if (vortex_debug)
2027 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2029 /* In this case, blow the card away */
2030 /* Must not enter D3 or we can't legally issue the reset! */
2031 vortex_down(dev, 0);
2032 issue_and_wait(dev, TotalReset | 0xff);
2033 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2034 } else if (fifo_diag & 0x0400)
2035 do_tx_reset = 1;
2036 if (fifo_diag & 0x3000) {
2037 /* Reset Rx fifo and upload logic */
2038 issue_and_wait(dev, RxReset|0x07);
2039 /* Set the Rx filter to the current state. */
2040 set_rx_mode(dev);
2041 /* enable 802.1q VLAN tagged frames */
2042 set_8021q_mode(dev, 1);
2043 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2044 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2048 if (do_tx_reset) {
2049 issue_and_wait(dev, TxReset|reset_mask);
2050 iowrite16(TxEnable, ioaddr + EL3_CMD);
2051 if (!vp->full_bus_master_tx)
2052 netif_wake_queue(dev);
2056 static netdev_tx_t
2057 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2059 struct vortex_private *vp = netdev_priv(dev);
2060 void __iomem *ioaddr = vp->ioaddr;
2062 /* Put out the doubleword header... */
2063 iowrite32(skb->len, ioaddr + TX_FIFO);
2064 if (vp->bus_master) {
2065 /* Set the bus-master controller to transfer the packet. */
2066 int len = (skb->len + 3) & ~3;
2067 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2068 PCI_DMA_TODEVICE);
2069 spin_lock_irq(&vp->window_lock);
2070 window_set(vp, 7);
2071 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2072 iowrite16(len, ioaddr + Wn7_MasterLen);
2073 spin_unlock_irq(&vp->window_lock);
2074 vp->tx_skb = skb;
2075 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2076 /* netif_wake_queue() will be called at the DMADone interrupt. */
2077 } else {
2078 /* ... and the packet rounded to a doubleword. */
2079 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2080 dev_kfree_skb (skb);
2081 if (ioread16(ioaddr + TxFree) > 1536) {
2082 netif_start_queue (dev); /* AKPM: redundant? */
2083 } else {
2084 /* Interrupt us when the FIFO has room for max-sized packet. */
2085 netif_stop_queue(dev);
2086 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2091 /* Clear the Tx status stack. */
2093 int tx_status;
2094 int i = 32;
2096 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2097 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2098 if (vortex_debug > 2)
2099 pr_debug("%s: Tx error, status %2.2x.\n",
2100 dev->name, tx_status);
2101 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2102 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2103 if (tx_status & 0x30) {
2104 issue_and_wait(dev, TxReset);
2106 iowrite16(TxEnable, ioaddr + EL3_CMD);
2108 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2111 return NETDEV_TX_OK;
2114 static netdev_tx_t
2115 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2117 struct vortex_private *vp = netdev_priv(dev);
2118 void __iomem *ioaddr = vp->ioaddr;
2119 /* Calculate the next Tx descriptor entry. */
2120 int entry = vp->cur_tx % TX_RING_SIZE;
2121 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2122 unsigned long flags;
2124 if (vortex_debug > 6) {
2125 pr_debug("boomerang_start_xmit()\n");
2126 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2127 dev->name, vp->cur_tx);
2130 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2131 if (vortex_debug > 0)
2132 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2133 dev->name);
2134 netif_stop_queue(dev);
2135 return NETDEV_TX_BUSY;
2138 vp->tx_skbuff[entry] = skb;
2140 vp->tx_ring[entry].next = 0;
2141 #if DO_ZEROCOPY
2142 if (skb->ip_summed != CHECKSUM_PARTIAL)
2143 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2144 else
2145 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2147 if (!skb_shinfo(skb)->nr_frags) {
2148 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2149 skb->len, PCI_DMA_TODEVICE));
2150 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2151 } else {
2152 int i;
2154 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2155 skb_headlen(skb), PCI_DMA_TODEVICE));
2156 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2159 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2161 vp->tx_ring[entry].frag[i+1].addr =
2162 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2163 (void*)page_address(frag->page) + frag->page_offset,
2164 frag->size, PCI_DMA_TODEVICE));
2166 if (i == skb_shinfo(skb)->nr_frags-1)
2167 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2168 else
2169 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2172 #else
2173 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2174 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2175 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2176 #endif
2178 spin_lock_irqsave(&vp->lock, flags);
2179 /* Wait for the stall to complete. */
2180 issue_and_wait(dev, DownStall);
2181 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2182 if (ioread32(ioaddr + DownListPtr) == 0) {
2183 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2184 vp->queued_packet++;
2187 vp->cur_tx++;
2188 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2189 netif_stop_queue (dev);
2190 } else { /* Clear previous interrupt enable. */
2191 #if defined(tx_interrupt_mitigation)
2192 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2193 * were selected, this would corrupt DN_COMPLETE. No?
