[POWERPC] Added kprobes support to ppc32
[linux-2.6/x86.git] / arch / powerpc / kernel / kprobes.c
blobdd2886f97e983848ad8dfc1403e5740b87a1961d
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <asm/cacheflush.h>
34 #include <asm/kdebug.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 int __kprobes arch_prepare_kprobe(struct kprobe *p)
43 int ret = 0;
44 kprobe_opcode_t insn = *p->addr;
46 if ((unsigned long)p->addr & 0x03) {
47 printk("Attempt to register kprobe at an unaligned address\n");
48 ret = -EINVAL;
49 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
50 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
51 ret = -EINVAL;
54 /* insn must be on a special executable page on ppc64 */
55 if (!ret) {
56 p->ainsn.insn = get_insn_slot();
57 if (!p->ainsn.insn)
58 ret = -ENOMEM;
61 if (!ret) {
62 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
63 p->opcode = *p->addr;
64 flush_icache_range((unsigned long)p->ainsn.insn,
65 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
68 return ret;
71 void __kprobes arch_arm_kprobe(struct kprobe *p)
73 *p->addr = BREAKPOINT_INSTRUCTION;
74 flush_icache_range((unsigned long) p->addr,
75 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
78 void __kprobes arch_disarm_kprobe(struct kprobe *p)
80 *p->addr = p->opcode;
81 flush_icache_range((unsigned long) p->addr,
82 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
85 void __kprobes arch_remove_kprobe(struct kprobe *p)
87 mutex_lock(&kprobe_mutex);
88 free_insn_slot(p->ainsn.insn, 0);
89 mutex_unlock(&kprobe_mutex);
92 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
94 regs->msr |= MSR_SE;
97 * On powerpc we should single step on the original
98 * instruction even if the probed insn is a trap
99 * variant as values in regs could play a part in
100 * if the trap is taken or not
102 regs->nip = (unsigned long)p->ainsn.insn;
105 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
107 kcb->prev_kprobe.kp = kprobe_running();
108 kcb->prev_kprobe.status = kcb->kprobe_status;
109 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
112 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
114 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
115 kcb->kprobe_status = kcb->prev_kprobe.status;
116 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
119 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
120 struct kprobe_ctlblk *kcb)
122 __get_cpu_var(current_kprobe) = p;
123 kcb->kprobe_saved_msr = regs->msr;
126 /* Called with kretprobe_lock held */
127 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
128 struct pt_regs *regs)
130 struct kretprobe_instance *ri;
132 if ((ri = get_free_rp_inst(rp)) != NULL) {
133 ri->rp = rp;
134 ri->task = current;
135 ri->ret_addr = (kprobe_opcode_t *)regs->link;
137 /* Replace the return addr with trampoline addr */
138 regs->link = (unsigned long)kretprobe_trampoline;
139 add_rp_inst(ri);
140 } else {
141 rp->nmissed++;
145 static int __kprobes kprobe_handler(struct pt_regs *regs)
147 struct kprobe *p;
148 int ret = 0;
149 unsigned int *addr = (unsigned int *)regs->nip;
150 struct kprobe_ctlblk *kcb;
153 * We don't want to be preempted for the entire
154 * duration of kprobe processing
156 preempt_disable();
157 kcb = get_kprobe_ctlblk();
159 /* Check we're not actually recursing */
160 if (kprobe_running()) {
161 p = get_kprobe(addr);
162 if (p) {
163 kprobe_opcode_t insn = *p->ainsn.insn;
164 if (kcb->kprobe_status == KPROBE_HIT_SS &&
165 is_trap(insn)) {
166 regs->msr &= ~MSR_SE;
167 regs->msr |= kcb->kprobe_saved_msr;
168 goto no_kprobe;
170 /* We have reentered the kprobe_handler(), since
171 * another probe was hit while within the handler.
172 * We here save the original kprobes variables and
173 * just single step on the instruction of the new probe
174 * without calling any user handlers.
