[ARM] mm: move vmalloc= parsing to arch/arm/mm/mmu.c
[linux-2.6/x86.git] / arch / arm / mm / mmu.c
blobe7af83e569d7a85c9e3afa30c76a5c7ee2aaa100
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/setup.h>
21 #include <asm/sizes.h>
22 #include <asm/tlb.h>
24 #include <asm/mach/arch.h>
25 #include <asm/mach/map.h>
27 #include "mm.h"
29 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
32 * empty_zero_page is a special page that is used for
33 * zero-initialized data and COW.
35 struct page *empty_zero_page;
36 EXPORT_SYMBOL(empty_zero_page);
39 * The pmd table for the upper-most set of pages.
41 pmd_t *top_pmd;
43 #define CPOLICY_UNCACHED 0
44 #define CPOLICY_BUFFERED 1
45 #define CPOLICY_WRITETHROUGH 2
46 #define CPOLICY_WRITEBACK 3
47 #define CPOLICY_WRITEALLOC 4
49 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
50 static unsigned int ecc_mask __initdata = 0;
51 pgprot_t pgprot_user;
52 pgprot_t pgprot_kernel;
54 EXPORT_SYMBOL(pgprot_user);
55 EXPORT_SYMBOL(pgprot_kernel);
57 struct cachepolicy {
58 const char policy[16];
59 unsigned int cr_mask;
60 unsigned int pmd;
61 unsigned int pte;
64 static struct cachepolicy cache_policies[] __initdata = {
66 .policy = "uncached",
67 .cr_mask = CR_W|CR_C,
68 .pmd = PMD_SECT_UNCACHED,
69 .pte = 0,
70 }, {
71 .policy = "buffered",
72 .cr_mask = CR_C,
73 .pmd = PMD_SECT_BUFFERED,
74 .pte = PTE_BUFFERABLE,
75 }, {
76 .policy = "writethrough",
77 .cr_mask = 0,
78 .pmd = PMD_SECT_WT,
79 .pte = PTE_CACHEABLE,
80 }, {
81 .policy = "writeback",
82 .cr_mask = 0,
83 .pmd = PMD_SECT_WB,
84 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
85 }, {
86 .policy = "writealloc",
87 .cr_mask = 0,
88 .pmd = PMD_SECT_WBWA,
89 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
94 * These are useful for identifying cache coherency
95 * problems by allowing the cache or the cache and
96 * writebuffer to be turned off. (Note: the write
97 * buffer should not be on and the cache off).
99 static void __init early_cachepolicy(char **p)
101 int i;
103 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
104 int len = strlen(cache_policies[i].policy);
106 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
107 cachepolicy = i;
108 cr_alignment &= ~cache_policies[i].cr_mask;
109 cr_no_alignment &= ~cache_policies[i].cr_mask;
110 *p += len;
111 break;
114 if (i == ARRAY_SIZE(cache_policies))
115 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
116 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
117 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
118 cachepolicy = CPOLICY_WRITEBACK;
120 flush_cache_all();
121 set_cr(cr_alignment);
123 __early_param("cachepolicy=", early_cachepolicy);
125 static void __init early_nocache(char **__unused)
127 char *p = "buffered";
128 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
129 early_cachepolicy(&p);
131 __early_param("nocache", early_nocache);
133 static void __init early_nowrite(char **__unused)
135 char *p = "uncached";
136 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
137 early_cachepolicy(&p);
139 __early_param("nowb", early_nowrite);
141 static void __init early_ecc(char **p)
143 if (memcmp(*p, "on", 2) == 0) {
144 ecc_mask = PMD_PROTECTION;
145 *p += 2;
146 } else if (memcmp(*p, "off", 3) == 0) {
147 ecc_mask = 0;
148 *p += 3;
151 __early_param("ecc=", early_ecc);
153 static int __init noalign_setup(char *__unused)
155 cr_alignment &= ~CR_A;
156 cr_no_alignment &= ~CR_A;
157 set_cr(cr_alignment);
158 return 1;
160 __setup("noalign", noalign_setup);
162 #ifndef CONFIG_SMP
163 void adjust_cr(unsigned long mask, unsigned long set)
165 unsigned long flags;
167 mask &= ~CR_A;
169 set &= mask;
171 local_irq_save(flags);
173 cr_no_alignment = (cr_no_alignment & ~mask) | set;
174 cr_alignment = (cr_alignment & ~mask) | set;
176 set_cr((get_cr() & ~mask) | set);
178 local_irq_restore(flags);
180 #endif
182 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
183 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
185 static struct mem_type mem_types[] = {
186 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
187 .prot_pte = PROT_PTE_DEVICE,
188 .prot_l1 = PMD_TYPE_TABLE,
189 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
190 .domain = DOMAIN_IO,
192 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
193 .prot_pte = PROT_PTE_DEVICE,
194 .prot_pte_ext = PTE_EXT_TEX(2),
195 .prot_l1 = PMD_TYPE_TABLE,
196 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX(2),
197 .domain = DOMAIN_IO,
199 [MT_DEVICE_CACHED] = { /* ioremap_cached */
200 .prot_pte = PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
201 .prot_l1 = PMD_TYPE_TABLE,
202 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
203 .domain = DOMAIN_IO,
205 [MT_DEVICE_IXP2000] = { /* IXP2400 requires XCB=101 for on-chip I/O */
206 .prot_pte = PROT_PTE_DEVICE,
207 .prot_l1 = PMD_TYPE_TABLE,
208 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
209 PMD_SECT_TEX(1),
210 .domain = DOMAIN_IO,
212 [MT_CACHECLEAN] = {
213 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
214 .domain = DOMAIN_KERNEL,
216 [MT_MINICLEAN] = {
217 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
218 .domain = DOMAIN_KERNEL,
220 [MT_LOW_VECTORS] = {
221 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
222 L_PTE_EXEC,
223 .prot_l1 = PMD_TYPE_TABLE,
224 .domain = DOMAIN_USER,
226 [MT_HIGH_VECTORS] = {
