perf, x86: Use INTEL_*_CONSTRAINT() for all PEBS event constraints
[linux-2.6/x86.git] / arch / x86 / kernel / cpu / perf_event.c
blobe8dbe179587fcf58f2f3094e825fc1c10512c2bd
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33 #include <asm/smp.h>
35 #if 0
36 #undef wrmsrl
37 #define wrmsrl(msr, val) \
38 do { \
39 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
40 (unsigned long)(val)); \
41 native_write_msr((msr), (u32)((u64)(val)), \
42 (u32)((u64)(val) >> 32)); \
43 } while (0)
44 #endif
47 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
49 static unsigned long
50 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
52 unsigned long offset, addr = (unsigned long)from;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
66 map = kmap_atomic(page);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map);
69 put_page(page);
71 len += size;
72 to += size;
73 addr += size;
75 } while (len < n);
77 return len;
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
85 u64 code;
86 u64 cmask;
87 int weight;
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
97 struct intel_percore;
99 #define MAX_LBR_ENTRIES 16
101 struct cpu_hw_events {
103 * Generic x86 PMC bits
105 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
106 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
107 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
108 int enabled;
110 int n_events;
111 int n_added;
112 int n_txn;
113 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
114 u64 tags[X86_PMC_IDX_MAX];
115 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
117 unsigned int group_flag;
120 * Intel DebugStore bits
122 struct debug_store *ds;
123 u64 pebs_enabled;
126 * Intel LBR bits
128 int lbr_users;
129 void *lbr_context;
130 struct perf_branch_stack lbr_stack;
131 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
134 * Intel percore register state.
135 * Coordinate shared resources between HT threads.
137 int percore_used; /* Used by this CPU? */
138 struct intel_percore *per_core;
141 * AMD specific bits
143 struct amd_nb *amd_nb;
146 #define __EVENT_CONSTRAINT(c, n, m, w) {\
147 { .idxmsk64 = (n) }, \
148 .code = (c), \
149 .cmask = (m), \
150 .weight = (w), \
153 #define EVENT_CONSTRAINT(c, n, m) \
154 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
157 * Constraint on the Event code.
159 #define INTEL_EVENT_CONSTRAINT(c, n) \
160 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
163 * Constraint on the Event code + UMask + fixed-mask
165 * filter mask to validate fixed counter events.
166 * the following filters disqualify for fixed counters:
167 * - inv
168 * - edge
169 * - cnt-mask
170 * The other filters are supported by fixed counters.
171 * The any-thread option is supported starting with v3.
173 #define FIXED_EVENT_CONSTRAINT(c, n) \
174 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
177 * Constraint on the Event code + UMask
179 #define INTEL_UEVENT_CONSTRAINT(c, n) \
180 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
182 #define EVENT_CONSTRAINT_END \
183 EVENT_CONSTRAINT(0, 0, 0)
185 #define for_each_event_constraint(e, c) \
186 for ((e) = (c); (e)->weight; (e)++)
189 * Extra registers for specific events.
190 * Some events need large masks and require external MSRs.
191 * Define a mapping to these extra registers.
193 struct extra_reg {
194 unsigned int event;
195 unsigned int msr;
196 u64 config_mask;
197 u64 valid_mask;
200 #define EVENT_EXTRA_REG(e, ms, m, vm) { \
201 .event = (e), \
202 .msr = (ms), \
203 .config_mask = (m), \
204 .valid_mask = (vm), \
206 #define INTEL_EVENT_EXTRA_REG(event, msr, vm) \
207 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm)
208 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0)
210 union perf_capabilities {
211 struct {
212 u64 lbr_format : 6;
213 u64 pebs_trap : 1;
214 u64 pebs_arch_reg : 1;
215 u64 pebs_format : 4;
216 u64 smm_freeze : 1;
218 u64 capabilities;
222 * struct x86_pmu - generic x86 pmu
224 struct x86_pmu {
226 * Generic x86 PMC bits
228 const char *name;
229 int version;
230 int (*handle_irq)(struct pt_regs *);
231 void (*disable_all)(void);
232 void (*enable_all)(int added);
233 void (*enable)(struct perf_event *);
234 void (*disable)(struct perf_event *);
235 int (*hw_config)(struct perf_event *event);
236 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
237 unsigned eventsel;
238 unsigned perfctr;
239 u64 (*event_map)(int);
240 int max_events;
241 int num_counters;
242 int num_counters_fixed;
243 int cntval_bits;
244 u64 cntval_mask;
245 int apic;
246 u64 max_period;
247 struct event_constraint *
248 (*get_event_constraints)(struct cpu_hw_events *cpuc,
249 struct perf_event *event);
251 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
252 struct perf_event *event);
253 struct event_constraint *event_constraints;
254 struct event_constraint *percore_constraints;
255 void (*quirks)(void);
256 int perfctr_second_write;
258 int (*cpu_prepare)(int cpu);
259 void (*cpu_starting)(int cpu);
260 void (*cpu_dying)(int cpu);
261 void (*cpu_dead)(int cpu);
264 * Intel Arch Perfmon v2+
266 u64 intel_ctrl;
267 union perf_capabilities intel_cap;
270 * Intel DebugStore bits
272 int bts, pebs;
273 int bts_active, pebs_active;
274 int pebs_record_size;
275 void (*drain_pebs)(struct pt_regs *regs);
276 struct event_constraint *pebs_constraints;
279 * Intel LBR
281 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
282 int lbr_nr; /* hardware stack size */
285 * Extra registers for events
287 struct extra_reg *extra_regs;
290 static struct x86_pmu x86_pmu __read_mostly;
292 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
293 .enabled = 1,
296 static int x86_perf_event_set_period(struct perf_event *event);
299 * Generalized hw caching related hw_event table, filled
300 * in on a per model basis. A value of 0 means
301 * 'not supported', -1 means 'hw_event makes no sense on
302 * this CPU', any other value means the raw hw_event
303 * ID.
