2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
30 #include <asm/stacktrace.h>
32 #include <asm/compat.h>
37 #define wrmsrl(msr, val) \
39 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
40 (unsigned long)(val)); \
41 native_write_msr((msr), (u32)((u64)(val)), \
42 (u32)((u64)(val) >> 32)); \
47 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
50 copy_from_user_nmi(void *to
, const void __user
*from
, unsigned long n
)
52 unsigned long offset
, addr
= (unsigned long)from
;
53 unsigned long size
, len
= 0;
59 ret
= __get_user_pages_fast(addr
, 1, 0, &page
);
63 offset
= addr
& (PAGE_SIZE
- 1);
64 size
= min(PAGE_SIZE
- offset
, n
- len
);
66 map
= kmap_atomic(page
);
67 memcpy(to
, map
+offset
, size
);
80 struct event_constraint
{
82 unsigned long idxmsk
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
91 int nb_id
; /* NorthBridge id */
92 int refcnt
; /* reference count */
93 struct perf_event
*owners
[X86_PMC_IDX_MAX
];
94 struct event_constraint event_constraints
[X86_PMC_IDX_MAX
];
99 #define MAX_LBR_ENTRIES 16
101 struct cpu_hw_events
{
103 * Generic x86 PMC bits
105 struct perf_event
*events
[X86_PMC_IDX_MAX
]; /* in counter order */
106 unsigned long active_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
107 unsigned long running
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
113 int assign
[X86_PMC_IDX_MAX
]; /* event to counter assignment */
114 u64 tags
[X86_PMC_IDX_MAX
];
115 struct perf_event
*event_list
[X86_PMC_IDX_MAX
]; /* in enabled order */
117 unsigned int group_flag
;
120 * Intel DebugStore bits
122 struct debug_store
*ds
;
130 struct perf_branch_stack lbr_stack
;
131 struct perf_branch_entry lbr_entries
[MAX_LBR_ENTRIES
];
134 * Intel percore register state.
135 * Coordinate shared resources between HT threads.
137 int percore_used
; /* Used by this CPU? */
138 struct intel_percore
*per_core
;
143 struct amd_nb
*amd_nb
;
146 #define __EVENT_CONSTRAINT(c, n, m, w) {\
147 { .idxmsk64 = (n) }, \
153 #define EVENT_CONSTRAINT(c, n, m) \
154 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
157 * Constraint on the Event code.
159 #define INTEL_EVENT_CONSTRAINT(c, n) \
160 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
163 * Constraint on the Event code + UMask + fixed-mask
165 * filter mask to validate fixed counter events.
166 * the following filters disqualify for fixed counters:
170 * The other filters are supported by fixed counters.
171 * The any-thread option is supported starting with v3.
173 #define FIXED_EVENT_CONSTRAINT(c, n) \
174 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
177 * Constraint on the Event code + UMask
179 #define INTEL_UEVENT_CONSTRAINT(c, n) \
180 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
182 #define EVENT_CONSTRAINT_END \
183 EVENT_CONSTRAINT(0, 0, 0)
185 #define for_each_event_constraint(e, c) \
186 for ((e) = (c); (e)->weight; (e)++)
189 * Extra registers for specific events.
190 * Some events need large masks and require external MSRs.
191 * Define a mapping to these extra registers.
200 #define EVENT_EXTRA_REG(e, ms, m, vm) { \
203 .config_mask = (m), \
204 .valid_mask = (vm), \
206 #define INTEL_EVENT_EXTRA_REG(event, msr, vm) \
207 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm)
208 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0)
210 union perf_capabilities
{
214 u64 pebs_arch_reg
: 1;
222 * struct x86_pmu - generic x86 pmu
226 * Generic x86 PMC bits
230 int (*handle_irq
)(struct pt_regs
*);
231 void (*disable_all
)(void);
232 void (*enable_all
)(int added
);
233 void (*enable
)(struct perf_event
*);
234 void (*disable
)(struct perf_event
*);
235 int (*hw_config
)(struct perf_event
*event
);
236 int (*schedule_events
)(struct cpu_hw_events
*cpuc
, int n
, int *assign
);
239 u64 (*event_map
)(int);
242 int num_counters_fixed
;
247 struct event_constraint
*
248 (*get_event_constraints
)(struct cpu_hw_events
*cpuc
,
249 struct perf_event
*event
);
251 void (*put_event_constraints
)(struct cpu_hw_events
*cpuc
,
252 struct perf_event
*event
);
253 struct event_constraint
*event_constraints
;
254 struct event_constraint
*percore_constraints
;
255 void (*quirks
)(void);
256 int perfctr_second_write
;
258 int (*cpu_prepare
)(int cpu
);
259 void (*cpu_starting
)(int cpu
);
260 void (*cpu_dying
)(int cpu
);
261 void (*cpu_dead
)(int cpu
);
264 * Intel Arch Perfmon v2+
267 union perf_capabilities intel_cap
;
270 * Intel DebugStore bits
273 int bts_active
, pebs_active
;
274 int pebs_record_size
;
275 void (*drain_pebs
)(struct pt_regs
*regs
);
276 struct event_constraint
*pebs_constraints
;
281 unsigned long lbr_tos
, lbr_from
, lbr_to
; /* MSR base regs */
282 int lbr_nr
; /* hardware stack size */
285 * Extra registers for events
287 struct extra_reg
*extra_regs
;
290 static struct x86_pmu x86_pmu __read_mostly
;
292 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
296 static int x86_perf_event_set_period(struct perf_event
*event
);
299 * Generalized hw caching related hw_event table, filled
300 * in on a per model basis. A value of 0 means
301 * 'not supported', -1 means 'hw_event makes no sense on
302 * this CPU', any other value means the raw hw_event
306 #define C(x) PERF_COUNT_HW_CACHE_##x
308 static u64 __read_mostly hw_cache_event_ids
309 [PERF_COUNT_HW_CACHE_MAX
]
310 [PERF_COUNT_HW_CACHE_OP_MAX
]
311 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
312 static u64 __read_mostly hw_cache_extra_regs
313 [PERF_COUNT_HW_CACHE_MAX
]
314 [PERF_COUNT_HW_CACHE_OP_MAX
]
315 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
318 * Propagate event elapsed time into the generic event.
