4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
27 static void sum_vm_events(unsigned long *ret
)
32 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
34 for_each_online_cpu(cpu
) {
35 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
37 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
38 ret
[i
] += this->event
[i
];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret
)
53 EXPORT_SYMBOL_GPL(all_vm_events
);
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu
)
64 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
67 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
68 count_vm_events(i
, fold_state
->event
[i
]);
69 fold_state
->event
[i
] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
];
82 EXPORT_SYMBOL(vm_stat
);
86 int calculate_pressure_threshold(struct zone
*zone
)
89 int watermark_distance
;
92 * As vmstats are not up to date, there is drift between the estimated
93 * and real values. For high thresholds and a high number of CPUs, it
94 * is possible for the min watermark to be breached while the estimated
95 * value looks fine. The pressure threshold is a reduced value such
96 * that even the maximum amount of drift will not accidentally breach
99 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
100 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
103 * Maximum threshold is 125
105 threshold
= min(125, threshold
);
110 int calculate_normal_threshold(struct zone
*zone
)
113 int mem
; /* memory in 128 MB units */
116 * The threshold scales with the number of processors and the amount
117 * of memory per zone. More memory means that we can defer updates for
118 * longer, more processors could lead to more contention.
119 * fls() is used to have a cheap way of logarithmic scaling.
121 * Some sample thresholds:
123 * Threshold Processors (fls) Zonesize fls(mem+1)
124 * ------------------------------------------------------------------
141 * 125 1024 10 8-16 GB 8
142 * 125 1024 10 16-32 GB 9
145 mem
= zone
->present_pages
>> (27 - PAGE_SHIFT
);
147 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
150 * Maximum threshold is 125
152 threshold
= min(125, threshold
);
158 * Refresh the thresholds for each zone.
160 void refresh_zone_stat_thresholds(void)
166 for_each_populated_zone(zone
) {
167 unsigned long max_drift
, tolerate_drift
;
169 threshold
= calculate_normal_threshold(zone
);
171 for_each_online_cpu(cpu
)
172 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
176 * Only set percpu_drift_mark if there is a danger that
177 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 * the min watermark could be breached by an allocation
180 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
181 max_drift
= num_online_cpus() * threshold
;
182 if (max_drift
> tolerate_drift
)
183 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
188 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
189 int (*calculate_pressure
)(struct zone
*))
196 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
197 zone
= &pgdat
->node_zones
[i
];
198 if (!zone
->percpu_drift_mark
)
201 threshold
= (*calculate_pressure
)(zone
);
202 for_each_possible_cpu(cpu
)
203 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
209 * For use when we know that interrupts are disabled.
211 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
214 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
215 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
219 x
= delta
+ __this_cpu_read(*p
);
221 t
= __this_cpu_read(pcp
->stat_threshold
);
223 if (unlikely(x
> t
|| x
< -t
)) {
224 zone_page_state_add(x
, zone
, item
);
227 __this_cpu_write(*p
, x
);
229 EXPORT_SYMBOL(__mod_zone_page_state
);
232 * Optimized increment and decrement functions.
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
244 * NOTE: These functions are very performance sensitive. Change only
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
254 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
256 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
257 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
260 v
= __this_cpu_inc_return(*p
);
261 t
= __this_cpu_read(pcp
->stat_threshold
);
262 if (unlikely(v
> t
)) {
263 s8 overstep
= t
>> 1;
265 zone_page_state_add(v
+ overstep
, zone
, item
);
266 __this_cpu_write(*p
, -overstep
);
270 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
272 __inc_zone_state(page_zone(page
), item
);
274 EXPORT_SYMBOL(__inc_zone_page_state
);
276 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
278 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
279 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
282 v
= __this_cpu_dec_return(*p
);
283 t
= __this_cpu_read(pcp
->stat_threshold
);
284 if (unlikely(v
< - t
)) {
285 s8 overstep
= t
>> 1;
287 zone_page_state_add(v
- overstep
, zone
, item
);
288 __this_cpu_write(*p
, overstep
);
292 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
294 __dec_zone_state(page_zone(page
), item
);
296 EXPORT_SYMBOL(__dec_zone_page_state
);
298 #ifdef CONFIG_CMPXCHG_LOCAL
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303 * mod_state() modifies the zone counter state through atomic per cpu
306 * Overstep mode specifies how overstep should handled:
308 * 1 Overstepping half of threshold
309 * -1 Overstepping minus half of threshold
311 static inline void mod_state(struct zone
*zone
,
312 enum zone_stat_item item
, int delta
, int overstep_mode
)
314 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
315 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
319 z
= 0; /* overflow to zone counters */
322 * The fetching of the stat_threshold is racy. We may apply
323 * a counter threshold to the wrong the cpu if we get
324 * rescheduled while executing here. However, the next
325 * counter update will apply the threshold again and
326 * therefore bring the counter under the threshold again.