2195 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2196 #endif
2198 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2199 spin_unlock_irqrestore(&vp->lock, flags);
2200 return NETDEV_TX_OK;
2203 /* The interrupt handler does all of the Rx thread work and cleans up
2204 after the Tx thread. */
2207 * This is the ISR for the vortex series chips.
2208 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2211 static irqreturn_t
2212 vortex_interrupt(int irq, void *dev_id)
2214 struct net_device *dev = dev_id;
2215 struct vortex_private *vp = netdev_priv(dev);
2216 void __iomem *ioaddr;
2217 int status;
2218 int work_done = max_interrupt_work;
2219 int handled = 0;
2221 ioaddr = vp->ioaddr;
2222 spin_lock(&vp->lock);
2224 status = ioread16(ioaddr + EL3_STATUS);
2226 if (vortex_debug > 6)
2227 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2229 if ((status & IntLatch) == 0)
2230 goto handler_exit; /* No interrupt: shared IRQs cause this */
2231 handled = 1;
2233 if (status & IntReq) {
2234 status |= vp->deferred;
2235 vp->deferred = 0;
2238 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2239 goto handler_exit;
2241 if (vortex_debug > 4)
2242 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2243 dev->name, status, ioread8(ioaddr + Timer));
2245 spin_lock(&vp->window_lock);
2246 window_set(vp, 7);
2248 do {
2249 if (vortex_debug > 5)
2250 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2251 dev->name, status);
2252 if (status & RxComplete)
2253 vortex_rx(dev);
2255 if (status & TxAvailable) {
2256 if (vortex_debug > 5)
2257 pr_debug(" TX room bit was handled.\n");
2258 /* There's room in the FIFO for a full-sized packet. */
2259 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2260 netif_wake_queue (dev);
2263 if (status & DMADone) {
2264 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2265 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2266 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2267 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2268 if (ioread16(ioaddr + TxFree) > 1536) {
2270 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2271 * insufficient FIFO room, the TxAvailable test will succeed and call
2272 * netif_wake_queue()
2274 netif_wake_queue(dev);
2275 } else { /* Interrupt when FIFO has room for max-sized packet. */
2276 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2277 netif_stop_queue(dev);
2281 /* Check for all uncommon interrupts at once. */
2282 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2283 if (status == 0xffff)
2284 break;
2285 vortex_error(dev, status);
2288 if (--work_done < 0) {
2289 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2290 dev->name, status);
2291 /* Disable all pending interrupts. */
2292 do {
2293 vp->deferred |= status;
2294 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2295 ioaddr + EL3_CMD);
2296 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2297 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2298 /* The timer will reenable interrupts. */
2299 mod_timer(&vp->timer, jiffies + 1*HZ);
2300 break;
2302 /* Acknowledge the IRQ. */
2303 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2304 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2306 spin_unlock(&vp->window_lock);
2308 if (vortex_debug > 4)
2309 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2310 dev->name, status);
2311 handler_exit:
2312 spin_unlock(&vp->lock);
2313 return IRQ_RETVAL(handled);
2317 * This is the ISR for the boomerang series chips.
