sched: Drop the rq argument to sched_class::select_task_rq()
[linux-2.6/x86.git] / kernel / sched_fair.c
blob96b2c95ac356b950f36ca172295b02c587e0956e
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency = 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
148 if (!cfs_rq->on_list) {
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
155 if (cfs_rq->tg->parent &&
156 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 &rq_of(cfs_rq)->leaf_cfs_rq_list);
159 } else {
160 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
161 &rq_of(cfs_rq)->leaf_cfs_rq_list);
164 cfs_rq->on_list = 1;
168 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
170 if (cfs_rq->on_list) {
171 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
172 cfs_rq->on_list = 0;
176 /* Iterate thr' all leaf cfs_rq's on a runqueue */
177 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
180 /* Do the two (enqueued) entities belong to the same group ? */
181 static inline int
182 is_same_group(struct sched_entity *se, struct sched_entity *pse)
184 if (se->cfs_rq == pse->cfs_rq)
185 return 1;
187 return 0;
190 static inline struct sched_entity *parent_entity(struct sched_entity *se)
192 return se->parent;
195 /* return depth at which a sched entity is present in the hierarchy */
196 static inline int depth_se(struct sched_entity *se)
198 int depth = 0;
200 for_each_sched_entity(se)
201 depth++;
203 return depth;
206 static void
207 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
209 int se_depth, pse_depth;
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
215 * parent.
218 /* First walk up until both entities are at same depth */
219 se_depth = depth_se(*se);
220 pse_depth = depth_se(*pse);
222 while (se_depth > pse_depth) {
223 se_depth--;
224 *se = parent_entity(*se);
227 while (pse_depth > se_depth) {
228 pse_depth--;
229 *pse = parent_entity(*pse);
232 while (!is_same_group(*se, *pse)) {
233 *se = parent_entity(*se);
234 *pse = parent_entity(*pse);
238 #else /* !CONFIG_FAIR_GROUP_SCHED */
240 static inline struct task_struct *task_of(struct sched_entity *se)
242 return container_of(se, struct task_struct, se);
245 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 return container_of(cfs_rq, struct rq, cfs);
250 #define entity_is_task(se) 1
252 #define for_each_sched_entity(se) \
253 for (; se; se = NULL)
255 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
257 return &task_rq(p)->cfs;
260 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
262 struct task_struct *p = task_of(se);
263 struct rq *rq = task_rq(p);
265 return &rq->cfs;
268 /* runqueue "owned" by this group */
269 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
271 return NULL;
274 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
276 return &cpu_rq(this_cpu)->cfs;
279 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
283 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290 static inline int
291 is_same_group(struct sched_entity *se, struct sched_entity *pse)
293 return 1;
296 static inline struct sched_entity *parent_entity(struct sched_entity *se)
298 return NULL;
301 static inline void
302 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
306 #endif /* CONFIG_FAIR_GROUP_SCHED */
309 /**************************************************************
310 * Scheduling class tree data structure manipulation methods:
313 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
315 s64 delta = (s64)(vruntime - min_vruntime);
316 if (delta > 0)
317 min_vruntime = vruntime;
319 return min_vruntime;
322 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
324 s64 delta = (s64)(vruntime - min_vruntime);
325 if (delta < 0)
326 min_vruntime = vruntime;
328 return min_vruntime;
331 static inline int entity_before(struct sched_entity *a,
332 struct sched_entity *b)
334 return (s64)(a->vruntime - b->vruntime) < 0;
337 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
339 return se->vruntime - cfs_rq->min_vruntime;
342 static void update_min_vruntime(struct cfs_rq *cfs_rq)
344 u64 vruntime = cfs_rq->min_vruntime;
346 if (cfs_rq->curr)
347 vruntime = cfs_rq->curr->vruntime;
349 if (cfs_rq->rb_leftmost) {
350 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
351 struct sched_entity,
352 run_node);
354 if (!cfs_rq->curr)
355 vruntime = se->vruntime;
356 else
357 vruntime = min_vruntime(vruntime, se->vruntime);
360 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
364 * Enqueue an entity into the rb-tree:
366 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
368 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
369 struct rb_node *parent = NULL;
370 struct sched_entity *entry;
371 s64 key = entity_key(cfs_rq, se);
372 int leftmost = 1;
375 * Find the right place in the rbtree:
377 while (*link) {
378 parent = *link;
379 entry = rb_entry(parent, struct sched_entity, run_node);
381 * We dont care about collisions. Nodes with
382 * the same key stay together.
384 if (key < entity_key(cfs_rq, entry)) {
385 link = &parent->rb_left;
386 } else {
387 link = &parent->rb_right;
388 leftmost = 0;
393 * Maintain a cache of leftmost tree entries (it is frequently
394 * used):
396 if (leftmost)
397 cfs_rq->rb_leftmost = &se->run_node;
399 rb_link_node(&se->run_node, parent, link);
400 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
403 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 if (cfs_rq->rb_leftmost == &se->run_node) {
406 struct rb_node *next_node;
408 next_node = rb_next(&se->run_node);
409 cfs_rq->rb_leftmost = next_node;
412 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
415 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
417 struct rb_node *left = cfs_rq->rb_leftmost;
419 if (!left)
420 return NULL;
422 return rb_entry(left, struct sched_entity, run_node);
425 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427 struct rb_node *next = rb_next(&se->run_node);
429 if (!next)
430 return NULL;
432 return rb_entry(next, struct sched_entity, run_node);
435 #ifdef CONFIG_SCHED_DEBUG
436 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
438 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
440 if (!last)
441 return NULL;
443 return rb_entry(last, struct sched_entity, run_node);
446 /**************************************************************
447 * Scheduling class statistics methods:
450 int sched_proc_update_handler(struct ctl_table *table, int write,
451 void __user *buffer, size_t *lenp,
452 loff_t *ppos)
454 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
455 int factor = get_update_sysctl_factor();
457 if (ret || !write)
458 return ret;
460 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
461 sysctl_sched_min_granularity);
463 #define WRT_SYSCTL(name) \
464 (normalized_sysctl_##name = sysctl_##name / (factor))
465 WRT_SYSCTL(sched_min_granularity);
466 WRT_SYSCTL(sched_latency);
467 WRT_SYSCTL(sched_wakeup_granularity);
468 #undef WRT_SYSCTL
470 return 0;
472 #endif
475 * delta /= w
477 static inline unsigned long
478 calc_delta_fair(unsigned long delta, struct sched_entity *se)
480 if (unlikely(se->load.weight != NICE_0_LOAD))
481 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
483 return delta;
487 * The idea is to set a period in which each task runs once.
489 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
490 * this period because otherwise the slices get too small.
492 * p = (nr <= nl) ? l : l*nr/nl
494 static u64 __sched_period(unsigned long nr_running)
496 u64 period = sysctl_sched_latency;
497 unsigned long nr_latency = sched_nr_latency;
499 if (unlikely(nr_running > nr_latency)) {
500 period = sysctl_sched_min_granularity;
501 period *= nr_running;
504 return period;
508 * We calculate the wall-time slice from the period by taking a part
509 * proportional to the weight.
511 * s = p*P[w/rw]
513 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
517 for_each_sched_entity(se) {
518 struct load_weight *load;
519 struct load_weight lw;
521 cfs_rq = cfs_rq_of(se);
522 load = &cfs_rq->load;
524 if (unlikely(!se->on_rq)) {
525 lw = cfs_rq->load;
527 update_load_add(&lw, se->load.weight);
528 load = &lw;
530 slice = calc_delta_mine(slice, se->load.weight, load);
532 return slice;
536 * We calculate the vruntime slice of a to be inserted task
538 * vs = s/w
540 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 return calc_delta_fair(sched_slice(cfs_rq, se), se);
545 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
546 static void update_cfs_shares(struct cfs_rq *cfs_rq);
549 * Update the current task's runtime statistics. Skip current tasks that
550 * are not in our scheduling class.
552 static inline void
553 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
554 unsigned long delta_exec)
556 unsigned long delta_exec_weighted;
558 schedstat_set(curr->statistics.exec_max,
559 max((u64)delta_exec, curr->statistics.exec_max));
561 curr->sum_exec_runtime += delta_exec;
562 schedstat_add(cfs_rq, exec_clock, delta_exec);
563 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
565 curr->vruntime += delta_exec_weighted;
566 update_min_vruntime(cfs_rq);
568 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
569 cfs_rq->load_unacc_exec_time += delta_exec;
570 #endif
573 static void update_curr(struct cfs_rq *cfs_rq)
575 struct sched_entity *curr = cfs_rq->curr;
576 u64 now = rq_of(cfs_rq)->clock_task;
577 unsigned long delta_exec;
579 if (unlikely(!curr))
580 return;
583 * Get the amount of time the current task was running
584 * since the last time we changed load (this cannot
585 * overflow on 32 bits):
587 delta_exec = (unsigned long)(now - curr->exec_start);
588 if (!delta_exec)
589 return;
591 __update_curr(cfs_rq, curr, delta_exec);
592 curr->exec_start = now;
594 if (entity_is_task(curr)) {
595 struct task_struct *curtask = task_of(curr);
597 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
598 cpuacct_charge(curtask, delta_exec);
599 account_group_exec_runtime(curtask, delta_exec);
603 static inline void
604 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
610 * Task is being enqueued - update stats:
612 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
615 * Are we enqueueing a waiting task? (for current tasks
616 * a dequeue/enqueue event is a NOP)
618 if (se != cfs_rq->curr)
619 update_stats_wait_start(cfs_rq, se);
622 static void
623 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
626 rq_of(cfs_rq)->clock - se->statistics.wait_start));
627 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
628 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
629 rq_of(cfs_rq)->clock - se->statistics.wait_start);
630 #ifdef CONFIG_SCHEDSTATS
631 if (entity_is_task(se)) {
632 trace_sched_stat_wait(task_of(se),
633 rq_of(cfs_rq)->clock - se->statistics.wait_start);
635 #endif
636 schedstat_set(se->statistics.wait_start, 0);
639 static inline void
640 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
643 * Mark the end of the wait period if dequeueing a
644 * waiting task:
646 if (se != cfs_rq->curr)
647 update_stats_wait_end(cfs_rq, se);
651 * We are picking a new current task - update its stats:
653 static inline void
654 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
657 * We are starting a new run period:
659 se->exec_start = rq_of(cfs_rq)->clock_task;
662 /**************************************************
663 * Scheduling class queueing methods:
666 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
667 static void
668 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
670 cfs_rq->task_weight += weight;
672 #else
673 static inline void
674 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
677 #endif
679 static void
680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
682 update_load_add(&cfs_rq->load, se->load.weight);
683 if (!parent_entity(se))
684 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
685 if (entity_is_task(se)) {
686 add_cfs_task_weight(cfs_rq, se->load.weight);
687 list_add(&se->group_node, &cfs_rq->tasks);
689 cfs_rq->nr_running++;
692 static void
693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
695 update_load_sub(&cfs_rq->load, se->load.weight);
696 if (!parent_entity(se))
697 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
698 if (entity_is_task(se)) {
699 add_cfs_task_weight(cfs_rq, -se->load.weight);
700 list_del_init(&se->group_node);
702 cfs_rq->nr_running--;
705 #ifdef CONFIG_FAIR_GROUP_SCHED
706 # ifdef CONFIG_SMP
707 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
708 int global_update)
710 struct task_group *tg = cfs_rq->tg;
711 long load_avg;
713 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
714 load_avg -= cfs_rq->load_contribution;
716 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
717 atomic_add(load_avg, &tg->load_weight);
718 cfs_rq->load_contribution += load_avg;
722 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
724 u64 period = sysctl_sched_shares_window;
725 u64 now, delta;
726 unsigned long load = cfs_rq->load.weight;
728 if (cfs_rq->tg == &root_task_group)
729 return;
731 now = rq_of(cfs_rq)->clock_task;
732 delta = now - cfs_rq->load_stamp;
734 /* truncate load history at 4 idle periods */
735 if (cfs_rq->load_stamp > cfs_rq->load_last &&
736 now - cfs_rq->load_last > 4 * period) {
737 cfs_rq->load_period = 0;
738 cfs_rq->load_avg = 0;
739 delta = period - 1;
742 cfs_rq->load_stamp = now;
743 cfs_rq->load_unacc_exec_time = 0;
744 cfs_rq->load_period += delta;
745 if (load) {
746 cfs_rq->load_last = now;
747 cfs_rq->load_avg += delta * load;
750 /* consider updating load contribution on each fold or truncate */
751 if (global_update || cfs_rq->load_period > period
752 || !cfs_rq->load_period)
753 update_cfs_rq_load_contribution(cfs_rq, global_update);
755 while (cfs_rq->load_period > period) {
757 * Inline assembly required to prevent the compiler
758 * optimising this loop into a divmod call.
759 * See __iter_div_u64_rem() for another example of this.
