[POWERPC] Always apply DABR changes on context switches
[linux-2.6/x86.git] / drivers / net / mv643xx_eth.c
blob1799eee88db7f81e3206f6372eb8119ba4ea883b
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
53 /* Static function declarations */
54 static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr);
55 static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr);
56 static void eth_port_set_multicast_list(struct net_device *);
57 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58 unsigned int queues);
59 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60 unsigned int queues);
61 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63 static int mv643xx_eth_open(struct net_device *);
64 static int mv643xx_eth_stop(struct net_device *);
65 static int mv643xx_eth_change_mtu(struct net_device *, int);
66 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
67 static void eth_port_init_mac_tables(unsigned int eth_port_num);
68 #ifdef MV643XX_NAPI
69 static int mv643xx_poll(struct net_device *dev, int *budget);
70 #endif
71 static int ethernet_phy_get(unsigned int eth_port_num);
72 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
73 static int ethernet_phy_detect(unsigned int eth_port_num);
74 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
75 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
76 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
77 static const struct ethtool_ops mv643xx_ethtool_ops;
79 static char mv643xx_driver_name[] = "mv643xx_eth";
80 static char mv643xx_driver_version[] = "1.0";
82 static void __iomem *mv643xx_eth_shared_base;
84 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
85 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
87 static inline u32 mv_read(int offset)
89 void __iomem *reg_base;
91 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
93 return readl(reg_base + offset);
96 static inline void mv_write(int offset, u32 data)
98 void __iomem *reg_base;
100 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
101 writel(data, reg_base + offset);
105 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
107 * Input : pointer to ethernet interface network device structure
108 * new mtu size
109 * Output : 0 upon success, -EINVAL upon failure
111 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
113 if ((new_mtu > 9500) || (new_mtu < 64))
114 return -EINVAL;
116 dev->mtu = new_mtu;
118 * Stop then re-open the interface. This will allocate RX skb's with
119 * the new MTU.
120 * There is a possible danger that the open will not successed, due
121 * to memory is full, which might fail the open function.
123 if (netif_running(dev)) {
124 mv643xx_eth_stop(dev);
125 if (mv643xx_eth_open(dev))
126 printk(KERN_ERR
127 "%s: Fatal error on opening device\n",
128 dev->name);
131 return 0;
135 * mv643xx_eth_rx_refill_descs
137 * Fills / refills RX queue on a certain gigabit ethernet port
139 * Input : pointer to ethernet interface network device structure
140 * Output : N/A
142 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
144 struct mv643xx_private *mp = netdev_priv(dev);
145 struct pkt_info pkt_info;
146 struct sk_buff *skb;
147 int unaligned;
149 while (mp->rx_desc_count < mp->rx_ring_size) {
150 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
151 if (!skb)
152 break;
153 mp->rx_desc_count++;
154 unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
155 if (unaligned)
156 skb_reserve(skb, dma_get_cache_alignment() - unaligned);
157 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
158 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
159 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
160 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
161 pkt_info.return_info = skb;
162 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
163 printk(KERN_ERR
164 "%s: Error allocating RX Ring\n", dev->name);
165 break;
167 skb_reserve(skb, ETH_HW_IP_ALIGN);
170 * If RX ring is empty of SKB, set a timer to try allocating
171 * again at a later time.
173 if (mp->rx_desc_count == 0) {
174 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
175 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
176 add_timer(&mp->timeout);
181 * mv643xx_eth_rx_refill_descs_timer_wrapper
183 * Timer routine to wake up RX queue filling task. This function is
184 * used only in case the RX queue is empty, and all alloc_skb has
185 * failed (due to out of memory event).
187 * Input : pointer to ethernet interface network device structure
188 * Output : N/A
190 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
192 mv643xx_eth_rx_refill_descs((struct net_device *)data);
196 * mv643xx_eth_update_mac_address
198 * Update the MAC address of the port in the address table
200 * Input : pointer to ethernet interface network device structure
201 * Output : N/A
203 static void mv643xx_eth_update_mac_address(struct net_device *dev)
205 struct mv643xx_private *mp = netdev_priv(dev);
206 unsigned int port_num = mp->port_num;
208 eth_port_init_mac_tables(port_num);
209 eth_port_uc_addr_set(port_num, dev->dev_addr);
213 * mv643xx_eth_set_rx_mode
215 * Change from promiscuos to regular rx mode
217 * Input : pointer to ethernet interface network device structure
218 * Output : N/A
220 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
222 struct mv643xx_private *mp = netdev_priv(dev);
223 u32 config_reg;
225 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
226 if (dev->flags & IFF_PROMISC)
227 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
228 else
229 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
230 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
232 eth_port_set_multicast_list(dev);
236 * mv643xx_eth_set_mac_address
238 * Change the interface's mac address.
239 * No special hardware thing should be done because interface is always
240 * put in promiscuous mode.
242 * Input : pointer to ethernet interface network device structure and
243 * a pointer to the designated entry to be added to the cache.
244 * Output : zero upon success, negative upon failure
246 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
248 int i;
250 for (i = 0; i < 6; i++)
251 /* +2 is for the offset of the HW addr type */
252 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
253 mv643xx_eth_update_mac_address(dev);
254 return 0;
258 * mv643xx_eth_tx_timeout
260 * Called upon a timeout on transmitting a packet
262 * Input : pointer to ethernet interface network device structure.
263 * Output : N/A
265 static void mv643xx_eth_tx_timeout(struct net_device *dev)
267 struct mv643xx_private *mp = netdev_priv(dev);
269 printk(KERN_INFO "%s: TX timeout ", dev->name);
271 /* Do the reset outside of interrupt context */
272 schedule_work(&mp->tx_timeout_task);
276 * mv643xx_eth_tx_timeout_task
278 * Actual routine to reset the adapter when a timeout on Tx has occurred
280 static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
282 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
283 tx_timeout_task);
284 struct net_device *dev = mp->mii.dev; /* yuck */
286 if (!netif_running(dev))
287 return;
289 netif_stop_queue(dev);
291 eth_port_reset(mp->port_num);
292 eth_port_start(dev);
294 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
295 netif_wake_queue(dev);
299 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
301 * If force is non-zero, frees uncompleted descriptors as well
303 int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
305 struct mv643xx_private *mp = netdev_priv(dev);
306 struct eth_tx_desc *desc;
307 u32 cmd_sts;
308 struct sk_buff *skb;
309 unsigned long flags;
310 int tx_index;
311 dma_addr_t addr;
312 int count;
313 int released = 0;
315 while (mp->tx_desc_count > 0) {
316 spin_lock_irqsave(&mp->lock, flags);
318 /* tx_desc_count might have changed before acquiring the lock */
319 if (mp->tx_desc_count <= 0) {
320 spin_unlock_irqrestore(&mp->lock, flags);
321 return released;
324 tx_index = mp->tx_used_desc_q;
325 desc = &mp->p_tx_desc_area[tx_index];
326 cmd_sts = desc->cmd_sts;
328 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
329 spin_unlock_irqrestore(&mp->lock, flags);
330 return released;
333 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
334 mp->tx_desc_count--;
336 addr = desc->buf_ptr;
337 count = desc->byte_cnt;
338 skb = mp->tx_skb[tx_index];
339 if (skb)
340 mp->tx_skb[tx_index] = NULL;
342 if (cmd_sts & ETH_ERROR_SUMMARY) {
343 printk("%s: Error in TX\n", dev->name);
344 mp->stats.tx_errors++;
347 spin_unlock_irqrestore(&mp->lock, flags);
349 if (cmd_sts & ETH_TX_FIRST_DESC)
350 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
351 else
352 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
354 if (skb)
355 dev_kfree_skb_irq(skb);
357 released = 1;
360 return released;
363 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
365 struct mv643xx_private *mp = netdev_priv(dev);
367 if (mv643xx_eth_free_tx_descs(dev, 0) &&
368 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
369 netif_wake_queue(dev);
372 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
374 mv643xx_eth_free_tx_descs(dev, 1);
378 * mv643xx_eth_receive
380 * This function is forward packets that are received from the port's
381 * queues toward kernel core or FastRoute them to another interface.
383 * Input : dev - a pointer to the required interface
384 * max - maximum number to receive (0 means unlimted)
386 * Output : number of served packets
388 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
390 struct mv643xx_private *mp = netdev_priv(dev);
391 struct net_device_stats *stats = &mp->stats;
392 unsigned int received_packets = 0;
393 struct sk_buff *skb;
394 struct pkt_info pkt_info;
396 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
397 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
398 DMA_FROM_DEVICE);
399 mp->rx_desc_count--;
400 received_packets++;
403 * Update statistics.
404 * Note byte count includes 4 byte CRC count
406 stats->rx_packets++;
407 stats->rx_bytes += pkt_info.byte_cnt;
408 skb = pkt_info.return_info;
410 * In case received a packet without first / last bits on OR
411 * the error summary bit is on, the packets needs to be dropeed.