2318 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2321 static irqreturn_t
2322 boomerang_interrupt(int irq, void *dev_id)
2324 struct net_device *dev = dev_id;
2325 struct vortex_private *vp = netdev_priv(dev);
2326 void __iomem *ioaddr;
2327 int status;
2328 int work_done = max_interrupt_work;
2330 ioaddr = vp->ioaddr;
2333 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2334 * and boomerang_start_xmit
2336 spin_lock(&vp->lock);
2338 status = ioread16(ioaddr + EL3_STATUS);
2340 if (vortex_debug > 6)
2341 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2343 if ((status & IntLatch) == 0)
2344 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2346 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2347 if (vortex_debug > 1)
2348 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2349 goto handler_exit;
2352 if (status & IntReq) {
2353 status |= vp->deferred;
2354 vp->deferred = 0;
2357 if (vortex_debug > 4)
2358 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2359 dev->name, status, ioread8(ioaddr + Timer));
2360 do {
2361 if (vortex_debug > 5)
2362 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2363 dev->name, status);
2364 if (status & UpComplete) {
2365 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2366 if (vortex_debug > 5)
2367 pr_debug("boomerang_interrupt->boomerang_rx\n");
2368 boomerang_rx(dev);
2371 if (status & DownComplete) {
2372 unsigned int dirty_tx = vp->dirty_tx;
2374 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2375 while (vp->cur_tx - dirty_tx > 0) {
2376 int entry = dirty_tx % TX_RING_SIZE;
2377 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2378 if (ioread32(ioaddr + DownListPtr) ==
2379 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2380 break; /* It still hasn't been processed. */
2381 #else
2382 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2383 break; /* It still hasn't been processed. */
2384 #endif
2386 if (vp->tx_skbuff[entry]) {
2387 struct sk_buff *skb = vp->tx_skbuff[entry];
2388 #if DO_ZEROCOPY
2389 int i;
2390 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2391 pci_unmap_single(VORTEX_PCI(vp),
2392 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2393 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2394 PCI_DMA_TODEVICE);
2395 #else
2396 pci_unmap_single(VORTEX_PCI(vp),
2397 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2398 #endif
2399 dev_kfree_skb_irq(skb);
2400 vp->tx_skbuff[entry] = NULL;
2401 } else {
2402 pr_debug("boomerang_interrupt: no skb!\n");
2404 /* dev->stats.tx_packets++; Counted below. */
2405 dirty_tx++;
2407 vp->dirty_tx = dirty_tx;
2408 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2409 if (vortex_debug > 6)
2410 pr_debug("boomerang_interrupt: wake queue\n");
2411 netif_wake_queue (dev);
2415 /* Check for all uncommon interrupts at once. */
2416 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2417 vortex_error(dev, status);
2419 if (--work_done < 0) {
2420 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2421 dev->name, status);
2422 /* Disable all pending interrupts. */
2423 do {
2424 vp->deferred |= status;
2425 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2426 ioaddr + EL3_CMD);
2427 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2428 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2429 /* The timer will reenable interrupts. */
2430 mod_timer(&vp->timer, jiffies + 1*HZ);
2431 break;
2433 /* Acknowledge the IRQ. */
2434 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2435 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2436 iowrite32(0x8000, vp->cb_fn_base + 4);
2438 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2440 if (vortex_debug > 4)
2441 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2442 dev->name, status);
2443 handler_exit:
2444 spin_unlock(&vp->lock);
2445 return IRQ_HANDLED;
2448 static int vortex_rx(struct net_device *dev)
2450 struct vortex_private *vp = netdev_priv(dev);
2451 void __iomem *ioaddr = vp->ioaddr;
2452 int i;
2453 short rx_status;
2455 if (vortex_debug > 5)
2456 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2457 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2458 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2459 if (rx_status & 0x4000) { /* Error, update stats. */
2460 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2461 if (vortex_debug > 2)
2462 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2463 dev->stats.rx_errors++;
2464 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2465 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2466 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2467 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2468 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2469 } else {
2470 /* The packet length: up to 4.5K!. */
2471 int pkt_len = rx_status & 0x1fff;