761 asm("" : "+rm" (cfs_rq->load_period));
762 cfs_rq->load_period /= 2;
763 cfs_rq->load_avg /= 2;
766 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
767 list_del_leaf_cfs_rq(cfs_rq);
770 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
772 long load_weight, load, shares;
774 load = cfs_rq->load.weight;
776 load_weight = atomic_read(&tg->load_weight);
777 load_weight += load;
778 load_weight -= cfs_rq->load_contribution;
780 shares = (tg->shares * load);
781 if (load_weight)
782 shares /= load_weight;
784 if (shares < MIN_SHARES)
785 shares = MIN_SHARES;
786 if (shares > tg->shares)
787 shares = tg->shares;
789 return shares;
792 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
794 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
795 update_cfs_load(cfs_rq, 0);
796 update_cfs_shares(cfs_rq);
799 # else /* CONFIG_SMP */
800 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
804 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
806 return tg->shares;
809 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
812 # endif /* CONFIG_SMP */
813 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
814 unsigned long weight)
816 if (se->on_rq) {
817 /* commit outstanding execution time */
818 if (cfs_rq->curr == se)
819 update_curr(cfs_rq);
820 account_entity_dequeue(cfs_rq, se);
823 update_load_set(&se->load, weight);
825 if (se->on_rq)
826 account_entity_enqueue(cfs_rq, se);
829 static void update_cfs_shares(struct cfs_rq *cfs_rq)
831 struct task_group *tg;
832 struct sched_entity *se;
833 long shares;
835 tg = cfs_rq->tg;
836 se = tg->se[cpu_of(rq_of(cfs_rq))];
837 if (!se)
838 return;
839 #ifndef CONFIG_SMP
840 if (likely(se->load.weight == tg->shares))
841 return;
842 #endif
843 shares = calc_cfs_shares(cfs_rq, tg);
845 reweight_entity(cfs_rq_of(se), se, shares);
847 #else /* CONFIG_FAIR_GROUP_SCHED */
848 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
852 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
856 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
859 #endif /* CONFIG_FAIR_GROUP_SCHED */
861 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 #ifdef CONFIG_SCHEDSTATS
864 struct task_struct *tsk = NULL;
866 if (entity_is_task(se))
867 tsk = task_of(se);
869 if (se->statistics.sleep_start) {
870 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
872 if ((s64)delta < 0)
873 delta = 0;
875 if (unlikely(delta > se->statistics.sleep_max))
876 se->statistics.sleep_max = delta;
878 se->statistics.sleep_start = 0;
879 se->statistics.sum_sleep_runtime += delta;
881 if (tsk) {
882 account_scheduler_latency(tsk, delta >> 10, 1);
883 trace_sched_stat_sleep(tsk, delta);
886 if (se->statistics.block_start) {
887 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
889 if ((s64)delta < 0)
890 delta = 0;
892 if (unlikely(delta > se->statistics.block_max))
893 se->statistics.block_max = delta;
895 se->statistics.block_start = 0;
896 se->statistics.sum_sleep_runtime += delta;
898 if (tsk) {
899 if (tsk->in_iowait) {
900 se->statistics.iowait_sum += delta;
901 se->statistics.iowait_count++;
902 trace_sched_stat_iowait(tsk, delta);
906 * Blocking time is in units of nanosecs, so shift by
907 * 20 to get a milliseconds-range estimation of the
908 * amount of time that the task spent sleeping:
910 if (unlikely(prof_on == SLEEP_PROFILING)) {
911 profile_hits(SLEEP_PROFILING,
912 (void *)get_wchan(tsk),
913 delta >> 20);
915 account_scheduler_latency(tsk, delta >> 10, 0);
918 #endif
921 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
923 #ifdef CONFIG_SCHED_DEBUG
924 s64 d = se->vruntime - cfs_rq->min_vruntime;
926 if (d < 0)
927 d = -d;
929 if (d > 3*sysctl_sched_latency)
930 schedstat_inc(cfs_rq, nr_spread_over);
931 #endif
934 static void
935 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
937 u64 vruntime = cfs_rq->min_vruntime;
940 * The 'current' period is already promised to the current tasks,
941 * however the extra weight of the new task will slow them down a
942 * little, place the new task so that it fits in the slot that
943 * stays open at the end.
945 if (initial && sched_feat(START_DEBIT))
946 vruntime += sched_vslice(cfs_rq, se);
948 /* sleeps up to a single latency don't count. */
949 if (!initial) {
950 unsigned long thresh = sysctl_sched_latency;
953 * Halve their sleep time's effect, to allow
954 * for a gentler effect of sleepers:
956 if (sched_feat(GENTLE_FAIR_SLEEPERS))
957 thresh >>= 1;
959 vruntime -= thresh;
962 /* ensure we never gain time by being placed backwards. */
963 vruntime = max_vruntime(se->vruntime, vruntime);
965 se->vruntime = vruntime;
968 static void
969 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
972 * Update the normalized vruntime before updating min_vruntime
973 * through callig update_curr().
975 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
976 se->vruntime += cfs_rq->min_vruntime;
979 * Update run-time statistics of the 'current'.
981 update_curr(cfs_rq);
982 update_cfs_load(cfs_rq, 0);
983 account_entity_enqueue(cfs_rq, se);
984 update_cfs_shares(cfs_rq);
986 if (flags & ENQUEUE_WAKEUP) {
987 place_entity(cfs_rq, se, 0);
988 enqueue_sleeper(cfs_rq, se);
991 update_stats_enqueue(cfs_rq, se);
992 check_spread(cfs_rq, se);
993 if (se != cfs_rq->curr)
994 __enqueue_entity(cfs_rq, se);
995 se->on_rq = 1;
997 if (cfs_rq->nr_running == 1)
998 list_add_leaf_cfs_rq(cfs_rq);
1001 static void __clear_buddies_last(struct sched_entity *se)
1003 for_each_sched_entity(se) {
1004 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1005 if (cfs_rq->last == se)
1006 cfs_rq->last = NULL;
1007 else
1008 break;
1012 static void __clear_buddies_next(struct sched_entity *se)
1014 for_each_sched_entity(se) {
1015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1016 if (cfs_rq->next == se)
1017 cfs_rq->next = NULL;
1018 else
1019 break;
1023 static void __clear_buddies_skip(struct sched_entity *se)
1025 for_each_sched_entity(se) {
1026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1027 if (cfs_rq->skip == se)
1028 cfs_rq->skip = NULL;
1029 else
1030 break;
1034 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1036 if (cfs_rq->last == se)
1037 __clear_buddies_last(se);
1039 if (cfs_rq->next == se)
1040 __clear_buddies_next(se);
1042 if (cfs_rq->skip == se)
1043 __clear_buddies_skip(se);
1046 static void
1047 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1050 * Update run-time statistics of the 'current'.
1052 update_curr(cfs_rq);
1054 update_stats_dequeue(cfs_rq, se);
1055 if (flags & DEQUEUE_SLEEP) {
1056 #ifdef CONFIG_SCHEDSTATS
1057 if (entity_is_task(se)) {
1058 struct task_struct *tsk = task_of(se);
1060 if (tsk->state & TASK_INTERRUPTIBLE)
1061 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1062 if (tsk->state & TASK_UNINTERRUPTIBLE)
1063 se->statistics.block_start = rq_of(cfs_rq)->clock;
1065 #endif
1068 clear_buddies(cfs_rq, se);
1070 if (se != cfs_rq->curr)
1071 __dequeue_entity(cfs_rq, se);
1072 se->on_rq = 0;
1073 update_cfs_load(cfs_rq, 0);
1074 account_entity_dequeue(cfs_rq, se);
1075 update_min_vruntime(cfs_rq);
1076 update_cfs_shares(cfs_rq);
1079 * Normalize the entity after updating the min_vruntime because the
1080 * update can refer to the ->curr item and we need to reflect this
1081 * movement in our normalized position.
1083 if (!(flags & DEQUEUE_SLEEP))
1084 se->vruntime -= cfs_rq->min_vruntime;
1088 * Preempt the current task with a newly woken task if needed:
1090 static void
1091 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1093 unsigned long ideal_runtime, delta_exec;
1095 ideal_runtime = sched_slice(cfs_rq, curr);
1096 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1097 if (delta_exec > ideal_runtime) {
1098 resched_task(rq_of(cfs_rq)->curr);
1100 * The current task ran long enough, ensure it doesn't get
1101 * re-elected due to buddy favours.
1103 clear_buddies(cfs_rq, curr);
1104 return;
1108 * Ensure that a task that missed wakeup preemption by a
1109 * narrow margin doesn't have to wait for a full slice.
1110 * This also mitigates buddy induced latencies under load.
1112 if (!sched_feat(WAKEUP_PREEMPT))
1113 return;
1115 if (delta_exec < sysctl_sched_min_granularity)
1116 return;
1118 if (cfs_rq->nr_running > 1) {
1119 struct sched_entity *se = __pick_first_entity(cfs_rq);
1120 s64 delta = curr->vruntime - se->vruntime;
1122 if (delta < 0)
1123 return;
1125 if (delta > ideal_runtime)
1126 resched_task(rq_of(cfs_rq)->curr);
1130 static void
1131 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1133 /* 'current' is not kept within the tree. */
1134 if (se->on_rq) {
1136 * Any task has to be enqueued before it get to execute on
1137 * a CPU. So account for the time it spent waiting on the
1138 * runqueue.
1140 update_stats_wait_end(cfs_rq, se);
1141 __dequeue_entity(cfs_rq, se);
1144 update_stats_curr_start(cfs_rq, se);
1145 cfs_rq->curr = se;
1146 #ifdef CONFIG_SCHEDSTATS
1148 * Track our maximum slice length, if the CPU's load is at
1149 * least twice that of our own weight (i.e. dont track it
1150 * when there are only lesser-weight tasks around):
1152 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1153 se->statistics.slice_max = max(se->statistics.slice_max,
1154 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1156 #endif
1157 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1160 static int
1161 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1164 * Pick the next process, keeping these things in mind, in this order:
1165 * 1) keep things fair between processes/task groups
1166 * 2) pick the "next" process, since someone really wants that to run
1167 * 3) pick the "last" process, for cache locality
1168 * 4) do not run the "skip" process, if something else is available
1170 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1172 struct sched_entity *se = __pick_first_entity(cfs_rq);
1173 struct sched_entity *left = se;
1176 * Avoid running the skip buddy, if running something else can
1177 * be done without getting too unfair.
1179 if (cfs_rq->skip == se) {
1180 struct sched_entity *second = __pick_next_entity(se);
1181 if (second && wakeup_preempt_entity(second, left) < 1)
1182 se = second;
1186 * Prefer last buddy, try to return the CPU to a preempted task.
1188 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1189 se = cfs_rq->last;
1192 * Someone really wants this to run. If it's not unfair, run it.
1194 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1195 se = cfs_rq->next;
1197 clear_buddies(cfs_rq, se);
1199 return se;
1202 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1205 * If still on the runqueue then deactivate_task()
1206 * was not called and update_curr() has to be done:
1208 if (prev->on_rq)
1209 update_curr(cfs_rq);
1211 check_spread(cfs_rq, prev);
1212 if (prev->on_rq) {
1213 update_stats_wait_start(cfs_rq, prev);
1214 /* Put 'current' back into the tree. */
1215 __enqueue_entity(cfs_rq, prev);
1217 cfs_rq->curr = NULL;
1220 static void
1221 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1224 * Update run-time statistics of the 'current'.
1226 update_curr(cfs_rq);
1229 * Update share accounting for long-running entities.
1231 update_entity_shares_tick(cfs_rq);
1233 #ifdef CONFIG_SCHED_HRTICK
1235 * queued ticks are scheduled to match the slice, so don't bother
1236 * validating it and just reschedule.
1238 if (queued) {
1239 resched_task(rq_of(cfs_rq)->curr);
1240 return;
1243 * don't let the period tick interfere with the hrtick preemption
1245 if (!sched_feat(DOUBLE_TICK) &&
1246 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1247 return;
1248 #endif
1250 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1251 check_preempt_tick(cfs_rq, curr);
1254 /**************************************************
1255 * CFS operations on tasks:
1258 #ifdef CONFIG_SCHED_HRTICK
1259 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1261 struct sched_entity *se = &p->se;
1262 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1264 WARN_ON(task_rq(p) != rq);
1266 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1267 u64 slice = sched_slice(cfs_rq, se);
1268 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1269 s64 delta = slice - ran;
1271 if (delta < 0) {
1272 if (rq->curr == p)
1273 resched_task(p);
1274 return;
1278 * Don't schedule slices shorter than 10000ns, that just
1279 * doesn't make sense. Rely on vruntime for fairness.
1281 if (rq->curr != p)
1282 delta = max_t(s64, 10000LL, delta);
1284 hrtick_start(rq, delta);
1289 * called from enqueue/dequeue and updates the hrtick when the
1290 * current task is from our class and nr_running is low enough
1291 * to matter.
