gpio: timbgpio: Fix up irq_data conversion breakage.
[linux-2.6/x86.git] / kernel / futex.c
blob52075633373f0c553c93716ad860747845d018fe
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
63 #include <asm/futex.h>
65 #include "rtmutex_common.h"
67 int __read_mostly futex_cmpxchg_enabled;
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
75 #define FLAGS_SHARED 0x01
76 #define FLAGS_CLOCKRT 0x02
77 #define FLAGS_HAS_TIMEOUT 0x04
80 * Priority Inheritance state:
82 struct futex_pi_state {
84 * list of 'owned' pi_state instances - these have to be
85 * cleaned up in do_exit() if the task exits prematurely:
87 struct list_head list;
90 * The PI object:
92 struct rt_mutex pi_mutex;
94 struct task_struct *owner;
95 atomic_t refcount;
97 union futex_key key;
101 * struct futex_q - The hashed futex queue entry, one per waiting task
102 * @list: priority-sorted list of tasks waiting on this futex
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112 * we can wake only the relevant ones (hashed queues may be shared).
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116 * The order of wakeup is always to make the first condition true, then
117 * the second.
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
122 struct futex_q {
123 struct plist_node list;
125 struct task_struct *task;
126 spinlock_t *lock_ptr;
127 union futex_key key;
128 struct futex_pi_state *pi_state;
129 struct rt_mutex_waiter *rt_waiter;
130 union futex_key *requeue_pi_key;
131 u32 bitset;
134 static const struct futex_q futex_q_init = {
135 /* list gets initialized in queue_me()*/
136 .key = FUTEX_KEY_INIT,
137 .bitset = FUTEX_BITSET_MATCH_ANY
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
145 struct futex_hash_bucket {
146 spinlock_t lock;
147 struct plist_head chain;
150 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
153 * We hash on the keys returned from get_futex_key (see below).
155 static struct futex_hash_bucket *hash_futex(union futex_key *key)
157 u32 hash = jhash2((u32*)&key->both.word,
158 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 key->both.offset);
160 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
164 * Return 1 if two futex_keys are equal, 0 otherwise.
166 static inline int match_futex(union futex_key *key1, union futex_key *key2)
168 return (key1 && key2
169 && key1->both.word == key2->both.word
170 && key1->both.ptr == key2->both.ptr
171 && key1->both.offset == key2->both.offset);
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
179 static void get_futex_key_refs(union futex_key *key)
181 if (!key->both.ptr)
182 return;
184 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 case FUT_OFF_INODE:
186 ihold(key->shared.inode);
187 break;
188 case FUT_OFF_MMSHARED:
189 atomic_inc(&key->private.mm->mm_count);
190 break;
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
198 static void drop_futex_key_refs(union futex_key *key)
200 if (!key->both.ptr) {
201 /* If we're here then we tried to put a key we failed to get */
202 WARN_ON_ONCE(1);
203 return;
206 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 case FUT_OFF_INODE:
208 iput(key->shared.inode);
209 break;
210 case FUT_OFF_MMSHARED:
211 mmdrop(key->private.mm);
212 break;
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
222 * Returns a negative error code or 0
223 * The key words are stored in *key on success.
225 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226 * offset_within_page). For private mappings, it's (uaddr, current->mm).
227 * We can usually work out the index without swapping in the page.
229 * lock_page() might sleep, the caller should not hold a spinlock.
231 static int
232 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
234 unsigned long address = (unsigned long)uaddr;
235 struct mm_struct *mm = current->mm;
236 struct page *page, *page_head;
237 int err;
240 * The futex address must be "naturally" aligned.
242 key->both.offset = address % PAGE_SIZE;
243 if (unlikely((address % sizeof(u32)) != 0))
244 return -EINVAL;
245 address -= key->both.offset;
248 * PROCESS_PRIVATE futexes are fast.
249 * As the mm cannot disappear under us and the 'key' only needs
250 * virtual address, we dont even have to find the underlying vma.
251 * Note : We do have to check 'uaddr' is a valid user address,
252 * but access_ok() should be faster than find_vma()
254 if (!fshared) {
255 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256 return -EFAULT;
257 key->private.mm = mm;
258 key->private.address = address;
259 get_futex_key_refs(key);
260 return 0;
263 again:
264 err = get_user_pages_fast(address, 1, 1, &page);
265 if (err < 0)
266 return err;
268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
269 page_head = page;
270 if (unlikely(PageTail(page))) {
271 put_page(page);
272 /* serialize against __split_huge_page_splitting() */
273 local_irq_disable();
274 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275 page_head = compound_head(page);
277 * page_head is valid pointer but we must pin
278 * it before taking the PG_lock and/or
279 * PG_compound_lock. The moment we re-enable
280 * irqs __split_huge_page_splitting() can
281 * return and the head page can be freed from
282 * under us. We can't take the PG_lock and/or
283 * PG_compound_lock on a page that could be
284 * freed from under us.
286 if (page != page_head) {
287 get_page(page_head);
288 put_page(page);
290 local_irq_enable();
291 } else {
292 local_irq_enable();
293 goto again;
296 #else
297 page_head = compound_head(page);
298 if (page != page_head) {
299 get_page(page_head);
300 put_page(page);
302 #endif
304 lock_page(page_head);
305 if (!page_head->mapping) {
306 unlock_page(page_head);
307 put_page(page_head);
308 goto again;
312 * Private mappings are handled in a simple way.
314 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
315 * it's a read-only handle, it's expected that futexes attach to
316 * the object not the particular process.
318 if (PageAnon(page_head)) {
319 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
320 key->private.mm = mm;
321 key->private.address = address;
322 } else {
323 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324 key->shared.inode = page_head->mapping->host;
325 key->shared.pgoff = page_head->index;
328 get_futex_key_refs(key);
330 unlock_page(page_head);
331 put_page(page_head);
332 return 0;
335 static inline void put_futex_key(union futex_key *key)
337 drop_futex_key_refs(key);
341 * fault_in_user_writeable() - Fault in user address and verify RW access
342 * @uaddr: pointer to faulting user space address
344 * Slow path to fixup the fault we just took in the atomic write
345 * access to @uaddr.
347 * We have no generic implementation of a non-destructive write to the
348 * user address. We know that we faulted in the atomic pagefault
349 * disabled section so we can as well avoid the #PF overhead by
350 * calling get_user_pages() right away.
352 static int fault_in_user_writeable(u32 __user *uaddr)
354 struct mm_struct *mm = current->mm;
355 int ret;
357 down_read(&mm->mmap_sem);
358 ret = get_user_pages(current, mm, (unsigned long)uaddr,
359 1, 1, 0, NULL, NULL);
360 up_read(&mm->mmap_sem);
362 return ret < 0 ? ret : 0;
366 * futex_top_waiter() - Return the highest priority waiter on a futex
367 * @hb: the hash bucket the futex_q's reside in
368 * @key: the futex key (to distinguish it from other futex futex_q's)
370 * Must be called with the hb lock held.
372 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373 union futex_key *key)
375 struct futex_q *this;
377 plist_for_each_entry(this, &hb->chain, list) {
378 if (match_futex(&this->key, key))
379 return this;
381 return NULL;
384 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
386 u32 curval;
388 pagefault_disable();
389 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
390 pagefault_enable();
392 return curval;
395 static int get_futex_value_locked(u32 *dest, u32 __user *from)
397 int ret;
399 pagefault_disable();
400 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
401 pagefault_enable();
403 return ret ? -EFAULT : 0;
408 * PI code:
410 static int refill_pi_state_cache(void)
412 struct futex_pi_state *pi_state;
414 if (likely(current->pi_state_cache))
415 return 0;
417 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
419 if (!pi_state)
420 return -ENOMEM;
422 INIT_LIST_HEAD(&pi_state->list);
423 /* pi_mutex gets initialized later */
424 pi_state->owner = NULL;
425 atomic_set(&pi_state->refcount, 1);
426 pi_state->key = FUTEX_KEY_INIT;
428 current->pi_state_cache = pi_state;
430 return 0;
433 static struct futex_pi_state * alloc_pi_state(void)
435 struct futex_pi_state *pi_state = current->pi_state_cache;
437 WARN_ON(!pi_state);
438 current->pi_state_cache = NULL;
440 return pi_state;
443 static void free_pi_state(struct futex_pi_state *pi_state)
445 if (!atomic_dec_and_test(&pi_state->refcount))
446 return;
449 * If pi_state->owner is NULL, the owner is most probably dying
450 * and has cleaned up the pi_state already
452 if (pi_state->owner) {
453 raw_spin_lock_irq(&pi_state->owner->pi_lock);
454 list_del_init(&pi_state->list);
455 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
457 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
460 if (current->pi_state_cache)
461 kfree(pi_state);
462 else {
464 * pi_state->list is already empty.