2472 struct sk_buff *skb;
2474 skb = dev_alloc_skb(pkt_len + 5);
2475 if (vortex_debug > 4)
2476 pr_debug("Receiving packet size %d status %4.4x.\n",
2477 pkt_len, rx_status);
2478 if (skb != NULL) {
2479 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2480 /* 'skb_put()' points to the start of sk_buff data area. */
2481 if (vp->bus_master &&
2482 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2483 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2484 pkt_len, PCI_DMA_FROMDEVICE);
2485 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2486 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2487 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2488 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2490 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2491 } else {
2492 ioread32_rep(ioaddr + RX_FIFO,
2493 skb_put(skb, pkt_len),
2494 (pkt_len + 3) >> 2);
2496 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2497 skb->protocol = eth_type_trans(skb, dev);
2498 netif_rx(skb);
2499 dev->stats.rx_packets++;
2500 /* Wait a limited time to go to next packet. */
2501 for (i = 200; i >= 0; i--)
2502 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2503 break;
2504 continue;
2505 } else if (vortex_debug > 0)
2506 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2507 dev->name, pkt_len);
2508 dev->stats.rx_dropped++;
2510 issue_and_wait(dev, RxDiscard);
2513 return 0;
2516 static int
2517 boomerang_rx(struct net_device *dev)
2519 struct vortex_private *vp = netdev_priv(dev);
2520 int entry = vp->cur_rx % RX_RING_SIZE;
2521 void __iomem *ioaddr = vp->ioaddr;
2522 int rx_status;
2523 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2525 if (vortex_debug > 5)
2526 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2528 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2529 if (--rx_work_limit < 0)
2530 break;
2531 if (rx_status & RxDError) { /* Error, update stats. */
2532 unsigned char rx_error = rx_status >> 16;
2533 if (vortex_debug > 2)
2534 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2535 dev->stats.rx_errors++;
2536 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2537 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2538 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2539 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2540 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2541 } else {
2542 /* The packet length: up to 4.5K!. */
2543 int pkt_len = rx_status & 0x1fff;
2544 struct sk_buff *skb;
2545 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2547 if (vortex_debug > 4)
2548 pr_debug("Receiving packet size %d status %4.4x.\n",
2549 pkt_len, rx_status);
2551 /* Check if the packet is long enough to just accept without
2552 copying to a properly sized skbuff. */
2553 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2554 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2555 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2556 /* 'skb_put()' points to the start of sk_buff data area. */
2557 memcpy(skb_put(skb, pkt_len),
2558 vp->rx_skbuff[entry]->data,
2559 pkt_len);
2560 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2561 vp->rx_copy++;
2562 } else {
2563 /* Pass up the skbuff already on the Rx ring. */
2564 skb = vp->rx_skbuff[entry];
2565 vp->rx_skbuff[entry] = NULL;
2566 skb_put(skb, pkt_len);
2567 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2568 vp->rx_nocopy++;
2570 skb->protocol = eth_type_trans(skb, dev);
2571 { /* Use hardware checksum info. */
2572 int csum_bits = rx_status & 0xee000000;
2573 if (csum_bits &&
2574 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2575 csum_bits == (IPChksumValid | UDPChksumValid))) {
2576 skb->ip_summed = CHECKSUM_UNNECESSARY;
2577 vp->rx_csumhits++;
2580 netif_rx(skb);
2581 dev->stats.rx_packets++;
2583 entry = (++vp->cur_rx) % RX_RING_SIZE;
2585 /* Refill the Rx ring buffers. */
2586 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2587 struct sk_buff *skb;
2588 entry = vp->dirty_rx % RX_RING_SIZE;
2589 if (vp->rx_skbuff[entry] == NULL) {
2590 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2591 if (skb == NULL) {
2592 static unsigned long last_jif;
2593 if (time_after(jiffies, last_jif + 10 * HZ)) {
2594 pr_warning("%s: memory shortage\n", dev->name);
2595 last_jif = jiffies;
2597 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2598 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2599 break; /* Bad news! */
2602 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2603 vp->rx_skbuff[entry] = skb;
2605 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2606 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2608 return 0;
2612 * If we've hit a total OOM refilling the Rx ring we poll once a second
2613 * for some memory. Otherwise there is no way to restart the rx process.