1293 static void hrtick_update(struct rq *rq)
1295 struct task_struct *curr = rq->curr;
1297 if (curr->sched_class != &fair_sched_class)
1298 return;
1300 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1301 hrtick_start_fair(rq, curr);
1303 #else /* !CONFIG_SCHED_HRTICK */
1304 static inline void
1305 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1309 static inline void hrtick_update(struct rq *rq)
1312 #endif
1315 * The enqueue_task method is called before nr_running is
1316 * increased. Here we update the fair scheduling stats and
1317 * then put the task into the rbtree:
1319 static void
1320 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1322 struct cfs_rq *cfs_rq;
1323 struct sched_entity *se = &p->se;
1325 for_each_sched_entity(se) {
1326 if (se->on_rq)
1327 break;
1328 cfs_rq = cfs_rq_of(se);
1329 enqueue_entity(cfs_rq, se, flags);
1330 flags = ENQUEUE_WAKEUP;
1333 for_each_sched_entity(se) {
1334 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1336 update_cfs_load(cfs_rq, 0);
1337 update_cfs_shares(cfs_rq);
1340 hrtick_update(rq);
1344 * The dequeue_task method is called before nr_running is
1345 * decreased. We remove the task from the rbtree and
1346 * update the fair scheduling stats:
1348 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1350 struct cfs_rq *cfs_rq;
1351 struct sched_entity *se = &p->se;
1353 for_each_sched_entity(se) {
1354 cfs_rq = cfs_rq_of(se);
1355 dequeue_entity(cfs_rq, se, flags);
1357 /* Don't dequeue parent if it has other entities besides us */
1358 if (cfs_rq->load.weight)
1359 break;
1360 flags |= DEQUEUE_SLEEP;
1363 for_each_sched_entity(se) {
1364 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1366 update_cfs_load(cfs_rq, 0);
1367 update_cfs_shares(cfs_rq);
1370 hrtick_update(rq);
1373 #ifdef CONFIG_SMP
1375 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1377 struct sched_entity *se = &p->se;
1378 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1380 se->vruntime -= cfs_rq->min_vruntime;
1383 #ifdef CONFIG_FAIR_GROUP_SCHED
1385 * effective_load() calculates the load change as seen from the root_task_group
1387 * Adding load to a group doesn't make a group heavier, but can cause movement
1388 * of group shares between cpus. Assuming the shares were perfectly aligned one
1389 * can calculate the shift in shares.
1391 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1393 struct sched_entity *se = tg->se[cpu];
1395 if (!tg->parent)
1396 return wl;
1398 for_each_sched_entity(se) {
1399 long lw, w;
1401 tg = se->my_q->tg;
1402 w = se->my_q->load.weight;
1404 /* use this cpu's instantaneous contribution */
1405 lw = atomic_read(&tg->load_weight);
1406 lw -= se->my_q->load_contribution;
1407 lw += w + wg;
1409 wl += w;
1411 if (lw > 0 && wl < lw)
1412 wl = (wl * tg->shares) / lw;
1413 else
1414 wl = tg->shares;
1416 /* zero point is MIN_SHARES */
1417 if (wl < MIN_SHARES)
1418 wl = MIN_SHARES;
1419 wl -= se->load.weight;
1420 wg = 0;
1423 return wl;
1426 #else
1428 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1429 unsigned long wl, unsigned long wg)
1431 return wl;
1434 #endif
1436 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1438 s64 this_load, load;
1439 int idx, this_cpu, prev_cpu;
1440 unsigned long tl_per_task;
1441 struct task_group *tg;
1442 unsigned long weight;
1443 int balanced;
1445 idx = sd->wake_idx;
1446 this_cpu = smp_processor_id();
1447 prev_cpu = task_cpu(p);
1448 load = source_load(prev_cpu, idx);
1449 this_load = target_load(this_cpu, idx);
1452 * If sync wakeup then subtract the (maximum possible)
1453 * effect of the currently running task from the load
1454 * of the current CPU:
1456 rcu_read_lock();
1457 if (sync) {
1458 tg = task_group(current);
1459 weight = current->se.load.weight;
1461 this_load += effective_load(tg, this_cpu, -weight, -weight);
1462 load += effective_load(tg, prev_cpu, 0, -weight);
1465 tg = task_group(p);
1466 weight = p->se.load.weight;
1469 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1470 * due to the sync cause above having dropped this_load to 0, we'll
1471 * always have an imbalance, but there's really nothing you can do
1472 * about that, so that's good too.
1474 * Otherwise check if either cpus are near enough in load to allow this
1475 * task to be woken on this_cpu.
1477 if (this_load > 0) {
1478 s64 this_eff_load, prev_eff_load;
1480 this_eff_load = 100;
1481 this_eff_load *= power_of(prev_cpu);
1482 this_eff_load *= this_load +
1483 effective_load(tg, this_cpu, weight, weight);
1485 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1486 prev_eff_load *= power_of(this_cpu);
1487 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1489 balanced = this_eff_load <= prev_eff_load;
1490 } else
1491 balanced = true;
1492 rcu_read_unlock();
1495 * If the currently running task will sleep within
1496 * a reasonable amount of time then attract this newly
1497 * woken task:
1499 if (sync && balanced)
1500 return 1;
1502 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1503 tl_per_task = cpu_avg_load_per_task(this_cpu);
1505 if (balanced ||
1506 (this_load <= load &&
1507 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1509 * This domain has SD_WAKE_AFFINE and
1510 * p is cache cold in this domain, and
1511 * there is no bad imbalance.
1513 schedstat_inc(sd, ttwu_move_affine);
1514 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1516 return 1;
1518 return 0;
1522 * find_idlest_group finds and returns the least busy CPU group within the
1523 * domain.
1525 static struct sched_group *
1526 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1527 int this_cpu, int load_idx)
1529 struct sched_group *idlest = NULL, *group = sd->groups;
1530 unsigned long min_load = ULONG_MAX, this_load = 0;
1531 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1533 do {
1534 unsigned long load, avg_load;
1535 int local_group;
1536 int i;
1538 /* Skip over this group if it has no CPUs allowed */
1539 if (!cpumask_intersects(sched_group_cpus(group),
1540 &p->cpus_allowed))
1541 continue;
1543 local_group = cpumask_test_cpu(this_cpu,
1544 sched_group_cpus(group));
1546 /* Tally up the load of all CPUs in the group */
1547 avg_load = 0;
1549 for_each_cpu(i, sched_group_cpus(group)) {
1550 /* Bias balancing toward cpus of our domain */
1551 if (local_group)
1552 load = source_load(i, load_idx);
1553 else
1554 load = target_load(i, load_idx);
1556 avg_load += load;
1559 /* Adjust by relative CPU power of the group */
1560 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1562 if (local_group) {
1563 this_load = avg_load;
1564 } else if (avg_load < min_load) {
1565 min_load = avg_load;
1566 idlest = group;
1568 } while (group = group->next, group != sd->groups);
1570 if (!idlest || 100*this_load < imbalance*min_load)
1571 return NULL;
1572 return idlest;
1576 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1578 static int
1579 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1581 unsigned long load, min_load = ULONG_MAX;
1582 int idlest = -1;
1583 int i;
1585 /* Traverse only the allowed CPUs */
1586 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1587 load = weighted_cpuload(i);
1589 if (load < min_load || (load == min_load && i == this_cpu)) {
1590 min_load = load;
1591 idlest = i;
1595 return idlest;
1599 * Try and locate an idle CPU in the sched_domain.
1601 static int select_idle_sibling(struct task_struct *p, int target)
1603 int cpu = smp_processor_id();
1604 int prev_cpu = task_cpu(p);
1605 struct sched_domain *sd;
1606 int i;
1609 * If the task is going to be woken-up on this cpu and if it is
1610 * already idle, then it is the right target.
1612 if (target == cpu && idle_cpu(cpu))
1613 return cpu;
1616 * If the task is going to be woken-up on the cpu where it previously
1617 * ran and if it is currently idle, then it the right target.
1619 if (target == prev_cpu && idle_cpu(prev_cpu))
1620 return prev_cpu;
1623 * Otherwise, iterate the domains and find an elegible idle cpu.
1625 for_each_domain(target, sd) {
1626 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1627 break;
1629 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1630 if (idle_cpu(i)) {
1631 target = i;
1632 break;
1637 * Lets stop looking for an idle sibling when we reached
1638 * the domain that spans the current cpu and prev_cpu.
1640 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1641 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1642 break;
1645 return target;
1649 * sched_balance_self: balance the current task (running on cpu) in domains
1650 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1651 * SD_BALANCE_EXEC.
1653 * Balance, ie. select the least loaded group.
1655 * Returns the target CPU number, or the same CPU if no balancing is needed.
1657 * preempt must be disabled.
1659 static int
1660 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1662 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1663 int cpu = smp_processor_id();
1664 int prev_cpu = task_cpu(p);
1665 int new_cpu = cpu;
1666 int want_affine = 0;
1667 int want_sd = 1;
1668 int sync = wake_flags & WF_SYNC;
1670 if (sd_flag & SD_BALANCE_WAKE) {
1671 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1672 want_affine = 1;
1673 new_cpu = prev_cpu;
1676 for_each_domain(cpu, tmp) {
1677 if (!(tmp->flags & SD_LOAD_BALANCE))
1678 continue;
1681 * If power savings logic is enabled for a domain, see if we
1682 * are not overloaded, if so, don't balance wider.
1684 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1685 unsigned long power = 0;
1686 unsigned long nr_running = 0;
1687 unsigned long capacity;
1688 int i;
1690 for_each_cpu(i, sched_domain_span(tmp)) {
1691 power += power_of(i);
1692 nr_running += cpu_rq(i)->cfs.nr_running;
1695 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1697 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1698 nr_running /= 2;
1700 if (nr_running < capacity)
1701 want_sd = 0;
1705 * If both cpu and prev_cpu are part of this domain,
1706 * cpu is a valid SD_WAKE_AFFINE target.
1708 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1709 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1710 affine_sd = tmp;
1711 want_affine = 0;
1714 if (!want_sd && !want_affine)
1715 break;
1717 if (!(tmp->flags & sd_flag))
1718 continue;
1720 if (want_sd)
1721 sd = tmp;
1724 if (affine_sd) {
1725 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1726 return select_idle_sibling(p, cpu);
1727 else
1728 return select_idle_sibling(p, prev_cpu);
1731 while (sd) {
1732 int load_idx = sd->forkexec_idx;
1733 struct sched_group *group;
1734 int weight;
1736 if (!(sd->flags & sd_flag)) {
1737 sd = sd->child;
1738 continue;
1741 if (sd_flag & SD_BALANCE_WAKE)
1742 load_idx = sd->wake_idx;
1744 group = find_idlest_group(sd, p, cpu, load_idx);
1745 if (!group) {
1746 sd = sd->child;
1747 continue;
1750 new_cpu = find_idlest_cpu(group, p, cpu);
1751 if (new_cpu == -1 || new_cpu == cpu) {
1752 /* Now try balancing at a lower domain level of cpu */
1753 sd = sd->child;
1754 continue;
1757 /* Now try balancing at a lower domain level of new_cpu */
1758 cpu = new_cpu;
1759 weight = sd->span_weight;
1760 sd = NULL;
1761 for_each_domain(cpu, tmp) {
1762 if (weight <= tmp->span_weight)
1763 break;
1764 if (tmp->flags & sd_flag)
1765 sd = tmp;
1767 /* while loop will break here if sd == NULL */
1770 return new_cpu;
1772 #endif /* CONFIG_SMP */
1774 static unsigned long
1775 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1777 unsigned long gran = sysctl_sched_wakeup_granularity;
1780 * Since its curr running now, convert the gran from real-time
1781 * to virtual-time in his units.
1783 * By using 'se' instead of 'curr' we penalize light tasks, so
1784 * they get preempted easier. That is, if 'se' < 'curr' then
1785 * the resulting gran will be larger, therefore penalizing the
1786 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1787 * be smaller, again penalizing the lighter task.
1789 * This is especially important for buddies when the leftmost
1790 * task is higher priority than the buddy.
1792 return calc_delta_fair(gran, se);
1796 * Should 'se' preempt 'curr'.
1798 * |s1
1799 * |s2
1800 * |s3
1802 * |<--->|c
1804 * w(c, s1) = -1
1805 * w(c, s2) = 0
1806 * w(c, s3) = 1
1809 static int
1810 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1812 s64 gran, vdiff = curr->vruntime - se->vruntime;
1814 if (vdiff <= 0)
1815 return -1;
1817 gran = wakeup_gran(curr, se);
1818 if (vdiff > gran)
1819 return 1;
1821 return 0;
1824 static void set_last_buddy(struct sched_entity *se)
1826 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1827 for_each_sched_entity(se)
1828 cfs_rq_of(se)->last = se;
1832 static void set_next_buddy(struct sched_entity *se)
1834 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1835 for_each_sched_entity(se)
1836 cfs_rq_of(se)->next = se;
1840 static void set_skip_buddy(struct sched_entity *se)
1842 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1843 for_each_sched_entity(se)
1844 cfs_rq_of(se)->skip = se;
1849 * Preempt the current task with a newly woken task if needed:
1851 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1853 struct task_struct *curr = rq->curr;
1854 struct sched_entity *se = &curr->se, *pse = &p->se;
1855 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1856 int scale = cfs_rq->nr_running >= sched_nr_latency;
1858 if (unlikely(se == pse))
1859 return;
1861 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1862 set_next_buddy(pse);
1865 * We can come here with TIF_NEED_RESCHED already set from new task
1866 * wake up path.