413 if (((pkt_info.cmd_sts
414 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
415 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
416 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
417 stats->rx_dropped++;
418 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
419 ETH_RX_LAST_DESC)) !=
420 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
421 if (net_ratelimit())
422 printk(KERN_ERR
423 "%s: Received packet spread "
424 "on multiple descriptors\n",
425 dev->name);
427 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
428 stats->rx_errors++;
430 dev_kfree_skb_irq(skb);
431 } else {
433 * The -4 is for the CRC in the trailer of the
434 * received packet
436 skb_put(skb, pkt_info.byte_cnt - 4);
438 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
439 skb->ip_summed = CHECKSUM_UNNECESSARY;
440 skb->csum = htons(
441 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
443 skb->protocol = eth_type_trans(skb, dev);
444 #ifdef MV643XX_NAPI
445 netif_receive_skb(skb);
446 #else
447 netif_rx(skb);
448 #endif
450 dev->last_rx = jiffies;
452 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
454 return received_packets;
457 /* Set the mv643xx port configuration register for the speed/duplex mode. */
458 static void mv643xx_eth_update_pscr(struct net_device *dev,
459 struct ethtool_cmd *ecmd)
461 struct mv643xx_private *mp = netdev_priv(dev);
462 int port_num = mp->port_num;
463 u32 o_pscr, n_pscr;
464 unsigned int queues;
466 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
467 n_pscr = o_pscr;
469 /* clear speed, duplex and rx buffer size fields */
470 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
471 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
472 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
473 MV643XX_ETH_MAX_RX_PACKET_MASK);
475 if (ecmd->duplex == DUPLEX_FULL)
476 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
478 if (ecmd->speed == SPEED_1000)
479 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
480 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
481 else {
482 if (ecmd->speed == SPEED_100)
483 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
484 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
487 if (n_pscr != o_pscr) {
488 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
489 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
490 n_pscr);
491 else {
492 queues = mv643xx_eth_port_disable_tx(port_num);
494 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
495 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
496 o_pscr);
497 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
498 n_pscr);
499 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
500 n_pscr);
501 if (queues)
502 mv643xx_eth_port_enable_tx(port_num, queues);
508 * mv643xx_eth_int_handler
510 * Main interrupt handler for the gigbit ethernet ports
512 * Input : irq - irq number (not used)
513 * dev_id - a pointer to the required interface's data structure
514 * regs - not used
515 * Output : N/A
518 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
520 struct net_device *dev = (struct net_device *)dev_id;
521 struct mv643xx_private *mp = netdev_priv(dev);
522 u32 eth_int_cause, eth_int_cause_ext = 0;
523 unsigned int port_num = mp->port_num;
525 /* Read interrupt cause registers */
526 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
527 ETH_INT_UNMASK_ALL;
528 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
529 eth_int_cause_ext = mv_read(
530 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
531 ETH_INT_UNMASK_ALL_EXT;
532 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
533 ~eth_int_cause_ext);
536 /* PHY status changed */
537 if (eth_int_cause_ext & ETH_INT_CAUSE_PHY) {
538 struct ethtool_cmd cmd;
540 if (mii_link_ok(&mp->mii)) {
541 mii_ethtool_gset(&mp->mii, &cmd);
542 mv643xx_eth_update_pscr(dev, &cmd);
543 mv643xx_eth_port_enable_tx(port_num,
544 ETH_TX_QUEUES_ENABLED);
545 if (!netif_carrier_ok(dev)) {
546 netif_carrier_on(dev);
547 if (mp->tx_ring_size - mp->tx_desc_count >=
548 MAX_DESCS_PER_SKB)
549 netif_wake_queue(dev);
551 } else if (netif_carrier_ok(dev)) {
552 netif_stop_queue(dev);
553 netif_carrier_off(dev);
557 #ifdef MV643XX_NAPI
558 if (eth_int_cause & ETH_INT_CAUSE_RX) {
559 /* schedule the NAPI poll routine to maintain port */
560 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
561 ETH_INT_MASK_ALL);
562 /* wait for previous write to complete */
563 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
565 netif_rx_schedule(dev);
567 #else
568 if (eth_int_cause & ETH_INT_CAUSE_RX)
569 mv643xx_eth_receive_queue(dev, INT_MAX);
570 #endif
571 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
572 mv643xx_eth_free_completed_tx_descs(dev);
575 * If no real interrupt occured, exit.
576 * This can happen when using gigE interrupt coalescing mechanism.
578 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
579 return IRQ_NONE;
581 return IRQ_HANDLED;
584 #ifdef MV643XX_COAL
587 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
589 * DESCRIPTION:
590 * This routine sets the RX coalescing interrupt mechanism parameter.
591 * This parameter is a timeout counter, that counts in 64 t_clk
592 * chunks ; that when timeout event occurs a maskable interrupt
593 * occurs.
594 * The parameter is calculated using the tClk of the MV-643xx chip
595 * , and the required delay of the interrupt in usec.
597 * INPUT:
598 * unsigned int eth_port_num Ethernet port number
599 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
600 * unsigned int delay Delay in usec
602 * OUTPUT:
603 * Interrupt coalescing mechanism value is set in MV-643xx chip.
605 * RETURN:
606 * The interrupt coalescing value set in the gigE port.
609 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
610 unsigned int t_clk, unsigned int delay)
612 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
614 /* Set RX Coalescing mechanism */
615 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
616 ((coal & 0x3fff) << 8) |
617 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
618 & 0xffc000ff));
620 return coal;
622 #endif
625 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
627 * DESCRIPTION:
628 * This routine sets the TX coalescing interrupt mechanism parameter.
629 * This parameter is a timeout counter, that counts in 64 t_clk
630 * chunks ; that when timeout event occurs a maskable interrupt
631 * occurs.
632 * The parameter is calculated using the t_cLK frequency of the
633 * MV-643xx chip and the required delay in the interrupt in uSec
635 * INPUT:
636 * unsigned int eth_port_num Ethernet port number
637 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
638 * unsigned int delay Delay in uSeconds
640 * OUTPUT:
641 * Interrupt coalescing mechanism value is set in MV-643xx chip.
643 * RETURN:
644 * The interrupt coalescing value set in the gigE port.
647 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
648 unsigned int t_clk, unsigned int delay)
650 unsigned int coal;
651 coal = ((t_clk / 1000000) * delay) / 64;
652 /* Set TX Coalescing mechanism */
653 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
654 coal << 4);
655 return coal;
659 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
661 * DESCRIPTION:
662 * This function prepares a Rx chained list of descriptors and packet
663 * buffers in a form of a ring. The routine must be called after port
664 * initialization routine and before port start routine.
665 * The Ethernet SDMA engine uses CPU bus addresses to access the various
666 * devices in the system (i.e. DRAM). This function uses the ethernet
667 * struct 'virtual to physical' routine (set by the user) to set the ring
668 * with physical addresses.
670 * INPUT:
671 * struct mv643xx_private *mp Ethernet Port Control srtuct.
673 * OUTPUT:
674 * The routine updates the Ethernet port control struct with information
675 * regarding the Rx descriptors and buffers.
677 * RETURN:
678 * None.
680 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
682 volatile struct eth_rx_desc *p_rx_desc;
683 int rx_desc_num = mp->rx_ring_size;
684 int i;
686 /* initialize the next_desc_ptr links in the Rx descriptors ring */
687 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
688 for (i = 0; i < rx_desc_num; i++) {
689 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
690 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
693 /* Save Rx desc pointer to driver struct. */
694 mp->rx_curr_desc_q = 0;
695 mp->rx_used_desc_q = 0;
697 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
701 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
703 * DESCRIPTION:
704 * This function prepares a Tx chained list of descriptors and packet
705 * buffers in a form of a ring. The routine must be called after port
706 * initialization routine and before port start routine.
707 * The Ethernet SDMA engine uses CPU bus addresses to access the various
708 * devices in the system (i.e. DRAM). This function uses the ethernet
709 * struct 'virtual to physical' routine (set by the user) to set the ring
710 * with physical addresses.
712 * INPUT:
713 * struct mv643xx_private *mp Ethernet Port Control srtuct.
715 * OUTPUT:
716 * The routine updates the Ethernet port control struct with information
717 * regarding the Tx descriptors and buffers.
719 * RETURN:
720 * None.