465 * clear pi_state->owner.
466 * refcount is at 0 - put it back to 1.
468 pi_state->owner = NULL;
469 atomic_set(&pi_state->refcount, 1);
470 current->pi_state_cache = pi_state;
475 * Look up the task based on what TID userspace gave us.
476 * We dont trust it.
478 static struct task_struct * futex_find_get_task(pid_t pid)
480 struct task_struct *p;
482 rcu_read_lock();
483 p = find_task_by_vpid(pid);
484 if (p)
485 get_task_struct(p);
487 rcu_read_unlock();
489 return p;
493 * This task is holding PI mutexes at exit time => bad.
494 * Kernel cleans up PI-state, but userspace is likely hosed.
495 * (Robust-futex cleanup is separate and might save the day for userspace.)
497 void exit_pi_state_list(struct task_struct *curr)
499 struct list_head *next, *head = &curr->pi_state_list;
500 struct futex_pi_state *pi_state;
501 struct futex_hash_bucket *hb;
502 union futex_key key = FUTEX_KEY_INIT;
504 if (!futex_cmpxchg_enabled)
505 return;
507 * We are a ZOMBIE and nobody can enqueue itself on
508 * pi_state_list anymore, but we have to be careful
509 * versus waiters unqueueing themselves:
511 raw_spin_lock_irq(&curr->pi_lock);
512 while (!list_empty(head)) {
514 next = head->next;
515 pi_state = list_entry(next, struct futex_pi_state, list);
516 key = pi_state->key;
517 hb = hash_futex(&key);
518 raw_spin_unlock_irq(&curr->pi_lock);
520 spin_lock(&hb->lock);
522 raw_spin_lock_irq(&curr->pi_lock);
524 * We dropped the pi-lock, so re-check whether this
525 * task still owns the PI-state:
527 if (head->next != next) {
528 spin_unlock(&hb->lock);
529 continue;
532 WARN_ON(pi_state->owner != curr);
533 WARN_ON(list_empty(&pi_state->list));
534 list_del_init(&pi_state->list);
535 pi_state->owner = NULL;
536 raw_spin_unlock_irq(&curr->pi_lock);
538 rt_mutex_unlock(&pi_state->pi_mutex);
540 spin_unlock(&hb->lock);
542 raw_spin_lock_irq(&curr->pi_lock);
544 raw_spin_unlock_irq(&curr->pi_lock);
547 static int
548 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
549 union futex_key *key, struct futex_pi_state **ps)
551 struct futex_pi_state *pi_state = NULL;
552 struct futex_q *this, *next;
553 struct plist_head *head;
554 struct task_struct *p;
555 pid_t pid = uval & FUTEX_TID_MASK;
557 head = &hb->chain;
559 plist_for_each_entry_safe(this, next, head, list) {
560 if (match_futex(&this->key, key)) {
562 * Another waiter already exists - bump up
563 * the refcount and return its pi_state:
565 pi_state = this->pi_state;
567 * Userspace might have messed up non-PI and PI futexes
569 if (unlikely(!pi_state))
570 return -EINVAL;
572 WARN_ON(!atomic_read(&pi_state->refcount));
575 * When pi_state->owner is NULL then the owner died
576 * and another waiter is on the fly. pi_state->owner
577 * is fixed up by the task which acquires
578 * pi_state->rt_mutex.
580 * We do not check for pid == 0 which can happen when
581 * the owner died and robust_list_exit() cleared the
582 * TID.
584 if (pid && pi_state->owner) {
586 * Bail out if user space manipulated the
587 * futex value.
589 if (pid != task_pid_vnr(pi_state->owner))
590 return -EINVAL;
593 atomic_inc(&pi_state->refcount);
594 *ps = pi_state;
596 return 0;
601 * We are the first waiter - try to look up the real owner and attach
602 * the new pi_state to it, but bail out when TID = 0
604 if (!pid)
605 return -ESRCH;
606 p = futex_find_get_task(pid);
607 if (!p)
608 return -ESRCH;
611 * We need to look at the task state flags to figure out,
612 * whether the task is exiting. To protect against the do_exit
613 * change of the task flags, we do this protected by
614 * p->pi_lock:
616 raw_spin_lock_irq(&p->pi_lock);
617 if (unlikely(p->flags & PF_EXITING)) {
619 * The task is on the way out. When PF_EXITPIDONE is
620 * set, we know that the task has finished the
621 * cleanup:
623 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
625 raw_spin_unlock_irq(&p->pi_lock);
626 put_task_struct(p);
627 return ret;
630 pi_state = alloc_pi_state();
633 * Initialize the pi_mutex in locked state and make 'p'
634 * the owner of it:
636 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
638 /* Store the key for possible exit cleanups: */
639 pi_state->key = *key;
641 WARN_ON(!list_empty(&pi_state->list));
642 list_add(&pi_state->list, &p->pi_state_list);
643 pi_state->owner = p;
644 raw_spin_unlock_irq(&p->pi_lock);
646 put_task_struct(p);
648 *ps = pi_state;
650 return 0;
654 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
655 * @uaddr: the pi futex user address
656 * @hb: the pi futex hash bucket
657 * @key: the futex key associated with uaddr and hb
658 * @ps: the pi_state pointer where we store the result of the
659 * lookup
660 * @task: the task to perform the atomic lock work for. This will
661 * be "current" except in the case of requeue pi.
662 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
664 * Returns:
665 * 0 - ready to wait
666 * 1 - acquired the lock
667 * <0 - error
669 * The hb->lock and futex_key refs shall be held by the caller.
671 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
672 union futex_key *key,
673 struct futex_pi_state **ps,
674 struct task_struct *task, int set_waiters)
676 int lock_taken, ret, ownerdied = 0;
677 u32 uval, newval, curval;
679 retry:
680 ret = lock_taken = 0;
683 * To avoid races, we attempt to take the lock here again
684 * (by doing a 0 -> TID atomic cmpxchg), while holding all
685 * the locks. It will most likely not succeed.
687 newval = task_pid_vnr(task);
688 if (set_waiters)
689 newval |= FUTEX_WAITERS;
691 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
693 if (unlikely(curval == -EFAULT))
694 return -EFAULT;
697 * Detect deadlocks.
699 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
700 return -EDEADLK;
703 * Surprise - we got the lock. Just return to userspace:
705 if (unlikely(!curval))
706 return 1;
708 uval = curval;
711 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
712 * to wake at the next unlock.
714 newval = curval | FUTEX_WAITERS;
717 * There are two cases, where a futex might have no owner (the
718 * owner TID is 0): OWNER_DIED. We take over the futex in this
719 * case. We also do an unconditional take over, when the owner
720 * of the futex died.
722 * This is safe as we are protected by the hash bucket lock !
724 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
725 /* Keep the OWNER_DIED bit */
726 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
727 ownerdied = 0;
728 lock_taken = 1;
731 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
733 if (unlikely(curval == -EFAULT))
734 return -EFAULT;
735 if (unlikely(curval != uval))
736 goto retry;
739 * We took the lock due to owner died take over.
741 if (unlikely(lock_taken))
742 return 1;
745 * We dont have the lock. Look up the PI state (or create it if
746 * we are the first waiter):
748 ret = lookup_pi_state(uval, hb, key, ps);
750 if (unlikely(ret)) {
751 switch (ret) {
752 case -ESRCH:
754 * No owner found for this futex. Check if the
755 * OWNER_DIED bit is set to figure out whether
756 * this is a robust futex or not.
758 if (get_futex_value_locked(&curval, uaddr))
759 return -EFAULT;
762 * We simply start over in case of a robust
763 * futex. The code above will take the futex
764 * and return happy.
766 if (curval & FUTEX_OWNER_DIED) {
767 ownerdied = 1;
768 goto retry;
770 default:
771 break;
775 return ret;
779 * The hash bucket lock must be held when this is called.
780 * Afterwards, the futex_q must not be accessed.
782 static void wake_futex(struct futex_q *q)
784 struct task_struct *p = q->task;
787 * We set q->lock_ptr = NULL _before_ we wake up the task. If
788 * a non-futex wake up happens on another CPU then the task
789 * might exit and p would dereference a non-existing task
790 * struct. Prevent this by holding a reference on p across the
791 * wake up.
