PCI: More PATA quirks for not entering D3
[linux-2.6/x86.git] / drivers / lguest / core.c
bloba6974e9b8ebff8c8676f297da0e32a1e3e6d0105
1 /*P:400 This contains run_guest() which actually calls into the Host<->Guest
2 * Switcher and analyzes the return, such as determining if the Guest wants the
3 * Host to do something. This file also contains useful helper routines. :*/
4 #include <linux/module.h>
5 #include <linux/stringify.h>
6 #include <linux/stddef.h>
7 #include <linux/io.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cpu.h>
11 #include <linux/freezer.h>
12 #include <linux/highmem.h>
13 #include <asm/paravirt.h>
14 #include <asm/pgtable.h>
15 #include <asm/uaccess.h>
16 #include <asm/poll.h>
17 #include <asm/asm-offsets.h>
18 #include "lg.h"
21 static struct vm_struct *switcher_vma;
22 static struct page **switcher_page;
24 /* This One Big lock protects all inter-guest data structures. */
25 DEFINE_MUTEX(lguest_lock);
27 /*H:010 We need to set up the Switcher at a high virtual address. Remember the
28 * Switcher is a few hundred bytes of assembler code which actually changes the
29 * CPU to run the Guest, and then changes back to the Host when a trap or
30 * interrupt happens.
32 * The Switcher code must be at the same virtual address in the Guest as the
33 * Host since it will be running as the switchover occurs.
35 * Trying to map memory at a particular address is an unusual thing to do, so
36 * it's not a simple one-liner. */
37 static __init int map_switcher(void)
39 int i, err;
40 struct page **pagep;
43 * Map the Switcher in to high memory.
45 * It turns out that if we choose the address 0xFFC00000 (4MB under the
46 * top virtual address), it makes setting up the page tables really
47 * easy.
50 /* We allocate an array of struct page pointers. map_vm_area() wants
51 * this, rather than just an array of pages. */
52 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
53 GFP_KERNEL);
54 if (!switcher_page) {
55 err = -ENOMEM;
56 goto out;
59 /* Now we actually allocate the pages. The Guest will see these pages,
60 * so we make sure they're zeroed. */
61 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
62 unsigned long addr = get_zeroed_page(GFP_KERNEL);
63 if (!addr) {
64 err = -ENOMEM;
65 goto free_some_pages;
67 switcher_page[i] = virt_to_page(addr);
70 /* First we check that the Switcher won't overlap the fixmap area at
71 * the top of memory. It's currently nowhere near, but it could have
72 * very strange effects if it ever happened. */
73 if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
74 err = -ENOMEM;
75 printk("lguest: mapping switcher would thwack fixmap\n");
76 goto free_pages;
79 /* Now we reserve the "virtual memory area" we want: 0xFFC00000
80 * (SWITCHER_ADDR). We might not get it in theory, but in practice
81 * it's worked so far. The end address needs +1 because __get_vm_area
82 * allocates an extra guard page, so we need space for that. */
83 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
84 VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
85 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
86 if (!switcher_vma) {
87 err = -ENOMEM;
88 printk("lguest: could not map switcher pages high\n");
89 goto free_pages;
92 /* This code actually sets up the pages we've allocated to appear at
93 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
94 * kind of pages we're mapping (kernel pages), and a pointer to our
95 * array of struct pages. It increments that pointer, but we don't
96 * care. */
97 pagep = switcher_page;
98 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
99 if (err) {
100 printk("lguest: map_vm_area failed: %i\n", err);
101 goto free_vma;
104 /* Now the Switcher is mapped at the right address, we can't fail!
105 * Copy in the compiled-in Switcher code (from <arch>_switcher.S). */
106 memcpy(switcher_vma->addr, start_switcher_text,
107 end_switcher_text - start_switcher_text);
109 printk(KERN_INFO "lguest: mapped switcher at %p\n",
110 switcher_vma->addr);
111 /* And we succeeded... */
112 return 0;
114 free_vma:
115 vunmap(switcher_vma->addr);
116 free_pages:
117 i = TOTAL_SWITCHER_PAGES;
118 free_some_pages:
119 for (--i; i >= 0; i--)
120 __free_pages(switcher_page[i], 0);
121 kfree(switcher_page);
122 out:
123 return err;
125 /*:*/
127 /* Cleaning up the mapping when the module is unloaded is almost...
128 * too easy. */
129 static void unmap_switcher(void)
131 unsigned int i;
133 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
134 vunmap(switcher_vma->addr);
135 /* Now we just need to free the pages we copied the switcher into */
136 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
137 __free_pages(switcher_page[i], 0);
138 kfree(switcher_page);
141 /*H:032
142 * Dealing With Guest Memory.
144 * Before we go too much further into the Host, we need to grok the routines
145 * we use to deal with Guest memory.
147 * When the Guest gives us (what it thinks is) a physical address, we can use
148 * the normal copy_from_user() & copy_to_user() on the corresponding place in
149 * the memory region allocated by the Launcher.