319 * Can only be executed on the CPU where the event is active.
320 * Returns the delta events processed.
323 x86_perf_event_update(struct perf_event
*event
)
325 struct hw_perf_event
*hwc
= &event
->hw
;
326 int shift
= 64 - x86_pmu
.cntval_bits
;
327 u64 prev_raw_count
, new_raw_count
;
331 if (idx
== X86_PMC_IDX_FIXED_BTS
)
335 * Careful: an NMI might modify the previous event value.
337 * Our tactic to handle this is to first atomically read and
338 * exchange a new raw count - then add that new-prev delta
339 * count to the generic event atomically:
342 prev_raw_count
= local64_read(&hwc
->prev_count
);
343 rdmsrl(hwc
->event_base
, new_raw_count
);
345 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
346 new_raw_count
) != prev_raw_count
)
350 * Now we have the new raw value and have updated the prev
351 * timestamp already. We can now calculate the elapsed delta
352 * (event-)time and add that to the generic event.
354 * Careful, not all hw sign-extends above the physical width
357 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
360 local64_add(delta
, &event
->count
);
361 local64_sub(delta
, &hwc
->period_left
);
363 return new_raw_count
;
366 /* using X86_FEATURE_PERFCTR_CORE to later implement ALTERNATIVE() here */
367 static inline int x86_pmu_addr_offset(int index
)
369 if (boot_cpu_has(X86_FEATURE_PERFCTR_CORE
))
374 static inline unsigned int x86_pmu_config_addr(int index
)
376 return x86_pmu
.eventsel
+ x86_pmu_addr_offset(index
);
379 static inline unsigned int x86_pmu_event_addr(int index
)
381 return x86_pmu
.perfctr
+ x86_pmu_addr_offset(index
);
385 * Find and validate any extra registers to set up.
387 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
389 struct extra_reg
*er
;
391 event
->hw
.extra_reg
= 0;
392 event
->hw
.extra_config
= 0;
394 if (!x86_pmu
.extra_regs
)
397 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
398 if (er
->event
!= (config
& er
->config_mask
))
400 if (event
->attr
.config1
& ~er
->valid_mask
)
402 event
->hw
.extra_reg
= er
->msr
;
403 event
->hw
.extra_config
= event
->attr
.config1
;
409 static atomic_t active_events
;
410 static DEFINE_MUTEX(pmc_reserve_mutex
);
412 #ifdef CONFIG_X86_LOCAL_APIC
414 static bool reserve_pmc_hardware(void)
418 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
419 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
423 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
424 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
431 for (i
--; i
>= 0; i
--)
432 release_evntsel_nmi(x86_pmu_config_addr(i
));
434 i
= x86_pmu
.num_counters
;
437 for (i
--; i
>= 0; i
--)
438 release_perfctr_nmi(x86_pmu_event_addr(i
));
443 static void release_pmc_hardware(void)
447 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
448 release_perfctr_nmi(x86_pmu_event_addr(i
));
449 release_evntsel_nmi(x86_pmu_config_addr(i
));
455 static bool reserve_pmc_hardware(void) { return true; }
456 static void release_pmc_hardware(void) {}
460 static bool check_hw_exists(void)
462 u64 val
, val_new
= 0;
466 * Check to see if the BIOS enabled any of the counters, if so
469 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
470 reg
= x86_pmu_config_addr(i
);
471 ret
= rdmsrl_safe(reg
, &val
);
474 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
)
478 if (x86_pmu
.num_counters_fixed
) {
479 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
480 ret
= rdmsrl_safe(reg
, &val
);
483 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
484 if (val
& (0x03 << i
*4))
490 * Now write a value and read it back to see if it matches,
491 * this is needed to detect certain hardware emulators (qemu/kvm)
492 * that don't trap on the MSR access and always return 0s.