722 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
724 int tx_desc_num = mp->tx_ring_size;
725 struct eth_tx_desc *p_tx_desc;
726 int i;
728 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
729 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
730 for (i = 0; i < tx_desc_num; i++) {
731 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
732 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
735 mp->tx_curr_desc_q = 0;
736 mp->tx_used_desc_q = 0;
738 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
741 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
743 struct mv643xx_private *mp = netdev_priv(dev);
744 int err;
746 spin_lock_irq(&mp->lock);
747 err = mii_ethtool_sset(&mp->mii, cmd);
748 spin_unlock_irq(&mp->lock);
750 return err;
753 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
755 struct mv643xx_private *mp = netdev_priv(dev);
756 int err;
758 spin_lock_irq(&mp->lock);
759 err = mii_ethtool_gset(&mp->mii, cmd);
760 spin_unlock_irq(&mp->lock);
762 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
763 cmd->supported &= ~SUPPORTED_1000baseT_Half;
764 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
766 return err;
770 * mv643xx_eth_open
772 * This function is called when openning the network device. The function
773 * should initialize all the hardware, initialize cyclic Rx/Tx
774 * descriptors chain and buffers and allocate an IRQ to the network
775 * device.
777 * Input : a pointer to the network device structure
779 * Output : zero of success , nonzero if fails.
782 static int mv643xx_eth_open(struct net_device *dev)
784 struct mv643xx_private *mp = netdev_priv(dev);
785 unsigned int port_num = mp->port_num;
786 unsigned int size;
787 int err;
789 /* Clear any pending ethernet port interrupts */
790 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
791 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
792 /* wait for previous write to complete */
793 mv_read (MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num));
795 err = request_irq(dev->irq, mv643xx_eth_int_handler,
796 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
797 if (err) {
798 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
799 port_num);
800 return -EAGAIN;
803 eth_port_init(mp);
805 memset(&mp->timeout, 0, sizeof(struct timer_list));
806 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
807 mp->timeout.data = (unsigned long)dev;
809 /* Allocate RX and TX skb rings */
810 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
811 GFP_KERNEL);
812 if (!mp->rx_skb) {
813 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
814 err = -ENOMEM;
815 goto out_free_irq;
817 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
818 GFP_KERNEL);
819 if (!mp->tx_skb) {
820 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
821 err = -ENOMEM;
822 goto out_free_rx_skb;
825 /* Allocate TX ring */
826 mp->tx_desc_count = 0;
827 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
828 mp->tx_desc_area_size = size;
830 if (mp->tx_sram_size) {
831 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
832 mp->tx_sram_size);
833 mp->tx_desc_dma = mp->tx_sram_addr;
834 } else
835 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
836 &mp->tx_desc_dma,
837 GFP_KERNEL);
839 if (!mp->p_tx_desc_area) {
840 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
841 dev->name, size);
842 err = -ENOMEM;
843 goto out_free_tx_skb;
845 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
846 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
848 ether_init_tx_desc_ring(mp);
850 /* Allocate RX ring */
851 mp->rx_desc_count = 0;
852 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
853 mp->rx_desc_area_size = size;
855 if (mp->rx_sram_size) {
856 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
857 mp->rx_sram_size);
858 mp->rx_desc_dma = mp->rx_sram_addr;
859 } else
860 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
861 &mp->rx_desc_dma,
862 GFP_KERNEL);
864 if (!mp->p_rx_desc_area) {
865 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
866 dev->name, size);
867 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
868 dev->name);
869 if (mp->rx_sram_size)
870 iounmap(mp->p_tx_desc_area);
871 else
872 dma_free_coherent(NULL, mp->tx_desc_area_size,
873 mp->p_tx_desc_area, mp->tx_desc_dma);
874 err = -ENOMEM;
875 goto out_free_tx_skb;
877 memset((void *)mp->p_rx_desc_area, 0, size);
879 ether_init_rx_desc_ring(mp);
881 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
883 eth_port_start(dev);
885 /* Interrupt Coalescing */
887 #ifdef MV643XX_COAL
888 mp->rx_int_coal =
889 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
890 #endif
892 mp->tx_int_coal =
893 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
895 /* Unmask phy and link status changes interrupts */
896 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
897 ETH_INT_UNMASK_ALL_EXT);
899 /* Unmask RX buffer and TX end interrupt */
900 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
902 return 0;
904 out_free_tx_skb:
905 kfree(mp->tx_skb);
906 out_free_rx_skb:
907 kfree(mp->rx_skb);
908 out_free_irq:
909 free_irq(dev->irq, dev);
911 return err;
914 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
916 struct mv643xx_private *mp = netdev_priv(dev);
918 /* Stop Tx Queues */
919 mv643xx_eth_port_disable_tx(mp->port_num);
921 /* Free outstanding skb's on TX ring */
922 mv643xx_eth_free_all_tx_descs(dev);
924 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
926 /* Free TX ring */
927 if (mp->tx_sram_size)
928 iounmap(mp->p_tx_desc_area);
929 else
930 dma_free_coherent(NULL, mp->tx_desc_area_size,
931 mp->p_tx_desc_area, mp->tx_desc_dma);
934 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
936 struct mv643xx_private *mp = netdev_priv(dev);
937 unsigned int port_num = mp->port_num;
938 int curr;
940 /* Stop RX Queues */
941 mv643xx_eth_port_disable_rx(port_num);
943 /* Free preallocated skb's on RX rings */
944 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
945 if (mp->rx_skb[curr]) {
946 dev_kfree_skb(mp->rx_skb[curr]);
947 mp->rx_desc_count--;
951 if (mp->rx_desc_count)
952 printk(KERN_ERR
953 "%s: Error in freeing Rx Ring. %d skb's still"
954 " stuck in RX Ring - ignoring them\n", dev->name,
955 mp->rx_desc_count);
956 /* Free RX ring */
957 if (mp->rx_sram_size)
958 iounmap(mp->p_rx_desc_area);
959 else
960 dma_free_coherent(NULL, mp->rx_desc_area_size,
961 mp->p_rx_desc_area, mp->rx_desc_dma);
965 * mv643xx_eth_stop
967 * This function is used when closing the network device.
968 * It updates the hardware,
969 * release all memory that holds buffers and descriptors and release the IRQ.
970 * Input : a pointer to the device structure
971 * Output : zero if success , nonzero if fails
974 static int mv643xx_eth_stop(struct net_device *dev)
976 struct mv643xx_private *mp = netdev_priv(dev);
977 unsigned int port_num = mp->port_num;
979 /* Mask all interrupts on ethernet port */
980 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
981 /* wait for previous write to complete */
982 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
984 #ifdef MV643XX_NAPI
985 netif_poll_disable(dev);
986 #endif
987 netif_carrier_off(dev);
988 netif_stop_queue(dev);
990 eth_port_reset(mp->port_num);
992 mv643xx_eth_free_tx_rings(dev);
993 mv643xx_eth_free_rx_rings(dev);
995 #ifdef MV643XX_NAPI
996 netif_poll_enable(dev);
997 #endif
999 free_irq(dev->irq, dev);
1001 return 0;
1004 #ifdef MV643XX_NAPI
1006 * mv643xx_poll
1008 * This function is used in case of NAPI
1010 static int mv643xx_poll(struct net_device *dev, int *budget)
1012 struct mv643xx_private *mp = netdev_priv(dev);
1013 int done = 1, orig_budget, work_done;
1014 unsigned int port_num = mp->port_num;
1016 #ifdef MV643XX_TX_FAST_REFILL
1017 if (++mp->tx_clean_threshold > 5) {
1018 mv643xx_eth_free_completed_tx_descs(dev);
1019 mp->tx_clean_threshold = 0;
1021 #endif
1023 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1024 != (u32) mp->rx_used_desc_q) {
1025 orig_budget = *budget;
1026 if (orig_budget > dev->quota)
1027 orig_budget = dev->quota;
1028 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1029 *budget -= work_done;
1030 dev->quota -= work_done;
1031 if (work_done >= orig_budget)
1032 done = 0;
1035 if (done) {
1036 netif_rx_complete(dev);
1037 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1038 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1039 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1040 ETH_INT_UNMASK_ALL);
1043 return done ? 0 : 1;
1045 #endif
1048 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1050 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1051 * This helper function detects that case.
1054 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1056 unsigned int frag;
1057 skb_frag_t *fragp;
1059 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1060 fragp = &skb_shinfo(skb)->frags[frag];
1061 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1062 return 1;
1064 return 0;
1068 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1070 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1072 int tx_desc_curr;
1074 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1076 tx_desc_curr = mp->tx_curr_desc_q;
1077 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1079 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1081 return tx_desc_curr;
1085 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1087 * Ensure the data for each fragment to be transmitted is mapped properly,
1088 * then fill in descriptors in the tx hw queue.