306 #define C(x) PERF_COUNT_HW_CACHE_##x
308 static u64 __read_mostly hw_cache_event_ids
309 [PERF_COUNT_HW_CACHE_MAX]
310 [PERF_COUNT_HW_CACHE_OP_MAX]
311 [PERF_COUNT_HW_CACHE_RESULT_MAX];
312 static u64 __read_mostly hw_cache_extra_regs
313 [PERF_COUNT_HW_CACHE_MAX]
314 [PERF_COUNT_HW_CACHE_OP_MAX]
315 [PERF_COUNT_HW_CACHE_RESULT_MAX];
318 * Propagate event elapsed time into the generic event.
319 * Can only be executed on the CPU where the event is active.
320 * Returns the delta events processed.
322 static u64
323 x86_perf_event_update(struct perf_event *event)
325 struct hw_perf_event *hwc = &event->hw;
326 int shift = 64 - x86_pmu.cntval_bits;
327 u64 prev_raw_count, new_raw_count;
328 int idx = hwc->idx;
329 s64 delta;
331 if (idx == X86_PMC_IDX_FIXED_BTS)
332 return 0;
335 * Careful: an NMI might modify the previous event value.
337 * Our tactic to handle this is to first atomically read and
338 * exchange a new raw count - then add that new-prev delta
339 * count to the generic event atomically:
341 again:
342 prev_raw_count = local64_read(&hwc->prev_count);
343 rdmsrl(hwc->event_base, new_raw_count);
345 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
346 new_raw_count) != prev_raw_count)
347 goto again;
350 * Now we have the new raw value and have updated the prev
351 * timestamp already. We can now calculate the elapsed delta
352 * (event-)time and add that to the generic event.
354 * Careful, not all hw sign-extends above the physical width
355 * of the count.
357 delta = (new_raw_count << shift) - (prev_raw_count << shift);
358 delta >>= shift;
360 local64_add(delta, &event->count);
361 local64_sub(delta, &hwc->period_left);
363 return new_raw_count;
366 /* using X86_FEATURE_PERFCTR_CORE to later implement ALTERNATIVE() here */
367 static inline int x86_pmu_addr_offset(int index)
369 if (boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
370 return index << 1;
371 return index;
374 static inline unsigned int x86_pmu_config_addr(int index)
376 return x86_pmu.eventsel + x86_pmu_addr_offset(index);
379 static inline unsigned int x86_pmu_event_addr(int index)
381 return x86_pmu.perfctr + x86_pmu_addr_offset(index);
385 * Find and validate any extra registers to set up.
387 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
389 struct extra_reg *er;
391 event->hw.extra_reg = 0;
392 event->hw.extra_config = 0;
394 if (!x86_pmu.extra_regs)
395 return 0;
397 for (er = x86_pmu.extra_regs; er->msr; er++) {
398 if (er->event != (config & er->config_mask))
399 continue;
400 if (event->attr.config1 & ~er->valid_mask)
401 return -EINVAL;
402 event->hw.extra_reg = er->msr;
403 event->hw.extra_config = event->attr.config1;
404 break;
406 return 0;
409 static atomic_t active_events;
410 static DEFINE_MUTEX(pmc_reserve_mutex);
412 #ifdef CONFIG_X86_LOCAL_APIC
414 static bool reserve_pmc_hardware(void)
416 int i;
418 for (i = 0; i < x86_pmu.num_counters; i++) {
419 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
420 goto perfctr_fail;
423 for (i = 0; i < x86_pmu.num_counters; i++) {
424 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
425 goto eventsel_fail;
428 return true;
430 eventsel_fail:
431 for (i--; i >= 0; i--)
432 release_evntsel_nmi(x86_pmu_config_addr(i));
434 i = x86_pmu.num_counters;
436 perfctr_fail:
437 for (i--; i >= 0; i--)
438 release_perfctr_nmi(x86_pmu_event_addr(i));
440 return false;
443 static void release_pmc_hardware(void)
445 int i;
447 for (i = 0; i < x86_pmu.num_counters; i++) {
448 release_perfctr_nmi(x86_pmu_event_addr(i));
449 release_evntsel_nmi(x86_pmu_config_addr(i));
453 #else
455 static bool reserve_pmc_hardware(void) { return true; }
456 static void release_pmc_hardware(void) {}
458 #endif
460 static bool check_hw_exists(void)
462 u64 val, val_new = 0;
463 int i, reg, ret = 0;
466 * Check to see if the BIOS enabled any of the counters, if so
467 * complain and bail.
469 for (i = 0; i < x86_pmu.num_counters; i++) {
470 reg = x86_pmu_config_addr(i);
471 ret = rdmsrl_safe(reg, &val);
472 if (ret)
473 goto msr_fail;
474 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
475 goto bios_fail;
478 if (x86_pmu.num_counters_fixed) {
479 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
480 ret = rdmsrl_safe(reg, &val);
481 if (ret)
482 goto msr_fail;
483 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
484 if (val & (0x03 << i*4))
485 goto bios_fail;
490 * Now write a value and read it back to see if it matches,
491 * this is needed to detect certain hardware emulators (qemu/kvm)
492 * that don't trap on the MSR access and always return 0s.