328 * Most of the time the thresholds are the same anyways
329 * for all cpus in a zone.
331 t
= this_cpu_read(pcp
->stat_threshold
);
333 o
= this_cpu_read(*p
);
336 if (n
> t
|| n
< -t
) {
337 int os
= overstep_mode
* (t
>> 1) ;
339 /* Overflow must be added to zone counters */
343 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
346 zone_page_state_add(z
, zone
, item
);
349 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
352 mod_state(zone
, item
, delta
, 0);
354 EXPORT_SYMBOL(mod_zone_page_state
);
356 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
358 mod_state(zone
, item
, 1, 1);
361 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
363 mod_state(page_zone(page
), item
, 1, 1);
365 EXPORT_SYMBOL(inc_zone_page_state
);
367 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
369 mod_state(page_zone(page
), item
, -1, -1);
371 EXPORT_SYMBOL(dec_zone_page_state
);
374 * Use interrupt disable to serialize counter updates
376 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
381 local_irq_save(flags
);
382 __mod_zone_page_state(zone
, item
, delta
);
383 local_irq_restore(flags
);
385 EXPORT_SYMBOL(mod_zone_page_state
);
387 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
391 local_irq_save(flags
);
392 __inc_zone_state(zone
, item
);
393 local_irq_restore(flags
);
396 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
401 zone
= page_zone(page
);
402 local_irq_save(flags
);
403 __inc_zone_state(zone
, item
);
404 local_irq_restore(flags
);
406 EXPORT_SYMBOL(inc_zone_page_state
);
408 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
412 local_irq_save(flags
);
413 __dec_zone_page_state(page
, item
);
414 local_irq_restore(flags
);
416 EXPORT_SYMBOL(dec_zone_page_state
);
420 * Update the zone counters for one cpu.
422 * The cpu specified must be either the current cpu or a processor that
423 * is not online. If it is the current cpu then the execution thread must
424 * be pinned to the current cpu.
426 * Note that refresh_cpu_vm_stats strives to only access
427 * node local memory. The per cpu pagesets on remote zones are placed
428 * in the memory local to the processor using that pageset. So the
429 * loop over all zones will access a series of cachelines local to
432 * The call to zone_page_state_add updates the cachelines with the
433 * statistics in the remote zone struct as well as the global cachelines
434 * with the global counters. These could cause remote node cache line
435 * bouncing and will have to be only done when necessary.
437 void refresh_cpu_vm_stats(int cpu
)
441 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
443 for_each_populated_zone(zone
) {
444 struct per_cpu_pageset
*p
;
446 p
= per_cpu_ptr(zone
->pageset
, cpu
);
448 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
449 if (p
->vm_stat_diff
[i
]) {
453 local_irq_save(flags
);
454 v
= p
->vm_stat_diff
[i
];
455 p
->vm_stat_diff
[i
] = 0;
456 local_irq_restore(flags
);
457 atomic_long_add(v
, &zone
->vm_stat
[i
]);
460 /* 3 seconds idle till flush */
467 * Deal with draining the remote pageset of this
470 * Check if there are pages remaining in this pageset
471 * if not then there is nothing to expire.
473 if (!p
->expire
|| !p
->pcp
.count
)
477 * We never drain zones local to this processor.
479 if (zone_to_nid(zone
) == numa_node_id()) {
489 drain_zone_pages(zone
, &p
->pcp
);
493 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
495 atomic_long_add(global_diff
[i
], &vm_stat
[i
]);
502 * zonelist = the list of zones passed to the allocator
503 * z = the zone from which the allocation occurred.
505 * Must be called with interrupts disabled.
507 * When __GFP_OTHER_NODE is set assume the node of the preferred
508 * zone is the local node. This is useful for daemons who allocate
509 * memory on behalf of other processes.
