Merge branch 'x86/cpu' into x86/core
[linux-2.6/x86.git] / arch / x86 / kernel / process_32.c
blob2c9abc95e026fbd3153477598185f879eab0e6e1
1 /*
2 * Copyright (C) 1995 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
53 #include <linux/err.h>
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58 #include <asm/syscalls.h>
59 #include <asm/smp.h>
61 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
63 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
64 EXPORT_PER_CPU_SYMBOL(current_task);
66 DEFINE_PER_CPU(int, cpu_number);
67 EXPORT_PER_CPU_SYMBOL(cpu_number);
70 * Return saved PC of a blocked thread.
72 unsigned long thread_saved_pc(struct task_struct *tsk)
74 return ((unsigned long *)tsk->thread.sp)[3];
77 #ifdef CONFIG_HOTPLUG_CPU
78 #include <asm/nmi.h>
80 static void cpu_exit_clear(void)
82 int cpu = raw_smp_processor_id();
84 idle_task_exit();
86 cpu_uninit();
87 irq_ctx_exit(cpu);
89 cpu_clear(cpu, cpu_callout_map);
90 cpu_clear(cpu, cpu_callin_map);
92 numa_remove_cpu(cpu);
95 /* We don't actually take CPU down, just spin without interrupts. */
96 static inline void play_dead(void)
98 /* This must be done before dead CPU ack */
99 cpu_exit_clear();
100 mb();
101 /* Ack it */
102 __get_cpu_var(cpu_state) = CPU_DEAD;
105 * With physical CPU hotplug, we should halt the cpu
107 local_irq_disable();
108 /* mask all interrupts, flush any and all caches, and halt */
109 wbinvd_halt();
111 #else
112 static inline void play_dead(void)
114 BUG();
116 #endif /* CONFIG_HOTPLUG_CPU */
119 * The idle thread. There's no useful work to be
120 * done, so just try to conserve power and have a
121 * low exit latency (ie sit in a loop waiting for
122 * somebody to say that they'd like to reschedule)
124 void cpu_idle(void)
126 int cpu = smp_processor_id();
128 current_thread_info()->status |= TS_POLLING;
130 /* endless idle loop with no priority at all */
131 while (1) {
132 tick_nohz_stop_sched_tick(1);
133 while (!need_resched()) {
135 check_pgt_cache();
136 rmb();
138 if (rcu_pending(cpu))
139 rcu_check_callbacks(cpu, 0);
141 if (cpu_is_offline(cpu))
142 play_dead();
144 local_irq_disable();
145 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
146 /* Don't trace irqs off for idle */
147 stop_critical_timings();
148 pm_idle();
149 start_critical_timings();
151 tick_nohz_restart_sched_tick();
152 preempt_enable_no_resched();
153 schedule();
154 preempt_disable();
158 void __show_registers(struct pt_regs *regs, int all)
160 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
161 unsigned long d0, d1, d2, d3, d6, d7;
162 unsigned long sp;
163 unsigned short ss, gs;
165 if (user_mode_vm(regs)) {
166 sp = regs->sp;
167 ss = regs->ss & 0xffff;
168 savesegment(gs, gs);
169 } else {
170 sp = (unsigned long) (&regs->sp);
171 savesegment(ss, ss);
172 savesegment(gs, gs);
175 printk("\n");
176 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
177 task_pid_nr(current), current->comm,
178 print_tainted(), init_utsname()->release,
179 (int)strcspn(init_utsname()->version, " "),
180 init_utsname()->version);
182 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
183 (u16)regs->cs, regs->ip, regs->flags,
184 smp_processor_id());
185 print_symbol("EIP is at %s\n", regs->ip);
187 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
188 regs->ax, regs->bx, regs->cx, regs->dx);
189 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
190 regs->si, regs->di, regs->bp, sp);
191 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
192 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
194 if (!all)
195 return;
197 cr0 = read_cr0();
198 cr2 = read_cr2();
199 cr3 = read_cr3();
200 cr4 = read_cr4_safe();
201 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
202 cr0, cr2, cr3, cr4);
204 get_debugreg(d0, 0);
205 get_debugreg(d1, 1);
206 get_debugreg(d2, 2);
207 get_debugreg(d3, 3);
208 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
209 d0, d1, d2, d3);
211 get_debugreg(d6, 6);
212 get_debugreg(d7, 7);
213 printk("DR6: %08lx DR7: %08lx\n",
214 d6, d7);
217 void show_regs(struct pt_regs *regs)
219 __show_registers(regs, 1);
220 show_trace(NULL, regs, &regs->sp, regs->bp);
224 * This gets run with %bx containing the
225 * function to call, and %dx containing
226 * the "args".