494 val = 0xabcdUL;
495 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
496 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
497 if (ret || val != val_new)
498 goto msr_fail;
500 return true;
502 bios_fail:
503 printk(KERN_CONT "Broken BIOS detected, using software events only.\n");
504 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
505 return false;
507 msr_fail:
508 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
509 return false;
512 static void reserve_ds_buffers(void);
513 static void release_ds_buffers(void);
515 static void hw_perf_event_destroy(struct perf_event *event)
517 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
518 release_pmc_hardware();
519 release_ds_buffers();
520 mutex_unlock(&pmc_reserve_mutex);
524 static inline int x86_pmu_initialized(void)
526 return x86_pmu.handle_irq != NULL;
529 static inline int
530 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
532 struct perf_event_attr *attr = &event->attr;
533 unsigned int cache_type, cache_op, cache_result;
534 u64 config, val;
536 config = attr->config;
538 cache_type = (config >> 0) & 0xff;
539 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
540 return -EINVAL;
542 cache_op = (config >> 8) & 0xff;
543 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
544 return -EINVAL;
546 cache_result = (config >> 16) & 0xff;
547 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
548 return -EINVAL;
550 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
552 if (val == 0)
553 return -ENOENT;
555 if (val == -1)
556 return -EINVAL;
558 hwc->config |= val;
559 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
560 return x86_pmu_extra_regs(val, event);
563 static int x86_setup_perfctr(struct perf_event *event)
565 struct perf_event_attr *attr = &event->attr;
566 struct hw_perf_event *hwc = &event->hw;
567 u64 config;
569 if (!is_sampling_event(event)) {
570 hwc->sample_period = x86_pmu.max_period;
571 hwc->last_period = hwc->sample_period;
572 local64_set(&hwc->period_left, hwc->sample_period);
573 } else {
575 * If we have a PMU initialized but no APIC
576 * interrupts, we cannot sample hardware
577 * events (user-space has to fall back and
578 * sample via a hrtimer based software event):
580 if (!x86_pmu.apic)
581 return -EOPNOTSUPP;
584 if (attr->type == PERF_TYPE_RAW)
585 return x86_pmu_extra_regs(event->attr.config, event);
587 if (attr->type == PERF_TYPE_HW_CACHE)
588 return set_ext_hw_attr(hwc, event);
590 if (attr->config >= x86_pmu.max_events)
591 return -EINVAL;
594 * The generic map:
596 config = x86_pmu.event_map(attr->config);
598 if (config == 0)
599 return -ENOENT;
601 if (config == -1LL)
602 return -EINVAL;
605 * Branch tracing:
607 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
608 (hwc->sample_period == 1)) {
609 /* BTS is not supported by this architecture. */
610 if (!x86_pmu.bts_active)
611 return -EOPNOTSUPP;
613 /* BTS is currently only allowed for user-mode. */
614 if (!attr->exclude_kernel)
615 return -EOPNOTSUPP;
618 hwc->config |= config;
620 return 0;
623 static int x86_pmu_hw_config(struct perf_event *event)
625 if (event->attr.precise_ip) {
626 int precise = 0;
628 /* Support for constant skid */
629 if (x86_pmu.pebs_active) {
630 precise++;
632 /* Support for IP fixup */
633 if (x86_pmu.lbr_nr)
634 precise++;
637 if (event->attr.precise_ip > precise)
638 return -EOPNOTSUPP;
642 * Generate PMC IRQs:
643 * (keep 'enabled' bit clear for now)
645 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
648 * Count user and OS events unless requested not to
650 if (!event->attr.exclude_user)
651 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
652 if (!event->attr.exclude_kernel)
653 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
655 if (event->attr.type == PERF_TYPE_RAW)
656 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
658 return x86_setup_perfctr(event);
662 * Setup the hardware configuration for a given attr_type
664 static int __x86_pmu_event_init(struct perf_event *event)
666 int err;
668 if (!x86_pmu_initialized())
669 return -ENODEV;
671 err = 0;
672 if (!atomic_inc_not_zero(&active_events)) {
673 mutex_lock(&pmc_reserve_mutex);
674 if (atomic_read(&active_events) == 0) {
675 if (!reserve_pmc_hardware())
676 err = -EBUSY;
677 else
678 reserve_ds_buffers();
680 if (!err)
681 atomic_inc(&active_events);
682 mutex_unlock(&pmc_reserve_mutex);
684 if (err)
685 return err;
687 event->destroy = hw_perf_event_destroy;
689 event->hw.idx = -1;
690 event->hw.last_cpu = -1;
691 event->hw.last_tag = ~0ULL;
693 return x86_pmu.hw_config(event);
696 static void x86_pmu_disable_all(void)
698 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
699 int idx;
701 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
702 u64 val;
704 if (!test_bit(idx, cpuc->active_mask))
705 continue;
706 rdmsrl(x86_pmu_config_addr(idx), val);
707 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
708 continue;
709 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
710 wrmsrl(x86_pmu_config_addr(idx), val);
714 static void x86_pmu_disable(struct pmu *pmu)
716 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
718 if (!x86_pmu_initialized())
719 return;
721 if (!cpuc->enabled)
722 return;
724 cpuc->n_added = 0;
725 cpuc->enabled = 0;
726 barrier();
728 x86_pmu.disable_all();
731 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
732 u64 enable_mask)
734 if (hwc->extra_reg)
735 wrmsrl(hwc->extra_reg, hwc->extra_config);
736 wrmsrl(hwc->config_base, hwc->config | enable_mask);
739 static void x86_pmu_enable_all(int added)
741 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
742 int idx;
744 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
745 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
747 if (!test_bit(idx, cpuc->active_mask))
748 continue;
750 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
754 static struct pmu pmu;
756 static inline int is_x86_event(struct perf_event *event)
758 return event->pmu == &pmu;
761 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
763 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
764 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
765 int i, j, w, wmax, num = 0;
766 struct hw_perf_event *hwc;
768 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
770 for (i = 0; i < n; i++) {
771 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
772 constraints[i] = c;
776 * fastpath, try to reuse previous register
778 for (i = 0; i < n; i++) {
779 hwc = &cpuc->event_list[i]->hw;
780 c = constraints[i];
782 /* never assigned */
783 if (hwc->idx == -1)
784 break;
786 /* constraint still honored */
787 if (!test_bit(hwc->idx, c->idxmsk))
788 break;
790 /* not already used */
791 if (test_bit(hwc->idx, used_mask))
792 break;
794 __set_bit(hwc->idx, used_mask);
795 if (assign)
796 assign[i] = hwc->idx;
798 if (i == n)
799 goto done;
802 * begin slow path
805 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
808 * weight = number of possible counters
810 * 1 = most constrained, only works on one counter
811 * wmax = least constrained, works on any counter
813 * assign events to counters starting with most
814 * constrained events.