511 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
513 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
514 __inc_zone_state(z
, NUMA_HIT
);
516 __inc_zone_state(z
, NUMA_MISS
);
517 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
519 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
520 preferred_zone
->node
: numa_node_id()))
521 __inc_zone_state(z
, NUMA_LOCAL
);
523 __inc_zone_state(z
, NUMA_OTHER
);
527 #ifdef CONFIG_COMPACTION
529 struct contig_page_info
{
530 unsigned long free_pages
;
531 unsigned long free_blocks_total
;
532 unsigned long free_blocks_suitable
;
536 * Calculate the number of free pages in a zone, how many contiguous
537 * pages are free and how many are large enough to satisfy an allocation of
538 * the target size. Note that this function makes no attempt to estimate
539 * how many suitable free blocks there *might* be if MOVABLE pages were
540 * migrated. Calculating that is possible, but expensive and can be
541 * figured out from userspace
543 static void fill_contig_page_info(struct zone
*zone
,
544 unsigned int suitable_order
,
545 struct contig_page_info
*info
)
549 info
->free_pages
= 0;
550 info
->free_blocks_total
= 0;
551 info
->free_blocks_suitable
= 0;
553 for (order
= 0; order
< MAX_ORDER
; order
++) {
554 unsigned long blocks
;
556 /* Count number of free blocks */
557 blocks
= zone
->free_area
[order
].nr_free
;
558 info
->free_blocks_total
+= blocks
;
560 /* Count free base pages */
561 info
->free_pages
+= blocks
<< order
;
563 /* Count the suitable free blocks */
564 if (order
>= suitable_order
)
565 info
->free_blocks_suitable
+= blocks
<<
566 (order
- suitable_order
);
571 * A fragmentation index only makes sense if an allocation of a requested
572 * size would fail. If that is true, the fragmentation index indicates
573 * whether external fragmentation or a lack of memory was the problem.
574 * The value can be used to determine if page reclaim or compaction
577 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
579 unsigned long requested
= 1UL << order
;
581 if (!info
->free_blocks_total
)
584 /* Fragmentation index only makes sense when a request would fail */
585 if (info
->free_blocks_suitable
)
589 * Index is between 0 and 1 so return within 3 decimal places
591 * 0 => allocation would fail due to lack of memory
592 * 1 => allocation would fail due to fragmentation
594 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
597 /* Same as __fragmentation index but allocs contig_page_info on stack */
598 int fragmentation_index(struct zone
*zone
, unsigned int order
)
600 struct contig_page_info info
;
602 fill_contig_page_info(zone
, order
, &info
);
603 return __fragmentation_index(order
, &info
);
607 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
608 #include <linux/proc_fs.h>
609 #include <linux/seq_file.h>
611 static char * const migratetype_names
[MIGRATE_TYPES
] = {
619 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
623 for (pgdat
= first_online_pgdat();
625 pgdat
= next_online_pgdat(pgdat
))
631 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
633 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
636 return next_online_pgdat(pgdat
);
639 static void frag_stop(struct seq_file
*m
, void *arg
)
643 /* Walk all the zones in a node and print using a callback */
644 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
645 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
648 struct zone
*node_zones
= pgdat
->node_zones
;
651 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
652 if (!populated_zone(zone
))
655 spin_lock_irqsave(&zone
->lock
, flags
);
656 print(m
, pgdat
, zone
);
657 spin_unlock_irqrestore(&zone
->lock
, flags
);
662 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS)
663 #ifdef CONFIG_ZONE_DMA
664 #define TEXT_FOR_DMA(xx) xx "_dma",
666 #define TEXT_FOR_DMA(xx)
669 #ifdef CONFIG_ZONE_DMA32
670 #define TEXT_FOR_DMA32(xx) xx "_dma32",
672 #define TEXT_FOR_DMA32(xx)
675 #ifdef CONFIG_HIGHMEM
676 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
678 #define TEXT_FOR_HIGHMEM(xx)