2615 static void
2616 rx_oom_timer(unsigned long arg)
2618 struct net_device *dev = (struct net_device *)arg;
2619 struct vortex_private *vp = netdev_priv(dev);
2621 spin_lock_irq(&vp->lock);
2622 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2623 boomerang_rx(dev);
2624 if (vortex_debug > 1) {
2625 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2626 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2628 spin_unlock_irq(&vp->lock);
2631 static void
2632 vortex_down(struct net_device *dev, int final_down)
2634 struct vortex_private *vp = netdev_priv(dev);
2635 void __iomem *ioaddr = vp->ioaddr;
2637 netif_stop_queue (dev);
2639 del_timer_sync(&vp->rx_oom_timer);
2640 del_timer_sync(&vp->timer);
2642 /* Turn off statistics ASAP. We update dev->stats below. */
2643 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2645 /* Disable the receiver and transmitter. */
2646 iowrite16(RxDisable, ioaddr + EL3_CMD);
2647 iowrite16(TxDisable, ioaddr + EL3_CMD);
2649 /* Disable receiving 802.1q tagged frames */
2650 set_8021q_mode(dev, 0);
2652 if (dev->if_port == XCVR_10base2)
2653 /* Turn off thinnet power. Green! */
2654 iowrite16(StopCoax, ioaddr + EL3_CMD);
2656 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2658 update_stats(ioaddr, dev);
2659 if (vp->full_bus_master_rx)
2660 iowrite32(0, ioaddr + UpListPtr);
2661 if (vp->full_bus_master_tx)
2662 iowrite32(0, ioaddr + DownListPtr);
2664 if (final_down && VORTEX_PCI(vp)) {
2665 vp->pm_state_valid = 1;
2666 pci_save_state(VORTEX_PCI(vp));
2667 acpi_set_WOL(dev);
2671 static int
2672 vortex_close(struct net_device *dev)
2674 struct vortex_private *vp = netdev_priv(dev);
2675 void __iomem *ioaddr = vp->ioaddr;
2676 int i;
2678 if (netif_device_present(dev))
2679 vortex_down(dev, 1);
2681 if (vortex_debug > 1) {
2682 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2683 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2684 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2685 " tx_queued %d Rx pre-checksummed %d.\n",
2686 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2689 #if DO_ZEROCOPY
2690 if (vp->rx_csumhits &&
2691 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2692 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2693 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2695 #endif
2697 free_irq(dev->irq, dev);
2699 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2700 for (i = 0; i < RX_RING_SIZE; i++)
2701 if (vp->rx_skbuff[i]) {
2702 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2703 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2704 dev_kfree_skb(vp->rx_skbuff[i]);
2705 vp->rx_skbuff[i] = NULL;
2708 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2709 for (i = 0; i < TX_RING_SIZE; i++) {
2710 if (vp->tx_skbuff[i]) {
2711 struct sk_buff *skb = vp->tx_skbuff[i];
2712 #if DO_ZEROCOPY
2713 int k;
2715 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2716 pci_unmap_single(VORTEX_PCI(vp),
2717 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2718 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2719 PCI_DMA_TODEVICE);
2720 #else
2721 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2722 #endif
2723 dev_kfree_skb(skb);
2724 vp->tx_skbuff[i] = NULL;
2729 return 0;
2732 static void
2733 dump_tx_ring(struct net_device *dev)
2735 if (vortex_debug > 0) {
2736 struct vortex_private *vp = netdev_priv(dev);
2737 void __iomem *ioaddr = vp->ioaddr;
2739 if (vp->full_bus_master_tx) {
2740 int i;
2741 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2743 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2744 vp->full_bus_master_tx,
2745 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2746 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2747 pr_err(" Transmit list %8.8x vs. %p.\n",
2748 ioread32(ioaddr + DownListPtr),
2749 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2750 issue_and_wait(dev, DownStall);
2751 for (i = 0; i < TX_RING_SIZE; i++) {
2752 unsigned int length;
2754 #if DO_ZEROCOPY
2755 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2756 #else
2757 length = le32_to_cpu(vp->tx_ring[i].length);
2758 #endif
2759 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2760 i, &vp->tx_ring[i], length,
2761 le32_to_cpu(vp->tx_ring[i].status));
2763 if (!stalled)
2764 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2769 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2771 struct vortex_private *vp = netdev_priv(dev);
2772 void __iomem *ioaddr = vp->ioaddr;
2773 unsigned long flags;
2775 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2776 spin_lock_irqsave (&vp->lock, flags);
2777 update_stats(ioaddr, dev);
2778 spin_unlock_irqrestore (&vp->lock, flags);
2780 return &dev->stats;
2783 /* Update statistics.
2784 Unlike with the EL3 we need not worry about interrupts changing
2785 the window setting from underneath us, but we must still guard
2786 against a race condition with a StatsUpdate interrupt updating the
2787 table. This is done by checking that the ASM (!) code generated uses
2788 atomic updates with '+='.
2790 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2792 struct vortex_private *vp = netdev_priv(dev);
2794 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2795 /* Switch to the stats window, and read everything. */
2796 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0);
2797 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1);
2798 dev->stats.tx_window_errors += window_read8(vp, 6, 4);
2799 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5);
2800 dev->stats.tx_packets += window_read8(vp, 6, 6);
2801 dev->stats.tx_packets += (window_read8(vp, 6, 9) &
2802 0x30) << 4;
2803 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */
2804 /* Don't bother with register 9, an extension of registers 6&7.