793 get_task_struct(p);
795 plist_del(&q->list, &q->list.plist);
797 * The waiting task can free the futex_q as soon as
798 * q->lock_ptr = NULL is written, without taking any locks. A
799 * memory barrier is required here to prevent the following
800 * store to lock_ptr from getting ahead of the plist_del.
802 smp_wmb();
803 q->lock_ptr = NULL;
805 wake_up_state(p, TASK_NORMAL);
806 put_task_struct(p);
809 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
811 struct task_struct *new_owner;
812 struct futex_pi_state *pi_state = this->pi_state;
813 u32 curval, newval;
815 if (!pi_state)
816 return -EINVAL;
819 * If current does not own the pi_state then the futex is
820 * inconsistent and user space fiddled with the futex value.
822 if (pi_state->owner != current)
823 return -EINVAL;
825 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
826 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
829 * This happens when we have stolen the lock and the original
830 * pending owner did not enqueue itself back on the rt_mutex.
831 * Thats not a tragedy. We know that way, that a lock waiter
832 * is on the fly. We make the futex_q waiter the pending owner.
834 if (!new_owner)
835 new_owner = this->task;
838 * We pass it to the next owner. (The WAITERS bit is always
839 * kept enabled while there is PI state around. We must also
840 * preserve the owner died bit.)
842 if (!(uval & FUTEX_OWNER_DIED)) {
843 int ret = 0;
845 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
847 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
849 if (curval == -EFAULT)
850 ret = -EFAULT;
851 else if (curval != uval)
852 ret = -EINVAL;
853 if (ret) {
854 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
855 return ret;
859 raw_spin_lock_irq(&pi_state->owner->pi_lock);
860 WARN_ON(list_empty(&pi_state->list));
861 list_del_init(&pi_state->list);
862 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
864 raw_spin_lock_irq(&new_owner->pi_lock);
865 WARN_ON(!list_empty(&pi_state->list));
866 list_add(&pi_state->list, &new_owner->pi_state_list);
867 pi_state->owner = new_owner;
868 raw_spin_unlock_irq(&new_owner->pi_lock);
870 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
871 rt_mutex_unlock(&pi_state->pi_mutex);
873 return 0;
876 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
878 u32 oldval;
881 * There is no waiter, so we unlock the futex. The owner died
882 * bit has not to be preserved here. We are the owner:
884 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
886 if (oldval == -EFAULT)
887 return oldval;
888 if (oldval != uval)
889 return -EAGAIN;
891 return 0;
895 * Express the locking dependencies for lockdep:
897 static inline void
898 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
900 if (hb1 <= hb2) {
901 spin_lock(&hb1->lock);
902 if (hb1 < hb2)
903 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
904 } else { /* hb1 > hb2 */
905 spin_lock(&hb2->lock);
906 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
910 static inline void
911 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
913 spin_unlock(&hb1->lock);
914 if (hb1 != hb2)
915 spin_unlock(&hb2->lock);
919 * Wake up waiters matching bitset queued on this futex (uaddr).
921 static int
922 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
924 struct futex_hash_bucket *hb;
925 struct futex_q *this, *next;
926 struct plist_head *head;
927 union futex_key key = FUTEX_KEY_INIT;
928 int ret;
930 if (!bitset)
931 return -EINVAL;
933 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
934 if (unlikely(ret != 0))
935 goto out;
937 hb = hash_futex(&key);
938 spin_lock(&hb->lock);
939 head = &hb->chain;
941 plist_for_each_entry_safe(this, next, head, list) {
942 if (match_futex (&this->key, &key)) {
943 if (this->pi_state || this->rt_waiter) {
944 ret = -EINVAL;
945 break;
948 /* Check if one of the bits is set in both bitsets */
949 if (!(this->bitset & bitset))
950 continue;
952 wake_futex(this);
953 if (++ret >= nr_wake)
954 break;
958 spin_unlock(&hb->lock);
959 put_futex_key(&key);
960 out:
961 return ret;
965 * Wake up all waiters hashed on the physical page that is mapped
966 * to this virtual address:
968 static int
969 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
970 int nr_wake, int nr_wake2, int op)
972 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
973 struct futex_hash_bucket *hb1, *hb2;
974 struct plist_head *head;
975 struct futex_q *this, *next;
976 int ret, op_ret;
978 retry:
979 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
980 if (unlikely(ret != 0))
981 goto out;
982 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
983 if (unlikely(ret != 0))
984 goto out_put_key1;
986 hb1 = hash_futex(&key1);
987 hb2 = hash_futex(&key2);
989 retry_private:
990 double_lock_hb(hb1, hb2);
991 op_ret = futex_atomic_op_inuser(op, uaddr2);
992 if (unlikely(op_ret < 0)) {
994 double_unlock_hb(hb1, hb2);
996 #ifndef CONFIG_MMU
998 * we don't get EFAULT from MMU faults if we don't have an MMU,
999 * but we might get them from range checking
1001 ret = op_ret;
1002 goto out_put_keys;
1003 #endif
1005 if (unlikely(op_ret != -EFAULT)) {
1006 ret = op_ret;
1007 goto out_put_keys;
1010 ret = fault_in_user_writeable(uaddr2);
1011 if (ret)
1012 goto out_put_keys;
1014 if (!(flags & FLAGS_SHARED))
1015 goto retry_private;
1017 put_futex_key(&key2);
1018 put_futex_key(&key1);
1019 goto retry;
1022 head = &hb1->chain;
1024 plist_for_each_entry_safe(this, next, head, list) {
1025 if (match_futex (&this->key, &key1)) {
1026 wake_futex(this);
1027 if (++ret >= nr_wake)
1028 break;
1032 if (op_ret > 0) {
1033 head = &hb2->chain;
1035 op_ret = 0;
1036 plist_for_each_entry_safe(this, next, head, list) {
1037 if (match_futex (&this->key, &key2)) {
1038 wake_futex(this);
1039 if (++op_ret >= nr_wake2)
1040 break;
1043 ret += op_ret;
1046 double_unlock_hb(hb1, hb2);
1047 out_put_keys:
1048 put_futex_key(&key2);
1049 out_put_key1:
1050 put_futex_key(&key1);
1051 out:
1052 return ret;
1056 * requeue_futex() - Requeue a futex_q from one hb to another
1057 * @q: the futex_q to requeue
1058 * @hb1: the source hash_bucket
1059 * @hb2: the target hash_bucket
1060 * @key2: the new key for the requeued futex_q
1062 static inline
1063 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1064 struct futex_hash_bucket *hb2, union futex_key *key2)
1068 * If key1 and key2 hash to the same bucket, no need to
1069 * requeue.
1071 if (likely(&hb1->chain != &hb2->chain)) {
1072 plist_del(&q->list, &hb1->chain);
1073 plist_add(&q->list, &hb2->chain);
1074 q->lock_ptr = &hb2->lock;
1075 #ifdef CONFIG_DEBUG_PI_LIST
1076 q->list.plist.spinlock = &hb2->lock;
1077 #endif
1079 get_futex_key_refs(key2);
1080 q->key = *key2;
1084 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1085 * @q: the futex_q
1086 * @key: the key of the requeue target futex
1087 * @hb: the hash_bucket of the requeue target futex
1089 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1090 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1091 * to the requeue target futex so the waiter can detect the wakeup on the right
1092 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1093 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1094 * to protect access to the pi_state to fixup the owner later. Must be called
1095 * with both q->lock_ptr and hb->lock held.
1097 static inline
1098 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1099 struct futex_hash_bucket *hb)
1101 get_futex_key_refs(key);
1102 q->key = *key;
1104 WARN_ON(plist_node_empty(&q->list));
1105 plist_del(&q->list, &q->list.plist);
1107 WARN_ON(!q->rt_waiter);
1108 q->rt_waiter = NULL;
1110 q->lock_ptr = &hb->lock;
1111 #ifdef CONFIG_DEBUG_PI_LIST
1112 q->list.plist.spinlock = &hb->lock;
1113 #endif
1115 wake_up_state(q->task, TASK_NORMAL);
1119 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1120 * @pifutex: the user address of the to futex
1121 * @hb1: the from futex hash bucket, must be locked by the caller
1122 * @hb2: the to futex hash bucket, must be locked by the caller
1123 * @key1: the from futex key
1124 * @key2: the to futex key
1125 * @ps: address to store the pi_state pointer
1126 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1128 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1129 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1130 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1131 * hb1 and hb2 must be held by the caller.