495 ret
= checking_wrmsrl(x86_pmu_event_addr(0), val
);
496 ret
|= rdmsrl_safe(x86_pmu_event_addr(0), &val_new
);
497 if (ret
|| val
!= val_new
)
503 printk(KERN_CONT
"Broken BIOS detected, using software events only.\n");
504 printk(KERN_ERR FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg
, val
);
508 printk(KERN_CONT
"Broken PMU hardware detected, using software events only.\n");
512 static void reserve_ds_buffers(void);
513 static void release_ds_buffers(void);
515 static void hw_perf_event_destroy(struct perf_event
*event
)
517 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_reserve_mutex
)) {
518 release_pmc_hardware();
519 release_ds_buffers();
520 mutex_unlock(&pmc_reserve_mutex
);
524 static inline int x86_pmu_initialized(void)
526 return x86_pmu
.handle_irq
!= NULL
;
530 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
532 struct perf_event_attr
*attr
= &event
->attr
;
533 unsigned int cache_type
, cache_op
, cache_result
;
536 config
= attr
->config
;
538 cache_type
= (config
>> 0) & 0xff;
539 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
542 cache_op
= (config
>> 8) & 0xff;
543 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
546 cache_result
= (config
>> 16) & 0xff;
547 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
550 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
559 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
560 return x86_pmu_extra_regs(val
, event
);
563 static int x86_setup_perfctr(struct perf_event
*event
)
565 struct perf_event_attr
*attr
= &event
->attr
;
566 struct hw_perf_event
*hwc
= &event
->hw
;
569 if (!is_sampling_event(event
)) {
570 hwc
->sample_period
= x86_pmu
.max_period
;
571 hwc
->last_period
= hwc
->sample_period
;
572 local64_set(&hwc
->period_left
, hwc
->sample_period
);
575 * If we have a PMU initialized but no APIC
576 * interrupts, we cannot sample hardware
577 * events (user-space has to fall back and
578 * sample via a hrtimer based software event):
584 if (attr
->type
== PERF_TYPE_RAW
)
585 return x86_pmu_extra_regs(event
->attr
.config
, event
);
587 if (attr
->type
== PERF_TYPE_HW_CACHE
)
588 return set_ext_hw_attr(hwc
, event
);
590 if (attr
->config
>= x86_pmu
.max_events
)
596 config
= x86_pmu
.event_map(attr
->config
);
607 if ((attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
) &&
608 (hwc
->sample_period
== 1)) {
609 /* BTS is not supported by this architecture. */
610 if (!x86_pmu
.bts_active
)
613 /* BTS is currently only allowed for user-mode. */
614 if (!attr
->exclude_kernel
)
618 hwc
->config
|= config
;
623 static int x86_pmu_hw_config(struct perf_event
*event
)
625 if (event
->attr
.precise_ip
) {
628 /* Support for constant skid */
629 if (x86_pmu
.pebs_active
) {
632 /* Support for IP fixup */
637 if (event
->attr
.precise_ip
> precise
)
643 * (keep 'enabled' bit clear for now)
645 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
648 * Count user and OS events unless requested not to
650 if (!event
->attr
.exclude_user
)
651 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
652 if (!event
->attr
.exclude_kernel
)
653 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
655 if (event
->attr
.type
== PERF_TYPE_RAW
)
656 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
658 return x86_setup_perfctr(event
);
662 * Setup the hardware configuration for a given attr_type
664 static int __x86_pmu_event_init(struct perf_event
*event
)
668 if (!x86_pmu_initialized())
672 if (!atomic_inc_not_zero(&active_events
)) {
673 mutex_lock(&pmc_reserve_mutex
);
674 if (atomic_read(&active_events
) == 0) {
675 if (!reserve_pmc_hardware())
678 reserve_ds_buffers();
681 atomic_inc(&active_events
);
682 mutex_unlock(&pmc_reserve_mutex
);
687 event
->destroy
= hw_perf_event_destroy
;
690 event
->hw
.last_cpu
= -1;
691 event
->hw
.last_tag
= ~0ULL;
693 return x86_pmu
.hw_config(event
);
696 static void x86_pmu_disable_all(void)
698 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
701 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
704 if (!test_bit(idx
, cpuc
->active_mask
))
706 rdmsrl(x86_pmu_config_addr(idx
), val
);
707 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
709 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
710 wrmsrl(x86_pmu_config_addr(idx
), val
);
714 static void x86_pmu_disable(struct pmu
*pmu
)
716 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
718 if (!x86_pmu_initialized())
728 x86_pmu
.disable_all();
731 static inline void __x86_pmu_enable_event(struct hw_perf_event
*hwc
,
735 wrmsrl(hwc
->extra_reg
, hwc
->extra_config
);
736 wrmsrl(hwc
->config_base
, hwc
->config
| enable_mask
);
739 static void x86_pmu_enable_all(int added
)
741 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
744 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
745 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
747 if (!test_bit(idx
, cpuc
->active_mask
))
750 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
754 static struct pmu pmu
;
756 static inline int is_x86_event(struct perf_event
*event
)
758 return event
->pmu
== &pmu
;
761 static int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
763 struct event_constraint
*c
, *constraints
[X86_PMC_IDX_MAX
];
764 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
765 int i
, j
, w
, wmax
, num
= 0;
766 struct hw_perf_event
*hwc
;
768 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
770 for (i
= 0; i
< n
; i
++) {
771 c
= x86_pmu
.get_event_constraints(cpuc
, cpuc
->event_list
[i
]);
776 * fastpath, try to reuse previous register
778 for (i
= 0; i
< n
; i
++) {
779 hwc
= &cpuc
->event_list
[i
]->hw
;
786 /* constraint still honored */
787 if (!test_bit(hwc
->idx
, c
->idxmsk
))
790 /* not already used */
791 if (test_bit(hwc
->idx
, used_mask
))
794 __set_bit(hwc
->idx
, used_mask
);
796 assign
[i
] = hwc
->idx
;
805 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
808 * weight = number of possible counters
810 * 1 = most constrained, only works on one counter
811 * wmax = least constrained, works on any counter
813 * assign events to counters starting with most
814 * constrained events.