1090 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1091 struct sk_buff *skb)
1093 int frag;
1094 int tx_index;
1095 struct eth_tx_desc *desc;
1097 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1098 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1100 tx_index = eth_alloc_tx_desc_index(mp);
1101 desc = &mp->p_tx_desc_area[tx_index];
1103 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1104 /* Last Frag enables interrupt and frees the skb */
1105 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1106 desc->cmd_sts |= ETH_ZERO_PADDING |
1107 ETH_TX_LAST_DESC |
1108 ETH_TX_ENABLE_INTERRUPT;
1109 mp->tx_skb[tx_index] = skb;
1110 } else
1111 mp->tx_skb[tx_index] = NULL;
1113 desc = &mp->p_tx_desc_area[tx_index];
1114 desc->l4i_chk = 0;
1115 desc->byte_cnt = this_frag->size;
1116 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1117 this_frag->page_offset,
1118 this_frag->size,
1119 DMA_TO_DEVICE);
1124 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1126 * Ensure the data for an skb to be transmitted is mapped properly,
1127 * then fill in descriptors in the tx hw queue and start the hardware.
1129 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1130 struct sk_buff *skb)
1132 int tx_index;
1133 struct eth_tx_desc *desc;
1134 u32 cmd_sts;
1135 int length;
1136 int nr_frags = skb_shinfo(skb)->nr_frags;
1138 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1140 tx_index = eth_alloc_tx_desc_index(mp);
1141 desc = &mp->p_tx_desc_area[tx_index];
1143 if (nr_frags) {
1144 eth_tx_fill_frag_descs(mp, skb);
1146 length = skb_headlen(skb);
1147 mp->tx_skb[tx_index] = NULL;
1148 } else {
1149 cmd_sts |= ETH_ZERO_PADDING |
1150 ETH_TX_LAST_DESC |
1151 ETH_TX_ENABLE_INTERRUPT;
1152 length = skb->len;
1153 mp->tx_skb[tx_index] = skb;
1156 desc->byte_cnt = length;
1157 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1159 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1160 BUG_ON(skb->protocol != ETH_P_IP);
1162 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1163 ETH_GEN_IP_V_4_CHECKSUM |
1164 ip_hdr(skb)->ihl << ETH_TX_IHL_SHIFT;
1166 switch (ip_hdr(skb)->protocol) {
1167 case IPPROTO_UDP:
1168 cmd_sts |= ETH_UDP_FRAME;
1169 desc->l4i_chk = udp_hdr(skb)->check;
1170 break;
1171 case IPPROTO_TCP:
1172 desc->l4i_chk = tcp_hdr(skb)->check;
1173 break;
1174 default:
1175 BUG();
1177 } else {
1178 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1179 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1180 desc->l4i_chk = 0;
1183 /* ensure all other descriptors are written before first cmd_sts */
1184 wmb();
1185 desc->cmd_sts = cmd_sts;
1187 /* ensure all descriptors are written before poking hardware */
1188 wmb();
1189 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1191 mp->tx_desc_count += nr_frags + 1;
1195 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1198 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1200 struct mv643xx_private *mp = netdev_priv(dev);
1201 struct net_device_stats *stats = &mp->stats;
1202 unsigned long flags;
1204 BUG_ON(netif_queue_stopped(dev));
1205 BUG_ON(skb == NULL);
1207 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1208 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1209 netif_stop_queue(dev);
1210 return 1;
1213 if (has_tiny_unaligned_frags(skb)) {
1214 if (__skb_linearize(skb)) {
1215 stats->tx_dropped++;
1216 printk(KERN_DEBUG "%s: failed to linearize tiny "
1217 "unaligned fragment\n", dev->name);
1218 return 1;
1222 spin_lock_irqsave(&mp->lock, flags);
1224 eth_tx_submit_descs_for_skb(mp, skb);
1225 stats->tx_bytes = skb->len;
1226 stats->tx_packets++;
1227 dev->trans_start = jiffies;
1229 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1230 netif_stop_queue(dev);
1232 spin_unlock_irqrestore(&mp->lock, flags);
1234 return 0; /* success */
1238 * mv643xx_eth_get_stats
1240 * Returns a pointer to the interface statistics.
1242 * Input : dev - a pointer to the required interface
1244 * Output : a pointer to the interface's statistics
1247 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1249 struct mv643xx_private *mp = netdev_priv(dev);
1251 return &mp->stats;
1254 #ifdef CONFIG_NET_POLL_CONTROLLER
1255 static void mv643xx_netpoll(struct net_device *netdev)
1257 struct mv643xx_private *mp = netdev_priv(netdev);
1258 int port_num = mp->port_num;
1260 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1261 /* wait for previous write to complete */
1262 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1264 mv643xx_eth_int_handler(netdev->irq, netdev);
1266 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1268 #endif
1270 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1271 int speed, int duplex,
1272 struct ethtool_cmd *cmd)
1274 struct mv643xx_private *mp = netdev_priv(dev);
1276 memset(cmd, 0, sizeof(*cmd));
1278 cmd->port = PORT_MII;
1279 cmd->transceiver = XCVR_INTERNAL;
1280 cmd->phy_address = phy_address;
1282 if (speed == 0) {
1283 cmd->autoneg = AUTONEG_ENABLE;
1284 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1285 cmd->speed = SPEED_100;
1286 cmd->advertising = ADVERTISED_10baseT_Half |
1287 ADVERTISED_10baseT_Full |
1288 ADVERTISED_100baseT_Half |
1289 ADVERTISED_100baseT_Full;
1290 if (mp->mii.supports_gmii)
1291 cmd->advertising |= ADVERTISED_1000baseT_Full;
1292 } else {
1293 cmd->autoneg = AUTONEG_DISABLE;
1294 cmd->speed = speed;
1295 cmd->duplex = duplex;
1300 * mv643xx_eth_probe
1302 * First function called after registering the network device.
1303 * It's purpose is to initialize the device as an ethernet device,
1304 * fill the ethernet device structure with pointers * to functions,
1305 * and set the MAC address of the interface
1307 * Input : struct device *
1308 * Output : -ENOMEM if failed , 0 if success
1310 static int mv643xx_eth_probe(struct platform_device *pdev)
1312 struct mv643xx_eth_platform_data *pd;
1313 int port_num;
1314 struct mv643xx_private *mp;
1315 struct net_device *dev;
1316 u8 *p;
1317 struct resource *res;
1318 int err;
1319 struct ethtool_cmd cmd;
1320 int duplex = DUPLEX_HALF;
1321 int speed = 0; /* default to auto-negotiation */
1323 pd = pdev->dev.platform_data;
1324 if (pd == NULL) {
1325 printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1326 return -ENODEV;
1329 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1330 if (!dev)
1331 return -ENOMEM;
1333 platform_set_drvdata(pdev, dev);
1335 mp = netdev_priv(dev);
1337 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1338 BUG_ON(!res);
1339 dev->irq = res->start;
1341 dev->open = mv643xx_eth_open;
1342 dev->stop = mv643xx_eth_stop;
1343 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1344 dev->get_stats = mv643xx_eth_get_stats;
1345 dev->set_mac_address = mv643xx_eth_set_mac_address;
1346 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1348 /* No need to Tx Timeout */
1349 dev->tx_timeout = mv643xx_eth_tx_timeout;
1350 #ifdef MV643XX_NAPI
1351 dev->poll = mv643xx_poll;
1352 dev->weight = 64;
1353 #endif
1355 #ifdef CONFIG_NET_POLL_CONTROLLER
1356 dev->poll_controller = mv643xx_netpoll;
1357 #endif
1359 dev->watchdog_timeo = 2 * HZ;
1360 dev->tx_queue_len = mp->tx_ring_size;
1361 dev->base_addr = 0;
1362 dev->change_mtu = mv643xx_eth_change_mtu;
1363 dev->do_ioctl = mv643xx_eth_do_ioctl;
1364 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1366 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1367 #ifdef MAX_SKB_FRAGS
1369 * Zero copy can only work if we use Discovery II memory. Else, we will
1370 * have to map the buffers to ISA memory which is only 16 MB
1372 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1373 #endif
1374 #endif
1376 /* Configure the timeout task */
1377 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1379 spin_lock_init(&mp->lock);
1381 port_num = mp->port_num = pd->port_number;
1383 /* set default config values */
1384 eth_port_uc_addr_get(port_num, dev->dev_addr);
1385 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1386 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1388 if (is_valid_ether_addr(pd->mac_addr))
1389 memcpy(dev->dev_addr, pd->mac_addr, 6);
1391 if (pd->phy_addr || pd->force_phy_addr)
1392 ethernet_phy_set(port_num, pd->phy_addr);
1394 if (pd->rx_queue_size)
1395 mp->rx_ring_size = pd->rx_queue_size;
1397 if (pd->tx_queue_size)
1398 mp->tx_ring_size = pd->tx_queue_size;
1400 if (pd->tx_sram_size) {
1401 mp->tx_sram_size = pd->tx_sram_size;
1402 mp->tx_sram_addr = pd->tx_sram_addr;
1405 if (pd->rx_sram_size) {
1406 mp->rx_sram_size = pd->rx_sram_size;
1407 mp->rx_sram_addr = pd->rx_sram_addr;
1410 duplex = pd->duplex;
1411 speed = pd->speed;
1413 /* Hook up MII support for ethtool */
1414 mp->mii.dev = dev;
1415 mp->mii.mdio_read = mv643xx_mdio_read;
1416 mp->mii.mdio_write = mv643xx_mdio_write;
1417 mp->mii.phy_id = ethernet_phy_get(port_num);
1418 mp->mii.phy_id_mask = 0x3f;