816 wmax = x86_pmu.num_counters;
819 * when fixed event counters are present,
820 * wmax is incremented by 1 to account
821 * for one more choice
823 if (x86_pmu.num_counters_fixed)
824 wmax++;
826 for (w = 1, num = n; num && w <= wmax; w++) {
827 /* for each event */
828 for (i = 0; num && i < n; i++) {
829 c = constraints[i];
830 hwc = &cpuc->event_list[i]->hw;
832 if (c->weight != w)
833 continue;
835 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
836 if (!test_bit(j, used_mask))
837 break;
840 if (j == X86_PMC_IDX_MAX)
841 break;
843 __set_bit(j, used_mask);
845 if (assign)
846 assign[i] = j;
847 num--;
850 done:
852 * scheduling failed or is just a simulation,
853 * free resources if necessary
855 if (!assign || num) {
856 for (i = 0; i < n; i++) {
857 if (x86_pmu.put_event_constraints)
858 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
861 return num ? -ENOSPC : 0;
865 * dogrp: true if must collect siblings events (group)
866 * returns total number of events and error code
868 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
870 struct perf_event *event;
871 int n, max_count;
873 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
875 /* current number of events already accepted */
876 n = cpuc->n_events;
878 if (is_x86_event(leader)) {
879 if (n >= max_count)
880 return -ENOSPC;
881 cpuc->event_list[n] = leader;
882 n++;
884 if (!dogrp)
885 return n;
887 list_for_each_entry(event, &leader->sibling_list, group_entry) {
888 if (!is_x86_event(event) ||
889 event->state <= PERF_EVENT_STATE_OFF)
890 continue;
892 if (n >= max_count)
893 return -ENOSPC;
895 cpuc->event_list[n] = event;
896 n++;
898 return n;
901 static inline void x86_assign_hw_event(struct perf_event *event,
902 struct cpu_hw_events *cpuc, int i)
904 struct hw_perf_event *hwc = &event->hw;
906 hwc->idx = cpuc->assign[i];
907 hwc->last_cpu = smp_processor_id();
908 hwc->last_tag = ++cpuc->tags[i];
910 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
911 hwc->config_base = 0;
912 hwc->event_base = 0;
913 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
914 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
915 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0;
916 } else {
917 hwc->config_base = x86_pmu_config_addr(hwc->idx);
918 hwc->event_base = x86_pmu_event_addr(hwc->idx);
922 static inline int match_prev_assignment(struct hw_perf_event *hwc,
923 struct cpu_hw_events *cpuc,
924 int i)
926 return hwc->idx == cpuc->assign[i] &&
927 hwc->last_cpu == smp_processor_id() &&
928 hwc->last_tag == cpuc->tags[i];
931 static void x86_pmu_start(struct perf_event *event, int flags);
932 static void x86_pmu_stop(struct perf_event *event, int flags);
934 static void x86_pmu_enable(struct pmu *pmu)
936 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
937 struct perf_event *event;
938 struct hw_perf_event *hwc;
939 int i, added = cpuc->n_added;
941 if (!x86_pmu_initialized())
942 return;
944 if (cpuc->enabled)
945 return;
947 if (cpuc->n_added) {
948 int n_running = cpuc->n_events - cpuc->n_added;
950 * apply assignment obtained either from
951 * hw_perf_group_sched_in() or x86_pmu_enable()
953 * step1: save events moving to new counters
954 * step2: reprogram moved events into new counters
956 for (i = 0; i < n_running; i++) {
957 event = cpuc->event_list[i];
958 hwc = &event->hw;
961 * we can avoid reprogramming counter if:
962 * - assigned same counter as last time
963 * - running on same CPU as last time
964 * - no other event has used the counter since
966 if (hwc->idx == -1 ||
967 match_prev_assignment(hwc, cpuc, i))
968 continue;
971 * Ensure we don't accidentally enable a stopped
972 * counter simply because we rescheduled.