816 wmax
= x86_pmu
.num_counters
;
819 * when fixed event counters are present,
820 * wmax is incremented by 1 to account
821 * for one more choice
823 if (x86_pmu
.num_counters_fixed
)
826 for (w
= 1, num
= n
; num
&& w
<= wmax
; w
++) {
828 for (i
= 0; num
&& i
< n
; i
++) {
830 hwc
= &cpuc
->event_list
[i
]->hw
;
835 for_each_set_bit(j
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
836 if (!test_bit(j
, used_mask
))
840 if (j
== X86_PMC_IDX_MAX
)
843 __set_bit(j
, used_mask
);
852 * scheduling failed or is just a simulation,
853 * free resources if necessary
855 if (!assign
|| num
) {
856 for (i
= 0; i
< n
; i
++) {
857 if (x86_pmu
.put_event_constraints
)
858 x86_pmu
.put_event_constraints(cpuc
, cpuc
->event_list
[i
]);
861 return num
? -ENOSPC
: 0;
865 * dogrp: true if must collect siblings events (group)
866 * returns total number of events and error code
868 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
870 struct perf_event
*event
;
873 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
875 /* current number of events already accepted */
878 if (is_x86_event(leader
)) {
881 cpuc
->event_list
[n
] = leader
;
887 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
888 if (!is_x86_event(event
) ||
889 event
->state
<= PERF_EVENT_STATE_OFF
)
895 cpuc
->event_list
[n
] = event
;
901 static inline void x86_assign_hw_event(struct perf_event
*event
,
902 struct cpu_hw_events
*cpuc
, int i
)
904 struct hw_perf_event
*hwc
= &event
->hw
;
906 hwc
->idx
= cpuc
->assign
[i
];
907 hwc
->last_cpu
= smp_processor_id();
908 hwc
->last_tag
= ++cpuc
->tags
[i
];
910 if (hwc
->idx
== X86_PMC_IDX_FIXED_BTS
) {
911 hwc
->config_base
= 0;
913 } else if (hwc
->idx
>= X86_PMC_IDX_FIXED
) {
914 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
915 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
;
917 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
918 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
922 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
923 struct cpu_hw_events
*cpuc
,
926 return hwc
->idx
== cpuc
->assign
[i
] &&
927 hwc
->last_cpu
== smp_processor_id() &&
928 hwc
->last_tag
== cpuc
->tags
[i
];
931 static void x86_pmu_start(struct perf_event
*event
, int flags
);
932 static void x86_pmu_stop(struct perf_event
*event
, int flags
);
934 static void x86_pmu_enable(struct pmu
*pmu
)
936 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
937 struct perf_event
*event
;
938 struct hw_perf_event
*hwc
;
939 int i
, added
= cpuc
->n_added
;
941 if (!x86_pmu_initialized())
948 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
950 * apply assignment obtained either from
951 * hw_perf_group_sched_in() or x86_pmu_enable()
953 * step1: save events moving to new counters
954 * step2: reprogram moved events into new counters
956 for (i
= 0; i
< n_running
; i
++) {
957 event
= cpuc
->event_list
[i
];
961 * we can avoid reprogramming counter if:
962 * - assigned same counter as last time
963 * - running on same CPU as last time
964 * - no other event has used the counter since
966 if (hwc
->idx
== -1 ||
967 match_prev_assignment(hwc
, cpuc
, i
))
971 * Ensure we don't accidentally enable a stopped
972 * counter simply because we rescheduled.