1419 mp->mii.reg_num_mask = 0x1f;
1421 err = ethernet_phy_detect(port_num);
1422 if (err) {
1423 pr_debug("MV643xx ethernet port %d: "
1424 "No PHY detected at addr %d\n",
1425 port_num, ethernet_phy_get(port_num));
1426 goto out;
1429 ethernet_phy_reset(port_num);
1430 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1431 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1432 mv643xx_eth_update_pscr(dev, &cmd);
1433 mv643xx_set_settings(dev, &cmd);
1435 SET_MODULE_OWNER(dev);
1436 SET_NETDEV_DEV(dev, &pdev->dev);
1437 err = register_netdev(dev);
1438 if (err)
1439 goto out;
1441 p = dev->dev_addr;
1442 printk(KERN_NOTICE
1443 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1444 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1446 if (dev->features & NETIF_F_SG)
1447 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1449 if (dev->features & NETIF_F_IP_CSUM)
1450 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1451 dev->name);
1453 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1454 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1455 #endif
1457 #ifdef MV643XX_COAL
1458 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1459 dev->name);
1460 #endif
1462 #ifdef MV643XX_NAPI
1463 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1464 #endif
1466 if (mp->tx_sram_size > 0)
1467 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1469 return 0;
1471 out:
1472 free_netdev(dev);
1474 return err;
1477 static int mv643xx_eth_remove(struct platform_device *pdev)
1479 struct net_device *dev = platform_get_drvdata(pdev);
1481 unregister_netdev(dev);
1482 flush_scheduled_work();
1484 free_netdev(dev);
1485 platform_set_drvdata(pdev, NULL);
1486 return 0;
1489 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1491 struct resource *res;
1493 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1495 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1496 if (res == NULL)
1497 return -ENODEV;
1499 mv643xx_eth_shared_base = ioremap(res->start,
1500 MV643XX_ETH_SHARED_REGS_SIZE);
1501 if (mv643xx_eth_shared_base == NULL)
1502 return -ENOMEM;
1504 return 0;
1508 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1510 iounmap(mv643xx_eth_shared_base);
1511 mv643xx_eth_shared_base = NULL;
1513 return 0;
1516 static void mv643xx_eth_shutdown(struct platform_device *pdev)
1518 struct net_device *dev = platform_get_drvdata(pdev);
1519 struct mv643xx_private *mp = netdev_priv(dev);
1520 unsigned int port_num = mp->port_num;
1522 /* Mask all interrupts on ethernet port */
1523 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
1524 mv_read (MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1526 eth_port_reset(port_num);
1529 static struct platform_driver mv643xx_eth_driver = {
1530 .probe = mv643xx_eth_probe,
1531 .remove = mv643xx_eth_remove,
1532 .shutdown = mv643xx_eth_shutdown,
1533 .driver = {
1534 .name = MV643XX_ETH_NAME,
1538 static struct platform_driver mv643xx_eth_shared_driver = {
1539 .probe = mv643xx_eth_shared_probe,
1540 .remove = mv643xx_eth_shared_remove,
1541 .driver = {
1542 .name = MV643XX_ETH_SHARED_NAME,
1547 * mv643xx_init_module
1549 * Registers the network drivers into the Linux kernel
1551 * Input : N/A
1553 * Output : N/A
1555 static int __init mv643xx_init_module(void)
1557 int rc;
1559 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1560 if (!rc) {
1561 rc = platform_driver_register(&mv643xx_eth_driver);
1562 if (rc)
1563 platform_driver_unregister(&mv643xx_eth_shared_driver);
1565 return rc;
1569 * mv643xx_cleanup_module
1571 * Registers the network drivers into the Linux kernel
1573 * Input : N/A
1575 * Output : N/A
1577 static void __exit mv643xx_cleanup_module(void)
1579 platform_driver_unregister(&mv643xx_eth_driver);
1580 platform_driver_unregister(&mv643xx_eth_shared_driver);
1583 module_init(mv643xx_init_module);
1584 module_exit(mv643xx_cleanup_module);
1586 MODULE_LICENSE("GPL");
1587 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1588 " and Dale Farnsworth");
1589 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1592 * The second part is the low level driver of the gigE ethernet ports.
1596 * Marvell's Gigabit Ethernet controller low level driver
1598 * DESCRIPTION:
1599 * This file introduce low level API to Marvell's Gigabit Ethernet
1600 * controller. This Gigabit Ethernet Controller driver API controls
1601 * 1) Operations (i.e. port init, start, reset etc').
1602 * 2) Data flow (i.e. port send, receive etc').
1603 * Each Gigabit Ethernet port is controlled via
1604 * struct mv643xx_private.
1605 * This struct includes user configuration information as well as
1606 * driver internal data needed for its operations.
1608 * Supported Features:
1609 * - This low level driver is OS independent. Allocating memory for
1610 * the descriptor rings and buffers are not within the scope of
1611 * this driver.
1612 * - The user is free from Rx/Tx queue managing.
1613 * - This low level driver introduce functionality API that enable
1614 * the to operate Marvell's Gigabit Ethernet Controller in a
1615 * convenient way.
1616 * - Simple Gigabit Ethernet port operation API.
1617 * - Simple Gigabit Ethernet port data flow API.
1618 * - Data flow and operation API support per queue functionality.
1619 * - Support cached descriptors for better performance.
1620 * - Enable access to all four DRAM banks and internal SRAM memory
1621 * spaces.
1622 * - PHY access and control API.
1623 * - Port control register configuration API.
1624 * - Full control over Unicast and Multicast MAC configurations.
1626 * Operation flow:
1628 * Initialization phase
1629 * This phase complete the initialization of the the
1630 * mv643xx_private struct.
1631 * User information regarding port configuration has to be set
1632 * prior to calling the port initialization routine.
1634 * In this phase any port Tx/Rx activity is halted, MIB counters
1635 * are cleared, PHY address is set according to user parameter and
1636 * access to DRAM and internal SRAM memory spaces.
1638 * Driver ring initialization
1639 * Allocating memory for the descriptor rings and buffers is not
1640 * within the scope of this driver. Thus, the user is required to
1641 * allocate memory for the descriptors ring and buffers. Those
1642 * memory parameters are used by the Rx and Tx ring initialization
1643 * routines in order to curve the descriptor linked list in a form
1644 * of a ring.
1645 * Note: Pay special attention to alignment issues when using
1646 * cached descriptors/buffers. In this phase the driver store
1647 * information in the mv643xx_private struct regarding each queue
1648 * ring.
1650 * Driver start
1651 * This phase prepares the Ethernet port for Rx and Tx activity.
1652 * It uses the information stored in the mv643xx_private struct to
1653 * initialize the various port registers.
1655 * Data flow:
1656 * All packet references to/from the driver are done using
1657 * struct pkt_info.
1658 * This struct is a unified struct used with Rx and Tx operations.
1659 * This way the user is not required to be familiar with neither
1660 * Tx nor Rx descriptors structures.
1661 * The driver's descriptors rings are management by indexes.
1662 * Those indexes controls the ring resources and used to indicate
1663 * a SW resource error:
1664 * 'current'
1665 * This index points to the current available resource for use. For
1666 * example in Rx process this index will point to the descriptor
1667 * that will be passed to the user upon calling the receive
1668 * routine. In Tx process, this index will point to the descriptor
1669 * that will be assigned with the user packet info and transmitted.
1670 * 'used'
1671 * This index points to the descriptor that need to restore its
1672 * resources. For example in Rx process, using the Rx buffer return
1673 * API will attach the buffer returned in packet info to the
1674 * descriptor pointed by 'used'. In Tx process, using the Tx
1675 * descriptor return will merely return the user packet info with
1676 * the command status of the transmitted buffer pointed by the
1677 * 'used' index. Nevertheless, it is essential to use this routine
1678 * to update the 'used' index.
1679 * 'first'
1680 * This index supports Tx Scatter-Gather. It points to the first
1681 * descriptor of a packet assembled of multiple buffers. For
1682 * example when in middle of Such packet we have a Tx resource
1683 * error the 'curr' index get the value of 'first' to indicate
1684 * that the ring returned to its state before trying to transmit
1685 * this packet.
1687 * Receive operation:
1688 * The eth_port_receive API set the packet information struct,
1689 * passed by the caller, with received information from the
1690 * 'current' SDMA descriptor.
1691 * It is the user responsibility to return this resource back
1692 * to the Rx descriptor ring to enable the reuse of this source.