1133 * Returns:
1134 * 0 - failed to acquire the lock atomicly
1135 * 1 - acquired the lock
1136 * <0 - error
1138 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1139 struct futex_hash_bucket *hb1,
1140 struct futex_hash_bucket *hb2,
1141 union futex_key *key1, union futex_key *key2,
1142 struct futex_pi_state **ps, int set_waiters)
1144 struct futex_q *top_waiter = NULL;
1145 u32 curval;
1146 int ret;
1148 if (get_futex_value_locked(&curval, pifutex))
1149 return -EFAULT;
1152 * Find the top_waiter and determine if there are additional waiters.
1153 * If the caller intends to requeue more than 1 waiter to pifutex,
1154 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1155 * as we have means to handle the possible fault. If not, don't set
1156 * the bit unecessarily as it will force the subsequent unlock to enter
1157 * the kernel.
1159 top_waiter = futex_top_waiter(hb1, key1);
1161 /* There are no waiters, nothing for us to do. */
1162 if (!top_waiter)
1163 return 0;
1165 /* Ensure we requeue to the expected futex. */
1166 if (!match_futex(top_waiter->requeue_pi_key, key2))
1167 return -EINVAL;
1170 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1171 * the contended case or if set_waiters is 1. The pi_state is returned
1172 * in ps in contended cases.
1174 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1175 set_waiters);
1176 if (ret == 1)
1177 requeue_pi_wake_futex(top_waiter, key2, hb2);
1179 return ret;
1183 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1184 * @uaddr1: source futex user address
1185 * @flags: futex flags (FLAGS_SHARED, etc.)
1186 * @uaddr2: target futex user address
1187 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1188 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1189 * @cmpval: @uaddr1 expected value (or %NULL)
1190 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1191 * pi futex (pi to pi requeue is not supported)
1193 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1194 * uaddr2 atomically on behalf of the top waiter.
1196 * Returns:
1197 * >=0 - on success, the number of tasks requeued or woken
1198 * <0 - on error
1200 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1201 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1202 u32 *cmpval, int requeue_pi)
1204 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1205 int drop_count = 0, task_count = 0, ret;
1206 struct futex_pi_state *pi_state = NULL;
1207 struct futex_hash_bucket *hb1, *hb2;
1208 struct plist_head *head1;
1209 struct futex_q *this, *next;
1210 u32 curval2;
1212 if (requeue_pi) {
1214 * requeue_pi requires a pi_state, try to allocate it now
1215 * without any locks in case it fails.
1217 if (refill_pi_state_cache())
1218 return -ENOMEM;
1220 * requeue_pi must wake as many tasks as it can, up to nr_wake
1221 * + nr_requeue, since it acquires the rt_mutex prior to
1222 * returning to userspace, so as to not leave the rt_mutex with
1223 * waiters and no owner. However, second and third wake-ups
1224 * cannot be predicted as they involve race conditions with the
1225 * first wake and a fault while looking up the pi_state. Both
1226 * pthread_cond_signal() and pthread_cond_broadcast() should
1227 * use nr_wake=1.
1229 if (nr_wake != 1)
1230 return -EINVAL;
1233 retry:
1234 if (pi_state != NULL) {
1236 * We will have to lookup the pi_state again, so free this one
1237 * to keep the accounting correct.
1239 free_pi_state(pi_state);
1240 pi_state = NULL;
1243 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1244 if (unlikely(ret != 0))
1245 goto out;
1246 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1247 if (unlikely(ret != 0))
1248 goto out_put_key1;
1250 hb1 = hash_futex(&key1);
1251 hb2 = hash_futex(&key2);
1253 retry_private:
1254 double_lock_hb(hb1, hb2);
1256 if (likely(cmpval != NULL)) {
1257 u32 curval;
1259 ret = get_futex_value_locked(&curval, uaddr1);
1261 if (unlikely(ret)) {
1262 double_unlock_hb(hb1, hb2);
1264 ret = get_user(curval, uaddr1);
1265 if (ret)
1266 goto out_put_keys;
1268 if (!(flags & FLAGS_SHARED))
1269 goto retry_private;
1271 put_futex_key(&key2);
1272 put_futex_key(&key1);
1273 goto retry;
1275 if (curval != *cmpval) {
1276 ret = -EAGAIN;
1277 goto out_unlock;
1281 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1283 * Attempt to acquire uaddr2 and wake the top waiter. If we
1284 * intend to requeue waiters, force setting the FUTEX_WAITERS
1285 * bit. We force this here where we are able to easily handle
1286 * faults rather in the requeue loop below.
1288 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1289 &key2, &pi_state, nr_requeue);
1292 * At this point the top_waiter has either taken uaddr2 or is
1293 * waiting on it. If the former, then the pi_state will not
1294 * exist yet, look it up one more time to ensure we have a
1295 * reference to it.
1297 if (ret == 1) {
1298 WARN_ON(pi_state);
1299 drop_count++;
1300 task_count++;
1301 ret = get_futex_value_locked(&curval2, uaddr2);
1302 if (!ret)
1303 ret = lookup_pi_state(curval2, hb2, &key2,
1304 &pi_state);
1307 switch (ret) {
1308 case 0:
1309 break;
1310 case -EFAULT:
1311 double_unlock_hb(hb1, hb2);
1312 put_futex_key(&key2);
1313 put_futex_key(&key1);
1314 ret = fault_in_user_writeable(uaddr2);
1315 if (!ret)
1316 goto retry;
1317 goto out;
1318 case -EAGAIN:
1319 /* The owner was exiting, try again. */
1320 double_unlock_hb(hb1, hb2);
1321 put_futex_key(&key2);
1322 put_futex_key(&key1);
1323 cond_resched();
1324 goto retry;
1325 default:
1326 goto out_unlock;
1330 head1 = &hb1->chain;
1331 plist_for_each_entry_safe(this, next, head1, list) {
1332 if (task_count - nr_wake >= nr_requeue)
1333 break;
1335 if (!match_futex(&this->key, &key1))
1336 continue;
1339 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1340 * be paired with each other and no other futex ops.
1342 if ((requeue_pi && !this->rt_waiter) ||
1343 (!requeue_pi && this->rt_waiter)) {
1344 ret = -EINVAL;
1345 break;
1349 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1350 * lock, we already woke the top_waiter. If not, it will be
1351 * woken by futex_unlock_pi().
1353 if (++task_count <= nr_wake && !requeue_pi) {
1354 wake_futex(this);
1355 continue;
1358 /* Ensure we requeue to the expected futex for requeue_pi. */
1359 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1360 ret = -EINVAL;
1361 break;
1365 * Requeue nr_requeue waiters and possibly one more in the case
1366 * of requeue_pi if we couldn't acquire the lock atomically.
1368 if (requeue_pi) {
1369 /* Prepare the waiter to take the rt_mutex. */
1370 atomic_inc(&pi_state->refcount);
1371 this->pi_state = pi_state;
1372 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1373 this->rt_waiter,
1374 this->task, 1);
1375 if (ret == 1) {
1376 /* We got the lock. */
1377 requeue_pi_wake_futex(this, &key2, hb2);
1378 drop_count++;
1379 continue;
1380 } else if (ret) {
1381 /* -EDEADLK */
1382 this->pi_state = NULL;
1383 free_pi_state(pi_state);
1384 goto out_unlock;
1387 requeue_futex(this, hb1, hb2, &key2);
1388 drop_count++;
1391 out_unlock:
1392 double_unlock_hb(hb1, hb2);
1395 * drop_futex_key_refs() must be called outside the spinlocks. During
1396 * the requeue we moved futex_q's from the hash bucket at key1 to the
1397 * one at key2 and updated their key pointer. We no longer need to
1398 * hold the references to key1.
1400 while (--drop_count >= 0)
1401 drop_futex_key_refs(&key1);
1403 out_put_keys:
1404 put_futex_key(&key2);
1405 out_put_key1:
1406 put_futex_key(&key1);
1407 out:
1408 if (pi_state != NULL)
1409 free_pi_state(pi_state);
1410 return ret ? ret : task_count;
1413 /* The key must be already stored in q->key. */
1414 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1415 __acquires(&hb->lock)
1417 struct futex_hash_bucket *hb;
1419 hb = hash_futex(&q->key);
1420 q->lock_ptr = &hb->lock;
1422 spin_lock(&hb->lock);
1423 return hb;
1426 static inline void
1427 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1428 __releases(&hb->lock)
1430 spin_unlock(&hb->lock);
1434 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1435 * @q: The futex_q to enqueue
1436 * @hb: The destination hash bucket
1438 * The hb->lock must be held by the caller, and is released here. A call to
1439 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1440 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1441 * or nothing if the unqueue is done as part of the wake process and the unqueue
1442 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1443 * an example).