227 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
228 L_PTE_USER | L_PTE_EXEC,
229 .prot_l1 = PMD_TYPE_TABLE,
230 .domain = DOMAIN_USER,
232 [MT_MEMORY] = {
233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
234 .domain = DOMAIN_KERNEL,
236 [MT_ROM] = {
237 .prot_sect = PMD_TYPE_SECT,
238 .domain = DOMAIN_KERNEL,
242 const struct mem_type *get_mem_type(unsigned int type)
244 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
248 * Adjust the PMD section entries according to the CPU in use.
250 static void __init build_mem_type_table(void)
252 struct cachepolicy *cp;
253 unsigned int cr = get_cr();
254 unsigned int user_pgprot, kern_pgprot;
255 int cpu_arch = cpu_architecture();
256 int i;
258 if (cpu_arch < CPU_ARCH_ARMv6) {
259 #if defined(CONFIG_CPU_DCACHE_DISABLE)
260 if (cachepolicy > CPOLICY_BUFFERED)
261 cachepolicy = CPOLICY_BUFFERED;
262 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
263 if (cachepolicy > CPOLICY_WRITETHROUGH)
264 cachepolicy = CPOLICY_WRITETHROUGH;
265 #endif
267 if (cpu_arch < CPU_ARCH_ARMv5) {
268 if (cachepolicy >= CPOLICY_WRITEALLOC)
269 cachepolicy = CPOLICY_WRITEBACK;
270 ecc_mask = 0;
274 * ARMv5 and lower, bit 4 must be set for page tables.
275 * (was: cache "update-able on write" bit on ARM610)
276 * However, Xscale cores require this bit to be cleared.
278 if (cpu_is_xscale()) {
279 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
280 mem_types[i].prot_sect &= ~PMD_BIT4;
281 mem_types[i].prot_l1 &= ~PMD_BIT4;
283 } else if (cpu_arch < CPU_ARCH_ARMv6) {
284 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
285 if (mem_types[i].prot_l1)
286 mem_types[i].prot_l1 |= PMD_BIT4;
287 if (mem_types[i].prot_sect)
288 mem_types[i].prot_sect |= PMD_BIT4;
292 cp = &cache_policies[cachepolicy];
293 kern_pgprot = user_pgprot = cp->pte;
296 * Enable CPU-specific coherency if supported.
297 * (Only available on XSC3 at the moment.)
299 if (arch_is_coherent()) {
300 if (cpu_is_xsc3()) {
301 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
302 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
307 * ARMv6 and above have extended page tables.
309 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
311 * Mark cache clean areas and XIP ROM read only
312 * from SVC mode and no access from userspace.
314 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
315 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
316 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
319 * Mark the device area as "shared device"
321 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
322 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
324 #ifdef CONFIG_SMP
326 * Mark memory with the "shared" attribute for SMP systems
328 user_pgprot |= L_PTE_SHARED;
329 kern_pgprot |= L_PTE_SHARED;
330 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
331 #endif
334 for (i = 0; i < 16; i++) {
335 unsigned long v = pgprot_val(protection_map[i]);
336 v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
337 protection_map[i] = __pgprot(v);
340 mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
341 mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
343 if (cpu_arch >= CPU_ARCH_ARMv5) {
344 #ifndef CONFIG_SMP
346 * Only use write-through for non-SMP systems
348 mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
349 mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
350 #endif
351 } else {
352 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
355 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
356 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
357 L_PTE_DIRTY | L_PTE_WRITE |
358 L_PTE_EXEC | kern_pgprot);
360 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
361 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
362 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
363 mem_types[MT_ROM].prot_sect |= cp->pmd;
365 switch (cp->pmd) {
366 case PMD_SECT_WT:
367 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
368 break;
369 case PMD_SECT_WB:
370 case PMD_SECT_WBWA:
371 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
372 break;
374 printk("Memory policy: ECC %sabled, Data cache %s\n",
375 ecc_mask ? "en" : "dis", cp->policy);
377 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
378 struct mem_type *t = &mem_types[i];
379 if (t->prot_l1)
380 t->prot_l1 |= PMD_DOMAIN(t->domain);
381 if (t->prot_sect)
382 t->prot_sect |= PMD_DOMAIN(t->domain);
386 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
388 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
389 unsigned long end, unsigned long pfn,
390 const struct mem_type *type)
392 pte_t *pte;
394 if (pmd_none(*pmd)) {
395 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
396 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
399 pte = pte_offset_kernel(pmd, addr);
400 do {
401 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
402 type->prot_pte_ext);
403 pfn++;
404 } while (pte++, addr += PAGE_SIZE, addr != end);
407 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
408 unsigned long end, unsigned long phys,
409 const struct mem_type *type)
411 pmd_t *pmd = pmd_offset(pgd, addr);
414 * Try a section mapping - end, addr and phys must all be aligned
415 * to a section boundary. Note that PMDs refer to the individual
416 * L1 entries, whereas PGDs refer to a group of L1 entries making
417 * up one logical pointer to an L2 table.