974 if (hwc->state & PERF_HES_STOPPED)
975 hwc->state |= PERF_HES_ARCH;
977 x86_pmu_stop(event, PERF_EF_UPDATE);
980 for (i = 0; i < cpuc->n_events; i++) {
981 event = cpuc->event_list[i];
982 hwc = &event->hw;
984 if (!match_prev_assignment(hwc, cpuc, i))
985 x86_assign_hw_event(event, cpuc, i);
986 else if (i < n_running)
987 continue;
989 if (hwc->state & PERF_HES_ARCH)
990 continue;
992 x86_pmu_start(event, PERF_EF_RELOAD);
994 cpuc->n_added = 0;
995 perf_events_lapic_init();
998 cpuc->enabled = 1;
999 barrier();
1001 x86_pmu.enable_all(added);
1004 static inline void x86_pmu_disable_event(struct perf_event *event)
1006 struct hw_perf_event *hwc = &event->hw;
1008 wrmsrl(hwc->config_base, hwc->config);
1011 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1014 * Set the next IRQ period, based on the hwc->period_left value.
1015 * To be called with the event disabled in hw:
1017 static int
1018 x86_perf_event_set_period(struct perf_event *event)
1020 struct hw_perf_event *hwc = &event->hw;
1021 s64 left = local64_read(&hwc->period_left);
1022 s64 period = hwc->sample_period;
1023 int ret = 0, idx = hwc->idx;
1025 if (idx == X86_PMC_IDX_FIXED_BTS)
1026 return 0;
1029 * If we are way outside a reasonable range then just skip forward:
1031 if (unlikely(left <= -period)) {
1032 left = period;
1033 local64_set(&hwc->period_left, left);
1034 hwc->last_period = period;
1035 ret = 1;
1038 if (unlikely(left <= 0)) {
1039 left += period;
1040 local64_set(&hwc->period_left, left);
1041 hwc->last_period = period;
1042 ret = 1;
1045 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1047 if (unlikely(left < 2))
1048 left = 2;
1050 if (left > x86_pmu.max_period)
1051 left = x86_pmu.max_period;
1053 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1056 * The hw event starts counting from this event offset,
1057 * mark it to be able to extra future deltas:
1059 local64_set(&hwc->prev_count, (u64)-left);
1061 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1064 * Due to erratum on certan cpu we need
1065 * a second write to be sure the register
1066 * is updated properly
1068 if (x86_pmu.perfctr_second_write) {
1069 wrmsrl(hwc->event_base,
1070 (u64)(-left) & x86_pmu.cntval_mask);
1073 perf_event_update_userpage(event);
1075 return ret;
1078 static void x86_pmu_enable_event(struct perf_event *event)
1080 if (__this_cpu_read(cpu_hw_events.enabled))
1081 __x86_pmu_enable_event(&event->hw,
1082 ARCH_PERFMON_EVENTSEL_ENABLE);
1086 * Add a single event to the PMU.
1088 * The event is added to the group of enabled events
1089 * but only if it can be scehduled with existing events.
1091 static int x86_pmu_add(struct perf_event *event, int flags)
1093 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1094 struct hw_perf_event *hwc;
1095 int assign[X86_PMC_IDX_MAX];
1096 int n, n0, ret;
1098 hwc = &event->hw;
1100 perf_pmu_disable(event->pmu);
1101 n0 = cpuc->n_events;
1102 ret = n = collect_events(cpuc, event, false);
1103 if (ret < 0)
1104 goto out;
1106 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1107 if (!(flags & PERF_EF_START))
1108 hwc->state |= PERF_HES_ARCH;
1111 * If group events scheduling transaction was started,
1112 * skip the schedulability test here, it will be peformed
1113 * at commit time (->commit_txn) as a whole
1115 if (cpuc->group_flag & PERF_EVENT_TXN)
1116 goto done_collect;
1118 ret = x86_pmu.schedule_events(cpuc, n, assign);
1119 if (ret)
1120 goto out;
1122 * copy new assignment, now we know it is possible
1123 * will be used by hw_perf_enable()
1125 memcpy(cpuc->assign, assign, n*sizeof(int));
1127 done_collect:
1128 cpuc->n_events = n;
1129 cpuc->n_added += n - n0;
1130 cpuc->n_txn += n - n0;
1132 ret = 0;
1133 out:
1134 perf_pmu_enable(event->pmu);
1135 return ret;
1138 static void x86_pmu_start(struct perf_event *event, int flags)
1140 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1141 int idx = event->hw.idx;
1143 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1144 return;
1146 if (WARN_ON_ONCE(idx == -1))
1147 return;
1149 if (flags & PERF_EF_RELOAD) {
1150 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1151 x86_perf_event_set_period(event);
1154 event->hw.state = 0;
1156 cpuc->events[idx] = event;
1157 __set_bit(idx, cpuc->active_mask);
1158 __set_bit(idx, cpuc->running);
1159 x86_pmu.enable(event);
1160 perf_event_update_userpage(event);
1163 void perf_event_print_debug(void)
1165 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1166 u64 pebs;
1167 struct cpu_hw_events *cpuc;
1168 unsigned long flags;
1169 int cpu, idx;
1171 if (!x86_pmu.num_counters)
1172 return;
1174 local_irq_save(flags);
1176 cpu = smp_processor_id();
1177 cpuc = &per_cpu(cpu_hw_events, cpu);
1179 if (x86_pmu.version >= 2) {
1180 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1181 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1182 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1183 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1184 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1186 pr_info("\n");
1187 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1188 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1189 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1190 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1191 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1193 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1195 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1196 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1197 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1199 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1201 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1202 cpu, idx, pmc_ctrl);
1203 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1204 cpu, idx, pmc_count);
1205 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1206 cpu, idx, prev_left);
1208 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1209 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1211 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1212 cpu, idx, pmc_count);
1214 local_irq_restore(flags);
1217 static void x86_pmu_stop(struct perf_event *event, int flags)
1219 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1220 struct hw_perf_event *hwc = &event->hw;
1222 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1223 x86_pmu.disable(event);
1224 cpuc->events[hwc->idx] = NULL;
1225 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1226 hwc->state |= PERF_HES_STOPPED;
1229 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1231 * Drain the remaining delta count out of a event
1232 * that we are disabling:
1234 x86_perf_event_update(event);
1235 hwc->state |= PERF_HES_UPTODATE;
1239 static void x86_pmu_del(struct perf_event *event, int flags)
1241 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1242 int i;
1245 * If we're called during a txn, we don't need to do anything.