1445 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1446 __releases(&hb->lock)
1448 int prio;
1451 * The priority used to register this element is
1452 * - either the real thread-priority for the real-time threads
1453 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1454 * - or MAX_RT_PRIO for non-RT threads.
1455 * Thus, all RT-threads are woken first in priority order, and
1456 * the others are woken last, in FIFO order.
1458 prio = min(current->normal_prio, MAX_RT_PRIO);
1460 plist_node_init(&q->list, prio);
1461 #ifdef CONFIG_DEBUG_PI_LIST
1462 q->list.plist.spinlock = &hb->lock;
1463 #endif
1464 plist_add(&q->list, &hb->chain);
1465 q->task = current;
1466 spin_unlock(&hb->lock);
1470 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1471 * @q: The futex_q to unqueue
1473 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1474 * be paired with exactly one earlier call to queue_me().
1476 * Returns:
1477 * 1 - if the futex_q was still queued (and we removed unqueued it)
1478 * 0 - if the futex_q was already removed by the waking thread
1480 static int unqueue_me(struct futex_q *q)
1482 spinlock_t *lock_ptr;
1483 int ret = 0;
1485 /* In the common case we don't take the spinlock, which is nice. */
1486 retry:
1487 lock_ptr = q->lock_ptr;
1488 barrier();
1489 if (lock_ptr != NULL) {
1490 spin_lock(lock_ptr);
1492 * q->lock_ptr can change between reading it and
1493 * spin_lock(), causing us to take the wrong lock. This
1494 * corrects the race condition.
1496 * Reasoning goes like this: if we have the wrong lock,
1497 * q->lock_ptr must have changed (maybe several times)
1498 * between reading it and the spin_lock(). It can
1499 * change again after the spin_lock() but only if it was
1500 * already changed before the spin_lock(). It cannot,
1501 * however, change back to the original value. Therefore
1502 * we can detect whether we acquired the correct lock.
1504 if (unlikely(lock_ptr != q->lock_ptr)) {
1505 spin_unlock(lock_ptr);
1506 goto retry;
1508 WARN_ON(plist_node_empty(&q->list));
1509 plist_del(&q->list, &q->list.plist);
1511 BUG_ON(q->pi_state);
1513 spin_unlock(lock_ptr);
1514 ret = 1;
1517 drop_futex_key_refs(&q->key);
1518 return ret;
1522 * PI futexes can not be requeued and must remove themself from the
1523 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1524 * and dropped here.
1526 static void unqueue_me_pi(struct futex_q *q)
1527 __releases(q->lock_ptr)
1529 WARN_ON(plist_node_empty(&q->list));
1530 plist_del(&q->list, &q->list.plist);
1532 BUG_ON(!q->pi_state);
1533 free_pi_state(q->pi_state);
1534 q->pi_state = NULL;
1536 spin_unlock(q->lock_ptr);
1540 * Fixup the pi_state owner with the new owner.
1542 * Must be called with hash bucket lock held and mm->sem held for non
1543 * private futexes.
1545 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1546 struct task_struct *newowner)
1548 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1549 struct futex_pi_state *pi_state = q->pi_state;
1550 struct task_struct *oldowner = pi_state->owner;
1551 u32 uval, curval, newval;
1552 int ret;
1554 /* Owner died? */
1555 if (!pi_state->owner)
1556 newtid |= FUTEX_OWNER_DIED;
1559 * We are here either because we stole the rtmutex from the
1560 * pending owner or we are the pending owner which failed to
1561 * get the rtmutex. We have to replace the pending owner TID
1562 * in the user space variable. This must be atomic as we have
1563 * to preserve the owner died bit here.
1565 * Note: We write the user space value _before_ changing the pi_state
1566 * because we can fault here. Imagine swapped out pages or a fork
1567 * that marked all the anonymous memory readonly for cow.
1569 * Modifying pi_state _before_ the user space value would
1570 * leave the pi_state in an inconsistent state when we fault
1571 * here, because we need to drop the hash bucket lock to
1572 * handle the fault. This might be observed in the PID check
1573 * in lookup_pi_state.
1575 retry:
1576 if (get_futex_value_locked(&uval, uaddr))
1577 goto handle_fault;
1579 while (1) {
1580 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1582 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1584 if (curval == -EFAULT)
1585 goto handle_fault;
1586 if (curval == uval)
1587 break;
1588 uval = curval;
1592 * We fixed up user space. Now we need to fix the pi_state
1593 * itself.
1595 if (pi_state->owner != NULL) {
1596 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1597 WARN_ON(list_empty(&pi_state->list));
1598 list_del_init(&pi_state->list);
1599 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1602 pi_state->owner = newowner;
1604 raw_spin_lock_irq(&newowner->pi_lock);
1605 WARN_ON(!list_empty(&pi_state->list));
1606 list_add(&pi_state->list, &newowner->pi_state_list);
1607 raw_spin_unlock_irq(&newowner->pi_lock);
1608 return 0;
1611 * To handle the page fault we need to drop the hash bucket
1612 * lock here. That gives the other task (either the pending
1613 * owner itself or the task which stole the rtmutex) the
1614 * chance to try the fixup of the pi_state. So once we are
1615 * back from handling the fault we need to check the pi_state
1616 * after reacquiring the hash bucket lock and before trying to
1617 * do another fixup. When the fixup has been done already we
1618 * simply return.
1620 handle_fault:
1621 spin_unlock(q->lock_ptr);
1623 ret = fault_in_user_writeable(uaddr);
1625 spin_lock(q->lock_ptr);
1628 * Check if someone else fixed it for us:
1630 if (pi_state->owner != oldowner)
1631 return 0;
1633 if (ret)
1634 return ret;
1636 goto retry;
1639 static long futex_wait_restart(struct restart_block *restart);
1642 * fixup_owner() - Post lock pi_state and corner case management
1643 * @uaddr: user address of the futex
1644 * @q: futex_q (contains pi_state and access to the rt_mutex)
1645 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1647 * After attempting to lock an rt_mutex, this function is called to cleanup
1648 * the pi_state owner as well as handle race conditions that may allow us to
1649 * acquire the lock. Must be called with the hb lock held.
1651 * Returns:
1652 * 1 - success, lock taken
1653 * 0 - success, lock not taken
1654 * <0 - on error (-EFAULT)
1656 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1658 struct task_struct *owner;
1659 int ret = 0;
1661 if (locked) {
1663 * Got the lock. We might not be the anticipated owner if we
1664 * did a lock-steal - fix up the PI-state in that case:
1666 if (q->pi_state->owner != current)
1667 ret = fixup_pi_state_owner(uaddr, q, current);
1668 goto out;
1672 * Catch the rare case, where the lock was released when we were on the
1673 * way back before we locked the hash bucket.
1675 if (q->pi_state->owner == current) {
1677 * Try to get the rt_mutex now. This might fail as some other
1678 * task acquired the rt_mutex after we removed ourself from the
1679 * rt_mutex waiters list.
1681 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1682 locked = 1;
1683 goto out;
1687 * pi_state is incorrect, some other task did a lock steal and
1688 * we returned due to timeout or signal without taking the
1689 * rt_mutex. Too late. We can access the rt_mutex_owner without
1690 * locking, as the other task is now blocked on the hash bucket
1691 * lock. Fix the state up.
1693 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1694 ret = fixup_pi_state_owner(uaddr, q, owner);
1695 goto out;
1699 * Paranoia check. If we did not take the lock, then we should not be
1700 * the owner, nor the pending owner, of the rt_mutex.
1702 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1703 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1704 "pi-state %p\n", ret,
1705 q->pi_state->pi_mutex.owner,
1706 q->pi_state->owner);
1708 out:
1709 return ret ? ret : locked;
1713 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1714 * @hb: the futex hash bucket, must be locked by the caller
1715 * @q: the futex_q to queue up on
1716 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1718 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1719 struct hrtimer_sleeper *timeout)
1722 * The task state is guaranteed to be set before another task can
1723 * wake it. set_current_state() is implemented using set_mb() and
1724 * queue_me() calls spin_unlock() upon completion, both serializing
1725 * access to the hash list and forcing another memory barrier.
1727 set_current_state(TASK_INTERRUPTIBLE);
1728 queue_me(q, hb);
1730 /* Arm the timer */
1731 if (timeout) {
1732 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1733 if (!hrtimer_active(&timeout->timer))
1734 timeout->task = NULL;
1738 * If we have been removed from the hash list, then another task
1739 * has tried to wake us, and we can skip the call to schedule().
1741 if (likely(!plist_node_empty(&q->list))) {
1743 * If the timer has already expired, current will already be
1744 * flagged for rescheduling. Only call schedule if there
1745 * is no timeout, or if it has yet to expire.