974 if (hwc
->state
& PERF_HES_STOPPED
)
975 hwc
->state
|= PERF_HES_ARCH
;
977 x86_pmu_stop(event
, PERF_EF_UPDATE
);
980 for (i
= 0; i
< cpuc
->n_events
; i
++) {
981 event
= cpuc
->event_list
[i
];
984 if (!match_prev_assignment(hwc
, cpuc
, i
))
985 x86_assign_hw_event(event
, cpuc
, i
);
986 else if (i
< n_running
)
989 if (hwc
->state
& PERF_HES_ARCH
)
992 x86_pmu_start(event
, PERF_EF_RELOAD
);
995 perf_events_lapic_init();
1001 x86_pmu
.enable_all(added
);
1004 static inline void x86_pmu_disable_event(struct perf_event
*event
)
1006 struct hw_perf_event
*hwc
= &event
->hw
;
1008 wrmsrl(hwc
->config_base
, hwc
->config
);
1011 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
1014 * Set the next IRQ period, based on the hwc->period_left value.
1015 * To be called with the event disabled in hw:
1018 x86_perf_event_set_period(struct perf_event
*event
)
1020 struct hw_perf_event
*hwc
= &event
->hw
;
1021 s64 left
= local64_read(&hwc
->period_left
);
1022 s64 period
= hwc
->sample_period
;
1023 int ret
= 0, idx
= hwc
->idx
;
1025 if (idx
== X86_PMC_IDX_FIXED_BTS
)
1029 * If we are way outside a reasonable range then just skip forward:
1031 if (unlikely(left
<= -period
)) {
1033 local64_set(&hwc
->period_left
, left
);
1034 hwc
->last_period
= period
;
1038 if (unlikely(left
<= 0)) {
1040 local64_set(&hwc
->period_left
, left
);
1041 hwc
->last_period
= period
;
1045 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1047 if (unlikely(left
< 2))
1050 if (left
> x86_pmu
.max_period
)
1051 left
= x86_pmu
.max_period
;
1053 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
1056 * The hw event starts counting from this event offset,
1057 * mark it to be able to extra future deltas:
1059 local64_set(&hwc
->prev_count
, (u64
)-left
);
1061 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
1064 * Due to erratum on certan cpu we need
1065 * a second write to be sure the register
1066 * is updated properly
1068 if (x86_pmu
.perfctr_second_write
) {
1069 wrmsrl(hwc
->event_base
,
1070 (u64
)(-left
) & x86_pmu
.cntval_mask
);
1073 perf_event_update_userpage(event
);
1078 static void x86_pmu_enable_event(struct perf_event
*event
)
1080 if (__this_cpu_read(cpu_hw_events
.enabled
))
1081 __x86_pmu_enable_event(&event
->hw
,
1082 ARCH_PERFMON_EVENTSEL_ENABLE
);
1086 * Add a single event to the PMU.
1088 * The event is added to the group of enabled events
1089 * but only if it can be scehduled with existing events.
1091 static int x86_pmu_add(struct perf_event
*event
, int flags
)
1093 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1094 struct hw_perf_event
*hwc
;
1095 int assign
[X86_PMC_IDX_MAX
];
1100 perf_pmu_disable(event
->pmu
);
1101 n0
= cpuc
->n_events
;
1102 ret
= n
= collect_events(cpuc
, event
, false);
1106 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1107 if (!(flags
& PERF_EF_START
))
1108 hwc
->state
|= PERF_HES_ARCH
;
1111 * If group events scheduling transaction was started,
1112 * skip the schedulability test here, it will be peformed
1113 * at commit time (->commit_txn) as a whole
1115 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1118 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1122 * copy new assignment, now we know it is possible
1123 * will be used by hw_perf_enable()
1125 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1129 cpuc
->n_added
+= n
- n0
;
1130 cpuc
->n_txn
+= n
- n0
;
1134 perf_pmu_enable(event
->pmu
);
1138 static void x86_pmu_start(struct perf_event
*event
, int flags
)
1140 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1141 int idx
= event
->hw
.idx
;
1143 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1146 if (WARN_ON_ONCE(idx
== -1))
1149 if (flags
& PERF_EF_RELOAD
) {
1150 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1151 x86_perf_event_set_period(event
);
1154 event
->hw
.state
= 0;
1156 cpuc
->events
[idx
] = event
;
1157 __set_bit(idx
, cpuc
->active_mask
);
1158 __set_bit(idx
, cpuc
->running
);
1159 x86_pmu
.enable(event
);
1160 perf_event_update_userpage(event
);
1163 void perf_event_print_debug(void)
1165 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1167 struct cpu_hw_events
*cpuc
;
1168 unsigned long flags
;
1171 if (!x86_pmu
.num_counters
)
1174 local_irq_save(flags
);
1176 cpu
= smp_processor_id();
1177 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1179 if (x86_pmu
.version
>= 2) {
1180 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1181 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1182 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1183 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1184 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1187 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1188 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1189 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1190 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1191 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1193 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1195 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1196 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1197 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1199 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1201 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1202 cpu
, idx
, pmc_ctrl
);
1203 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1204 cpu
, idx
, pmc_count
);
1205 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1206 cpu
, idx
, prev_left
);
1208 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1209 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1211 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1212 cpu
, idx
, pmc_count
);
1214 local_irq_restore(flags
);
1217 static void x86_pmu_stop(struct perf_event
*event
, int flags
)
1219 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1220 struct hw_perf_event
*hwc
= &event
->hw
;
1222 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1223 x86_pmu
.disable(event
);
1224 cpuc
->events
[hwc
->idx
] = NULL
;
1225 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1226 hwc
->state
|= PERF_HES_STOPPED
;
1229 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1231 * Drain the remaining delta count out of a event
1232 * that we are disabling:
1234 x86_perf_event_update(event
);
1235 hwc
->state
|= PERF_HES_UPTODATE
;
1239 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1241 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1245 * If we're called during a txn, we don't need to do anything.