1246 * The events never got scheduled and ->cancel_txn will truncate
1247 * the event_list.
1249 if (cpuc->group_flag & PERF_EVENT_TXN)
1250 return;
1252 x86_pmu_stop(event, PERF_EF_UPDATE);
1254 for (i = 0; i < cpuc->n_events; i++) {
1255 if (event == cpuc->event_list[i]) {
1257 if (x86_pmu.put_event_constraints)
1258 x86_pmu.put_event_constraints(cpuc, event);
1260 while (++i < cpuc->n_events)
1261 cpuc->event_list[i-1] = cpuc->event_list[i];
1263 --cpuc->n_events;
1264 break;
1267 perf_event_update_userpage(event);
1270 static int x86_pmu_handle_irq(struct pt_regs *regs)
1272 struct perf_sample_data data;
1273 struct cpu_hw_events *cpuc;
1274 struct perf_event *event;
1275 int idx, handled = 0;
1276 u64 val;
1278 perf_sample_data_init(&data, 0);
1280 cpuc = &__get_cpu_var(cpu_hw_events);
1282 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1283 if (!test_bit(idx, cpuc->active_mask)) {
1285 * Though we deactivated the counter some cpus
1286 * might still deliver spurious interrupts still
1287 * in flight. Catch them:
1289 if (__test_and_clear_bit(idx, cpuc->running))
1290 handled++;
1291 continue;
1294 event = cpuc->events[idx];
1296 val = x86_perf_event_update(event);
1297 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1298 continue;
1301 * event overflow
1303 handled++;
1304 data.period = event->hw.last_period;
1306 if (!x86_perf_event_set_period(event))
1307 continue;
1309 if (perf_event_overflow(event, 1, &data, regs))
1310 x86_pmu_stop(event, 0);
1313 if (handled)
1314 inc_irq_stat(apic_perf_irqs);
1316 return handled;
1319 void perf_events_lapic_init(void)
1321 if (!x86_pmu.apic || !x86_pmu_initialized())
1322 return;
1325 * Always use NMI for PMU
1327 apic_write(APIC_LVTPC, APIC_DM_NMI);
1330 struct pmu_nmi_state {
1331 unsigned int marked;
1332 int handled;
1335 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1337 static int __kprobes
1338 perf_event_nmi_handler(struct notifier_block *self,
1339 unsigned long cmd, void *__args)
1341 struct die_args *args = __args;
1342 unsigned int this_nmi;
1343 int handled;
1345 if (!atomic_read(&active_events))
1346 return NOTIFY_DONE;
1348 switch (cmd) {
1349 case DIE_NMI:
1350 break;
1351 case DIE_NMIUNKNOWN:
1352 this_nmi = percpu_read(irq_stat.__nmi_count);
1353 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1354 /* let the kernel handle the unknown nmi */
1355 return NOTIFY_DONE;
1357 * This one is a PMU back-to-back nmi. Two events
1358 * trigger 'simultaneously' raising two back-to-back
1359 * NMIs. If the first NMI handles both, the latter
1360 * will be empty and daze the CPU. So, we drop it to
1361 * avoid false-positive 'unknown nmi' messages.
1363 return NOTIFY_STOP;
1364 default:
1365 return NOTIFY_DONE;
1368 apic_write(APIC_LVTPC, APIC_DM_NMI);
1370 handled = x86_pmu.handle_irq(args->regs);
1371 if (!handled)
1372 return NOTIFY_DONE;
1374 this_nmi = percpu_read(irq_stat.__nmi_count);
1375 if ((handled > 1) ||
1376 /* the next nmi could be a back-to-back nmi */
1377 ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1378 (__this_cpu_read(pmu_nmi.handled) > 1))) {
1380 * We could have two subsequent back-to-back nmis: The
1381 * first handles more than one counter, the 2nd
1382 * handles only one counter and the 3rd handles no
1383 * counter.
1385 * This is the 2nd nmi because the previous was
1386 * handling more than one counter. We will mark the
1387 * next (3rd) and then drop it if unhandled.