1693 * Return Rx resource is done using the eth_rx_return_buff API.
1695 * Prior to calling the initialization routine eth_port_init() the user
1696 * must set the following fields under mv643xx_private struct:
1697 * port_num User Ethernet port number.
1698 * port_config User port configuration value.
1699 * port_config_extend User port config extend value.
1700 * port_sdma_config User port SDMA config value.
1701 * port_serial_control User port serial control value.
1703 * This driver data flow is done using the struct pkt_info which
1704 * is a unified struct for Rx and Tx operations:
1706 * byte_cnt Tx/Rx descriptor buffer byte count.
1707 * l4i_chk CPU provided TCP Checksum. For Tx operation
1708 * only.
1709 * cmd_sts Tx/Rx descriptor command status.
1710 * buf_ptr Tx/Rx descriptor buffer pointer.
1711 * return_info Tx/Rx user resource return information.
1714 /* PHY routines */
1715 static int ethernet_phy_get(unsigned int eth_port_num);
1716 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1718 /* Ethernet Port routines */
1719 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1722 * eth_port_init - Initialize the Ethernet port driver
1724 * DESCRIPTION:
1725 * This function prepares the ethernet port to start its activity:
1726 * 1) Completes the ethernet port driver struct initialization toward port
1727 * start routine.
1728 * 2) Resets the device to a quiescent state in case of warm reboot.
1729 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1730 * 4) Clean MAC tables. The reset status of those tables is unknown.
1731 * 5) Set PHY address.
1732 * Note: Call this routine prior to eth_port_start routine and after
1733 * setting user values in the user fields of Ethernet port control
1734 * struct.
1736 * INPUT:
1737 * struct mv643xx_private *mp Ethernet port control struct
1739 * OUTPUT:
1740 * See description.
1742 * RETURN:
1743 * None.
1745 static void eth_port_init(struct mv643xx_private *mp)
1747 mp->rx_resource_err = 0;
1749 eth_port_reset(mp->port_num);
1751 eth_port_init_mac_tables(mp->port_num);
1755 * eth_port_start - Start the Ethernet port activity.
1757 * DESCRIPTION:
1758 * This routine prepares the Ethernet port for Rx and Tx activity:
1759 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1760 * has been initialized a descriptor's ring (using
1761 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1762 * 2. Initialize and enable the Ethernet configuration port by writing to
1763 * the port's configuration and command registers.
1764 * 3. Initialize and enable the SDMA by writing to the SDMA's
1765 * configuration and command registers. After completing these steps,
1766 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1768 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1769 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1770 * and ether_init_rx_desc_ring for Rx queues).
1772 * INPUT:
1773 * dev - a pointer to the required interface
1775 * OUTPUT:
1776 * Ethernet port is ready to receive and transmit.
1778 * RETURN:
1779 * None.
1781 static void eth_port_start(struct net_device *dev)
1783 struct mv643xx_private *mp = netdev_priv(dev);
1784 unsigned int port_num = mp->port_num;
1785 int tx_curr_desc, rx_curr_desc;
1786 u32 pscr;
1787 struct ethtool_cmd ethtool_cmd;
1789 /* Assignment of Tx CTRP of given queue */
1790 tx_curr_desc = mp->tx_curr_desc_q;
1791 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1792 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1794 /* Assignment of Rx CRDP of given queue */
1795 rx_curr_desc = mp->rx_curr_desc_q;
1796 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1797 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1799 /* Add the assigned Ethernet address to the port's address table */
1800 eth_port_uc_addr_set(port_num, dev->dev_addr);
1802 /* Assign port configuration and command. */
1803 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1804 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1806 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1807 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1809 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1811 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
1812 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1814 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1815 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1816 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1817 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1818 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1820 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1822 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1823 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1825 /* Assign port SDMA configuration */
1826 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1827 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1829 /* Enable port Rx. */
1830 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1832 /* Disable port bandwidth limits by clearing MTU register */
1833 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1835 /* save phy settings across reset */
1836 mv643xx_get_settings(dev, &ethtool_cmd);
1837 ethernet_phy_reset(mp->port_num);
1838 mv643xx_set_settings(dev, &ethtool_cmd);
1842 * eth_port_uc_addr_set - Write a MAC address into the port's hw registers
1844 static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr)
1846 unsigned int mac_h;
1847 unsigned int mac_l;
1848 int table;
1850 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1851 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1852 (p_addr[3] << 0);
1854 mv_write(MV643XX_ETH_MAC_ADDR_LOW(port_num), mac_l);
1855 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(port_num), mac_h);
1857 /* Accept frames with this address */
1858 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(port_num);
1859 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1863 * eth_port_uc_addr_get - Read the MAC address from the port's hw registers
1865 static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr)
1867 unsigned int mac_h;
1868 unsigned int mac_l;
1870 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(port_num));
1871 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(port_num));
1873 p_addr[0] = (mac_h >> 24) & 0xff;
1874 p_addr[1] = (mac_h >> 16) & 0xff;
1875 p_addr[2] = (mac_h >> 8) & 0xff;
1876 p_addr[3] = mac_h & 0xff;
1877 p_addr[4] = (mac_l >> 8) & 0xff;
1878 p_addr[5] = mac_l & 0xff;
1882 * The entries in each table are indexed by a hash of a packet's MAC
1883 * address. One bit in each entry determines whether the packet is
1884 * accepted. There are 4 entries (each 8 bits wide) in each register
1885 * of the table. The bits in each entry are defined as follows:
1886 * 0 Accept=1, Drop=0
1887 * 3-1 Queue (ETH_Q0=0)
1888 * 7-4 Reserved = 0;
1890 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1892 unsigned int table_reg;
1893 unsigned int tbl_offset;
1894 unsigned int reg_offset;
1896 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1897 reg_offset = entry % 4; /* Entry offset within the register */
1899 /* Set "accepts frame bit" at specified table entry */
1900 table_reg = mv_read(table + tbl_offset);
1901 table_reg |= 0x01 << (8 * reg_offset);
1902 mv_write(table + tbl_offset, table_reg);
1906 * eth_port_mc_addr - Multicast address settings.
1908 * The MV device supports multicast using two tables:
1909 * 1) Special Multicast Table for MAC addresses of the form
1910 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1911 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1912 * Table entries in the DA-Filter table.
1913 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1914 * is used as an index to the Other Multicast Table entries in the
1915 * DA-Filter table. This function calculates the CRC-8bit value.
1916 * In either case, eth_port_set_filter_table_entry() is then called
1917 * to set to set the actual table entry.
1919 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1921 unsigned int mac_h;
1922 unsigned int mac_l;
1923 unsigned char crc_result = 0;
1924 int table;
1925 int mac_array[48];
1926 int crc[8];
1927 int i;
1929 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1930 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1931 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1932 (eth_port_num);
1933 eth_port_set_filter_table_entry(table, p_addr[5]);
1934 return;
1937 /* Calculate CRC-8 out of the given address */
1938 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1939 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1940 (p_addr[4] << 8) | (p_addr[5] << 0);
1942 for (i = 0; i < 32; i++)
1943 mac_array[i] = (mac_l >> i) & 0x1;
1944 for (i = 32; i < 48; i++)
1945 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1947 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1948 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1949 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1950 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1951 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1953 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1954 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1955 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1956 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1957 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1958 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1959 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1961 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1962 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1963 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1964 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1965 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
1966 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
1968 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1969 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1970 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1971 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1972 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
1973 mac_array[3] ^ mac_array[2] ^ mac_array[1];
1975 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1976 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1977 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1978 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1979 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
1980 mac_array[3] ^ mac_array[2];
1982 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1983 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1984 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
1985 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
1986 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
1987 mac_array[4] ^ mac_array[3];
1989 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
1990 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
1991 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
1992 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
1993 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
1994 mac_array[4];
1996 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
1997 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
1998 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
1999 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2000 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2002 for (i = 0; i < 8; i++)
2003 crc_result = crc_result | (crc[i] << i);
2005 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2006 eth_port_set_filter_table_entry(table, crc_result);
2010 * Set the entire multicast list based on dev->mc_list.
2012 static void eth_port_set_multicast_list(struct net_device *dev)
2015 struct dev_mc_list *mc_list;
2016 int i;
2017 int table_index;
2018 struct mv643xx_private *mp = netdev_priv(dev);
2019 unsigned int eth_port_num = mp->port_num;
2021 /* If the device is in promiscuous mode or in all multicast mode,
2022 * we will fully populate both multicast tables with accept.
2023 * This is guaranteed to yield a match on all multicast addresses...