228 extern void kernel_thread_helper(void);
231 * Create a kernel thread
233 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
235 struct pt_regs regs;
237 memset(&regs, 0, sizeof(regs));
239 regs.bx = (unsigned long) fn;
240 regs.dx = (unsigned long) arg;
242 regs.ds = __USER_DS;
243 regs.es = __USER_DS;
244 regs.fs = __KERNEL_PERCPU;
245 regs.orig_ax = -1;
246 regs.ip = (unsigned long) kernel_thread_helper;
247 regs.cs = __KERNEL_CS | get_kernel_rpl();
248 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
250 /* Ok, create the new process.. */
251 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
253 EXPORT_SYMBOL(kernel_thread);
256 * Free current thread data structures etc..
258 void exit_thread(void)
260 /* The process may have allocated an io port bitmap... nuke it. */
261 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
262 struct task_struct *tsk = current;
263 struct thread_struct *t = &tsk->thread;
264 int cpu = get_cpu();
265 struct tss_struct *tss = &per_cpu(init_tss, cpu);
267 kfree(t->io_bitmap_ptr);
268 t->io_bitmap_ptr = NULL;
269 clear_thread_flag(TIF_IO_BITMAP);
271 * Careful, clear this in the TSS too:
273 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
274 t->io_bitmap_max = 0;
275 tss->io_bitmap_owner = NULL;
276 tss->io_bitmap_max = 0;
277 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
278 put_cpu();
282 void flush_thread(void)
284 struct task_struct *tsk = current;
286 tsk->thread.debugreg0 = 0;
287 tsk->thread.debugreg1 = 0;
288 tsk->thread.debugreg2 = 0;
289 tsk->thread.debugreg3 = 0;
290 tsk->thread.debugreg6 = 0;
291 tsk->thread.debugreg7 = 0;
292 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
293 clear_tsk_thread_flag(tsk, TIF_DEBUG);
295 * Forget coprocessor state..
297 tsk->fpu_counter = 0;
298 clear_fpu(tsk);
299 clear_used_math();
302 void release_thread(struct task_struct *dead_task)
304 BUG_ON(dead_task->mm);
305 release_vm86_irqs(dead_task);
309 * This gets called before we allocate a new thread and copy
310 * the current task into it.
312 void prepare_to_copy(struct task_struct *tsk)
314 unlazy_fpu(tsk);
317 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
318 unsigned long unused,
319 struct task_struct * p, struct pt_regs * regs)
321 struct pt_regs * childregs;
322 struct task_struct *tsk;
323 int err;
325 childregs = task_pt_regs(p);
326 *childregs = *regs;
327 childregs->ax = 0;
328 childregs->sp = sp;
330 p->thread.sp = (unsigned long) childregs;
331 p->thread.sp0 = (unsigned long) (childregs+1);
333 p->thread.ip = (unsigned long) ret_from_fork;
335 savesegment(gs, p->thread.gs);
337 tsk = current;
338 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
339 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
340 IO_BITMAP_BYTES, GFP_KERNEL);
341 if (!p->thread.io_bitmap_ptr) {
342 p->thread.io_bitmap_max = 0;
343 return -ENOMEM;
345 set_tsk_thread_flag(p, TIF_IO_BITMAP);
348 err = 0;
351 * Set a new TLS for the child thread?
353 if (clone_flags & CLONE_SETTLS)
354 err = do_set_thread_area(p, -1,
355 (struct user_desc __user *)childregs->si, 0);
357 if (err && p->thread.io_bitmap_ptr) {
358 kfree(p->thread.io_bitmap_ptr);
359 p->thread.io_bitmap_max = 0;
361 return err;
364 void
365 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
367 __asm__("movl %0, %%gs" :: "r"(0));
368 regs->fs = 0;
369 set_fs(USER_DS);
370 regs->ds = __USER_DS;
371 regs->es = __USER_DS;
372 regs->ss = __USER_DS;
373 regs->cs = __USER_CS;
374 regs->ip = new_ip;
375 regs->sp = new_sp;
377 * Free the old FP and other extended state
379 free_thread_xstate(current);
381 EXPORT_SYMBOL_GPL(start_thread);
383 static void hard_disable_TSC(void)
385 write_cr4(read_cr4() | X86_CR4_TSD);
388 void disable_TSC(void)
390 preempt_disable();
391 if (!test_and_set_thread_flag(TIF_NOTSC))
393 * Must flip the CPU state synchronously with
394 * TIF_NOTSC in the current running context.