2805 If we do use the 6&7 values the atomic update assumption above
2806 is invalid. */
2807 dev->stats.rx_bytes += window_read16(vp, 6, 10);
2808 dev->stats.tx_bytes += window_read16(vp, 6, 12);
2809 /* Extra stats for get_ethtool_stats() */
2810 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2);
2811 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3);
2812 vp->xstats.tx_deferred += window_read8(vp, 6, 8);
2813 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12);
2815 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2816 + vp->xstats.tx_single_collisions
2817 + vp->xstats.tx_max_collisions;
2820 u8 up = window_read8(vp, 4, 13);
2821 dev->stats.rx_bytes += (up & 0x0f) << 16;
2822 dev->stats.tx_bytes += (up & 0xf0) << 12;
2826 static int vortex_nway_reset(struct net_device *dev)
2828 struct vortex_private *vp = netdev_priv(dev);
2830 return mii_nway_restart(&vp->mii);
2833 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2835 struct vortex_private *vp = netdev_priv(dev);
2837 return mii_ethtool_gset(&vp->mii, cmd);
2840 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2842 struct vortex_private *vp = netdev_priv(dev);
2844 return mii_ethtool_sset(&vp->mii, cmd);
2847 static u32 vortex_get_msglevel(struct net_device *dev)
2849 return vortex_debug;
2852 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2854 vortex_debug = dbg;
2857 static int vortex_get_sset_count(struct net_device *dev, int sset)
2859 switch (sset) {
2860 case ETH_SS_STATS:
2861 return VORTEX_NUM_STATS;
2862 default:
2863 return -EOPNOTSUPP;
2867 static void vortex_get_ethtool_stats(struct net_device *dev,
2868 struct ethtool_stats *stats, u64 *data)
2870 struct vortex_private *vp = netdev_priv(dev);
2871 void __iomem *ioaddr = vp->ioaddr;
2872 unsigned long flags;
2874 spin_lock_irqsave(&vp->lock, flags);
2875 update_stats(ioaddr, dev);
2876 spin_unlock_irqrestore(&vp->lock, flags);
2878 data[0] = vp->xstats.tx_deferred;
2879 data[1] = vp->xstats.tx_max_collisions;
2880 data[2] = vp->xstats.tx_multiple_collisions;
2881 data[3] = vp->xstats.tx_single_collisions;
2882 data[4] = vp->xstats.rx_bad_ssd;
2886 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2888 switch (stringset) {
2889 case ETH_SS_STATS:
2890 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2891 break;
2892 default:
2893 WARN_ON(1);
2894 break;
2898 static void vortex_get_drvinfo(struct net_device *dev,
2899 struct ethtool_drvinfo *info)
2901 struct vortex_private *vp = netdev_priv(dev);
2903 strcpy(info->driver, DRV_NAME);
2904 if (VORTEX_PCI(vp)) {
2905 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2906 } else {
2907 if (VORTEX_EISA(vp))
2908 strcpy(info->bus_info, dev_name(vp->gendev));
2909 else
2910 sprintf(info->bus_info, "EISA 0x%lx %d",
2911 dev->base_addr, dev->irq);
2915 static const struct ethtool_ops vortex_ethtool_ops = {
2916 .get_drvinfo = vortex_get_drvinfo,
2917 .get_strings = vortex_get_strings,
2918 .get_msglevel = vortex_get_msglevel,
2919 .set_msglevel = vortex_set_msglevel,
2920 .get_ethtool_stats = vortex_get_ethtool_stats,
2921 .get_sset_count = vortex_get_sset_count,
2922 .get_settings = vortex_get_settings,
2923 .set_settings = vortex_set_settings,
2924 .get_link = ethtool_op_get_link,
2925 .nway_reset = vortex_nway_reset,
2928 #ifdef CONFIG_PCI
2930 * Must power the device up to do MDIO operations
2932 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2934 int err;
2935 struct vortex_private *vp = netdev_priv(dev);
2936 unsigned long flags;
2937 pci_power_t state = 0;
2939 if(VORTEX_PCI(vp))
2940 state = VORTEX_PCI(vp)->current_state;
2942 /* The kernel core really should have pci_get_power_state() */
2944 if(state != 0)
2945 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2946 spin_lock_irqsave(&vp->lock, flags);
2947 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2948 spin_unlock_irqrestore(&vp->lock, flags);
2949 if(state != 0)
2950 pci_set_power_state(VORTEX_PCI(vp), state);
2952 return err;
2954 #endif
2957 /* Pre-Cyclone chips have no documented multicast filter, so the only
2958 multicast setting is to receive all multicast frames. At least
2959 the chip has a very clean way to set the mode, unlike many others. */