1389 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1390 __this_cpu_write(pmu_nmi.handled, handled);
1393 return NOTIFY_STOP;
1396 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1397 .notifier_call = perf_event_nmi_handler,
1398 .next = NULL,
1399 .priority = NMI_LOCAL_LOW_PRIOR,
1402 static struct event_constraint unconstrained;
1403 static struct event_constraint emptyconstraint;
1405 static struct event_constraint *
1406 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1408 struct event_constraint *c;
1410 if (x86_pmu.event_constraints) {
1411 for_each_event_constraint(c, x86_pmu.event_constraints) {
1412 if ((event->hw.config & c->cmask) == c->code)
1413 return c;
1417 return &unconstrained;
1420 #include "perf_event_amd.c"
1421 #include "perf_event_p6.c"
1422 #include "perf_event_p4.c"
1423 #include "perf_event_intel_lbr.c"
1424 #include "perf_event_intel_ds.c"
1425 #include "perf_event_intel.c"
1427 static int __cpuinit
1428 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1430 unsigned int cpu = (long)hcpu;
1431 int ret = NOTIFY_OK;
1433 switch (action & ~CPU_TASKS_FROZEN) {
1434 case CPU_UP_PREPARE:
1435 if (x86_pmu.cpu_prepare)
1436 ret = x86_pmu.cpu_prepare(cpu);
1437 break;
1439 case CPU_STARTING:
1440 if (x86_pmu.cpu_starting)
1441 x86_pmu.cpu_starting(cpu);
1442 break;
1444 case CPU_DYING:
1445 if (x86_pmu.cpu_dying)
1446 x86_pmu.cpu_dying(cpu);
1447 break;
1449 case CPU_UP_CANCELED:
1450 case CPU_DEAD:
1451 if (x86_pmu.cpu_dead)
1452 x86_pmu.cpu_dead(cpu);
1453 break;
1455 default:
1456 break;
1459 return ret;
1462 static void __init pmu_check_apic(void)
1464 if (cpu_has_apic)
1465 return;
1467 x86_pmu.apic = 0;
1468 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1469 pr_info("no hardware sampling interrupt available.\n");
1472 static int __init init_hw_perf_events(void)
1474 struct event_constraint *c;
1475 int err;
1477 pr_info("Performance Events: ");
1479 switch (boot_cpu_data.x86_vendor) {
1480 case X86_VENDOR_INTEL:
1481 err = intel_pmu_init();
1482 break;
1483 case X86_VENDOR_AMD:
1484 err = amd_pmu_init();
1485 break;
1486 default:
1487 return 0;
1489 if (err != 0) {
1490 pr_cont("no PMU driver, software events only.\n");
1491 return 0;
1494 pmu_check_apic();
1496 /* sanity check that the hardware exists or is emulated */
1497 if (!check_hw_exists())
1498 return 0;
1500 pr_cont("%s PMU driver.\n", x86_pmu.name);
1502 if (x86_pmu.quirks)
1503 x86_pmu.quirks();
1505 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1506 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1507 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1508 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1510 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1512 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1513 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1514 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1515 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1518 x86_pmu.intel_ctrl |=
1519 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1521 perf_events_lapic_init();
1522 register_die_notifier(&perf_event_nmi_notifier);
1524 unconstrained = (struct event_constraint)
1525 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1526 0, x86_pmu.num_counters);
1528 if (x86_pmu.event_constraints) {
1529 for_each_event_constraint(c, x86_pmu.event_constraints) {
1530 if (c->cmask != X86_RAW_EVENT_MASK)
1531 continue;
1533 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1534 c->weight += x86_pmu.num_counters;
1538 pr_info("... version: %d\n", x86_pmu.version);
1539 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1540 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1541 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1542 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1543 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1544 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1546 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1547 perf_cpu_notifier(x86_pmu_notifier);
1549 return 0;
1551 early_initcall(init_hw_perf_events);
1553 static inline void x86_pmu_read(struct perf_event *event)
1555 x86_perf_event_update(event);
1559 * Start group events scheduling transaction
1560 * Set the flag to make pmu::enable() not perform the
1561 * schedulability test, it will be performed at commit time
1563 static void x86_pmu_start_txn(struct pmu *pmu)
1565 perf_pmu_disable(pmu);
1566 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1567 __this_cpu_write(cpu_hw_events.n_txn, 0);
1571 * Stop group events scheduling transaction
1572 * Clear the flag and pmu::enable() will perform the
1573 * schedulability test.
1575 static void x86_pmu_cancel_txn(struct pmu *pmu)
1577 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1579 * Truncate the collected events.
1581 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1582 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1583 perf_pmu_enable(pmu);
1587 * Commit group events scheduling transaction
1588 * Perform the group schedulability test as a whole
1589 * Return 0 if success
1591 static int x86_pmu_commit_txn(struct pmu *pmu)
1593 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1594 int assign[X86_PMC_IDX_MAX];
1595 int n, ret;
1597 n = cpuc->n_events;
1599 if (!x86_pmu_initialized())
1600 return -EAGAIN;
1602 ret = x86_pmu.schedule_events(cpuc, n, assign);
1603 if (ret)
1604 return ret;
1607 * copy new assignment, now we know it is possible
1608 * will be used by hw_perf_enable()
1610 memcpy(cpuc->assign, assign, n*sizeof(int));
1612 cpuc->group_flag &= ~PERF_EVENT_TXN;
1613 perf_pmu_enable(pmu);
1614 return 0;
1618 * validate that we can schedule this event
1620 static int validate_event(struct perf_event *event)
1622 struct cpu_hw_events *fake_cpuc;
1623 struct event_constraint *c;
1624 int ret = 0;
1626 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1627 if (!fake_cpuc)
1628 return -ENOMEM;
1630 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1632 if (!c || !c->weight)
1633 ret = -ENOSPC;
1635 if (x86_pmu.put_event_constraints)
1636 x86_pmu.put_event_constraints(fake_cpuc, event);
1638 kfree(fake_cpuc);
1640 return ret;
1644 * validate a single event group
1646 * validation include:
1647 * - check events are compatible which each other
1648 * - events do not compete for the same counter
1649 * - number of events <= number of counters
1651 * validation ensures the group can be loaded onto the
1652 * PMU if it was the only group available.