1747 if (!timeout || timeout->task)
1748 schedule();
1750 __set_current_state(TASK_RUNNING);
1754 * futex_wait_setup() - Prepare to wait on a futex
1755 * @uaddr: the futex userspace address
1756 * @val: the expected value
1757 * @flags: futex flags (FLAGS_SHARED, etc.)
1758 * @q: the associated futex_q
1759 * @hb: storage for hash_bucket pointer to be returned to caller
1761 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1762 * compare it with the expected value. Handle atomic faults internally.
1763 * Return with the hb lock held and a q.key reference on success, and unlocked
1764 * with no q.key reference on failure.
1766 * Returns:
1767 * 0 - uaddr contains val and hb has been locked
1768 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1770 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1771 struct futex_q *q, struct futex_hash_bucket **hb)
1773 u32 uval;
1774 int ret;
1777 * Access the page AFTER the hash-bucket is locked.
1778 * Order is important:
1780 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1781 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1783 * The basic logical guarantee of a futex is that it blocks ONLY
1784 * if cond(var) is known to be true at the time of blocking, for
1785 * any cond. If we queued after testing *uaddr, that would open
1786 * a race condition where we could block indefinitely with
1787 * cond(var) false, which would violate the guarantee.
1789 * A consequence is that futex_wait() can return zero and absorb
1790 * a wakeup when *uaddr != val on entry to the syscall. This is
1791 * rare, but normal.
1793 retry:
1794 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1795 if (unlikely(ret != 0))
1796 return ret;
1798 retry_private:
1799 *hb = queue_lock(q);
1801 ret = get_futex_value_locked(&uval, uaddr);
1803 if (ret) {
1804 queue_unlock(q, *hb);
1806 ret = get_user(uval, uaddr);
1807 if (ret)
1808 goto out;
1810 if (!(flags & FLAGS_SHARED))
1811 goto retry_private;
1813 put_futex_key(&q->key);
1814 goto retry;
1817 if (uval != val) {
1818 queue_unlock(q, *hb);
1819 ret = -EWOULDBLOCK;
1822 out:
1823 if (ret)
1824 put_futex_key(&q->key);
1825 return ret;
1828 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1829 ktime_t *abs_time, u32 bitset)
1831 struct hrtimer_sleeper timeout, *to = NULL;
1832 struct restart_block *restart;
1833 struct futex_hash_bucket *hb;
1834 struct futex_q q = futex_q_init;
1835 int ret;
1837 if (!bitset)
1838 return -EINVAL;
1839 q.bitset = bitset;
1841 if (abs_time) {
1842 to = &timeout;
1844 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1845 CLOCK_REALTIME : CLOCK_MONOTONIC,
1846 HRTIMER_MODE_ABS);
1847 hrtimer_init_sleeper(to, current);
1848 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1849 current->timer_slack_ns);
1852 retry:
1854 * Prepare to wait on uaddr. On success, holds hb lock and increments
1855 * q.key refs.
1857 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1858 if (ret)
1859 goto out;
1861 /* queue_me and wait for wakeup, timeout, or a signal. */
1862 futex_wait_queue_me(hb, &q, to);
1864 /* If we were woken (and unqueued), we succeeded, whatever. */
1865 ret = 0;
1866 /* unqueue_me() drops q.key ref */
1867 if (!unqueue_me(&q))
1868 goto out;
1869 ret = -ETIMEDOUT;
1870 if (to && !to->task)
1871 goto out;
1874 * We expect signal_pending(current), but we might be the
1875 * victim of a spurious wakeup as well.
1877 if (!signal_pending(current))
1878 goto retry;
1880 ret = -ERESTARTSYS;
1881 if (!abs_time)
1882 goto out;
1884 restart = &current_thread_info()->restart_block;
1885 restart->fn = futex_wait_restart;
1886 restart->futex.uaddr = uaddr;
1887 restart->futex.val = val;
1888 restart->futex.time = abs_time->tv64;
1889 restart->futex.bitset = bitset;
1890 restart->futex.flags = flags;
1892 ret = -ERESTART_RESTARTBLOCK;
1894 out:
1895 if (to) {
1896 hrtimer_cancel(&to->timer);
1897 destroy_hrtimer_on_stack(&to->timer);
1899 return ret;
1903 static long futex_wait_restart(struct restart_block *restart)
1905 u32 __user *uaddr = restart->futex.uaddr;
1906 ktime_t t, *tp = NULL;
1908 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1909 t.tv64 = restart->futex.time;
1910 tp = &t;
1912 restart->fn = do_no_restart_syscall;
1914 return (long)futex_wait(uaddr, restart->futex.flags,
1915 restart->futex.val, tp, restart->futex.bitset);
1920 * Userspace tried a 0 -> TID atomic transition of the futex value
1921 * and failed. The kernel side here does the whole locking operation:
1922 * if there are waiters then it will block, it does PI, etc. (Due to
1923 * races the kernel might see a 0 value of the futex too.)
1925 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1926 ktime_t *time, int trylock)
1928 struct hrtimer_sleeper timeout, *to = NULL;
1929 struct futex_hash_bucket *hb;
1930 struct futex_q q = futex_q_init;
1931 int res, ret;
1933 if (refill_pi_state_cache())
1934 return -ENOMEM;
1936 if (time) {
1937 to = &timeout;
1938 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1939 HRTIMER_MODE_ABS);
1940 hrtimer_init_sleeper(to, current);
1941 hrtimer_set_expires(&to->timer, *time);
1944 retry:
1945 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1946 if (unlikely(ret != 0))
1947 goto out;
1949 retry_private:
1950 hb = queue_lock(&q);
1952 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1953 if (unlikely(ret)) {
1954 switch (ret) {
1955 case 1:
1956 /* We got the lock. */
1957 ret = 0;
1958 goto out_unlock_put_key;
1959 case -EFAULT:
1960 goto uaddr_faulted;
1961 case -EAGAIN:
1963 * Task is exiting and we just wait for the
1964 * exit to complete.
1966 queue_unlock(&q, hb);
1967 put_futex_key(&q.key);
1968 cond_resched();
1969 goto retry;
1970 default:
1971 goto out_unlock_put_key;
1976 * Only actually queue now that the atomic ops are done:
1978 queue_me(&q, hb);
1980 WARN_ON(!q.pi_state);
1982 * Block on the PI mutex:
1984 if (!trylock)
1985 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1986 else {
1987 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1988 /* Fixup the trylock return value: */
1989 ret = ret ? 0 : -EWOULDBLOCK;
1992 spin_lock(q.lock_ptr);
1994 * Fixup the pi_state owner and possibly acquire the lock if we
1995 * haven't already.
1997 res = fixup_owner(uaddr, &q, !ret);
1999 * If fixup_owner() returned an error, proprogate that. If it acquired
2000 * the lock, clear our -ETIMEDOUT or -EINTR.
2002 if (res)
2003 ret = (res < 0) ? res : 0;
2006 * If fixup_owner() faulted and was unable to handle the fault, unlock
2007 * it and return the fault to userspace.
2009 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2010 rt_mutex_unlock(&q.pi_state->pi_mutex);
2012 /* Unqueue and drop the lock */
2013 unqueue_me_pi(&q);
2015 goto out_put_key;
2017 out_unlock_put_key:
2018 queue_unlock(&q, hb);
2020 out_put_key:
2021 put_futex_key(&q.key);
2022 out:
2023 if (to)
2024 destroy_hrtimer_on_stack(&to->timer);
2025 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2027 uaddr_faulted:
2028 queue_unlock(&q, hb);
2030 ret = fault_in_user_writeable(uaddr);
2031 if (ret)
2032 goto out_put_key;
2034 if (!(flags & FLAGS_SHARED))
2035 goto retry_private;
2037 put_futex_key(&q.key);
2038 goto retry;
2042 * Userspace attempted a TID -> 0 atomic transition, and failed.
2043 * This is the in-kernel slowpath: we look up the PI state (if any),
2044 * and do the rt-mutex unlock.