1868 if (test_tsk_need_resched(curr))
1869 return;
1871 /* Idle tasks are by definition preempted by non-idle tasks. */
1872 if (unlikely(curr->policy == SCHED_IDLE) &&
1873 likely(p->policy != SCHED_IDLE))
1874 goto preempt;
1877 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1878 * is driven by the tick):
1880 if (unlikely(p->policy != SCHED_NORMAL))
1881 return;
1884 if (!sched_feat(WAKEUP_PREEMPT))
1885 return;
1887 update_curr(cfs_rq);
1888 find_matching_se(&se, &pse);
1889 BUG_ON(!pse);
1890 if (wakeup_preempt_entity(se, pse) == 1)
1891 goto preempt;
1893 return;
1895 preempt:
1896 resched_task(curr);
1898 * Only set the backward buddy when the current task is still
1899 * on the rq. This can happen when a wakeup gets interleaved
1900 * with schedule on the ->pre_schedule() or idle_balance()
1901 * point, either of which can * drop the rq lock.
1903 * Also, during early boot the idle thread is in the fair class,
1904 * for obvious reasons its a bad idea to schedule back to it.
1906 if (unlikely(!se->on_rq || curr == rq->idle))
1907 return;
1909 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1910 set_last_buddy(se);
1913 static struct task_struct *pick_next_task_fair(struct rq *rq)
1915 struct task_struct *p;
1916 struct cfs_rq *cfs_rq = &rq->cfs;
1917 struct sched_entity *se;
1919 if (!cfs_rq->nr_running)
1920 return NULL;
1922 do {
1923 se = pick_next_entity(cfs_rq);
1924 set_next_entity(cfs_rq, se);
1925 cfs_rq = group_cfs_rq(se);
1926 } while (cfs_rq);
1928 p = task_of(se);
1929 hrtick_start_fair(rq, p);
1931 return p;
1935 * Account for a descheduled task:
1937 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1939 struct sched_entity *se = &prev->se;
1940 struct cfs_rq *cfs_rq;
1942 for_each_sched_entity(se) {
1943 cfs_rq = cfs_rq_of(se);
1944 put_prev_entity(cfs_rq, se);
1949 * sched_yield() is very simple
1951 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1953 static void yield_task_fair(struct rq *rq)
1955 struct task_struct *curr = rq->curr;
1956 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1957 struct sched_entity *se = &curr->se;
1960 * Are we the only task in the tree?
1962 if (unlikely(rq->nr_running == 1))
1963 return;
1965 clear_buddies(cfs_rq, se);
1967 if (curr->policy != SCHED_BATCH) {
1968 update_rq_clock(rq);
1970 * Update run-time statistics of the 'current'.
1972 update_curr(cfs_rq);
1975 set_skip_buddy(se);
1978 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
1980 struct sched_entity *se = &p->se;
1982 if (!se->on_rq)
1983 return false;
1985 /* Tell the scheduler that we'd really like pse to run next. */
1986 set_next_buddy(se);
1988 yield_task_fair(rq);
1990 return true;
1993 #ifdef CONFIG_SMP
1994 /**************************************************
1995 * Fair scheduling class load-balancing methods:
1999 * pull_task - move a task from a remote runqueue to the local runqueue.
2000 * Both runqueues must be locked.
2002 static void pull_task(struct rq *src_rq, struct task_struct *p,
2003 struct rq *this_rq, int this_cpu)
2005 deactivate_task(src_rq, p, 0);
2006 set_task_cpu(p, this_cpu);
2007 activate_task(this_rq, p, 0);
2008 check_preempt_curr(this_rq, p, 0);
2012 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2014 static
2015 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2016 struct sched_domain *sd, enum cpu_idle_type idle,
2017 int *all_pinned)
2019 int tsk_cache_hot = 0;
2021 * We do not migrate tasks that are:
2022 * 1) running (obviously), or
2023 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2024 * 3) are cache-hot on their current CPU.
2026 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2027 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2028 return 0;
2030 *all_pinned = 0;
2032 if (task_running(rq, p)) {
2033 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2034 return 0;
2038 * Aggressive migration if:
2039 * 1) task is cache cold, or
2040 * 2) too many balance attempts have failed.
2043 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2044 if (!tsk_cache_hot ||
2045 sd->nr_balance_failed > sd->cache_nice_tries) {
2046 #ifdef CONFIG_SCHEDSTATS
2047 if (tsk_cache_hot) {
2048 schedstat_inc(sd, lb_hot_gained[idle]);
2049 schedstat_inc(p, se.statistics.nr_forced_migrations);
2051 #endif
2052 return 1;
2055 if (tsk_cache_hot) {
2056 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2057 return 0;
2059 return 1;
2063 * move_one_task tries to move exactly one task from busiest to this_rq, as
2064 * part of active balancing operations within "domain".
2065 * Returns 1 if successful and 0 otherwise.
2067 * Called with both runqueues locked.
2069 static int
2070 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2071 struct sched_domain *sd, enum cpu_idle_type idle)
2073 struct task_struct *p, *n;
2074 struct cfs_rq *cfs_rq;
2075 int pinned = 0;
2077 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2078 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2080 if (!can_migrate_task(p, busiest, this_cpu,
2081 sd, idle, &pinned))
2082 continue;
2084 pull_task(busiest, p, this_rq, this_cpu);
2086 * Right now, this is only the second place pull_task()
2087 * is called, so we can safely collect pull_task()
2088 * stats here rather than inside pull_task().
2090 schedstat_inc(sd, lb_gained[idle]);
2091 return 1;
2095 return 0;
2098 static unsigned long
2099 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2100 unsigned long max_load_move, struct sched_domain *sd,
2101 enum cpu_idle_type idle, int *all_pinned,
2102 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2104 int loops = 0, pulled = 0;
2105 long rem_load_move = max_load_move;
2106 struct task_struct *p, *n;
2108 if (max_load_move == 0)
2109 goto out;
2111 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2112 if (loops++ > sysctl_sched_nr_migrate)
2113 break;
2115 if ((p->se.load.weight >> 1) > rem_load_move ||
2116 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2117 all_pinned))
2118 continue;
2120 pull_task(busiest, p, this_rq, this_cpu);
2121 pulled++;
2122 rem_load_move -= p->se.load.weight;
2124 #ifdef CONFIG_PREEMPT
2126 * NEWIDLE balancing is a source of latency, so preemptible
2127 * kernels will stop after the first task is pulled to minimize
2128 * the critical section.
2130 if (idle == CPU_NEWLY_IDLE)
2131 break;
2132 #endif
2135 * We only want to steal up to the prescribed amount of
2136 * weighted load.
2138 if (rem_load_move <= 0)
2139 break;
2141 if (p->prio < *this_best_prio)
2142 *this_best_prio = p->prio;
2144 out:
2146 * Right now, this is one of only two places pull_task() is called,
2147 * so we can safely collect pull_task() stats here rather than
2148 * inside pull_task().
2150 schedstat_add(sd, lb_gained[idle], pulled);
2152 return max_load_move - rem_load_move;
2155 #ifdef CONFIG_FAIR_GROUP_SCHED
2157 * update tg->load_weight by folding this cpu's load_avg
2159 static int update_shares_cpu(struct task_group *tg, int cpu)
2161 struct cfs_rq *cfs_rq;
2162 unsigned long flags;
2163 struct rq *rq;
2165 if (!tg->se[cpu])
2166 return 0;
2168 rq = cpu_rq(cpu);
2169 cfs_rq = tg->cfs_rq[cpu];
2171 raw_spin_lock_irqsave(&rq->lock, flags);
2173 update_rq_clock(rq);
2174 update_cfs_load(cfs_rq, 1);
2177 * We need to update shares after updating tg->load_weight in
2178 * order to adjust the weight of groups with long running tasks.
2180 update_cfs_shares(cfs_rq);
2182 raw_spin_unlock_irqrestore(&rq->lock, flags);
2184 return 0;
2187 static void update_shares(int cpu)
2189 struct cfs_rq *cfs_rq;
2190 struct rq *rq = cpu_rq(cpu);
2192 rcu_read_lock();
2193 for_each_leaf_cfs_rq(rq, cfs_rq)
2194 update_shares_cpu(cfs_rq->tg, cpu);
2195 rcu_read_unlock();
2198 static unsigned long
2199 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2200 unsigned long max_load_move,
2201 struct sched_domain *sd, enum cpu_idle_type idle,
2202 int *all_pinned, int *this_best_prio)
2204 long rem_load_move = max_load_move;
2205 int busiest_cpu = cpu_of(busiest);
2206 struct task_group *tg;
2208 rcu_read_lock();
2209 update_h_load(busiest_cpu);
2211 list_for_each_entry_rcu(tg, &task_groups, list) {
2212 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2213 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2214 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2215 u64 rem_load, moved_load;
2218 * empty group
2220 if (!busiest_cfs_rq->task_weight)
2221 continue;
2223 rem_load = (u64)rem_load_move * busiest_weight;
2224 rem_load = div_u64(rem_load, busiest_h_load + 1);
2226 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2227 rem_load, sd, idle, all_pinned, this_best_prio,
2228 busiest_cfs_rq);
2230 if (!moved_load)
2231 continue;
2233 moved_load *= busiest_h_load;
2234 moved_load = div_u64(moved_load, busiest_weight + 1);
2236 rem_load_move -= moved_load;
2237 if (rem_load_move < 0)
2238 break;
2240 rcu_read_unlock();
2242 return max_load_move - rem_load_move;
2244 #else
2245 static inline void update_shares(int cpu)
2249 static unsigned long
2250 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2251 unsigned long max_load_move,
2252 struct sched_domain *sd, enum cpu_idle_type idle,
2253 int *all_pinned, int *this_best_prio)
2255 return balance_tasks(this_rq, this_cpu, busiest,
2256 max_load_move, sd, idle, all_pinned,
2257 this_best_prio, &busiest->cfs);
2259 #endif
2262 * move_tasks tries to move up to max_load_move weighted load from busiest to
2263 * this_rq, as part of a balancing operation within domain "sd".
2264 * Returns 1 if successful and 0 otherwise.
2266 * Called with both runqueues locked.
2268 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2269 unsigned long max_load_move,
2270 struct sched_domain *sd, enum cpu_idle_type idle,
2271 int *all_pinned)
2273 unsigned long total_load_moved = 0, load_moved;
2274 int this_best_prio = this_rq->curr->prio;
2276 do {
2277 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2278 max_load_move - total_load_moved,
2279 sd, idle, all_pinned, &this_best_prio);
2281 total_load_moved += load_moved;
2283 #ifdef CONFIG_PREEMPT
2285 * NEWIDLE balancing is a source of latency, so preemptible
2286 * kernels will stop after the first task is pulled to minimize
2287 * the critical section.
2289 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2290 break;
2292 if (raw_spin_is_contended(&this_rq->lock) ||
2293 raw_spin_is_contended(&busiest->lock))
2294 break;
2295 #endif
2296 } while (load_moved && max_load_move > total_load_moved);
2298 return total_load_moved > 0;
2301 /********** Helpers for find_busiest_group ************************/
2303 * sd_lb_stats - Structure to store the statistics of a sched_domain
2304 * during load balancing.
2306 struct sd_lb_stats {
2307 struct sched_group *busiest; /* Busiest group in this sd */
2308 struct sched_group *this; /* Local group in this sd */
2309 unsigned long total_load; /* Total load of all groups in sd */
2310 unsigned long total_pwr; /* Total power of all groups in sd */
2311 unsigned long avg_load; /* Average load across all groups in sd */
2313 /** Statistics of this group */
2314 unsigned long this_load;
2315 unsigned long this_load_per_task;
2316 unsigned long this_nr_running;
2317 unsigned long this_has_capacity;
2318 unsigned int this_idle_cpus;
2320 /* Statistics of the busiest group */
2321 unsigned int busiest_idle_cpus;
2322 unsigned long max_load;
2323 unsigned long busiest_load_per_task;
2324 unsigned long busiest_nr_running;
2325 unsigned long busiest_group_capacity;
2326 unsigned long busiest_has_capacity;
2327 unsigned int busiest_group_weight;
2329 int group_imb; /* Is there imbalance in this sd */
2330 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2331 int power_savings_balance; /* Is powersave balance needed for this sd */
2332 struct sched_group *group_min; /* Least loaded group in sd */
2333 struct sched_group *group_leader; /* Group which relieves group_min */
2334 unsigned long min_load_per_task; /* load_per_task in group_min */
2335 unsigned long leader_nr_running; /* Nr running of group_leader */
2336 unsigned long min_nr_running; /* Nr running of group_min */
2337 #endif
2341 * sg_lb_stats - stats of a sched_group required for load_balancing
2343 struct sg_lb_stats {
2344 unsigned long avg_load; /*Avg load across the CPUs of the group */
2345 unsigned long group_load; /* Total load over the CPUs of the group */
2346 unsigned long sum_nr_running; /* Nr tasks running in the group */
2347 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2348 unsigned long group_capacity;
2349 unsigned long idle_cpus;
2350 unsigned long group_weight;
2351 int group_imb; /* Is there an imbalance in the group ? */
2352 int group_has_capacity; /* Is there extra capacity in the group? */
2356 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2357 * @group: The group whose first cpu is to be returned.