2025 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2026 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2027 /* Set all entries in DA filter special multicast
2028 * table (Ex_dFSMT)
2029 * Set for ETH_Q0 for now
2030 * Bits
2031 * 0 Accept=1, Drop=0
2032 * 3-1 Queue ETH_Q0=0
2033 * 7-4 Reserved = 0;
2035 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2037 /* Set all entries in DA filter other multicast
2038 * table (Ex_dFOMT)
2039 * Set for ETH_Q0 for now
2040 * Bits
2041 * 0 Accept=1, Drop=0
2042 * 3-1 Queue ETH_Q0=0
2043 * 7-4 Reserved = 0;
2045 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2047 return;
2050 /* We will clear out multicast tables every time we get the list.
2051 * Then add the entire new list...
2053 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2054 /* Clear DA filter special multicast table (Ex_dFSMT) */
2055 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2056 (eth_port_num) + table_index, 0);
2058 /* Clear DA filter other multicast table (Ex_dFOMT) */
2059 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2060 (eth_port_num) + table_index, 0);
2063 /* Get pointer to net_device multicast list and add each one... */
2064 for (i = 0, mc_list = dev->mc_list;
2065 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2066 i++, mc_list = mc_list->next)
2067 if (mc_list->dmi_addrlen == 6)
2068 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2072 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2074 * DESCRIPTION:
2075 * Go through all the DA filter tables (Unicast, Special Multicast &
2076 * Other Multicast) and set each entry to 0.
2078 * INPUT:
2079 * unsigned int eth_port_num Ethernet Port number.
2081 * OUTPUT:
2082 * Multicast and Unicast packets are rejected.
2084 * RETURN:
2085 * None.
2087 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2089 int table_index;
2091 /* Clear DA filter unicast table (Ex_dFUT) */
2092 for (table_index = 0; table_index <= 0xC; table_index += 4)
2093 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2094 (eth_port_num) + table_index, 0);
2096 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2097 /* Clear DA filter special multicast table (Ex_dFSMT) */
2098 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2099 (eth_port_num) + table_index, 0);
2100 /* Clear DA filter other multicast table (Ex_dFOMT) */
2101 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2102 (eth_port_num) + table_index, 0);
2107 * eth_clear_mib_counters - Clear all MIB counters
2109 * DESCRIPTION:
2110 * This function clears all MIB counters of a specific ethernet port.
2111 * A read from the MIB counter will reset the counter.
2113 * INPUT:
2114 * unsigned int eth_port_num Ethernet Port number.
2116 * OUTPUT:
2117 * After reading all MIB counters, the counters resets.
2119 * RETURN:
2120 * MIB counter value.
2123 static void eth_clear_mib_counters(unsigned int eth_port_num)
2125 int i;
2127 /* Perform dummy reads from MIB counters */
2128 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2129 i += 4)
2130 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2133 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2135 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2138 static void eth_update_mib_counters(struct mv643xx_private *mp)
2140 struct mv643xx_mib_counters *p = &mp->mib_counters;
2141 int offset;
2143 p->good_octets_received +=
2144 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2145 p->good_octets_received +=
2146 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2148 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2149 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2150 offset += 4)
2151 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2153 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2154 p->good_octets_sent +=
2155 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2157 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2158 offset <= ETH_MIB_LATE_COLLISION;
2159 offset += 4)
2160 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2164 * ethernet_phy_detect - Detect whether a phy is present
2166 * DESCRIPTION:
2167 * This function tests whether there is a PHY present on
2168 * the specified port.
2170 * INPUT:
2171 * unsigned int eth_port_num Ethernet Port number.
2173 * OUTPUT:
2174 * None
2176 * RETURN:
2177 * 0 on success
2178 * -ENODEV on failure
2181 static int ethernet_phy_detect(unsigned int port_num)
2183 unsigned int phy_reg_data0;
2184 int auto_neg;
2186 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2187 auto_neg = phy_reg_data0 & 0x1000;
2188 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2189 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2191 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2192 if ((phy_reg_data0 & 0x1000) == auto_neg)
2193 return -ENODEV; /* change didn't take */
2195 phy_reg_data0 ^= 0x1000;
2196 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2197 return 0;
2201 * ethernet_phy_get - Get the ethernet port PHY address.
2203 * DESCRIPTION:
2204 * This routine returns the given ethernet port PHY address.
2206 * INPUT:
2207 * unsigned int eth_port_num Ethernet Port number.
2209 * OUTPUT:
2210 * None.
2212 * RETURN:
2213 * PHY address.
2216 static int ethernet_phy_get(unsigned int eth_port_num)
2218 unsigned int reg_data;
2220 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2222 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2226 * ethernet_phy_set - Set the ethernet port PHY address.
2228 * DESCRIPTION:
2229 * This routine sets the given ethernet port PHY address.
2231 * INPUT:
2232 * unsigned int eth_port_num Ethernet Port number.
2233 * int phy_addr PHY address.
2235 * OUTPUT:
2236 * None.
2238 * RETURN:
2239 * None.
2242 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2244 u32 reg_data;
2245 int addr_shift = 5 * eth_port_num;
2247 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2248 reg_data &= ~(0x1f << addr_shift);
2249 reg_data |= (phy_addr & 0x1f) << addr_shift;
2250 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2254 * ethernet_phy_reset - Reset Ethernet port PHY.
2256 * DESCRIPTION:
2257 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2259 * INPUT:
2260 * unsigned int eth_port_num Ethernet Port number.
2262 * OUTPUT:
2263 * The PHY is reset.
2265 * RETURN:
2266 * None.
2269 static void ethernet_phy_reset(unsigned int eth_port_num)
2271 unsigned int phy_reg_data;
2273 /* Reset the PHY */
2274 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2275 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2276 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2278 /* wait for PHY to come out of reset */
2279 do {
2280 udelay(1);
2281 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2282 } while (phy_reg_data & 0x8000);
2285 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2286 unsigned int queues)
2288 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2291 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2292 unsigned int queues)
2294 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2297 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2299 u32 queues;
2301 /* Stop Tx port activity. Check port Tx activity. */
2302 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2303 & 0xFF;
2304 if (queues) {
2305 /* Issue stop command for active queues only */
2306 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2307 (queues << 8));
2309 /* Wait for all Tx activity to terminate. */
2310 /* Check port cause register that all Tx queues are stopped */
2311 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2312 & 0xFF)
2313 udelay(PHY_WAIT_MICRO_SECONDS);
2315 /* Wait for Tx FIFO to empty */
2316 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2317 ETH_PORT_TX_FIFO_EMPTY)
2318 udelay(PHY_WAIT_MICRO_SECONDS);
2321 return queues;
2324 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2326 u32 queues;
2328 /* Stop Rx port activity. Check port Rx activity. */
2329 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2330 & 0xFF;
2331 if (queues) {
2332 /* Issue stop command for active queues only */
2333 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2334 (queues << 8));
2336 /* Wait for all Rx activity to terminate. */
2337 /* Check port cause register that all Rx queues are stopped */
2338 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2339 & 0xFF)
2340 udelay(PHY_WAIT_MICRO_SECONDS);
2343 return queues;
2347 * eth_port_reset - Reset Ethernet port
2349 * DESCRIPTION:
2350 * This routine resets the chip by aborting any SDMA engine activity and
2351 * clearing the MIB counters. The Receiver and the Transmit unit are in
2352 * idle state after this command is performed and the port is disabled.
2354 * INPUT:
2355 * unsigned int eth_port_num Ethernet Port number.
2357 * OUTPUT:
2358 * Channel activity is halted.
2360 * RETURN:
2361 * None.
2364 static void eth_port_reset(unsigned int port_num)
2366 unsigned int reg_data;
2368 mv643xx_eth_port_disable_tx(port_num);
2369 mv643xx_eth_port_disable_rx(port_num);
2371 /* Clear all MIB counters */
2372 eth_clear_mib_counters(port_num);
2374 /* Reset the Enable bit in the Configuration Register */
2375 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2376 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2377 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2378 MV643XX_ETH_FORCE_LINK_PASS);
2379 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2384 * eth_port_read_smi_reg - Read PHY registers
2386 * DESCRIPTION:
2387 * This routine utilize the SMI interface to interact with the PHY in
2388 * order to perform PHY register read.
2390 * INPUT:
2391 * unsigned int port_num Ethernet Port number.
2392 * unsigned int phy_reg PHY register address offset.
2393 * unsigned int *value Register value buffer.
2395 * OUTPUT:
2396 * Write the value of a specified PHY register into given buffer.
2398 * RETURN:
2399 * false if the PHY is busy or read data is not in valid state.
2400 * true otherwise.