2046 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2048 struct futex_hash_bucket *hb;
2049 struct futex_q *this, *next;
2050 u32 uval;
2051 struct plist_head *head;
2052 union futex_key key = FUTEX_KEY_INIT;
2053 int ret;
2055 retry:
2056 if (get_user(uval, uaddr))
2057 return -EFAULT;
2059 * We release only a lock we actually own:
2061 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2062 return -EPERM;
2064 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2065 if (unlikely(ret != 0))
2066 goto out;
2068 hb = hash_futex(&key);
2069 spin_lock(&hb->lock);
2072 * To avoid races, try to do the TID -> 0 atomic transition
2073 * again. If it succeeds then we can return without waking
2074 * anyone else up:
2076 if (!(uval & FUTEX_OWNER_DIED))
2077 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2080 if (unlikely(uval == -EFAULT))
2081 goto pi_faulted;
2083 * Rare case: we managed to release the lock atomically,
2084 * no need to wake anyone else up:
2086 if (unlikely(uval == task_pid_vnr(current)))
2087 goto out_unlock;
2090 * Ok, other tasks may need to be woken up - check waiters
2091 * and do the wakeup if necessary:
2093 head = &hb->chain;
2095 plist_for_each_entry_safe(this, next, head, list) {
2096 if (!match_futex (&this->key, &key))
2097 continue;
2098 ret = wake_futex_pi(uaddr, uval, this);
2100 * The atomic access to the futex value
2101 * generated a pagefault, so retry the
2102 * user-access and the wakeup:
2104 if (ret == -EFAULT)
2105 goto pi_faulted;
2106 goto out_unlock;
2109 * No waiters - kernel unlocks the futex:
2111 if (!(uval & FUTEX_OWNER_DIED)) {
2112 ret = unlock_futex_pi(uaddr, uval);
2113 if (ret == -EFAULT)
2114 goto pi_faulted;
2117 out_unlock:
2118 spin_unlock(&hb->lock);
2119 put_futex_key(&key);
2121 out:
2122 return ret;
2124 pi_faulted:
2125 spin_unlock(&hb->lock);
2126 put_futex_key(&key);
2128 ret = fault_in_user_writeable(uaddr);
2129 if (!ret)
2130 goto retry;
2132 return ret;
2136 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2137 * @hb: the hash_bucket futex_q was original enqueued on
2138 * @q: the futex_q woken while waiting to be requeued
2139 * @key2: the futex_key of the requeue target futex
2140 * @timeout: the timeout associated with the wait (NULL if none)
2142 * Detect if the task was woken on the initial futex as opposed to the requeue
2143 * target futex. If so, determine if it was a timeout or a signal that caused
2144 * the wakeup and return the appropriate error code to the caller. Must be
2145 * called with the hb lock held.
2147 * Returns
2148 * 0 - no early wakeup detected
2149 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2151 static inline
2152 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2153 struct futex_q *q, union futex_key *key2,
2154 struct hrtimer_sleeper *timeout)
2156 int ret = 0;
2159 * With the hb lock held, we avoid races while we process the wakeup.
2160 * We only need to hold hb (and not hb2) to ensure atomicity as the
2161 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2162 * It can't be requeued from uaddr2 to something else since we don't
2163 * support a PI aware source futex for requeue.
2165 if (!match_futex(&q->key, key2)) {
2166 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2168 * We were woken prior to requeue by a timeout or a signal.
2169 * Unqueue the futex_q and determine which it was.
2171 plist_del(&q->list, &q->list.plist);
2173 /* Handle spurious wakeups gracefully */
2174 ret = -EWOULDBLOCK;
2175 if (timeout && !timeout->task)
2176 ret = -ETIMEDOUT;
2177 else if (signal_pending(current))
2178 ret = -ERESTARTNOINTR;
2180 return ret;
2184 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2185 * @uaddr: the futex we initially wait on (non-pi)
2186 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2187 * the same type, no requeueing from private to shared, etc.
2188 * @val: the expected value of uaddr
2189 * @abs_time: absolute timeout
2190 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2191 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2192 * @uaddr2: the pi futex we will take prior to returning to user-space
2194 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2195 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2196 * complete the acquisition of the rt_mutex prior to returning to userspace.
2197 * This ensures the rt_mutex maintains an owner when it has waiters; without
2198 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2199 * need to.
2201 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2202 * via the following:
2203 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2204 * 2) wakeup on uaddr2 after a requeue
2205 * 3) signal
2206 * 4) timeout
2208 * If 3, cleanup and return -ERESTARTNOINTR.
2210 * If 2, we may then block on trying to take the rt_mutex and return via:
2211 * 5) successful lock
2212 * 6) signal
2213 * 7) timeout
2214 * 8) other lock acquisition failure
2216 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2218 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2220 * Returns:
2221 * 0 - On success
2222 * <0 - On error
2224 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2225 u32 val, ktime_t *abs_time, u32 bitset,
2226 u32 __user *uaddr2)
2228 struct hrtimer_sleeper timeout, *to = NULL;
2229 struct rt_mutex_waiter rt_waiter;
2230 struct rt_mutex *pi_mutex = NULL;
2231 struct futex_hash_bucket *hb;
2232 union futex_key key2 = FUTEX_KEY_INIT;
2233 struct futex_q q = futex_q_init;
2234 int res, ret;
2236 if (!bitset)
2237 return -EINVAL;
2239 if (abs_time) {
2240 to = &timeout;
2241 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2242 CLOCK_REALTIME : CLOCK_MONOTONIC,
2243 HRTIMER_MODE_ABS);
2244 hrtimer_init_sleeper(to, current);
2245 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2246 current->timer_slack_ns);
2250 * The waiter is allocated on our stack, manipulated by the requeue
2251 * code while we sleep on uaddr.
2253 debug_rt_mutex_init_waiter(&rt_waiter);
2254 rt_waiter.task = NULL;
2256 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2257 if (unlikely(ret != 0))
2258 goto out;
2260 q.bitset = bitset;
2261 q.rt_waiter = &rt_waiter;
2262 q.requeue_pi_key = &key2;
2265 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2266 * count.
2268 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2269 if (ret)
2270 goto out_key2;
2272 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2273 futex_wait_queue_me(hb, &q, to);
2275 spin_lock(&hb->lock);
2276 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2277 spin_unlock(&hb->lock);
2278 if (ret)
2279 goto out_put_keys;
2282 * In order for us to be here, we know our q.key == key2, and since
2283 * we took the hb->lock above, we also know that futex_requeue() has
2284 * completed and we no longer have to concern ourselves with a wakeup
2285 * race with the atomic proxy lock acquisition by the requeue code. The
2286 * futex_requeue dropped our key1 reference and incremented our key2
2287 * reference count.
2290 /* Check if the requeue code acquired the second futex for us. */
2291 if (!q.rt_waiter) {
2293 * Got the lock. We might not be the anticipated owner if we
2294 * did a lock-steal - fix up the PI-state in that case.
2296 if (q.pi_state && (q.pi_state->owner != current)) {
2297 spin_lock(q.lock_ptr);
2298 ret = fixup_pi_state_owner(uaddr2, &q, current);
2299 spin_unlock(q.lock_ptr);
2301 } else {
2303 * We have been woken up by futex_unlock_pi(), a timeout, or a
2304 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2305 * the pi_state.
2307 WARN_ON(!&q.pi_state);
2308 pi_mutex = &q.pi_state->pi_mutex;
2309 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2310 debug_rt_mutex_free_waiter(&rt_waiter);
2312 spin_lock(q.lock_ptr);
2314 * Fixup the pi_state owner and possibly acquire the lock if we
2315 * haven't already.
2317 res = fixup_owner(uaddr2, &q, !ret);
2319 * If fixup_owner() returned an error, proprogate that. If it
2320 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2322 if (res)
2323 ret = (res < 0) ? res : 0;
2325 /* Unqueue and drop the lock. */
2326 unqueue_me_pi(&q);
2330 * If fixup_pi_state_owner() faulted and was unable to handle the
2331 * fault, unlock the rt_mutex and return the fault to userspace.
2333 if (ret == -EFAULT) {
2334 if (rt_mutex_owner(pi_mutex) == current)
2335 rt_mutex_unlock(pi_mutex);
2336 } else if (ret == -EINTR) {
2338 * We've already been requeued, but cannot restart by calling
2339 * futex_lock_pi() directly. We could restart this syscall, but
2340 * it would detect that the user space "val" changed and return
2341 * -EWOULDBLOCK. Save the overhead of the restart and return
2342 * -EWOULDBLOCK directly.
2344 ret = -EWOULDBLOCK;
2347 out_put_keys:
2348 put_futex_key(&q.key);
2349 out_key2:
2350 put_futex_key(&key2);
2352 out:
2353 if (to) {
2354 hrtimer_cancel(&to->timer);
2355 destroy_hrtimer_on_stack(&to->timer);
2357 return ret;
2361 * Support for robust futexes: the kernel cleans up held futexes at
2362 * thread exit time.