2359 static inline unsigned int group_first_cpu(struct sched_group *group)
2361 return cpumask_first(sched_group_cpus(group));
2365 * get_sd_load_idx - Obtain the load index for a given sched domain.
2366 * @sd: The sched_domain whose load_idx is to be obtained.
2367 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2369 static inline int get_sd_load_idx(struct sched_domain *sd,
2370 enum cpu_idle_type idle)
2372 int load_idx;
2374 switch (idle) {
2375 case CPU_NOT_IDLE:
2376 load_idx = sd->busy_idx;
2377 break;
2379 case CPU_NEWLY_IDLE:
2380 load_idx = sd->newidle_idx;
2381 break;
2382 default:
2383 load_idx = sd->idle_idx;
2384 break;
2387 return load_idx;
2391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2393 * init_sd_power_savings_stats - Initialize power savings statistics for
2394 * the given sched_domain, during load balancing.
2396 * @sd: Sched domain whose power-savings statistics are to be initialized.
2397 * @sds: Variable containing the statistics for sd.
2398 * @idle: Idle status of the CPU at which we're performing load-balancing.
2400 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2401 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2404 * Busy processors will not participate in power savings
2405 * balance.
2407 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2408 sds->power_savings_balance = 0;
2409 else {
2410 sds->power_savings_balance = 1;
2411 sds->min_nr_running = ULONG_MAX;
2412 sds->leader_nr_running = 0;
2417 * update_sd_power_savings_stats - Update the power saving stats for a
2418 * sched_domain while performing load balancing.
2420 * @group: sched_group belonging to the sched_domain under consideration.
2421 * @sds: Variable containing the statistics of the sched_domain
2422 * @local_group: Does group contain the CPU for which we're performing
2423 * load balancing ?
2424 * @sgs: Variable containing the statistics of the group.
2426 static inline void update_sd_power_savings_stats(struct sched_group *group,
2427 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2430 if (!sds->power_savings_balance)
2431 return;
2434 * If the local group is idle or completely loaded
2435 * no need to do power savings balance at this domain
2437 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2438 !sds->this_nr_running))
2439 sds->power_savings_balance = 0;
2442 * If a group is already running at full capacity or idle,
2443 * don't include that group in power savings calculations
2445 if (!sds->power_savings_balance ||
2446 sgs->sum_nr_running >= sgs->group_capacity ||
2447 !sgs->sum_nr_running)
2448 return;
2451 * Calculate the group which has the least non-idle load.
2452 * This is the group from where we need to pick up the load
2453 * for saving power
2455 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2456 (sgs->sum_nr_running == sds->min_nr_running &&
2457 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2458 sds->group_min = group;
2459 sds->min_nr_running = sgs->sum_nr_running;
2460 sds->min_load_per_task = sgs->sum_weighted_load /
2461 sgs->sum_nr_running;
2465 * Calculate the group which is almost near its
2466 * capacity but still has some space to pick up some load
2467 * from other group and save more power
2469 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2470 return;
2472 if (sgs->sum_nr_running > sds->leader_nr_running ||
2473 (sgs->sum_nr_running == sds->leader_nr_running &&
2474 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2475 sds->group_leader = group;
2476 sds->leader_nr_running = sgs->sum_nr_running;
2481 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2482 * @sds: Variable containing the statistics of the sched_domain
2483 * under consideration.
2484 * @this_cpu: Cpu at which we're currently performing load-balancing.
2485 * @imbalance: Variable to store the imbalance.
2487 * Description:
2488 * Check if we have potential to perform some power-savings balance.
2489 * If yes, set the busiest group to be the least loaded group in the
2490 * sched_domain, so that it's CPUs can be put to idle.
2492 * Returns 1 if there is potential to perform power-savings balance.
2493 * Else returns 0.
2495 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2496 int this_cpu, unsigned long *imbalance)
2498 if (!sds->power_savings_balance)
2499 return 0;
2501 if (sds->this != sds->group_leader ||
2502 sds->group_leader == sds->group_min)
2503 return 0;
2505 *imbalance = sds->min_load_per_task;
2506 sds->busiest = sds->group_min;
2508 return 1;
2511 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2512 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2513 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2515 return;
2518 static inline void update_sd_power_savings_stats(struct sched_group *group,
2519 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2521 return;
2524 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2525 int this_cpu, unsigned long *imbalance)
2527 return 0;
2529 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2532 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2534 return SCHED_LOAD_SCALE;
2537 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2539 return default_scale_freq_power(sd, cpu);
2542 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2544 unsigned long weight = sd->span_weight;
2545 unsigned long smt_gain = sd->smt_gain;
2547 smt_gain /= weight;
2549 return smt_gain;
2552 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2554 return default_scale_smt_power(sd, cpu);
2557 unsigned long scale_rt_power(int cpu)
2559 struct rq *rq = cpu_rq(cpu);
2560 u64 total, available;
2562 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2564 if (unlikely(total < rq->rt_avg)) {
2565 /* Ensures that power won't end up being negative */
2566 available = 0;
2567 } else {
2568 available = total - rq->rt_avg;
2571 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2572 total = SCHED_LOAD_SCALE;
2574 total >>= SCHED_LOAD_SHIFT;
2576 return div_u64(available, total);
2579 static void update_cpu_power(struct sched_domain *sd, int cpu)
2581 unsigned long weight = sd->span_weight;
2582 unsigned long power = SCHED_LOAD_SCALE;
2583 struct sched_group *sdg = sd->groups;
2585 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2586 if (sched_feat(ARCH_POWER))
2587 power *= arch_scale_smt_power(sd, cpu);
2588 else
2589 power *= default_scale_smt_power(sd, cpu);
2591 power >>= SCHED_LOAD_SHIFT;
2594 sdg->cpu_power_orig = power;
2596 if (sched_feat(ARCH_POWER))
2597 power *= arch_scale_freq_power(sd, cpu);
2598 else
2599 power *= default_scale_freq_power(sd, cpu);
2601 power >>= SCHED_LOAD_SHIFT;
2603 power *= scale_rt_power(cpu);
2604 power >>= SCHED_LOAD_SHIFT;
2606 if (!power)
2607 power = 1;
2609 cpu_rq(cpu)->cpu_power = power;
2610 sdg->cpu_power = power;
2613 static void update_group_power(struct sched_domain *sd, int cpu)
2615 struct sched_domain *child = sd->child;
2616 struct sched_group *group, *sdg = sd->groups;
2617 unsigned long power;
2619 if (!child) {
2620 update_cpu_power(sd, cpu);
2621 return;
2624 power = 0;
2626 group = child->groups;
2627 do {
2628 power += group->cpu_power;
2629 group = group->next;
2630 } while (group != child->groups);
2632 sdg->cpu_power = power;
2636 * Try and fix up capacity for tiny siblings, this is needed when
2637 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2638 * which on its own isn't powerful enough.
2640 * See update_sd_pick_busiest() and check_asym_packing().
2642 static inline int
2643 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2646 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2648 if (sd->level != SD_LV_SIBLING)
2649 return 0;
2652 * If ~90% of the cpu_power is still there, we're good.
2654 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2655 return 1;
2657 return 0;
2661 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2662 * @sd: The sched_domain whose statistics are to be updated.
2663 * @group: sched_group whose statistics are to be updated.
2664 * @this_cpu: Cpu for which load balance is currently performed.
2665 * @idle: Idle status of this_cpu
2666 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2667 * @local_group: Does group contain this_cpu.
2668 * @cpus: Set of cpus considered for load balancing.
2669 * @balance: Should we balance.
2670 * @sgs: variable to hold the statistics for this group.
2672 static inline void update_sg_lb_stats(struct sched_domain *sd,
2673 struct sched_group *group, int this_cpu,
2674 enum cpu_idle_type idle, int load_idx,
2675 int local_group, const struct cpumask *cpus,
2676 int *balance, struct sg_lb_stats *sgs)
2678 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2679 int i;
2680 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2681 unsigned long avg_load_per_task = 0;
2683 if (local_group)
2684 balance_cpu = group_first_cpu(group);
2686 /* Tally up the load of all CPUs in the group */
2687 max_cpu_load = 0;
2688 min_cpu_load = ~0UL;
2689 max_nr_running = 0;
2691 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2692 struct rq *rq = cpu_rq(i);
2694 /* Bias balancing toward cpus of our domain */
2695 if (local_group) {
2696 if (idle_cpu(i) && !first_idle_cpu) {
2697 first_idle_cpu = 1;
2698 balance_cpu = i;
2701 load = target_load(i, load_idx);
2702 } else {
2703 load = source_load(i, load_idx);
2704 if (load > max_cpu_load) {
2705 max_cpu_load = load;
2706 max_nr_running = rq->nr_running;
2708 if (min_cpu_load > load)
2709 min_cpu_load = load;
2712 sgs->group_load += load;
2713 sgs->sum_nr_running += rq->nr_running;
2714 sgs->sum_weighted_load += weighted_cpuload(i);
2715 if (idle_cpu(i))
2716 sgs->idle_cpus++;
2720 * First idle cpu or the first cpu(busiest) in this sched group
2721 * is eligible for doing load balancing at this and above
2722 * domains. In the newly idle case, we will allow all the cpu's
2723 * to do the newly idle load balance.
2725 if (idle != CPU_NEWLY_IDLE && local_group) {
2726 if (balance_cpu != this_cpu) {
2727 *balance = 0;
2728 return;
2730 update_group_power(sd, this_cpu);
2733 /* Adjust by relative CPU power of the group */
2734 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2737 * Consider the group unbalanced when the imbalance is larger
2738 * than the average weight of a task.
2740 * APZ: with cgroup the avg task weight can vary wildly and
2741 * might not be a suitable number - should we keep a
2742 * normalized nr_running number somewhere that negates
2743 * the hierarchy?
2745 if (sgs->sum_nr_running)
2746 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2748 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2749 sgs->group_imb = 1;
2751 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2752 if (!sgs->group_capacity)
2753 sgs->group_capacity = fix_small_capacity(sd, group);
2754 sgs->group_weight = group->group_weight;
2756 if (sgs->group_capacity > sgs->sum_nr_running)
2757 sgs->group_has_capacity = 1;
2761 * update_sd_pick_busiest - return 1 on busiest group
2762 * @sd: sched_domain whose statistics are to be checked
2763 * @sds: sched_domain statistics
2764 * @sg: sched_group candidate to be checked for being the busiest
2765 * @sgs: sched_group statistics
2766 * @this_cpu: the current cpu
2768 * Determine if @sg is a busier group than the previously selected
2769 * busiest group.
2771 static bool update_sd_pick_busiest(struct sched_domain *sd,
2772 struct sd_lb_stats *sds,
2773 struct sched_group *sg,
2774 struct sg_lb_stats *sgs,
2775 int this_cpu)
2777 if (sgs->avg_load <= sds->max_load)
2778 return false;
2780 if (sgs->sum_nr_running > sgs->group_capacity)
2781 return true;
2783 if (sgs->group_imb)
2784 return true;
2787 * ASYM_PACKING needs to move all the work to the lowest
2788 * numbered CPUs in the group, therefore mark all groups
2789 * higher than ourself as busy.
2791 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2792 this_cpu < group_first_cpu(sg)) {
2793 if (!sds->busiest)
2794 return true;
2796 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2797 return true;
2800 return false;
2804 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2805 * @sd: sched_domain whose statistics are to be updated.
2806 * @this_cpu: Cpu for which load balance is currently performed.
2807 * @idle: Idle status of this_cpu
2808 * @cpus: Set of cpus considered for load balancing.
2809 * @balance: Should we balance.
2810 * @sds: variable to hold the statistics for this sched_domain.
2812 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2813 enum cpu_idle_type idle, const struct cpumask *cpus,
2814 int *balance, struct sd_lb_stats *sds)
2816 struct sched_domain *child = sd->child;
2817 struct sched_group *sg = sd->groups;
2818 struct sg_lb_stats sgs;
2819 int load_idx, prefer_sibling = 0;
2821 if (child && child->flags & SD_PREFER_SIBLING)
2822 prefer_sibling = 1;
2824 init_sd_power_savings_stats(sd, sds, idle);
2825 load_idx = get_sd_load_idx(sd, idle);
2827 do {
2828 int local_group;
2830 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2831 memset(&sgs, 0, sizeof(sgs));
2832 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
2833 local_group, cpus, balance, &sgs);
2835 if (local_group && !(*balance))
2836 return;
2838 sds->total_load += sgs.group_load;
2839 sds->total_pwr += sg->cpu_power;
2842 * In case the child domain prefers tasks go to siblings
2843 * first, lower the sg capacity to one so that we'll try
2844 * and move all the excess tasks away. We lower the capacity
2845 * of a group only if the local group has the capacity to fit
2846 * these excess tasks, i.e. nr_running < group_capacity. The
2847 * extra check prevents the case where you always pull from the
2848 * heaviest group when it is already under-utilized (possible
2849 * with a large weight task outweighs the tasks on the system).