1246 * The events never got scheduled and ->cancel_txn will truncate
1249 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1252 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1254 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1255 if (event
== cpuc
->event_list
[i
]) {
1257 if (x86_pmu
.put_event_constraints
)
1258 x86_pmu
.put_event_constraints(cpuc
, event
);
1260 while (++i
< cpuc
->n_events
)
1261 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1267 perf_event_update_userpage(event
);
1270 static int x86_pmu_handle_irq(struct pt_regs
*regs
)
1272 struct perf_sample_data data
;
1273 struct cpu_hw_events
*cpuc
;
1274 struct perf_event
*event
;
1275 int idx
, handled
= 0;
1278 perf_sample_data_init(&data
, 0);
1280 cpuc
= &__get_cpu_var(cpu_hw_events
);
1282 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1283 if (!test_bit(idx
, cpuc
->active_mask
)) {
1285 * Though we deactivated the counter some cpus
1286 * might still deliver spurious interrupts still
1287 * in flight. Catch them:
1289 if (__test_and_clear_bit(idx
, cpuc
->running
))
1294 event
= cpuc
->events
[idx
];
1296 val
= x86_perf_event_update(event
);
1297 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1304 data
.period
= event
->hw
.last_period
;
1306 if (!x86_perf_event_set_period(event
))
1309 if (perf_event_overflow(event
, 1, &data
, regs
))
1310 x86_pmu_stop(event
, 0);
1314 inc_irq_stat(apic_perf_irqs
);
1319 void perf_events_lapic_init(void)
1321 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1325 * Always use NMI for PMU
1327 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1330 struct pmu_nmi_state
{
1331 unsigned int marked
;
1335 static DEFINE_PER_CPU(struct pmu_nmi_state
, pmu_nmi
);
1337 static int __kprobes
1338 perf_event_nmi_handler(struct notifier_block
*self
,
1339 unsigned long cmd
, void *__args
)
1341 struct die_args
*args
= __args
;
1342 unsigned int this_nmi
;
1345 if (!atomic_read(&active_events
))
1351 case DIE_NMIUNKNOWN
:
1352 this_nmi
= percpu_read(irq_stat
.__nmi_count
);
1353 if (this_nmi
!= __this_cpu_read(pmu_nmi
.marked
))
1354 /* let the kernel handle the unknown nmi */
1357 * This one is a PMU back-to-back nmi. Two events
1358 * trigger 'simultaneously' raising two back-to-back
1359 * NMIs. If the first NMI handles both, the latter
1360 * will be empty and daze the CPU. So, we drop it to
1361 * avoid false-positive 'unknown nmi' messages.
1368 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1370 handled
= x86_pmu
.handle_irq(args
->regs
);
1374 this_nmi
= percpu_read(irq_stat
.__nmi_count
);
1375 if ((handled
> 1) ||
1376 /* the next nmi could be a back-to-back nmi */
1377 ((__this_cpu_read(pmu_nmi
.marked
) == this_nmi
) &&
1378 (__this_cpu_read(pmu_nmi
.handled
) > 1))) {
1380 * We could have two subsequent back-to-back nmis: The
1381 * first handles more than one counter, the 2nd
1382 * handles only one counter and the 3rd handles no
1385 * This is the 2nd nmi because the previous was
1386 * handling more than one counter. We will mark the
1387 * next (3rd) and then drop it if unhandled.