2960 static void set_rx_mode(struct net_device *dev)
2962 struct vortex_private *vp = netdev_priv(dev);
2963 void __iomem *ioaddr = vp->ioaddr;
2964 int new_mode;
2966 if (dev->flags & IFF_PROMISC) {
2967 if (vortex_debug > 3)
2968 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
2969 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2970 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
2971 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2972 } else
2973 new_mode = SetRxFilter | RxStation | RxBroadcast;
2975 iowrite16(new_mode, ioaddr + EL3_CMD);
2978 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2979 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2980 Note that this must be done after each RxReset due to some backwards
2981 compatibility logic in the Cyclone and Tornado ASICs */
2983 /* The Ethernet Type used for 802.1q tagged frames */
2984 #define VLAN_ETHER_TYPE 0x8100
2986 static void set_8021q_mode(struct net_device *dev, int enable)
2988 struct vortex_private *vp = netdev_priv(dev);
2989 int mac_ctrl;
2991 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2992 /* cyclone and tornado chipsets can recognize 802.1q
2993 * tagged frames and treat them correctly */
2995 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
2996 if (enable)
2997 max_pkt_size += 4; /* 802.1Q VLAN tag */
2999 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3001 /* set VlanEtherType to let the hardware checksumming
3002 treat tagged frames correctly */
3003 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3004 } else {
3005 /* on older cards we have to enable large frames */
3007 vp->large_frames = dev->mtu > 1500 || enable;
3009 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3010 if (vp->large_frames)
3011 mac_ctrl |= 0x40;
3012 else
3013 mac_ctrl &= ~0x40;
3014 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3017 #else
3019 static void set_8021q_mode(struct net_device *dev, int enable)
3024 #endif
3026 /* MII transceiver control section.
3027 Read and write the MII registers using software-generated serial
3028 MDIO protocol. See the MII specifications or DP83840A data sheet
3029 for details. */
3031 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3032 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3033 "overclocking" issues. */
3034 static void mdio_delay(struct vortex_private *vp)
3036 window_read32(vp, 4, Wn4_PhysicalMgmt);
3039 #define MDIO_SHIFT_CLK 0x01
3040 #define MDIO_DIR_WRITE 0x04
3041 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3042 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3043 #define MDIO_DATA_READ 0x02
3044 #define MDIO_ENB_IN 0x00
3046 /* Generate the preamble required for initial synchronization and
3047 a few older transceivers. */
3048 static void mdio_sync(struct vortex_private *vp, int bits)
3050 /* Establish sync by sending at least 32 logic ones. */
3051 while (-- bits >= 0) {
3052 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3053 mdio_delay(vp);
3054 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3055 4, Wn4_PhysicalMgmt);
3056 mdio_delay(vp);
3060 static int mdio_read(struct net_device *dev, int phy_id, int location)
3062 int i;
3063 struct vortex_private *vp = netdev_priv(dev);
3064 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3065 unsigned int retval = 0;
3067 spin_lock_bh(&vp->mii_lock);
3069 if (mii_preamble_required)
3070 mdio_sync(vp, 32);
3072 /* Shift the read command bits out. */
3073 for (i = 14; i >= 0; i--) {
3074 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3075 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3076 mdio_delay(vp);
3077 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3078 4, Wn4_PhysicalMgmt);
3079 mdio_delay(vp);
3081 /* Read the two transition, 16 data, and wire-idle bits. */
3082 for (i = 19; i > 0; i--) {
3083 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3084 mdio_delay(vp);
3085 retval = (retval << 1) |
3086 ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3087 MDIO_DATA_READ) ? 1 : 0);
3088 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3089 4, Wn4_PhysicalMgmt);
3090 mdio_delay(vp);
3093 spin_unlock_bh(&vp->mii_lock);