2851 if (prefer_sibling && !local_group && sds->this_has_capacity)
2852 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2854 if (local_group) {
2855 sds->this_load = sgs.avg_load;
2856 sds->this = sg;
2857 sds->this_nr_running = sgs.sum_nr_running;
2858 sds->this_load_per_task = sgs.sum_weighted_load;
2859 sds->this_has_capacity = sgs.group_has_capacity;
2860 sds->this_idle_cpus = sgs.idle_cpus;
2861 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2862 sds->max_load = sgs.avg_load;
2863 sds->busiest = sg;
2864 sds->busiest_nr_running = sgs.sum_nr_running;
2865 sds->busiest_idle_cpus = sgs.idle_cpus;
2866 sds->busiest_group_capacity = sgs.group_capacity;
2867 sds->busiest_load_per_task = sgs.sum_weighted_load;
2868 sds->busiest_has_capacity = sgs.group_has_capacity;
2869 sds->busiest_group_weight = sgs.group_weight;
2870 sds->group_imb = sgs.group_imb;
2873 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2874 sg = sg->next;
2875 } while (sg != sd->groups);
2878 int __weak arch_sd_sibling_asym_packing(void)
2880 return 0*SD_ASYM_PACKING;
2884 * check_asym_packing - Check to see if the group is packed into the
2885 * sched doman.
2887 * This is primarily intended to used at the sibling level. Some
2888 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2889 * case of POWER7, it can move to lower SMT modes only when higher
2890 * threads are idle. When in lower SMT modes, the threads will
2891 * perform better since they share less core resources. Hence when we
2892 * have idle threads, we want them to be the higher ones.
2894 * This packing function is run on idle threads. It checks to see if
2895 * the busiest CPU in this domain (core in the P7 case) has a higher
2896 * CPU number than the packing function is being run on. Here we are
2897 * assuming lower CPU number will be equivalent to lower a SMT thread
2898 * number.
2900 * Returns 1 when packing is required and a task should be moved to
2901 * this CPU. The amount of the imbalance is returned in *imbalance.
2903 * @sd: The sched_domain whose packing is to be checked.
2904 * @sds: Statistics of the sched_domain which is to be packed
2905 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2906 * @imbalance: returns amount of imbalanced due to packing.
2908 static int check_asym_packing(struct sched_domain *sd,
2909 struct sd_lb_stats *sds,
2910 int this_cpu, unsigned long *imbalance)
2912 int busiest_cpu;
2914 if (!(sd->flags & SD_ASYM_PACKING))
2915 return 0;
2917 if (!sds->busiest)
2918 return 0;
2920 busiest_cpu = group_first_cpu(sds->busiest);
2921 if (this_cpu > busiest_cpu)
2922 return 0;
2924 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2925 SCHED_LOAD_SCALE);
2926 return 1;
2930 * fix_small_imbalance - Calculate the minor imbalance that exists
2931 * amongst the groups of a sched_domain, during
2932 * load balancing.
2933 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2934 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2935 * @imbalance: Variable to store the imbalance.
2937 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2938 int this_cpu, unsigned long *imbalance)
2940 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2941 unsigned int imbn = 2;
2942 unsigned long scaled_busy_load_per_task;
2944 if (sds->this_nr_running) {
2945 sds->this_load_per_task /= sds->this_nr_running;
2946 if (sds->busiest_load_per_task >
2947 sds->this_load_per_task)
2948 imbn = 1;
2949 } else
2950 sds->this_load_per_task =
2951 cpu_avg_load_per_task(this_cpu);
2953 scaled_busy_load_per_task = sds->busiest_load_per_task
2954 * SCHED_LOAD_SCALE;
2955 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2957 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2958 (scaled_busy_load_per_task * imbn)) {
2959 *imbalance = sds->busiest_load_per_task;
2960 return;
2964 * OK, we don't have enough imbalance to justify moving tasks,
2965 * however we may be able to increase total CPU power used by
2966 * moving them.
2969 pwr_now += sds->busiest->cpu_power *
2970 min(sds->busiest_load_per_task, sds->max_load);
2971 pwr_now += sds->this->cpu_power *
2972 min(sds->this_load_per_task, sds->this_load);
2973 pwr_now /= SCHED_LOAD_SCALE;
2975 /* Amount of load we'd subtract */
2976 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2977 sds->busiest->cpu_power;
2978 if (sds->max_load > tmp)
2979 pwr_move += sds->busiest->cpu_power *
2980 min(sds->busiest_load_per_task, sds->max_load - tmp);
2982 /* Amount of load we'd add */
2983 if (sds->max_load * sds->busiest->cpu_power <
2984 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2985 tmp = (sds->max_load * sds->busiest->cpu_power) /
2986 sds->this->cpu_power;
2987 else
2988 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2989 sds->this->cpu_power;
2990 pwr_move += sds->this->cpu_power *
2991 min(sds->this_load_per_task, sds->this_load + tmp);
2992 pwr_move /= SCHED_LOAD_SCALE;
2994 /* Move if we gain throughput */
2995 if (pwr_move > pwr_now)
2996 *imbalance = sds->busiest_load_per_task;
3000 * calculate_imbalance - Calculate the amount of imbalance present within the
3001 * groups of a given sched_domain during load balance.
3002 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3003 * @this_cpu: Cpu for which currently load balance is being performed.
3004 * @imbalance: The variable to store the imbalance.
3006 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3007 unsigned long *imbalance)
3009 unsigned long max_pull, load_above_capacity = ~0UL;
3011 sds->busiest_load_per_task /= sds->busiest_nr_running;
3012 if (sds->group_imb) {
3013 sds->busiest_load_per_task =
3014 min(sds->busiest_load_per_task, sds->avg_load);
3018 * In the presence of smp nice balancing, certain scenarios can have
3019 * max load less than avg load(as we skip the groups at or below
3020 * its cpu_power, while calculating max_load..)
3022 if (sds->max_load < sds->avg_load) {
3023 *imbalance = 0;
3024 return fix_small_imbalance(sds, this_cpu, imbalance);
3027 if (!sds->group_imb) {
3029 * Don't want to pull so many tasks that a group would go idle.
3031 load_above_capacity = (sds->busiest_nr_running -
3032 sds->busiest_group_capacity);
3034 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3036 load_above_capacity /= sds->busiest->cpu_power;
3040 * We're trying to get all the cpus to the average_load, so we don't
3041 * want to push ourselves above the average load, nor do we wish to
3042 * reduce the max loaded cpu below the average load. At the same time,
3043 * we also don't want to reduce the group load below the group capacity
3044 * (so that we can implement power-savings policies etc). Thus we look
3045 * for the minimum possible imbalance.
3046 * Be careful of negative numbers as they'll appear as very large values
3047 * with unsigned longs.
3049 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3051 /* How much load to actually move to equalise the imbalance */
3052 *imbalance = min(max_pull * sds->busiest->cpu_power,
3053 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3054 / SCHED_LOAD_SCALE;
3057 * if *imbalance is less than the average load per runnable task
3058 * there is no guarantee that any tasks will be moved so we'll have
3059 * a think about bumping its value to force at least one task to be
3060 * moved
3062 if (*imbalance < sds->busiest_load_per_task)
3063 return fix_small_imbalance(sds, this_cpu, imbalance);
3067 /******* find_busiest_group() helpers end here *********************/
3070 * find_busiest_group - Returns the busiest group within the sched_domain
3071 * if there is an imbalance. If there isn't an imbalance, and
3072 * the user has opted for power-savings, it returns a group whose
3073 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3074 * such a group exists.
3076 * Also calculates the amount of weighted load which should be moved
3077 * to restore balance.
3079 * @sd: The sched_domain whose busiest group is to be returned.
3080 * @this_cpu: The cpu for which load balancing is currently being performed.
3081 * @imbalance: Variable which stores amount of weighted load which should
3082 * be moved to restore balance/put a group to idle.
3083 * @idle: The idle status of this_cpu.
3084 * @cpus: The set of CPUs under consideration for load-balancing.
3085 * @balance: Pointer to a variable indicating if this_cpu
3086 * is the appropriate cpu to perform load balancing at this_level.
3088 * Returns: - the busiest group if imbalance exists.
3089 * - If no imbalance and user has opted for power-savings balance,
3090 * return the least loaded group whose CPUs can be
3091 * put to idle by rebalancing its tasks onto our group.
3093 static struct sched_group *
3094 find_busiest_group(struct sched_domain *sd, int this_cpu,
3095 unsigned long *imbalance, enum cpu_idle_type idle,
3096 const struct cpumask *cpus, int *balance)
3098 struct sd_lb_stats sds;
3100 memset(&sds, 0, sizeof(sds));
3103 * Compute the various statistics relavent for load balancing at
3104 * this level.
3106 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3109 * this_cpu is not the appropriate cpu to perform load balancing at
3110 * this level.
3112 if (!(*balance))
3113 goto ret;
3115 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3116 check_asym_packing(sd, &sds, this_cpu, imbalance))
3117 return sds.busiest;
3119 /* There is no busy sibling group to pull tasks from */
3120 if (!sds.busiest || sds.busiest_nr_running == 0)
3121 goto out_balanced;
3123 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3126 * If the busiest group is imbalanced the below checks don't
3127 * work because they assumes all things are equal, which typically
3128 * isn't true due to cpus_allowed constraints and the like.
3130 if (sds.group_imb)
3131 goto force_balance;
3133 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3134 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3135 !sds.busiest_has_capacity)
3136 goto force_balance;
3139 * If the local group is more busy than the selected busiest group
3140 * don't try and pull any tasks.
3142 if (sds.this_load >= sds.max_load)
3143 goto out_balanced;
3146 * Don't pull any tasks if this group is already above the domain
3147 * average load.
3149 if (sds.this_load >= sds.avg_load)
3150 goto out_balanced;
3152 if (idle == CPU_IDLE) {
3154 * This cpu is idle. If the busiest group load doesn't
3155 * have more tasks than the number of available cpu's and
3156 * there is no imbalance between this and busiest group
3157 * wrt to idle cpu's, it is balanced.
3159 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3160 sds.busiest_nr_running <= sds.busiest_group_weight)
3161 goto out_balanced;
3162 } else {
3164 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3165 * imbalance_pct to be conservative.
3167 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3168 goto out_balanced;
3171 force_balance:
3172 /* Looks like there is an imbalance. Compute it */
3173 calculate_imbalance(&sds, this_cpu, imbalance);
3174 return sds.busiest;
3176 out_balanced:
3178 * There is no obvious imbalance. But check if we can do some balancing
3179 * to save power.
3181 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3182 return sds.busiest;
3183 ret:
3184 *imbalance = 0;
3185 return NULL;
3189 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3191 static struct rq *
3192 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3193 enum cpu_idle_type idle, unsigned long imbalance,
3194 const struct cpumask *cpus)
3196 struct rq *busiest = NULL, *rq;
3197 unsigned long max_load = 0;
3198 int i;
3200 for_each_cpu(i, sched_group_cpus(group)) {
3201 unsigned long power = power_of(i);
3202 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3203 unsigned long wl;
3205 if (!capacity)
3206 capacity = fix_small_capacity(sd, group);
3208 if (!cpumask_test_cpu(i, cpus))
3209 continue;
3211 rq = cpu_rq(i);
3212 wl = weighted_cpuload(i);
3215 * When comparing with imbalance, use weighted_cpuload()
3216 * which is not scaled with the cpu power.
3218 if (capacity && rq->nr_running == 1 && wl > imbalance)
3219 continue;
3222 * For the load comparisons with the other cpu's, consider
3223 * the weighted_cpuload() scaled with the cpu power, so that
3224 * the load can be moved away from the cpu that is potentially
3225 * running at a lower capacity.
3227 wl = (wl * SCHED_LOAD_SCALE) / power;
3229 if (wl > max_load) {
3230 max_load = wl;
3231 busiest = rq;
3235 return busiest;
3239 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3240 * so long as it is large enough.
3242 #define MAX_PINNED_INTERVAL 512
3244 /* Working cpumask for load_balance and load_balance_newidle. */
3245 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3247 static int need_active_balance(struct sched_domain *sd, int idle,
3248 int busiest_cpu, int this_cpu)
3250 if (idle == CPU_NEWLY_IDLE) {
3253 * ASYM_PACKING needs to force migrate tasks from busy but
3254 * higher numbered CPUs in order to pack all tasks in the
3255 * lowest numbered CPUs.
3257 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3258 return 1;
3261 * The only task running in a non-idle cpu can be moved to this
3262 * cpu in an attempt to completely freeup the other CPU
3263 * package.
3265 * The package power saving logic comes from
3266 * find_busiest_group(). If there are no imbalance, then
3267 * f_b_g() will return NULL. However when sched_mc={1,2} then
3268 * f_b_g() will select a group from which a running task may be
3269 * pulled to this cpu in order to make the other package idle.
3270 * If there is no opportunity to make a package idle and if
3271 * there are no imbalance, then f_b_g() will return NULL and no
3272 * action will be taken in load_balance_newidle().
3274 * Under normal task pull operation due to imbalance, there
3275 * will be more than one task in the source run queue and
3276 * move_tasks() will succeed. ld_moved will be true and this
3277 * active balance code will not be triggered.