176 save_previous_kprobe(kcb);
177 set_current_kprobe(p, regs, kcb);
178 kcb->kprobe_saved_msr = regs->msr;
179 kprobes_inc_nmissed_count(p);
180 prepare_singlestep(p, regs);
181 kcb->kprobe_status = KPROBE_REENTER;
182 return 1;
183 } else {
184 if (*addr != BREAKPOINT_INSTRUCTION) {
185 /* If trap variant, then it belongs not to us */
186 kprobe_opcode_t cur_insn = *addr;
187 if (is_trap(cur_insn))
188 goto no_kprobe;
189 /* The breakpoint instruction was removed by
190 * another cpu right after we hit, no further
191 * handling of this interrupt is appropriate
193 ret = 1;
194 goto no_kprobe;
196 p = __get_cpu_var(current_kprobe);
197 if (p->break_handler && p->break_handler(p, regs)) {
198 goto ss_probe;
201 goto no_kprobe;
204 p = get_kprobe(addr);
205 if (!p) {
206 if (*addr != BREAKPOINT_INSTRUCTION) {
208 * PowerPC has multiple variants of the "trap"
209 * instruction. If the current instruction is a
210 * trap variant, it could belong to someone else
212 kprobe_opcode_t cur_insn = *addr;
213 if (is_trap(cur_insn))
214 goto no_kprobe;
216 * The breakpoint instruction was removed right
217 * after we hit it. Another cpu has removed
218 * either a probepoint or a debugger breakpoint
219 * at this address. In either case, no further
220 * handling of this interrupt is appropriate.
222 ret = 1;
224 /* Not one of ours: let kernel handle it */
225 goto no_kprobe;
228 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
229 set_current_kprobe(p, regs, kcb);
230 if (p->pre_handler && p->pre_handler(p, regs))
231 /* handler has already set things up, so skip ss setup */
232 return 1;
234 ss_probe:
235 prepare_singlestep(p, regs);
236 kcb->kprobe_status = KPROBE_HIT_SS;
237 return 1;
239 no_kprobe:
240 preempt_enable_no_resched();
241 return ret;
245 * Function return probe trampoline:
246 * - init_kprobes() establishes a probepoint here
247 * - When the probed function returns, this probe
248 * causes the handlers to fire
250 void kretprobe_trampoline_holder(void)
252 asm volatile(".global kretprobe_trampoline\n"
253 "kretprobe_trampoline:\n"
254 "nop\n");
258 * Called when the probe at kretprobe trampoline is hit
260 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
262 struct kretprobe_instance *ri = NULL;
263 struct hlist_head *head, empty_rp;
264 struct hlist_node *node, *tmp;
265 unsigned long flags, orig_ret_address = 0;
266 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
268 INIT_HLIST_HEAD(&empty_rp);
269 spin_lock_irqsave(&kretprobe_lock, flags);
270 head = kretprobe_inst_table_head(current);
273 * It is possible to have multiple instances associated with a given
274 * task either because an multiple functions in the call path
275 * have a return probe installed on them, and/or more then one return
276 * return probe was registered for a target function.
278 * We can handle this because:
279 * - instances are always inserted at the head of the list
280 * - when multiple return probes are registered for the same
281 * function, the first instance's ret_addr will point to the
282 * real return address, and all the rest will point to
283 * kretprobe_trampoline
285 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
286 if (ri->task != current)
287 /* another task is sharing our hash bucket */
288 continue;
290 if (ri->rp && ri->rp->handler)
291 ri->rp->handler(ri, regs);
293 orig_ret_address = (unsigned long)ri->ret_addr;
294 recycle_rp_inst(ri, &empty_rp);
296 if (orig_ret_address != trampoline_address)
298 * This is the real return address. Any other
299 * instances associated with this task are for
300 * other calls deeper on the call stack
302 break;
305 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
306 regs->nip = orig_ret_address;
308 reset_current_kprobe();
309 spin_unlock_irqrestore(&kretprobe_lock, flags);
310 preempt_enable_no_resched();
312 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
313 hlist_del(&ri->hlist);
314 kfree(ri);
317 * By returning a non-zero value, we are telling
318 * kprobe_handler() that we don't want the post_handler
319 * to run (and have re-enabled preemption)
321 return 1;
325 * Called after single-stepping. p->addr is the address of the
326 * instruction whose first byte has been replaced by the "breakpoint"
327 * instruction. To avoid the SMP problems that can occur when we
328 * temporarily put back the original opcode to single-step, we
329 * single-stepped a copy of the instruction. The address of this
330 * copy is p->ainsn.insn.