681 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
682 TEXT_FOR_HIGHMEM(xx) xx "_movable",
684 const char * const vmstat_text
[] = {
685 /* Zoned VM counters */
698 "nr_slab_reclaimable",
699 "nr_slab_unreclaimable",
700 "nr_page_table_pages",
720 "nr_anon_transparent_hugepages",
721 "nr_dirty_threshold",
722 "nr_dirty_background_threshold",
724 #ifdef CONFIG_VM_EVENT_COUNTERS
730 TEXTS_FOR_ZONES("pgalloc")
739 TEXTS_FOR_ZONES("pgrefill")
740 TEXTS_FOR_ZONES("pgsteal")
741 TEXTS_FOR_ZONES("pgscan_kswapd")
742 TEXTS_FOR_ZONES("pgscan_direct")
745 "zone_reclaim_failed",
751 "kswapd_low_wmark_hit_quickly",
752 "kswapd_high_wmark_hit_quickly",
753 "kswapd_skip_congestion_wait",
759 #ifdef CONFIG_COMPACTION
760 "compact_blocks_moved",
761 "compact_pages_moved",
762 "compact_pagemigrate_failed",
768 #ifdef CONFIG_HUGETLB_PAGE
769 "htlb_buddy_alloc_success",
770 "htlb_buddy_alloc_fail",
772 "unevictable_pgs_culled",
773 "unevictable_pgs_scanned",
774 "unevictable_pgs_rescued",
775 "unevictable_pgs_mlocked",
776 "unevictable_pgs_munlocked",
777 "unevictable_pgs_cleared",
778 "unevictable_pgs_stranded",
779 "unevictable_pgs_mlockfreed",
781 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
783 "thp_fault_fallback",
784 "thp_collapse_alloc",
785 "thp_collapse_alloc_failed",
789 #endif /* CONFIG_VM_EVENTS_COUNTERS */
791 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS */
794 #ifdef CONFIG_PROC_FS
795 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
800 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
801 for (order
= 0; order
< MAX_ORDER
; ++order
)
802 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
807 * This walks the free areas for each zone.
809 static int frag_show(struct seq_file
*m
, void *arg
)
811 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
812 walk_zones_in_node(m
, pgdat
, frag_show_print
);
816 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
817 pg_data_t
*pgdat
, struct zone
*zone
)
821 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
822 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
825 migratetype_names
[mtype
]);
826 for (order
= 0; order
< MAX_ORDER
; ++order
) {
827 unsigned long freecount
= 0;
828 struct free_area
*area
;
829 struct list_head
*curr
;
831 area
= &(zone
->free_area
[order
]);
833 list_for_each(curr
, &area
->free_list
[mtype
])
835 seq_printf(m
, "%6lu ", freecount
);
841 /* Print out the free pages at each order for each migatetype */
842 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
845 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
848 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
849 for (order
= 0; order
< MAX_ORDER
; ++order
)
850 seq_printf(m
, "%6d ", order
);
853 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
858 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
859 pg_data_t
*pgdat
, struct zone
*zone
)
863 unsigned long start_pfn
= zone
->zone_start_pfn
;
864 unsigned long end_pfn
= start_pfn
+ zone
->spanned_pages
;
865 unsigned long count
[MIGRATE_TYPES
] = { 0, };
867 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
873 page
= pfn_to_page(pfn
);
875 /* Watch for unexpected holes punched in the memmap */
876 if (!memmap_valid_within(pfn
, page
, zone
))
879 mtype
= get_pageblock_migratetype(page
);
881 if (mtype
< MIGRATE_TYPES
)
886 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
887 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
888 seq_printf(m
, "%12lu ", count
[mtype
]);
892 /* Print out the free pages at each order for each migratetype */
893 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
896 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
898 seq_printf(m
, "\n%-23s", "Number of blocks type ");
899 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
900 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
902 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
908 * This prints out statistics in relation to grouping pages by mobility.
909 * It is expensive to collect so do not constantly read the file.