396 hard_disable_TSC();
397 preempt_enable();
400 static void hard_enable_TSC(void)
402 write_cr4(read_cr4() & ~X86_CR4_TSD);
405 static void enable_TSC(void)
407 preempt_disable();
408 if (test_and_clear_thread_flag(TIF_NOTSC))
410 * Must flip the CPU state synchronously with
411 * TIF_NOTSC in the current running context.
413 hard_enable_TSC();
414 preempt_enable();
417 int get_tsc_mode(unsigned long adr)
419 unsigned int val;
421 if (test_thread_flag(TIF_NOTSC))
422 val = PR_TSC_SIGSEGV;
423 else
424 val = PR_TSC_ENABLE;
426 return put_user(val, (unsigned int __user *)adr);
429 int set_tsc_mode(unsigned int val)
431 if (val == PR_TSC_SIGSEGV)
432 disable_TSC();
433 else if (val == PR_TSC_ENABLE)
434 enable_TSC();
435 else
436 return -EINVAL;
438 return 0;
441 static noinline void
442 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
443 struct tss_struct *tss)
445 struct thread_struct *prev, *next;
446 unsigned long debugctl;
448 prev = &prev_p->thread;
449 next = &next_p->thread;
451 debugctl = prev->debugctlmsr;
452 if (next->ds_area_msr != prev->ds_area_msr) {
453 /* we clear debugctl to make sure DS
454 * is not in use when we change it */
455 debugctl = 0;
456 update_debugctlmsr(0);
457 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
460 if (next->debugctlmsr != debugctl)
461 update_debugctlmsr(next->debugctlmsr);
463 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
464 set_debugreg(next->debugreg0, 0);
465 set_debugreg(next->debugreg1, 1);
466 set_debugreg(next->debugreg2, 2);
467 set_debugreg(next->debugreg3, 3);
468 /* no 4 and 5 */
469 set_debugreg(next->debugreg6, 6);
470 set_debugreg(next->debugreg7, 7);
473 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
474 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
475 /* prev and next are different */
476 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
477 hard_disable_TSC();
478 else
479 hard_enable_TSC();
482 #ifdef X86_BTS
483 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
484 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
486 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
487 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
488 #endif
491 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
493 * Disable the bitmap via an invalid offset. We still cache
494 * the previous bitmap owner and the IO bitmap contents:
496 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
497 return;
500 if (likely(next == tss->io_bitmap_owner)) {
502 * Previous owner of the bitmap (hence the bitmap content)
503 * matches the next task, we dont have to do anything but
504 * to set a valid offset in the TSS:
506 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
507 return;
510 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
511 * and we let the task to get a GPF in case an I/O instruction
512 * is performed. The handler of the GPF will verify that the
513 * faulting task has a valid I/O bitmap and, it true, does the
514 * real copy and restart the instruction. This will save us
515 * redundant copies when the currently switched task does not
516 * perform any I/O during its timeslice.
518 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
522 * switch_to(x,yn) should switch tasks from x to y.
524 * We fsave/fwait so that an exception goes off at the right time
525 * (as a call from the fsave or fwait in effect) rather than to
526 * the wrong process. Lazy FP saving no longer makes any sense
527 * with modern CPU's, and this simplifies a lot of things (SMP
528 * and UP become the same).
530 * NOTE! We used to use the x86 hardware context switching. The
531 * reason for not using it any more becomes apparent when you
532 * try to recover gracefully from saved state that is no longer
533 * valid (stale segment register values in particular). With the
534 * hardware task-switch, there is no way to fix up bad state in
535 * a reasonable manner.
537 * The fact that Intel documents the hardware task-switching to
538 * be slow is a fairly red herring - this code is not noticeably
539 * faster. However, there _is_ some room for improvement here,
540 * so the performance issues may eventually be a valid point.
541 * More important, however, is the fact that this allows us much
542 * more flexibility.
544 * The return value (in %ax) will be the "prev" task after
545 * the task-switch, and shows up in ret_from_fork in entry.S,
546 * for example.
548 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
550 struct thread_struct *prev = &prev_p->thread,
551 *next = &next_p->thread;
552 int cpu = smp_processor_id();
553 struct tss_struct *tss = &per_cpu(init_tss, cpu);
555 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
557 __unlazy_fpu(prev_p);
560 /* we're going to use this soon, after a few expensive things */
561 if (next_p->fpu_counter > 5)
562 prefetch(next->xstate);
565 * Reload esp0.