1654 static int validate_group(struct perf_event *event)
1656 struct perf_event *leader = event->group_leader;
1657 struct cpu_hw_events *fake_cpuc;
1658 int ret, n;
1660 ret = -ENOMEM;
1661 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1662 if (!fake_cpuc)
1663 goto out;
1666 * the event is not yet connected with its
1667 * siblings therefore we must first collect
1668 * existing siblings, then add the new event
1669 * before we can simulate the scheduling
1671 ret = -ENOSPC;
1672 n = collect_events(fake_cpuc, leader, true);
1673 if (n < 0)
1674 goto out_free;
1676 fake_cpuc->n_events = n;
1677 n = collect_events(fake_cpuc, event, false);
1678 if (n < 0)
1679 goto out_free;
1681 fake_cpuc->n_events = n;
1683 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1685 out_free:
1686 kfree(fake_cpuc);
1687 out:
1688 return ret;
1691 static int x86_pmu_event_init(struct perf_event *event)
1693 struct pmu *tmp;
1694 int err;
1696 switch (event->attr.type) {
1697 case PERF_TYPE_RAW:
1698 case PERF_TYPE_HARDWARE:
1699 case PERF_TYPE_HW_CACHE:
1700 break;
1702 default:
1703 return -ENOENT;
1706 err = __x86_pmu_event_init(event);
1707 if (!err) {
1709 * we temporarily connect event to its pmu
1710 * such that validate_group() can classify
1711 * it as an x86 event using is_x86_event()
1713 tmp = event->pmu;
1714 event->pmu = &pmu;
1716 if (event->group_leader != event)
1717 err = validate_group(event);
1718 else
1719 err = validate_event(event);
1721 event->pmu = tmp;
1723 if (err) {
1724 if (event->destroy)
1725 event->destroy(event);
1728 return err;
1731 static struct pmu pmu = {
1732 .pmu_enable = x86_pmu_enable,
1733 .pmu_disable = x86_pmu_disable,
1735 .event_init = x86_pmu_event_init,
1737 .add = x86_pmu_add,
1738 .del = x86_pmu_del,
1739 .start = x86_pmu_start,
1740 .stop = x86_pmu_stop,
1741 .read = x86_pmu_read,
1743 .start_txn = x86_pmu_start_txn,
1744 .cancel_txn = x86_pmu_cancel_txn,
1745 .commit_txn = x86_pmu_commit_txn,
1749 * callchain support
1752 static void
1753 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1755 /* Ignore warnings */
1758 static void backtrace_warning(void *data, char *msg)
1760 /* Ignore warnings */
1763 static int backtrace_stack(void *data, char *name)
1765 return 0;
1768 static void backtrace_address(void *data, unsigned long addr, int reliable)
1770 struct perf_callchain_entry *entry = data;
1772 perf_callchain_store(entry, addr);
1775 static const struct stacktrace_ops backtrace_ops = {
1776 .warning = backtrace_warning,
1777 .warning_symbol = backtrace_warning_symbol,
1778 .stack = backtrace_stack,
1779 .address = backtrace_address,
1780 .walk_stack = print_context_stack_bp,
1783 void
1784 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1786 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1787 /* TODO: We don't support guest os callchain now */
1788 return;
1791 perf_callchain_store(entry, regs->ip);
1793 dump_trace(NULL, regs, NULL, &backtrace_ops, entry);
1796 #ifdef CONFIG_COMPAT
1797 static inline int
1798 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1800 /* 32-bit process in 64-bit kernel. */
1801 struct stack_frame_ia32 frame;
1802 const void __user *fp;
1804 if (!test_thread_flag(TIF_IA32))
1805 return 0;
1807 fp = compat_ptr(regs->bp);
1808 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1809 unsigned long bytes;
1810 frame.next_frame = 0;
1811 frame.return_address = 0;
1813 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1814 if (bytes != sizeof(frame))
1815 break;
1817 if (fp < compat_ptr(regs->sp))
1818 break;
1820 perf_callchain_store(entry, frame.return_address);
1821 fp = compat_ptr(frame.next_frame);
1823 return 1;
1825 #else
1826 static inline int
1827 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1829 return 0;
1831 #endif
1833 void
1834 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1836 struct stack_frame frame;
1837 const void __user *fp;
1839 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1840 /* TODO: We don't support guest os callchain now */
1841 return;
1844 fp = (void __user *)regs->bp;
1846 perf_callchain_store(entry, regs->ip);
1848 if (perf_callchain_user32(regs, entry))
1849 return;
1851 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1852 unsigned long bytes;
1853 frame.next_frame = NULL;
1854 frame.return_address = 0;
1856 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1857 if (bytes != sizeof(frame))
1858 break;
1860 if ((unsigned long)fp < regs->sp)
1861 break;
1863 perf_callchain_store(entry, frame.return_address);
1864 fp = frame.next_frame;
1868 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1870 unsigned long ip;
1872 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1873 ip = perf_guest_cbs->get_guest_ip();
1874 else
1875 ip = instruction_pointer(regs);
1877 return ip;
1880 unsigned long perf_misc_flags(struct pt_regs *regs)
1882 int misc = 0;
1884 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1885 if (perf_guest_cbs->is_user_mode())
1886 misc |= PERF_RECORD_MISC_GUEST_USER;
1887 else
1888 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1889 } else {
1890 if (user_mode(regs))
1891 misc |= PERF_RECORD_MISC_USER;
1892 else
1893 misc |= PERF_RECORD_MISC_KERNEL;
1896 if (regs->flags & PERF_EFLAGS_EXACT)
1897 misc |= PERF_RECORD_MISC_EXACT_IP;
1899 return misc;