911 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
913 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
915 /* check memoryless node */
916 if (!node_state(pgdat
->node_id
, N_HIGH_MEMORY
))
919 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
920 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
922 pagetypeinfo_showfree(m
, pgdat
);
923 pagetypeinfo_showblockcount(m
, pgdat
);
928 static const struct seq_operations fragmentation_op
= {
935 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
937 return seq_open(file
, &fragmentation_op
);
940 static const struct file_operations fragmentation_file_operations
= {
941 .open
= fragmentation_open
,
944 .release
= seq_release
,
947 static const struct seq_operations pagetypeinfo_op
= {
951 .show
= pagetypeinfo_show
,
954 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
956 return seq_open(file
, &pagetypeinfo_op
);
959 static const struct file_operations pagetypeinfo_file_ops
= {
960 .open
= pagetypeinfo_open
,
963 .release
= seq_release
,
966 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
970 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
979 zone_page_state(zone
, NR_FREE_PAGES
),
980 min_wmark_pages(zone
),
981 low_wmark_pages(zone
),
982 high_wmark_pages(zone
),
985 zone
->present_pages
);
987 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
988 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
989 zone_page_state(zone
, i
));
992 "\n protection: (%lu",
993 zone
->lowmem_reserve
[0]);
994 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
995 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
999 for_each_online_cpu(i
) {
1000 struct per_cpu_pageset
*pageset
;
1002 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1011 pageset
->pcp
.batch
);
1013 seq_printf(m
, "\n vm stats threshold: %d",
1014 pageset
->stat_threshold
);
1018 "\n all_unreclaimable: %u"
1020 "\n inactive_ratio: %u",
1021 zone
->all_unreclaimable
,
1022 zone
->zone_start_pfn
,
1023 zone
->inactive_ratio
);
1028 * Output information about zones in @pgdat.
1030 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1032 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1033 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1037 static const struct seq_operations zoneinfo_op
= {
1038 .start
= frag_start
, /* iterate over all zones. The same as in
1042 .show
= zoneinfo_show
,
1045 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1047 return seq_open(file
, &zoneinfo_op
);
1050 static const struct file_operations proc_zoneinfo_file_operations
= {
1051 .open
= zoneinfo_open
,
1053 .llseek
= seq_lseek
,
1054 .release
= seq_release
,
1057 enum writeback_stat_item
{
1059 NR_DIRTY_BG_THRESHOLD
,
1060 NR_VM_WRITEBACK_STAT_ITEMS
,
1063 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1066 int i
, stat_items_size
;
1068 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1070 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1071 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1073 #ifdef CONFIG_VM_EVENT_COUNTERS
1074 stat_items_size
+= sizeof(struct vm_event_state
);
1077 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1080 return ERR_PTR(-ENOMEM
);
1081 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1082 v
[i
] = global_page_state(i
);
1083 v
+= NR_VM_ZONE_STAT_ITEMS
;
1085 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1086 v
+ NR_DIRTY_THRESHOLD
);
1087 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1089 #ifdef CONFIG_VM_EVENT_COUNTERS
1091 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1094 return (unsigned long *)m
->private + *pos
;
1097 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1100 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1102 return (unsigned long *)m
->private + *pos
;
1105 static int vmstat_show(struct seq_file
*m
, void *arg
)
1107 unsigned long *l
= arg
;
1108 unsigned long off
= l
- (unsigned long *)m
->private;
1110 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1114 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1120 static const struct seq_operations vmstat_op
= {
1121 .start
= vmstat_start
,
1122 .next
= vmstat_next
,
1123 .stop
= vmstat_stop
,
1124 .show
= vmstat_show
,
1127 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1129 return seq_open(file
, &vmstat_op
);
1132 static const struct file_operations proc_vmstat_file_operations
= {
1133 .open
= vmstat_open
,
1135 .llseek
= seq_lseek
,
1136 .release
= seq_release
,
1138 #endif /* CONFIG_PROC_FS */
1141 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1142 int sysctl_stat_interval __read_mostly
= HZ
;
1144 static void vmstat_update(struct work_struct
*w
)
1146 refresh_cpu_vm_stats(smp_processor_id());
1147 schedule_delayed_work(&__get_cpu_var(vmstat_work
),
1148 round_jiffies_relative(sysctl_stat_interval
));
1151 static void __cpuinit
start_cpu_timer(int cpu
)
1153 struct delayed_work
*work
= &per_cpu(vmstat_work
, cpu
);