567 load_sp0(tss, next);
570 * Save away %gs. No need to save %fs, as it was saved on the
571 * stack on entry. No need to save %es and %ds, as those are
572 * always kernel segments while inside the kernel. Doing this
573 * before setting the new TLS descriptors avoids the situation
574 * where we temporarily have non-reloadable segments in %fs
575 * and %gs. This could be an issue if the NMI handler ever
576 * used %fs or %gs (it does not today), or if the kernel is
577 * running inside of a hypervisor layer.
579 savesegment(gs, prev->gs);
582 * Load the per-thread Thread-Local Storage descriptor.
584 load_TLS(next, cpu);
587 * Restore IOPL if needed. In normal use, the flags restore
588 * in the switch assembly will handle this. But if the kernel
589 * is running virtualized at a non-zero CPL, the popf will
590 * not restore flags, so it must be done in a separate step.
592 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
593 set_iopl_mask(next->iopl);
596 * Now maybe handle debug registers and/or IO bitmaps
598 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
599 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
600 __switch_to_xtra(prev_p, next_p, tss);
603 * Leave lazy mode, flushing any hypercalls made here.
604 * This must be done before restoring TLS segments so
605 * the GDT and LDT are properly updated, and must be
606 * done before math_state_restore, so the TS bit is up
607 * to date.
609 arch_leave_lazy_cpu_mode();
611 /* If the task has used fpu the last 5 timeslices, just do a full
612 * restore of the math state immediately to avoid the trap; the
613 * chances of needing FPU soon are obviously high now
615 * tsk_used_math() checks prevent calling math_state_restore(),
616 * which can sleep in the case of !tsk_used_math()
618 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
619 math_state_restore();
622 * Restore %gs if needed (which is common)
624 if (prev->gs | next->gs)
625 loadsegment(gs, next->gs);
627 x86_write_percpu(current_task, next_p);
629 return prev_p;
632 asmlinkage int sys_fork(struct pt_regs regs)
634 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
637 asmlinkage int sys_clone(struct pt_regs regs)
639 unsigned long clone_flags;
640 unsigned long newsp;
641 int __user *parent_tidptr, *child_tidptr;
643 clone_flags = regs.bx;
644 newsp = regs.cx;
645 parent_tidptr = (int __user *)regs.dx;
646 child_tidptr = (int __user *)regs.di;
647 if (!newsp)
648 newsp = regs.sp;
649 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
653 * This is trivial, and on the face of it looks like it
654 * could equally well be done in user mode.
656 * Not so, for quite unobvious reasons - register pressure.
657 * In user mode vfork() cannot have a stack frame, and if
658 * done by calling the "clone()" system call directly, you
659 * do not have enough call-clobbered registers to hold all
660 * the information you need.
662 asmlinkage int sys_vfork(struct pt_regs regs)
664 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
668 * sys_execve() executes a new program.
670 asmlinkage int sys_execve(struct pt_regs regs)
672 int error;
673 char * filename;
675 filename = getname((char __user *) regs.bx);
676 error = PTR_ERR(filename);
677 if (IS_ERR(filename))
678 goto out;
679 error = do_execve(filename,
680 (char __user * __user *) regs.cx,
681 (char __user * __user *) regs.dx,
682 &regs);
683 if (error == 0) {
684 /* Make sure we don't return using sysenter.. */
685 set_thread_flag(TIF_IRET);
687 putname(filename);
688 out:
689 return error;
692 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
693 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
695 unsigned long get_wchan(struct task_struct *p)
697 unsigned long bp, sp, ip;
698 unsigned long stack_page;
699 int count = 0;
700 if (!p || p == current || p->state == TASK_RUNNING)
701 return 0;
702 stack_page = (unsigned long)task_stack_page(p);
703 sp = p->thread.sp;
704 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
705 return 0;
706 /* include/asm-i386/system.h:switch_to() pushes bp last. */
707 bp = *(unsigned long *) sp;
708 do {
709 if (bp < stack_page || bp > top_ebp+stack_page)
710 return 0;
711 ip = *(unsigned long *) (bp+4);
712 if (!in_sched_functions(ip))
713 return ip;
714 bp = *(unsigned long *) bp;
715 } while (count++ < 16);
716 return 0;
719 unsigned long arch_align_stack(unsigned long sp)
721 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
722 sp -= get_random_int() % 8192;
723 return sp & ~0xf;
726 unsigned long arch_randomize_brk(struct mm_struct *mm)
728 unsigned long range_end = mm->brk + 0x02000000;
729 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;