1389 __this_cpu_write(pmu_nmi
.marked
, this_nmi
+ 1);
1390 __this_cpu_write(pmu_nmi
.handled
, handled
);
1396 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1397 .notifier_call
= perf_event_nmi_handler
,
1399 .priority
= NMI_LOCAL_LOW_PRIOR
,
1402 static struct event_constraint unconstrained
;
1403 static struct event_constraint emptyconstraint
;
1405 static struct event_constraint
*
1406 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
)
1408 struct event_constraint
*c
;
1410 if (x86_pmu
.event_constraints
) {
1411 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
1412 if ((event
->hw
.config
& c
->cmask
) == c
->code
)
1417 return &unconstrained
;
1420 #include "perf_event_amd.c"
1421 #include "perf_event_p6.c"
1422 #include "perf_event_p4.c"
1423 #include "perf_event_intel_lbr.c"
1424 #include "perf_event_intel_ds.c"
1425 #include "perf_event_intel.c"
1427 static int __cpuinit
1428 x86_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1430 unsigned int cpu
= (long)hcpu
;
1431 int ret
= NOTIFY_OK
;
1433 switch (action
& ~CPU_TASKS_FROZEN
) {
1434 case CPU_UP_PREPARE
:
1435 if (x86_pmu
.cpu_prepare
)
1436 ret
= x86_pmu
.cpu_prepare(cpu
);
1440 if (x86_pmu
.cpu_starting
)
1441 x86_pmu
.cpu_starting(cpu
);
1445 if (x86_pmu
.cpu_dying
)
1446 x86_pmu
.cpu_dying(cpu
);
1449 case CPU_UP_CANCELED
:
1451 if (x86_pmu
.cpu_dead
)
1452 x86_pmu
.cpu_dead(cpu
);
1462 static void __init
pmu_check_apic(void)
1468 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1469 pr_info("no hardware sampling interrupt available.\n");
1472 static int __init
init_hw_perf_events(void)
1474 struct event_constraint
*c
;
1477 pr_info("Performance Events: ");
1479 switch (boot_cpu_data
.x86_vendor
) {
1480 case X86_VENDOR_INTEL
:
1481 err
= intel_pmu_init();
1483 case X86_VENDOR_AMD
:
1484 err
= amd_pmu_init();
1490 pr_cont("no PMU driver, software events only.\n");
1496 /* sanity check that the hardware exists or is emulated */
1497 if (!check_hw_exists())
1500 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1505 if (x86_pmu
.num_counters
> X86_PMC_MAX_GENERIC
) {
1506 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
1507 x86_pmu
.num_counters
, X86_PMC_MAX_GENERIC
);
1508 x86_pmu
.num_counters
= X86_PMC_MAX_GENERIC
;
1510 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1512 if (x86_pmu
.num_counters_fixed
> X86_PMC_MAX_FIXED
) {
1513 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
1514 x86_pmu
.num_counters_fixed
, X86_PMC_MAX_FIXED
);
1515 x86_pmu
.num_counters_fixed
= X86_PMC_MAX_FIXED
;
1518 x86_pmu
.intel_ctrl
|=
1519 ((1LL << x86_pmu
.num_counters_fixed
)-1) << X86_PMC_IDX_FIXED
;
1521 perf_events_lapic_init();
1522 register_die_notifier(&perf_event_nmi_notifier
);
1524 unconstrained
= (struct event_constraint
)
1525 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1526 0, x86_pmu
.num_counters
);
1528 if (x86_pmu
.event_constraints
) {
1529 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
1530 if (c
->cmask
!= X86_RAW_EVENT_MASK
)
1533 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
1534 c
->weight
+= x86_pmu
.num_counters
;
1538 pr_info("... version: %d\n", x86_pmu
.version
);
1539 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1540 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1541 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1542 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1543 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1544 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1546 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1547 perf_cpu_notifier(x86_pmu_notifier
);
1551 early_initcall(init_hw_perf_events
);
1553 static inline void x86_pmu_read(struct perf_event
*event
)
1555 x86_perf_event_update(event
);
1559 * Start group events scheduling transaction
1560 * Set the flag to make pmu::enable() not perform the
1561 * schedulability test, it will be performed at commit time
1563 static void x86_pmu_start_txn(struct pmu
*pmu
)
1565 perf_pmu_disable(pmu
);
1566 __this_cpu_or(cpu_hw_events
.group_flag
, PERF_EVENT_TXN
);
1567 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1571 * Stop group events scheduling transaction
1572 * Clear the flag and pmu::enable() will perform the
1573 * schedulability test.
1575 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1577 __this_cpu_and(cpu_hw_events
.group_flag
, ~PERF_EVENT_TXN
);
1579 * Truncate the collected events.
1581 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1582 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1583 perf_pmu_enable(pmu
);
1587 * Commit group events scheduling transaction
1588 * Perform the group schedulability test as a whole
1589 * Return 0 if success
1591 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1593 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1594 int assign
[X86_PMC_IDX_MAX
];
1599 if (!x86_pmu_initialized())
1602 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1607 * copy new assignment, now we know it is possible
1608 * will be used by hw_perf_enable()
1610 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1612 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1613 perf_pmu_enable(pmu
);
1618 * validate that we can schedule this event
1620 static int validate_event(struct perf_event
*event
)
1622 struct cpu_hw_events
*fake_cpuc
;
1623 struct event_constraint
*c
;
1626 fake_cpuc
= kmalloc(sizeof(*fake_cpuc
), GFP_KERNEL
| __GFP_ZERO
);
1630 c
= x86_pmu
.get_event_constraints(fake_cpuc
, event
);
1632 if (!c
|| !c
->weight
)
1635 if (x86_pmu
.put_event_constraints
)
1636 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
1644 * validate a single event group
1646 * validation include:
1647 * - check events are compatible which each other
1648 * - events do not compete for the same counter
1649 * - number of events <= number of counters
1651 * validation ensures the group can be loaded onto the
1652 * PMU if it was the only group available.