2364 * Implementation: user-space maintains a per-thread list of locks it
2365 * is holding. Upon do_exit(), the kernel carefully walks this list,
2366 * and marks all locks that are owned by this thread with the
2367 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2368 * always manipulated with the lock held, so the list is private and
2369 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2370 * field, to allow the kernel to clean up if the thread dies after
2371 * acquiring the lock, but just before it could have added itself to
2372 * the list. There can only be one such pending lock.
2376 * sys_set_robust_list() - Set the robust-futex list head of a task
2377 * @head: pointer to the list-head
2378 * @len: length of the list-head, as userspace expects
2380 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2381 size_t, len)
2383 if (!futex_cmpxchg_enabled)
2384 return -ENOSYS;
2386 * The kernel knows only one size for now:
2388 if (unlikely(len != sizeof(*head)))
2389 return -EINVAL;
2391 current->robust_list = head;
2393 return 0;
2397 * sys_get_robust_list() - Get the robust-futex list head of a task
2398 * @pid: pid of the process [zero for current task]
2399 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2400 * @len_ptr: pointer to a length field, the kernel fills in the header size
2402 SYSCALL_DEFINE3(get_robust_list, int, pid,
2403 struct robust_list_head __user * __user *, head_ptr,
2404 size_t __user *, len_ptr)
2406 struct robust_list_head __user *head;
2407 unsigned long ret;
2408 const struct cred *cred = current_cred(), *pcred;
2410 if (!futex_cmpxchg_enabled)
2411 return -ENOSYS;
2413 if (!pid)
2414 head = current->robust_list;
2415 else {
2416 struct task_struct *p;
2418 ret = -ESRCH;
2419 rcu_read_lock();
2420 p = find_task_by_vpid(pid);
2421 if (!p)
2422 goto err_unlock;
2423 ret = -EPERM;
2424 pcred = __task_cred(p);
2425 if (cred->euid != pcred->euid &&
2426 cred->euid != pcred->uid &&
2427 !capable(CAP_SYS_PTRACE))
2428 goto err_unlock;
2429 head = p->robust_list;
2430 rcu_read_unlock();
2433 if (put_user(sizeof(*head), len_ptr))
2434 return -EFAULT;
2435 return put_user(head, head_ptr);
2437 err_unlock:
2438 rcu_read_unlock();
2440 return ret;
2444 * Process a futex-list entry, check whether it's owned by the
2445 * dying task, and do notification if so:
2447 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2449 u32 uval, nval, mval;
2451 retry:
2452 if (get_user(uval, uaddr))
2453 return -1;
2455 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2457 * Ok, this dying thread is truly holding a futex
2458 * of interest. Set the OWNER_DIED bit atomically
2459 * via cmpxchg, and if the value had FUTEX_WAITERS
2460 * set, wake up a waiter (if any). (We have to do a
2461 * futex_wake() even if OWNER_DIED is already set -
2462 * to handle the rare but possible case of recursive
2463 * thread-death.) The rest of the cleanup is done in
2464 * userspace.
2466 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2467 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2469 if (nval == -EFAULT)
2470 return -1;
2472 if (nval != uval)
2473 goto retry;
2476 * Wake robust non-PI futexes here. The wakeup of
2477 * PI futexes happens in exit_pi_state():
2479 if (!pi && (uval & FUTEX_WAITERS))
2480 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2482 return 0;
2486 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2488 static inline int fetch_robust_entry(struct robust_list __user **entry,
2489 struct robust_list __user * __user *head,
2490 unsigned int *pi)
2492 unsigned long uentry;
2494 if (get_user(uentry, (unsigned long __user *)head))
2495 return -EFAULT;
2497 *entry = (void __user *)(uentry & ~1UL);
2498 *pi = uentry & 1;
2500 return 0;
2504 * Walk curr->robust_list (very carefully, it's a userspace list!)
2505 * and mark any locks found there dead, and notify any waiters.
2507 * We silently return on any sign of list-walking problem.
2509 void exit_robust_list(struct task_struct *curr)
2511 struct robust_list_head __user *head = curr->robust_list;
2512 struct robust_list __user *entry, *next_entry, *pending;
2513 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2514 unsigned int uninitialized_var(next_pi);
2515 unsigned long futex_offset;
2516 int rc;
2518 if (!futex_cmpxchg_enabled)
2519 return;
2522 * Fetch the list head (which was registered earlier, via
2523 * sys_set_robust_list()):
2525 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2526 return;
2528 * Fetch the relative futex offset:
2530 if (get_user(futex_offset, &head->futex_offset))
2531 return;
2533 * Fetch any possibly pending lock-add first, and handle it
2534 * if it exists:
2536 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2537 return;
2539 next_entry = NULL; /* avoid warning with gcc */
2540 while (entry != &head->list) {
2542 * Fetch the next entry in the list before calling
2543 * handle_futex_death:
2545 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2547 * A pending lock might already be on the list, so
2548 * don't process it twice:
2550 if (entry != pending)
2551 if (handle_futex_death((void __user *)entry + futex_offset,
2552 curr, pi))
2553 return;
2554 if (rc)
2555 return;
2556 entry = next_entry;
2557 pi = next_pi;
2559 * Avoid excessively long or circular lists:
2561 if (!--limit)
2562 break;
2564 cond_resched();
2567 if (pending)
2568 handle_futex_death((void __user *)pending + futex_offset,
2569 curr, pip);
2572 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2573 u32 __user *uaddr2, u32 val2, u32 val3)
2575 int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2576 unsigned int flags = 0;
2578 if (!(op & FUTEX_PRIVATE_FLAG))
2579 flags |= FLAGS_SHARED;
2581 if (op & FUTEX_CLOCK_REALTIME) {
2582 flags |= FLAGS_CLOCKRT;
2583 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2584 return -ENOSYS;
2587 switch (cmd) {
2588 case FUTEX_WAIT:
2589 val3 = FUTEX_BITSET_MATCH_ANY;
2590 case FUTEX_WAIT_BITSET:
2591 ret = futex_wait(uaddr, flags, val, timeout, val3);
2592 break;
2593 case FUTEX_WAKE:
2594 val3 = FUTEX_BITSET_MATCH_ANY;
2595 case FUTEX_WAKE_BITSET:
2596 ret = futex_wake(uaddr, flags, val, val3);
2597 break;
2598 case FUTEX_REQUEUE:
2599 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2600 break;
2601 case FUTEX_CMP_REQUEUE:
2602 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2603 break;
2604 case FUTEX_WAKE_OP:
2605 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2606 break;
2607 case FUTEX_LOCK_PI:
2608 if (futex_cmpxchg_enabled)
2609 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2610 break;
2611 case FUTEX_UNLOCK_PI:
2612 if (futex_cmpxchg_enabled)
2613 ret = futex_unlock_pi(uaddr, flags);
2614 break;
2615 case FUTEX_TRYLOCK_PI:
2616 if (futex_cmpxchg_enabled)
2617 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2618 break;
2619 case FUTEX_WAIT_REQUEUE_PI:
2620 val3 = FUTEX_BITSET_MATCH_ANY;
2621 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2622 uaddr2);
2623 break;
2624 case FUTEX_CMP_REQUEUE_PI:
2625 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2626 break;
2627 default:
2628 ret = -ENOSYS;
2630 return ret;
2634 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2635 struct timespec __user *, utime, u32 __user *, uaddr2,
2636 u32, val3)
2638 struct timespec ts;
2639 ktime_t t, *tp = NULL;
2640 u32 val2 = 0;
2641 int cmd = op & FUTEX_CMD_MASK;
2643 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2644 cmd == FUTEX_WAIT_BITSET ||
2645 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2646 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2647 return -EFAULT;
2648 if (!timespec_valid(&ts))
2649 return -EINVAL;
2651 t = timespec_to_ktime(ts);
2652 if (cmd == FUTEX_WAIT)
2653 t = ktime_add_safe(ktime_get(), t);
2654 tp = &t;
2657 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2658 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2660 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2661 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2662 val2 = (u32) (unsigned long) utime;
2664 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2667 static int __init futex_init(void)
2669 u32 curval;
2670 int i;
2673 * This will fail and we want it. Some arch implementations do
2674 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2675 * functionality. We want to know that before we call in any
2676 * of the complex code paths. Also we want to prevent
2677 * registration of robust lists in that case. NULL is
2678 * guaranteed to fault and we get -EFAULT on functional
2679 * implementation, the non-functional ones will return
2680 * -ENOSYS.
2682 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2683 if (curval == -EFAULT)
2684 futex_cmpxchg_enabled = 1;
2686 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2687 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2688 spin_lock_init(&futex_queues[i].lock);
2691 return 0;
2693 __initcall(futex_init);