3279 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3280 return 0;
3283 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3286 static int active_load_balance_cpu_stop(void *data);
3289 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3290 * tasks if there is an imbalance.
3292 static int load_balance(int this_cpu, struct rq *this_rq,
3293 struct sched_domain *sd, enum cpu_idle_type idle,
3294 int *balance)
3296 int ld_moved, all_pinned = 0, active_balance = 0;
3297 struct sched_group *group;
3298 unsigned long imbalance;
3299 struct rq *busiest;
3300 unsigned long flags;
3301 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3303 cpumask_copy(cpus, cpu_active_mask);
3305 schedstat_inc(sd, lb_count[idle]);
3307 redo:
3308 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3309 cpus, balance);
3311 if (*balance == 0)
3312 goto out_balanced;
3314 if (!group) {
3315 schedstat_inc(sd, lb_nobusyg[idle]);
3316 goto out_balanced;
3319 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3320 if (!busiest) {
3321 schedstat_inc(sd, lb_nobusyq[idle]);
3322 goto out_balanced;
3325 BUG_ON(busiest == this_rq);
3327 schedstat_add(sd, lb_imbalance[idle], imbalance);
3329 ld_moved = 0;
3330 if (busiest->nr_running > 1) {
3332 * Attempt to move tasks. If find_busiest_group has found
3333 * an imbalance but busiest->nr_running <= 1, the group is
3334 * still unbalanced. ld_moved simply stays zero, so it is
3335 * correctly treated as an imbalance.
3337 all_pinned = 1;
3338 local_irq_save(flags);
3339 double_rq_lock(this_rq, busiest);
3340 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3341 imbalance, sd, idle, &all_pinned);
3342 double_rq_unlock(this_rq, busiest);
3343 local_irq_restore(flags);
3346 * some other cpu did the load balance for us.
3348 if (ld_moved && this_cpu != smp_processor_id())
3349 resched_cpu(this_cpu);
3351 /* All tasks on this runqueue were pinned by CPU affinity */
3352 if (unlikely(all_pinned)) {
3353 cpumask_clear_cpu(cpu_of(busiest), cpus);
3354 if (!cpumask_empty(cpus))
3355 goto redo;
3356 goto out_balanced;
3360 if (!ld_moved) {
3361 schedstat_inc(sd, lb_failed[idle]);
3363 * Increment the failure counter only on periodic balance.
3364 * We do not want newidle balance, which can be very
3365 * frequent, pollute the failure counter causing
3366 * excessive cache_hot migrations and active balances.
3368 if (idle != CPU_NEWLY_IDLE)
3369 sd->nr_balance_failed++;
3371 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3372 raw_spin_lock_irqsave(&busiest->lock, flags);
3374 /* don't kick the active_load_balance_cpu_stop,
3375 * if the curr task on busiest cpu can't be
3376 * moved to this_cpu
3378 if (!cpumask_test_cpu(this_cpu,
3379 &busiest->curr->cpus_allowed)) {
3380 raw_spin_unlock_irqrestore(&busiest->lock,
3381 flags);
3382 all_pinned = 1;
3383 goto out_one_pinned;
3387 * ->active_balance synchronizes accesses to
3388 * ->active_balance_work. Once set, it's cleared
3389 * only after active load balance is finished.
3391 if (!busiest->active_balance) {
3392 busiest->active_balance = 1;
3393 busiest->push_cpu = this_cpu;
3394 active_balance = 1;
3396 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3398 if (active_balance)
3399 stop_one_cpu_nowait(cpu_of(busiest),
3400 active_load_balance_cpu_stop, busiest,
3401 &busiest->active_balance_work);
3404 * We've kicked active balancing, reset the failure
3405 * counter.
3407 sd->nr_balance_failed = sd->cache_nice_tries+1;
3409 } else
3410 sd->nr_balance_failed = 0;
3412 if (likely(!active_balance)) {
3413 /* We were unbalanced, so reset the balancing interval */
3414 sd->balance_interval = sd->min_interval;
3415 } else {
3417 * If we've begun active balancing, start to back off. This
3418 * case may not be covered by the all_pinned logic if there
3419 * is only 1 task on the busy runqueue (because we don't call
3420 * move_tasks).
3422 if (sd->balance_interval < sd->max_interval)
3423 sd->balance_interval *= 2;
3426 goto out;
3428 out_balanced:
3429 schedstat_inc(sd, lb_balanced[idle]);
3431 sd->nr_balance_failed = 0;
3433 out_one_pinned:
3434 /* tune up the balancing interval */
3435 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3436 (sd->balance_interval < sd->max_interval))
3437 sd->balance_interval *= 2;
3439 ld_moved = 0;
3440 out:
3441 return ld_moved;
3445 * idle_balance is called by schedule() if this_cpu is about to become
3446 * idle. Attempts to pull tasks from other CPUs.
3448 static void idle_balance(int this_cpu, struct rq *this_rq)
3450 struct sched_domain *sd;
3451 int pulled_task = 0;
3452 unsigned long next_balance = jiffies + HZ;
3454 this_rq->idle_stamp = this_rq->clock;
3456 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3457 return;
3460 * Drop the rq->lock, but keep IRQ/preempt disabled.
3462 raw_spin_unlock(&this_rq->lock);
3464 update_shares(this_cpu);
3465 for_each_domain(this_cpu, sd) {
3466 unsigned long interval;
3467 int balance = 1;
3469 if (!(sd->flags & SD_LOAD_BALANCE))
3470 continue;
3472 if (sd->flags & SD_BALANCE_NEWIDLE) {
3473 /* If we've pulled tasks over stop searching: */
3474 pulled_task = load_balance(this_cpu, this_rq,
3475 sd, CPU_NEWLY_IDLE, &balance);
3478 interval = msecs_to_jiffies(sd->balance_interval);
3479 if (time_after(next_balance, sd->last_balance + interval))
3480 next_balance = sd->last_balance + interval;
3481 if (pulled_task) {
3482 this_rq->idle_stamp = 0;
3483 break;
3487 raw_spin_lock(&this_rq->lock);
3489 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3491 * We are going idle. next_balance may be set based on
3492 * a busy processor. So reset next_balance.
3494 this_rq->next_balance = next_balance;
3499 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3500 * running tasks off the busiest CPU onto idle CPUs. It requires at
3501 * least 1 task to be running on each physical CPU where possible, and
3502 * avoids physical / logical imbalances.
3504 static int active_load_balance_cpu_stop(void *data)
3506 struct rq *busiest_rq = data;
3507 int busiest_cpu = cpu_of(busiest_rq);
3508 int target_cpu = busiest_rq->push_cpu;
3509 struct rq *target_rq = cpu_rq(target_cpu);
3510 struct sched_domain *sd;
3512 raw_spin_lock_irq(&busiest_rq->lock);
3514 /* make sure the requested cpu hasn't gone down in the meantime */
3515 if (unlikely(busiest_cpu != smp_processor_id() ||
3516 !busiest_rq->active_balance))
3517 goto out_unlock;
3519 /* Is there any task to move? */
3520 if (busiest_rq->nr_running <= 1)
3521 goto out_unlock;
3524 * This condition is "impossible", if it occurs
3525 * we need to fix it. Originally reported by
3526 * Bjorn Helgaas on a 128-cpu setup.
3528 BUG_ON(busiest_rq == target_rq);
3530 /* move a task from busiest_rq to target_rq */
3531 double_lock_balance(busiest_rq, target_rq);
3533 /* Search for an sd spanning us and the target CPU. */
3534 for_each_domain(target_cpu, sd) {
3535 if ((sd->flags & SD_LOAD_BALANCE) &&
3536 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3537 break;
3540 if (likely(sd)) {
3541 schedstat_inc(sd, alb_count);
3543 if (move_one_task(target_rq, target_cpu, busiest_rq,
3544 sd, CPU_IDLE))
3545 schedstat_inc(sd, alb_pushed);
3546 else
3547 schedstat_inc(sd, alb_failed);
3549 double_unlock_balance(busiest_rq, target_rq);
3550 out_unlock:
3551 busiest_rq->active_balance = 0;
3552 raw_spin_unlock_irq(&busiest_rq->lock);
3553 return 0;
3556 #ifdef CONFIG_NO_HZ
3558 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3560 static void trigger_sched_softirq(void *data)
3562 raise_softirq_irqoff(SCHED_SOFTIRQ);
3565 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3567 csd->func = trigger_sched_softirq;
3568 csd->info = NULL;
3569 csd->flags = 0;
3570 csd->priv = 0;
3574 * idle load balancing details
3575 * - One of the idle CPUs nominates itself as idle load_balancer, while
3576 * entering idle.
3577 * - This idle load balancer CPU will also go into tickless mode when
3578 * it is idle, just like all other idle CPUs
3579 * - When one of the busy CPUs notice that there may be an idle rebalancing
3580 * needed, they will kick the idle load balancer, which then does idle
3581 * load balancing for all the idle CPUs.
3583 static struct {
3584 atomic_t load_balancer;
3585 atomic_t first_pick_cpu;
3586 atomic_t second_pick_cpu;
3587 cpumask_var_t idle_cpus_mask;
3588 cpumask_var_t grp_idle_mask;
3589 unsigned long next_balance; /* in jiffy units */
3590 } nohz ____cacheline_aligned;
3592 int get_nohz_load_balancer(void)
3594 return atomic_read(&nohz.load_balancer);
3597 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3599 * lowest_flag_domain - Return lowest sched_domain containing flag.
3600 * @cpu: The cpu whose lowest level of sched domain is to
3601 * be returned.
3602 * @flag: The flag to check for the lowest sched_domain
3603 * for the given cpu.
3605 * Returns the lowest sched_domain of a cpu which contains the given flag.
3607 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3609 struct sched_domain *sd;
3611 for_each_domain(cpu, sd)
3612 if (sd && (sd->flags & flag))
3613 break;
3615 return sd;
3619 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3620 * @cpu: The cpu whose domains we're iterating over.
3621 * @sd: variable holding the value of the power_savings_sd
3622 * for cpu.
3623 * @flag: The flag to filter the sched_domains to be iterated.
3625 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3626 * set, starting from the lowest sched_domain to the highest.
3628 #define for_each_flag_domain(cpu, sd, flag) \
3629 for (sd = lowest_flag_domain(cpu, flag); \
3630 (sd && (sd->flags & flag)); sd = sd->parent)
3633 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3634 * @ilb_group: group to be checked for semi-idleness
3636 * Returns: 1 if the group is semi-idle. 0 otherwise.
3638 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3639 * and atleast one non-idle CPU. This helper function checks if the given
3640 * sched_group is semi-idle or not.
3642 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3644 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3645 sched_group_cpus(ilb_group));
3648 * A sched_group is semi-idle when it has atleast one busy cpu
3649 * and atleast one idle cpu.
3651 if (cpumask_empty(nohz.grp_idle_mask))
3652 return 0;
3654 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3655 return 0;
3657 return 1;
3660 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3661 * @cpu: The cpu which is nominating a new idle_load_balancer.
3663 * Returns: Returns the id of the idle load balancer if it exists,
3664 * Else, returns >= nr_cpu_ids.
3666 * This algorithm picks the idle load balancer such that it belongs to a
3667 * semi-idle powersavings sched_domain. The idea is to try and avoid
3668 * completely idle packages/cores just for the purpose of idle load balancing
3669 * when there are other idle cpu's which are better suited for that job.
3671 static int find_new_ilb(int cpu)
3673 struct sched_domain *sd;
3674 struct sched_group *ilb_group;
3677 * Have idle load balancer selection from semi-idle packages only
3678 * when power-aware load balancing is enabled
3680 if (!(sched_smt_power_savings || sched_mc_power_savings))
3681 goto out_done;
3684 * Optimize for the case when we have no idle CPUs or only one
3685 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3687 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3688 goto out_done;
3690 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3691 ilb_group = sd->groups;
3693 do {
3694 if (is_semi_idle_group(ilb_group))
3695 return cpumask_first(nohz.grp_idle_mask);
3697 ilb_group = ilb_group->next;
3699 } while (ilb_group != sd->groups);
3702 out_done:
3703 return nr_cpu_ids;
3705 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3706 static inline int find_new_ilb(int call_cpu)
3708 return nr_cpu_ids;
3710 #endif
3713 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3714 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3715 * CPU (if there is one).
3717 static void nohz_balancer_kick(int cpu)
3719 int ilb_cpu;
3721 nohz.next_balance++;
3723 ilb_cpu = get_nohz_load_balancer();
3725 if (ilb_cpu >= nr_cpu_ids) {
3726 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3727 if (ilb_cpu >= nr_cpu_ids)
3728 return;
3731 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3732 struct call_single_data *cp;
3734 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3735 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3736 __smp_call_function_single(ilb_cpu, cp, 0);
3738 return;
3742 * This routine will try to nominate the ilb (idle load balancing)
3743 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3744 * load balancing on behalf of all those cpus.
3746 * When the ilb owner becomes busy, we will not have new ilb owner until some
3747 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3748 * idle load balancing by kicking one of the idle CPUs.
3750 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3751 * ilb owner CPU in future (when there is a need for idle load balancing on
3752 * behalf of all idle CPUs).