1155 INIT_DELAYED_WORK_DEFERRABLE(work
, vmstat_update
);
1156 schedule_delayed_work_on(cpu
, work
, __round_jiffies_relative(HZ
, cpu
));
1160 * Use the cpu notifier to insure that the thresholds are recalculated
1163 static int __cpuinit
vmstat_cpuup_callback(struct notifier_block
*nfb
,
1164 unsigned long action
,
1167 long cpu
= (long)hcpu
;
1171 case CPU_ONLINE_FROZEN
:
1172 refresh_zone_stat_thresholds();
1173 start_cpu_timer(cpu
);
1174 node_set_state(cpu_to_node(cpu
), N_CPU
);
1176 case CPU_DOWN_PREPARE
:
1177 case CPU_DOWN_PREPARE_FROZEN
:
1178 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1179 per_cpu(vmstat_work
, cpu
).work
.func
= NULL
;
1181 case CPU_DOWN_FAILED
:
1182 case CPU_DOWN_FAILED_FROZEN
:
1183 start_cpu_timer(cpu
);
1186 case CPU_DEAD_FROZEN
:
1187 refresh_zone_stat_thresholds();
1195 static struct notifier_block __cpuinitdata vmstat_notifier
=
1196 { &vmstat_cpuup_callback
, NULL
, 0 };
1199 static int __init
setup_vmstat(void)
1204 register_cpu_notifier(&vmstat_notifier
);
1206 for_each_online_cpu(cpu
)
1207 start_cpu_timer(cpu
);
1209 #ifdef CONFIG_PROC_FS
1210 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1211 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1212 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1213 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1217 module_init(setup_vmstat
)
1219 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1220 #include <linux/debugfs.h>
1222 static struct dentry
*extfrag_debug_root
;
1225 * Return an index indicating how much of the available free memory is
1226 * unusable for an allocation of the requested size.
1228 static int unusable_free_index(unsigned int order
,
1229 struct contig_page_info
*info
)
1231 /* No free memory is interpreted as all free memory is unusable */
1232 if (info
->free_pages
== 0)
1236 * Index should be a value between 0 and 1. Return a value to 3
1239 * 0 => no fragmentation
1240 * 1 => high fragmentation
1242 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1246 static void unusable_show_print(struct seq_file
*m
,
1247 pg_data_t
*pgdat
, struct zone
*zone
)
1251 struct contig_page_info info
;
1253 seq_printf(m
, "Node %d, zone %8s ",
1256 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1257 fill_contig_page_info(zone
, order
, &info
);
1258 index
= unusable_free_index(order
, &info
);
1259 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1266 * Display unusable free space index
1268 * The unusable free space index measures how much of the available free
1269 * memory cannot be used to satisfy an allocation of a given size and is a
1270 * value between 0 and 1. The higher the value, the more of free memory is
1271 * unusable and by implication, the worse the external fragmentation is. This
1272 * can be expressed as a percentage by multiplying by 100.
1274 static int unusable_show(struct seq_file
*m
, void *arg
)
1276 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1278 /* check memoryless node */
1279 if (!node_state(pgdat
->node_id
, N_HIGH_MEMORY
))
1282 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1287 static const struct seq_operations unusable_op
= {
1288 .start
= frag_start
,
1291 .show
= unusable_show
,
1294 static int unusable_open(struct inode
*inode
, struct file
*file
)
1296 return seq_open(file
, &unusable_op
);
1299 static const struct file_operations unusable_file_ops
= {
1300 .open
= unusable_open
,
1302 .llseek
= seq_lseek
,
1303 .release
= seq_release
,
1306 static void extfrag_show_print(struct seq_file
*m
,
1307 pg_data_t
*pgdat
, struct zone
*zone
)
1312 /* Alloc on stack as interrupts are disabled for zone walk */
1313 struct contig_page_info info
;
1315 seq_printf(m
, "Node %d, zone %8s ",
1318 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1319 fill_contig_page_info(zone
, order
, &info
);
1320 index
= __fragmentation_index(order
, &info
);
1321 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1328 * Display fragmentation index for orders that allocations would fail for
1330 static int extfrag_show(struct seq_file
*m
, void *arg
)
1332 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1334 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1339 static const struct seq_operations extfrag_op
= {
1340 .start
= frag_start
,
1343 .show
= extfrag_show
,
1346 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1348 return seq_open(file
, &extfrag_op
);
1351 static const struct file_operations extfrag_file_ops
= {
1352 .open
= extfrag_open
,
1354 .llseek
= seq_lseek
,
1355 .release
= seq_release
,
1358 static int __init
extfrag_debug_init(void)
1360 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1361 if (!extfrag_debug_root
)
1364 if (!debugfs_create_file("unusable_index", 0444,
1365 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1368 if (!debugfs_create_file("extfrag_index", 0444,
1369 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1375 module_init(extfrag_debug_init
);