332 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
334 int ret;
335 unsigned int insn = *p->ainsn.insn;
337 regs->nip = (unsigned long)p->addr;
338 ret = emulate_step(regs, insn);
339 if (ret == 0)
340 regs->nip = (unsigned long)p->addr + 4;
343 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
345 struct kprobe *cur = kprobe_running();
346 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
348 if (!cur)
349 return 0;
351 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
352 kcb->kprobe_status = KPROBE_HIT_SSDONE;
353 cur->post_handler(cur, regs, 0);
356 resume_execution(cur, regs);
357 regs->msr |= kcb->kprobe_saved_msr;
359 /*Restore back the original saved kprobes variables and continue. */
360 if (kcb->kprobe_status == KPROBE_REENTER) {
361 restore_previous_kprobe(kcb);
362 goto out;
364 reset_current_kprobe();
365 out:
366 preempt_enable_no_resched();
369 * if somebody else is singlestepping across a probe point, msr
370 * will have SE set, in which case, continue the remaining processing
371 * of do_debug, as if this is not a probe hit.
373 if (regs->msr & MSR_SE)
374 return 0;
376 return 1;
379 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
381 struct kprobe *cur = kprobe_running();
382 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383 const struct exception_table_entry *entry;
385 switch(kcb->kprobe_status) {
386 case KPROBE_HIT_SS:
387 case KPROBE_REENTER:
389 * We are here because the instruction being single
390 * stepped caused a page fault. We reset the current
391 * kprobe and the nip points back to the probe address
392 * and allow the page fault handler to continue as a
393 * normal page fault.
395 regs->nip = (unsigned long)cur->addr;
396 regs->msr &= ~MSR_SE;
397 regs->msr |= kcb->kprobe_saved_msr;
398 if (kcb->kprobe_status == KPROBE_REENTER)
399 restore_previous_kprobe(kcb);
400 else
401 reset_current_kprobe();
402 preempt_enable_no_resched();
403 break;
404 case KPROBE_HIT_ACTIVE:
405 case KPROBE_HIT_SSDONE:
407 * We increment the nmissed count for accounting,
408 * we can also use npre/npostfault count for accouting
409 * these specific fault cases.
411 kprobes_inc_nmissed_count(cur);
414 * We come here because instructions in the pre/post
415 * handler caused the page_fault, this could happen
416 * if handler tries to access user space by
417 * copy_from_user(), get_user() etc. Let the
418 * user-specified handler try to fix it first.
420 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
421 return 1;
424 * In case the user-specified fault handler returned
425 * zero, try to fix up.
427 if ((entry = search_exception_tables(regs->nip)) != NULL) {
428 regs->nip = entry->fixup;
429 return 1;
433 * fixup_exception() could not handle it,
434 * Let do_page_fault() fix it.
436 break;
437 default:
438 break;
440 return 0;
444 * Wrapper routine to for handling exceptions.
446 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
447 unsigned long val, void *data)
449 struct die_args *args = (struct die_args *)data;
450 int ret = NOTIFY_DONE;
452 if (args->regs && user_mode(args->regs))
453 return ret;
455 switch (val) {
456 case DIE_BPT:
457 if (kprobe_handler(args->regs))
458 ret = NOTIFY_STOP;
459 break;
460 case DIE_SSTEP:
461 if (post_kprobe_handler(args->regs))
462 ret = NOTIFY_STOP;
463 break;
464 case DIE_PAGE_FAULT:
465 /* kprobe_running() needs smp_processor_id() */
466 preempt_disable();
467 if (kprobe_running() &&
468 kprobe_fault_handler(args->regs, args->trapnr))
469 ret = NOTIFY_STOP;
470 preempt_enable();
471 break;
472 default:
473 break;
475 return ret;
478 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
480 struct jprobe *jp = container_of(p, struct jprobe, kp);
481 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
483 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
485 /* setup return addr to the jprobe handler routine */
486 #ifdef CONFIG_PPC64
487 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
488 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
489 #else
490 regs->nip = (unsigned long)jp->entry;
491 #endif
493 return 1;
496 void __kprobes jprobe_return(void)
498 asm volatile("trap" ::: "memory");
501 void __kprobes jprobe_return_end(void)
505 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
507 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
510 * FIXME - we should ideally be validating that we got here 'cos
511 * of the "trap" in jprobe_return() above, before restoring the
512 * saved regs...
514 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
515 preempt_enable_no_resched();
516 return 1;
519 static struct kprobe trampoline_p = {
520 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
521 .pre_handler = trampoline_probe_handler
524 int __init arch_init_kprobes(void)
526 return register_kprobe(&trampoline_p);