3754 void select_nohz_load_balancer(int stop_tick)
3756 int cpu = smp_processor_id();
3758 if (stop_tick) {
3759 if (!cpu_active(cpu)) {
3760 if (atomic_read(&nohz.load_balancer) != cpu)
3761 return;
3764 * If we are going offline and still the leader,
3765 * give up!
3767 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3768 nr_cpu_ids) != cpu)
3769 BUG();
3771 return;
3774 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3776 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3777 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3778 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3779 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3781 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3782 int new_ilb;
3784 /* make me the ilb owner */
3785 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3786 cpu) != nr_cpu_ids)
3787 return;
3790 * Check to see if there is a more power-efficient
3791 * ilb.
3793 new_ilb = find_new_ilb(cpu);
3794 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3795 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3796 resched_cpu(new_ilb);
3797 return;
3799 return;
3801 } else {
3802 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3803 return;
3805 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3807 if (atomic_read(&nohz.load_balancer) == cpu)
3808 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3809 nr_cpu_ids) != cpu)
3810 BUG();
3812 return;
3814 #endif
3816 static DEFINE_SPINLOCK(balancing);
3818 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3821 * Scale the max load_balance interval with the number of CPUs in the system.
3822 * This trades load-balance latency on larger machines for less cross talk.
3824 static void update_max_interval(void)
3826 max_load_balance_interval = HZ*num_online_cpus()/10;
3830 * It checks each scheduling domain to see if it is due to be balanced,
3831 * and initiates a balancing operation if so.
3833 * Balancing parameters are set up in arch_init_sched_domains.
3835 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3837 int balance = 1;
3838 struct rq *rq = cpu_rq(cpu);
3839 unsigned long interval;
3840 struct sched_domain *sd;
3841 /* Earliest time when we have to do rebalance again */
3842 unsigned long next_balance = jiffies + 60*HZ;
3843 int update_next_balance = 0;
3844 int need_serialize;
3846 update_shares(cpu);
3848 for_each_domain(cpu, sd) {
3849 if (!(sd->flags & SD_LOAD_BALANCE))
3850 continue;
3852 interval = sd->balance_interval;
3853 if (idle != CPU_IDLE)
3854 interval *= sd->busy_factor;
3856 /* scale ms to jiffies */
3857 interval = msecs_to_jiffies(interval);
3858 interval = clamp(interval, 1UL, max_load_balance_interval);
3860 need_serialize = sd->flags & SD_SERIALIZE;
3862 if (need_serialize) {
3863 if (!spin_trylock(&balancing))
3864 goto out;
3867 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3868 if (load_balance(cpu, rq, sd, idle, &balance)) {
3870 * We've pulled tasks over so either we're no
3871 * longer idle.
3873 idle = CPU_NOT_IDLE;
3875 sd->last_balance = jiffies;
3877 if (need_serialize)
3878 spin_unlock(&balancing);
3879 out:
3880 if (time_after(next_balance, sd->last_balance + interval)) {
3881 next_balance = sd->last_balance + interval;
3882 update_next_balance = 1;
3886 * Stop the load balance at this level. There is another
3887 * CPU in our sched group which is doing load balancing more
3888 * actively.
3890 if (!balance)
3891 break;
3895 * next_balance will be updated only when there is a need.
3896 * When the cpu is attached to null domain for ex, it will not be
3897 * updated.
3899 if (likely(update_next_balance))
3900 rq->next_balance = next_balance;
3903 #ifdef CONFIG_NO_HZ
3905 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3906 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3908 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3910 struct rq *this_rq = cpu_rq(this_cpu);
3911 struct rq *rq;
3912 int balance_cpu;
3914 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3915 return;
3917 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3918 if (balance_cpu == this_cpu)
3919 continue;
3922 * If this cpu gets work to do, stop the load balancing
3923 * work being done for other cpus. Next load
3924 * balancing owner will pick it up.
3926 if (need_resched()) {
3927 this_rq->nohz_balance_kick = 0;
3928 break;
3931 raw_spin_lock_irq(&this_rq->lock);
3932 update_rq_clock(this_rq);
3933 update_cpu_load(this_rq);
3934 raw_spin_unlock_irq(&this_rq->lock);
3936 rebalance_domains(balance_cpu, CPU_IDLE);
3938 rq = cpu_rq(balance_cpu);
3939 if (time_after(this_rq->next_balance, rq->next_balance))
3940 this_rq->next_balance = rq->next_balance;
3942 nohz.next_balance = this_rq->next_balance;
3943 this_rq->nohz_balance_kick = 0;
3947 * Current heuristic for kicking the idle load balancer
3948 * - first_pick_cpu is the one of the busy CPUs. It will kick
3949 * idle load balancer when it has more than one process active. This
3950 * eliminates the need for idle load balancing altogether when we have
3951 * only one running process in the system (common case).
3952 * - If there are more than one busy CPU, idle load balancer may have
3953 * to run for active_load_balance to happen (i.e., two busy CPUs are
3954 * SMT or core siblings and can run better if they move to different
3955 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3956 * which will kick idle load balancer as soon as it has any load.
3958 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3960 unsigned long now = jiffies;
3961 int ret;
3962 int first_pick_cpu, second_pick_cpu;
3964 if (time_before(now, nohz.next_balance))
3965 return 0;
3967 if (rq->idle_at_tick)
3968 return 0;
3970 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3971 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3973 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3974 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3975 return 0;
3977 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3978 if (ret == nr_cpu_ids || ret == cpu) {
3979 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3980 if (rq->nr_running > 1)
3981 return 1;
3982 } else {
3983 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3984 if (ret == nr_cpu_ids || ret == cpu) {
3985 if (rq->nr_running)
3986 return 1;
3989 return 0;
3991 #else
3992 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3993 #endif
3996 * run_rebalance_domains is triggered when needed from the scheduler tick.
3997 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3999 static void run_rebalance_domains(struct softirq_action *h)
4001 int this_cpu = smp_processor_id();
4002 struct rq *this_rq = cpu_rq(this_cpu);
4003 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4004 CPU_IDLE : CPU_NOT_IDLE;
4006 rebalance_domains(this_cpu, idle);
4009 * If this cpu has a pending nohz_balance_kick, then do the
4010 * balancing on behalf of the other idle cpus whose ticks are
4011 * stopped.
4013 nohz_idle_balance(this_cpu, idle);
4016 static inline int on_null_domain(int cpu)
4018 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4022 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4024 static inline void trigger_load_balance(struct rq *rq, int cpu)
4026 /* Don't need to rebalance while attached to NULL domain */
4027 if (time_after_eq(jiffies, rq->next_balance) &&
4028 likely(!on_null_domain(cpu)))
4029 raise_softirq(SCHED_SOFTIRQ);
4030 #ifdef CONFIG_NO_HZ
4031 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4032 nohz_balancer_kick(cpu);
4033 #endif
4036 static void rq_online_fair(struct rq *rq)
4038 update_sysctl();
4041 static void rq_offline_fair(struct rq *rq)
4043 update_sysctl();
4046 #else /* CONFIG_SMP */
4049 * on UP we do not need to balance between CPUs:
4051 static inline void idle_balance(int cpu, struct rq *rq)
4055 #endif /* CONFIG_SMP */
4058 * scheduler tick hitting a task of our scheduling class:
4060 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4062 struct cfs_rq *cfs_rq;
4063 struct sched_entity *se = &curr->se;
4065 for_each_sched_entity(se) {
4066 cfs_rq = cfs_rq_of(se);
4067 entity_tick(cfs_rq, se, queued);
4072 * called on fork with the child task as argument from the parent's context
4073 * - child not yet on the tasklist
4074 * - preemption disabled
4076 static void task_fork_fair(struct task_struct *p)
4078 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4079 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4080 int this_cpu = smp_processor_id();
4081 struct rq *rq = this_rq();
4082 unsigned long flags;
4084 raw_spin_lock_irqsave(&rq->lock, flags);
4086 update_rq_clock(rq);
4088 if (unlikely(task_cpu(p) != this_cpu)) {
4089 rcu_read_lock();
4090 __set_task_cpu(p, this_cpu);
4091 rcu_read_unlock();
4094 update_curr(cfs_rq);
4096 if (curr)
4097 se->vruntime = curr->vruntime;
4098 place_entity(cfs_rq, se, 1);
4100 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4102 * Upon rescheduling, sched_class::put_prev_task() will place
4103 * 'current' within the tree based on its new key value.
4105 swap(curr->vruntime, se->vruntime);
4106 resched_task(rq->curr);
4109 se->vruntime -= cfs_rq->min_vruntime;
4111 raw_spin_unlock_irqrestore(&rq->lock, flags);
4115 * Priority of the task has changed. Check to see if we preempt
4116 * the current task.
4118 static void
4119 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4121 if (!p->se.on_rq)
4122 return;
4125 * Reschedule if we are currently running on this runqueue and
4126 * our priority decreased, or if we are not currently running on
4127 * this runqueue and our priority is higher than the current's
4129 if (rq->curr == p) {
4130 if (p->prio > oldprio)
4131 resched_task(rq->curr);
4132 } else
4133 check_preempt_curr(rq, p, 0);
4136 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4138 struct sched_entity *se = &p->se;
4139 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4142 * Ensure the task's vruntime is normalized, so that when its
4143 * switched back to the fair class the enqueue_entity(.flags=0) will
4144 * do the right thing.
4146 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4147 * have normalized the vruntime, if it was !on_rq, then only when
4148 * the task is sleeping will it still have non-normalized vruntime.
4150 if (!se->on_rq && p->state != TASK_RUNNING) {
4152 * Fix up our vruntime so that the current sleep doesn't
4153 * cause 'unlimited' sleep bonus.
4155 place_entity(cfs_rq, se, 0);
4156 se->vruntime -= cfs_rq->min_vruntime;
4161 * We switched to the sched_fair class.
4163 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4165 if (!p->se.on_rq)
4166 return;
4169 * We were most likely switched from sched_rt, so
4170 * kick off the schedule if running, otherwise just see
4171 * if we can still preempt the current task.
4173 if (rq->curr == p)
4174 resched_task(rq->curr);
4175 else
4176 check_preempt_curr(rq, p, 0);
4179 /* Account for a task changing its policy or group.
4181 * This routine is mostly called to set cfs_rq->curr field when a task
4182 * migrates between groups/classes.
4184 static void set_curr_task_fair(struct rq *rq)
4186 struct sched_entity *se = &rq->curr->se;
4188 for_each_sched_entity(se)
4189 set_next_entity(cfs_rq_of(se), se);
4192 #ifdef CONFIG_FAIR_GROUP_SCHED
4193 static void task_move_group_fair(struct task_struct *p, int on_rq)
4196 * If the task was not on the rq at the time of this cgroup movement
4197 * it must have been asleep, sleeping tasks keep their ->vruntime
4198 * absolute on their old rq until wakeup (needed for the fair sleeper
4199 * bonus in place_entity()).
4201 * If it was on the rq, we've just 'preempted' it, which does convert
4202 * ->vruntime to a relative base.
4204 * Make sure both cases convert their relative position when migrating
4205 * to another cgroup's rq. This does somewhat interfere with the
4206 * fair sleeper stuff for the first placement, but who cares.
4208 if (!on_rq)
4209 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4210 set_task_rq(p, task_cpu(p));
4211 if (!on_rq)
4212 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4214 #endif
4216 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4218 struct sched_entity *se = &task->se;
4219 unsigned int rr_interval = 0;
4222 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4223 * idle runqueue:
4225 if (rq->cfs.load.weight)
4226 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4228 return rr_interval;
4232 * All the scheduling class methods:
4234 static const struct sched_class fair_sched_class = {
4235 .next = &idle_sched_class,
4236 .enqueue_task = enqueue_task_fair,
4237 .dequeue_task = dequeue_task_fair,
4238 .yield_task = yield_task_fair,
4239 .yield_to_task = yield_to_task_fair,
4241 .check_preempt_curr = check_preempt_wakeup,
4243 .pick_next_task = pick_next_task_fair,
4244 .put_prev_task = put_prev_task_fair,
4246 #ifdef CONFIG_SMP
4247 .select_task_rq = select_task_rq_fair,
4249 .rq_online = rq_online_fair,
4250 .rq_offline = rq_offline_fair,
4252 .task_waking = task_waking_fair,
4253 #endif
4255 .set_curr_task = set_curr_task_fair,
4256 .task_tick = task_tick_fair,
4257 .task_fork = task_fork_fair,
4259 .prio_changed = prio_changed_fair,
4260 .switched_from = switched_from_fair,
4261 .switched_to = switched_to_fair,
4263 .get_rr_interval = get_rr_interval_fair,
4265 #ifdef CONFIG_FAIR_GROUP_SCHED
4266 .task_move_group = task_move_group_fair,
4267 #endif
4270 #ifdef CONFIG_SCHED_DEBUG
4271 static void print_cfs_stats(struct seq_file *m, int cpu)
4273 struct cfs_rq *cfs_rq;
4275 rcu_read_lock();
4276 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4277 print_cfs_rq(m, cpu, cfs_rq);
4278 rcu_read_unlock();
4280 #endif