3095 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3098 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3100 struct vortex_private *vp = netdev_priv(dev);
3101 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3102 int i;
3104 spin_lock_bh(&vp->mii_lock);
3106 if (mii_preamble_required)
3107 mdio_sync(vp, 32);
3109 /* Shift the command bits out. */
3110 for (i = 31; i >= 0; i--) {
3111 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3112 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3113 mdio_delay(vp);
3114 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3115 4, Wn4_PhysicalMgmt);
3116 mdio_delay(vp);
3118 /* Leave the interface idle. */
3119 for (i = 1; i >= 0; i--) {
3120 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3121 mdio_delay(vp);
3122 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3123 4, Wn4_PhysicalMgmt);
3124 mdio_delay(vp);
3127 spin_unlock_bh(&vp->mii_lock);
3130 /* ACPI: Advanced Configuration and Power Interface. */
3131 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3132 static void acpi_set_WOL(struct net_device *dev)
3134 struct vortex_private *vp = netdev_priv(dev);
3135 void __iomem *ioaddr = vp->ioaddr;
3137 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3139 if (vp->enable_wol) {
3140 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3141 window_write16(vp, 2, 7, 0x0c);
3142 /* The RxFilter must accept the WOL frames. */
3143 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3144 iowrite16(RxEnable, ioaddr + EL3_CMD);
3146 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3147 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3149 vp->enable_wol = 0;
3150 return;
3153 /* Change the power state to D3; RxEnable doesn't take effect. */
3154 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3159 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3161 struct net_device *dev = pci_get_drvdata(pdev);
3162 struct vortex_private *vp;
3164 if (!dev) {
3165 pr_err("vortex_remove_one called for Compaq device!\n");
3166 BUG();
3169 vp = netdev_priv(dev);
3171 if (vp->cb_fn_base)
3172 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3174 unregister_netdev(dev);
3176 if (VORTEX_PCI(vp)) {
3177 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3178 if (vp->pm_state_valid)
3179 pci_restore_state(VORTEX_PCI(vp));
3180 pci_disable_device(VORTEX_PCI(vp));
3182 /* Should really use issue_and_wait() here */
3183 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3184 vp->ioaddr + EL3_CMD);
3186 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3188 pci_free_consistent(pdev,
3189 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3190 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3191 vp->rx_ring,
3192 vp->rx_ring_dma);
3193 if (vp->must_free_region)
3194 release_region(dev->base_addr, vp->io_size);
3195 free_netdev(dev);
3199 static struct pci_driver vortex_driver = {
3200 .name = "3c59x",
3201 .probe = vortex_init_one,
3202 .remove = __devexit_p(vortex_remove_one),
3203 .id_table = vortex_pci_tbl,
3204 .driver.pm = VORTEX_PM_OPS,
3208 static int vortex_have_pci;
3209 static int vortex_have_eisa;
3212 static int __init vortex_init(void)
3214 int pci_rc, eisa_rc;
3216 pci_rc = pci_register_driver(&vortex_driver);
3217 eisa_rc = vortex_eisa_init();
3219 if (pci_rc == 0)
3220 vortex_have_pci = 1;
3221 if (eisa_rc > 0)
3222 vortex_have_eisa = 1;
3224 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3228 static void __exit vortex_eisa_cleanup(void)
3230 struct vortex_private *vp;
3231 void __iomem *ioaddr;
3233 #ifdef CONFIG_EISA
3234 /* Take care of the EISA devices */
3235 eisa_driver_unregister(&vortex_eisa_driver);
3236 #endif
3238 if (compaq_net_device) {
3239 vp = netdev_priv(compaq_net_device);
3240 ioaddr = ioport_map(compaq_net_device->base_addr,
3241 VORTEX_TOTAL_SIZE);
3243 unregister_netdev(compaq_net_device);
3244 iowrite16(TotalReset, ioaddr + EL3_CMD);
3245 release_region(compaq_net_device->base_addr,
3246 VORTEX_TOTAL_SIZE);
3248 free_netdev(compaq_net_device);
3253 static void __exit vortex_cleanup(void)
3255 if (vortex_have_pci)
3256 pci_unregister_driver(&vortex_driver);
3257 if (vortex_have_eisa)
3258 vortex_eisa_cleanup();
3262 module_init(vortex_init);
3263 module_exit(vortex_cleanup);