151 * But we can't trust the Guest: it might be trying to access the Launcher
152 * code. We have to check that the range is below the pfn_limit the Launcher
153 * gave us. We have to make sure that addr + len doesn't give us a false
154 * positive by overflowing, too. */
155 bool lguest_address_ok(const struct lguest *lg,
156 unsigned long addr, unsigned long len)
158 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
161 /* This routine copies memory from the Guest. Here we can see how useful the
162 * kill_lguest() routine we met in the Launcher can be: we return a random
163 * value (all zeroes) instead of needing to return an error. */
164 void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
166 if (!lguest_address_ok(cpu->lg, addr, bytes)
167 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
168 /* copy_from_user should do this, but as we rely on it... */
169 memset(b, 0, bytes);
170 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
174 /* This is the write (copy into Guest) version. */
175 void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
176 unsigned bytes)
178 if (!lguest_address_ok(cpu->lg, addr, bytes)
179 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
180 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
182 /*:*/
184 /*H:030 Let's jump straight to the the main loop which runs the Guest.
185 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
186 * going around and around until something interesting happens. */
187 int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
189 /* We stop running once the Guest is dead. */
190 while (!cpu->lg->dead) {
191 unsigned int irq;
192 bool more;
194 /* First we run any hypercalls the Guest wants done. */
195 if (cpu->hcall)
196 do_hypercalls(cpu);
198 /* It's possible the Guest did a NOTIFY hypercall to the
199 * Launcher, in which case we return from the read() now. */
200 if (cpu->pending_notify) {
201 if (!send_notify_to_eventfd(cpu)) {
202 if (put_user(cpu->pending_notify, user))
203 return -EFAULT;
204 return sizeof(cpu->pending_notify);
208 /* Check for signals */
209 if (signal_pending(current))
210 return -ERESTARTSYS;
212 /* Check if there are any interrupts which can be delivered now:
213 * if so, this sets up the hander to be executed when we next
214 * run the Guest. */
215 irq = interrupt_pending(cpu, &more);
216 if (irq < LGUEST_IRQS)
217 try_deliver_interrupt(cpu, irq, more);
219 /* All long-lived kernel loops need to check with this horrible
220 * thing called the freezer. If the Host is trying to suspend,
221 * it stops us. */
222 try_to_freeze();
224 /* Just make absolutely sure the Guest is still alive. One of
225 * those hypercalls could have been fatal, for example. */
226 if (cpu->lg->dead)
227 break;
229 /* If the Guest asked to be stopped, we sleep. The Guest's
230 * clock timer will wake us. */
231 if (cpu->halted) {
232 set_current_state(TASK_INTERRUPTIBLE);
233 /* Just before we sleep, make sure no interrupt snuck in
234 * which we should be doing. */
235 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
236 set_current_state(TASK_RUNNING);
237 else
238 schedule();
239 continue;
242 /* OK, now we're ready to jump into the Guest. First we put up
243 * the "Do Not Disturb" sign: */
244 local_irq_disable();
246 /* Actually run the Guest until something happens. */
247 lguest_arch_run_guest(cpu);
249 /* Now we're ready to be interrupted or moved to other CPUs */
250 local_irq_enable();
252 /* Now we deal with whatever happened to the Guest. */
253 lguest_arch_handle_trap(cpu);
256 /* Special case: Guest is 'dead' but wants a reboot. */
257 if (cpu->lg->dead == ERR_PTR(-ERESTART))
258 return -ERESTART;
260 /* The Guest is dead => "No such file or directory" */
261 return -ENOENT;
264 /*H:000
265 * Welcome to the Host!
267 * By this point your brain has been tickled by the Guest code and numbed by
268 * the Launcher code; prepare for it to be stretched by the Host code. This is
269 * the heart. Let's begin at the initialization routine for the Host's lg
270 * module.
272 static int __init init(void)
274 int err;
276 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
277 if (paravirt_enabled()) {
278 printk("lguest is afraid of being a guest\n");
279 return -EPERM;
282 /* First we put the Switcher up in very high virtual memory. */
283 err = map_switcher();
284 if (err)
285 goto out;
287 /* Now we set up the pagetable implementation for the Guests. */
288 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
289 if (err)
290 goto unmap;
292 /* We might need to reserve an interrupt vector. */
293 err = init_interrupts();
294 if (err)
295 goto free_pgtables;
297 /* /dev/lguest needs to be registered. */
298 err = lguest_device_init();
299 if (err)
300 goto free_interrupts;
302 /* Finally we do some architecture-specific setup. */
303 lguest_arch_host_init();
305 /* All good! */
306 return 0;
308 free_interrupts:
309 free_interrupts();
310 free_pgtables:
311 free_pagetables();
312 unmap:
313 unmap_switcher();
314 out:
315 return err;
318 /* Cleaning up is just the same code, backwards. With a little French. */
319 static void __exit fini(void)
321 lguest_device_remove();
322 free_interrupts();
323 free_pagetables();
324 unmap_switcher();
326 lguest_arch_host_fini();
328 /*:*/
330 /* The Host side of lguest can be a module. This is a nice way for people to
331 * play with it. */
332 module_init(init);
333 module_exit(fini);
334 MODULE_LICENSE("GPL");
335 MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");