2403 static void eth_port_read_smi_reg(unsigned int port_num,
2404 unsigned int phy_reg, unsigned int *value)
2406 int phy_addr = ethernet_phy_get(port_num);
2407 unsigned long flags;
2408 int i;
2410 /* the SMI register is a shared resource */
2411 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2413 /* wait for the SMI register to become available */
2414 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2415 if (i == PHY_WAIT_ITERATIONS) {
2416 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2417 goto out;
2419 udelay(PHY_WAIT_MICRO_SECONDS);
2422 mv_write(MV643XX_ETH_SMI_REG,
2423 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2425 /* now wait for the data to be valid */
2426 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2427 if (i == PHY_WAIT_ITERATIONS) {
2428 printk("mv643xx PHY read timeout, port %d\n", port_num);
2429 goto out;
2431 udelay(PHY_WAIT_MICRO_SECONDS);
2434 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2435 out:
2436 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2440 * eth_port_write_smi_reg - Write to PHY registers
2442 * DESCRIPTION:
2443 * This routine utilize the SMI interface to interact with the PHY in
2444 * order to perform writes to PHY registers.
2446 * INPUT:
2447 * unsigned int eth_port_num Ethernet Port number.
2448 * unsigned int phy_reg PHY register address offset.
2449 * unsigned int value Register value.
2451 * OUTPUT:
2452 * Write the given value to the specified PHY register.
2454 * RETURN:
2455 * false if the PHY is busy.
2456 * true otherwise.
2459 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2460 unsigned int phy_reg, unsigned int value)
2462 int phy_addr;
2463 int i;
2464 unsigned long flags;
2466 phy_addr = ethernet_phy_get(eth_port_num);
2468 /* the SMI register is a shared resource */
2469 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2471 /* wait for the SMI register to become available */
2472 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2473 if (i == PHY_WAIT_ITERATIONS) {
2474 printk("mv643xx PHY busy timeout, port %d\n",
2475 eth_port_num);
2476 goto out;
2478 udelay(PHY_WAIT_MICRO_SECONDS);
2481 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2482 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2483 out:
2484 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2488 * Wrappers for MII support library.
2490 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2492 int val;
2493 struct mv643xx_private *mp = netdev_priv(dev);
2495 eth_port_read_smi_reg(mp->port_num, location, &val);
2496 return val;
2499 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2501 struct mv643xx_private *mp = netdev_priv(dev);
2502 eth_port_write_smi_reg(mp->port_num, location, val);
2506 * eth_port_receive - Get received information from Rx ring.
2508 * DESCRIPTION:
2509 * This routine returns the received data to the caller. There is no
2510 * data copying during routine operation. All information is returned
2511 * using pointer to packet information struct passed from the caller.
2512 * If the routine exhausts Rx ring resources then the resource error flag
2513 * is set.
2515 * INPUT:
2516 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2517 * struct pkt_info *p_pkt_info User packet buffer.
2519 * OUTPUT:
2520 * Rx ring current and used indexes are updated.
2522 * RETURN:
2523 * ETH_ERROR in case the routine can not access Rx desc ring.
2524 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2525 * ETH_END_OF_JOB if there is no received data.
2526 * ETH_OK otherwise.
2528 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2529 struct pkt_info *p_pkt_info)
2531 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2532 volatile struct eth_rx_desc *p_rx_desc;
2533 unsigned int command_status;
2534 unsigned long flags;
2536 /* Do not process Rx ring in case of Rx ring resource error */
2537 if (mp->rx_resource_err)
2538 return ETH_QUEUE_FULL;
2540 spin_lock_irqsave(&mp->lock, flags);
2542 /* Get the Rx Desc ring 'curr and 'used' indexes */
2543 rx_curr_desc = mp->rx_curr_desc_q;
2544 rx_used_desc = mp->rx_used_desc_q;
2546 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2548 /* The following parameters are used to save readings from memory */
2549 command_status = p_rx_desc->cmd_sts;
2550 rmb();
2552 /* Nothing to receive... */
2553 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2554 spin_unlock_irqrestore(&mp->lock, flags);
2555 return ETH_END_OF_JOB;
2558 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2559 p_pkt_info->cmd_sts = command_status;
2560 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2561 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2562 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2565 * Clean the return info field to indicate that the
2566 * packet has been moved to the upper layers
2568 mp->rx_skb[rx_curr_desc] = NULL;
2570 /* Update current index in data structure */
2571 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2572 mp->rx_curr_desc_q = rx_next_curr_desc;
2574 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2575 if (rx_next_curr_desc == rx_used_desc)
2576 mp->rx_resource_err = 1;
2578 spin_unlock_irqrestore(&mp->lock, flags);
2580 return ETH_OK;
2584 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2586 * DESCRIPTION:
2587 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2588 * next 'used' descriptor and attached the returned buffer to it.
2589 * In case the Rx ring was in "resource error" condition, where there are
2590 * no available Rx resources, the function resets the resource error flag.
2592 * INPUT:
2593 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2594 * struct pkt_info *p_pkt_info Information on returned buffer.
2596 * OUTPUT:
2597 * New available Rx resource in Rx descriptor ring.
2599 * RETURN:
2600 * ETH_ERROR in case the routine can not access Rx desc ring.
2601 * ETH_OK otherwise.
2603 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2604 struct pkt_info *p_pkt_info)
2606 int used_rx_desc; /* Where to return Rx resource */
2607 volatile struct eth_rx_desc *p_used_rx_desc;
2608 unsigned long flags;
2610 spin_lock_irqsave(&mp->lock, flags);
2612 /* Get 'used' Rx descriptor */
2613 used_rx_desc = mp->rx_used_desc_q;
2614 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2616 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2617 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2618 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2620 /* Flush the write pipe */
2622 /* Return the descriptor to DMA ownership */
2623 wmb();
2624 p_used_rx_desc->cmd_sts =
2625 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2626 wmb();
2628 /* Move the used descriptor pointer to the next descriptor */
2629 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2631 /* Any Rx return cancels the Rx resource error status */
2632 mp->rx_resource_err = 0;
2634 spin_unlock_irqrestore(&mp->lock, flags);
2636 return ETH_OK;
2639 /************* Begin ethtool support *************************/
2641 struct mv643xx_stats {
2642 char stat_string[ETH_GSTRING_LEN];
2643 int sizeof_stat;
2644 int stat_offset;
2647 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2648 offsetof(struct mv643xx_private, m)
2650 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2651 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2652 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2653 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2654 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2655 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2656 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2657 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2658 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2659 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2660 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2661 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2662 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2663 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2664 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2665 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2666 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2667 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2668 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2669 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2670 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2671 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2672 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2673 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2674 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2675 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2676 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2677 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2678 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2679 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2680 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2681 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2682 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2683 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2684 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2685 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2686 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2687 { "collision", MV643XX_STAT(mib_counters.collision) },
2688 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2691 #define MV643XX_STATS_LEN \
2692 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2694 static void mv643xx_get_drvinfo(struct net_device *netdev,
2695 struct ethtool_drvinfo *drvinfo)
2697 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2698 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2699 strncpy(drvinfo->fw_version, "N/A", 32);
2700 strncpy(drvinfo->bus_info, "mv643xx", 32);
2701 drvinfo->n_stats = MV643XX_STATS_LEN;
2704 static int mv643xx_get_stats_count(struct net_device *netdev)
2706 return MV643XX_STATS_LEN;
2709 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2710 struct ethtool_stats *stats, uint64_t *data)
2712 struct mv643xx_private *mp = netdev->priv;
2713 int i;
2715 eth_update_mib_counters(mp);
2717 for (i = 0; i < MV643XX_STATS_LEN; i++) {
2718 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2719 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2720 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2724 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2725 uint8_t *data)
2727 int i;
2729 switch(stringset) {
2730 case ETH_SS_STATS:
2731 for (i=0; i < MV643XX_STATS_LEN; i++) {
2732 memcpy(data + i * ETH_GSTRING_LEN,
2733 mv643xx_gstrings_stats[i].stat_string,
2734 ETH_GSTRING_LEN);
2736 break;
2740 static u32 mv643xx_eth_get_link(struct net_device *dev)
2742 struct mv643xx_private *mp = netdev_priv(dev);
2744 return mii_link_ok(&mp->mii);
2747 static int mv643xx_eth_nway_restart(struct net_device *dev)
2749 struct mv643xx_private *mp = netdev_priv(dev);
2751 return mii_nway_restart(&mp->mii);
2754 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2756 struct mv643xx_private *mp = netdev_priv(dev);
2758 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2761 static const struct ethtool_ops mv643xx_ethtool_ops = {
2762 .get_settings = mv643xx_get_settings,
2763 .set_settings = mv643xx_set_settings,
2764 .get_drvinfo = mv643xx_get_drvinfo,
2765 .get_link = mv643xx_eth_get_link,
2766 .get_sg = ethtool_op_get_sg,
2767 .set_sg = ethtool_op_set_sg,
2768 .get_stats_count = mv643xx_get_stats_count,
2769 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2770 .get_strings = mv643xx_get_strings,
2771 .get_stats_count = mv643xx_get_stats_count,
2772 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2773 .nway_reset = mv643xx_eth_nway_restart,
2776 /************* End ethtool support *************************/