1654 static int validate_group(struct perf_event
*event
)
1656 struct perf_event
*leader
= event
->group_leader
;
1657 struct cpu_hw_events
*fake_cpuc
;
1661 fake_cpuc
= kmalloc(sizeof(*fake_cpuc
), GFP_KERNEL
| __GFP_ZERO
);
1666 * the event is not yet connected with its
1667 * siblings therefore we must first collect
1668 * existing siblings, then add the new event
1669 * before we can simulate the scheduling
1672 n
= collect_events(fake_cpuc
, leader
, true);
1676 fake_cpuc
->n_events
= n
;
1677 n
= collect_events(fake_cpuc
, event
, false);
1681 fake_cpuc
->n_events
= n
;
1683 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
1691 static int x86_pmu_event_init(struct perf_event
*event
)
1696 switch (event
->attr
.type
) {
1698 case PERF_TYPE_HARDWARE
:
1699 case PERF_TYPE_HW_CACHE
:
1706 err
= __x86_pmu_event_init(event
);
1709 * we temporarily connect event to its pmu
1710 * such that validate_group() can classify
1711 * it as an x86 event using is_x86_event()
1716 if (event
->group_leader
!= event
)
1717 err
= validate_group(event
);
1719 err
= validate_event(event
);
1725 event
->destroy(event
);
1731 static struct pmu pmu
= {
1732 .pmu_enable
= x86_pmu_enable
,
1733 .pmu_disable
= x86_pmu_disable
,
1735 .event_init
= x86_pmu_event_init
,
1739 .start
= x86_pmu_start
,
1740 .stop
= x86_pmu_stop
,
1741 .read
= x86_pmu_read
,
1743 .start_txn
= x86_pmu_start_txn
,
1744 .cancel_txn
= x86_pmu_cancel_txn
,
1745 .commit_txn
= x86_pmu_commit_txn
,
1753 backtrace_warning_symbol(void *data
, char *msg
, unsigned long symbol
)
1755 /* Ignore warnings */
1758 static void backtrace_warning(void *data
, char *msg
)
1760 /* Ignore warnings */
1763 static int backtrace_stack(void *data
, char *name
)
1768 static void backtrace_address(void *data
, unsigned long addr
, int reliable
)
1770 struct perf_callchain_entry
*entry
= data
;
1772 perf_callchain_store(entry
, addr
);
1775 static const struct stacktrace_ops backtrace_ops
= {
1776 .warning
= backtrace_warning
,
1777 .warning_symbol
= backtrace_warning_symbol
,
1778 .stack
= backtrace_stack
,
1779 .address
= backtrace_address
,
1780 .walk_stack
= print_context_stack_bp
,
1784 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1786 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1787 /* TODO: We don't support guest os callchain now */
1791 perf_callchain_store(entry
, regs
->ip
);
1793 dump_trace(NULL
, regs
, NULL
, &backtrace_ops
, entry
);
1796 #ifdef CONFIG_COMPAT
1798 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1800 /* 32-bit process in 64-bit kernel. */
1801 struct stack_frame_ia32 frame
;
1802 const void __user
*fp
;
1804 if (!test_thread_flag(TIF_IA32
))
1807 fp
= compat_ptr(regs
->bp
);
1808 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1809 unsigned long bytes
;
1810 frame
.next_frame
= 0;
1811 frame
.return_address
= 0;
1813 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1814 if (bytes
!= sizeof(frame
))
1817 if (fp
< compat_ptr(regs
->sp
))
1820 perf_callchain_store(entry
, frame
.return_address
);
1821 fp
= compat_ptr(frame
.next_frame
);
1827 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1834 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1836 struct stack_frame frame
;
1837 const void __user
*fp
;
1839 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1840 /* TODO: We don't support guest os callchain now */
1844 fp
= (void __user
*)regs
->bp
;
1846 perf_callchain_store(entry
, regs
->ip
);
1848 if (perf_callchain_user32(regs
, entry
))
1851 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1852 unsigned long bytes
;
1853 frame
.next_frame
= NULL
;
1854 frame
.return_address
= 0;
1856 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1857 if (bytes
!= sizeof(frame
))
1860 if ((unsigned long)fp
< regs
->sp
)
1863 perf_callchain_store(entry
, frame
.return_address
);
1864 fp
= frame
.next_frame
;
1868 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1872 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
1873 ip
= perf_guest_cbs
->get_guest_ip();
1875 ip
= instruction_pointer(regs
);
1880 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1884 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1885 if (perf_guest_cbs
->is_user_mode())
1886 misc
|= PERF_RECORD_MISC_GUEST_USER
;
1888 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
1890 if (user_mode(regs
))
1891 misc
|= PERF_RECORD_MISC_USER
;
1893 misc
|= PERF_RECORD_MISC_KERNEL
;
1896 if (regs
->flags
& PERF_EFLAGS_EXACT
)
1897 misc
|= PERF_RECORD_MISC_EXACT_IP
;