419 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
420 pmd_t *p = pmd;
422 if (addr & SECTION_SIZE)
423 pmd++;
425 do {
426 *pmd = __pmd(phys | type->prot_sect);
427 phys += SECTION_SIZE;
428 } while (pmd++, addr += SECTION_SIZE, addr != end);
430 flush_pmd_entry(p);
431 } else {
433 * No need to loop; pte's aren't interested in the
434 * individual L1 entries.
436 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
440 static void __init create_36bit_mapping(struct map_desc *md,
441 const struct mem_type *type)
443 unsigned long phys, addr, length, end;
444 pgd_t *pgd;
446 addr = md->virtual;
447 phys = (unsigned long)__pfn_to_phys(md->pfn);
448 length = PAGE_ALIGN(md->length);
450 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
451 printk(KERN_ERR "MM: CPU does not support supersection "
452 "mapping for 0x%08llx at 0x%08lx\n",
453 __pfn_to_phys((u64)md->pfn), addr);
454 return;
457 /* N.B. ARMv6 supersections are only defined to work with domain 0.
458 * Since domain assignments can in fact be arbitrary, the
459 * 'domain == 0' check below is required to insure that ARMv6
460 * supersections are only allocated for domain 0 regardless
461 * of the actual domain assignments in use.
463 if (type->domain) {
464 printk(KERN_ERR "MM: invalid domain in supersection "
465 "mapping for 0x%08llx at 0x%08lx\n",
466 __pfn_to_phys((u64)md->pfn), addr);
467 return;
470 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
471 printk(KERN_ERR "MM: cannot create mapping for "
472 "0x%08llx at 0x%08lx invalid alignment\n",
473 __pfn_to_phys((u64)md->pfn), addr);
474 return;
478 * Shift bits [35:32] of address into bits [23:20] of PMD
479 * (See ARMv6 spec).
481 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
483 pgd = pgd_offset_k(addr);
484 end = addr + length;
485 do {
486 pmd_t *pmd = pmd_offset(pgd, addr);
487 int i;
489 for (i = 0; i < 16; i++)
490 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
492 addr += SUPERSECTION_SIZE;
493 phys += SUPERSECTION_SIZE;
494 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
495 } while (addr != end);
499 * Create the page directory entries and any necessary
500 * page tables for the mapping specified by `md'. We
501 * are able to cope here with varying sizes and address
502 * offsets, and we take full advantage of sections and
503 * supersections.
505 void __init create_mapping(struct map_desc *md)
507 unsigned long phys, addr, length, end;
508 const struct mem_type *type;
509 pgd_t *pgd;
511 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
512 printk(KERN_WARNING "BUG: not creating mapping for "
513 "0x%08llx at 0x%08lx in user region\n",
514 __pfn_to_phys((u64)md->pfn), md->virtual);
515 return;
518 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
519 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
520 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
521 "overlaps vmalloc space\n",
522 __pfn_to_phys((u64)md->pfn), md->virtual);
525 type = &mem_types[md->type];
528 * Catch 36-bit addresses
530 if (md->pfn >= 0x100000) {
531 create_36bit_mapping(md, type);
532 return;
535 addr = md->virtual & PAGE_MASK;
536 phys = (unsigned long)__pfn_to_phys(md->pfn);
537 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
539 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
540 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
541 "be mapped using pages, ignoring.\n",
542 __pfn_to_phys(md->pfn), addr);
543 return;
546 pgd = pgd_offset_k(addr);
547 end = addr + length;
548 do {
549 unsigned long next = pgd_addr_end(addr, end);
551 alloc_init_section(pgd, addr, next, phys, type);
553 phys += next - addr;
554 addr = next;
555 } while (pgd++, addr != end);
559 * Create the architecture specific mappings
561 void __init iotable_init(struct map_desc *io_desc, int nr)
563 int i;
565 for (i = 0; i < nr; i++)
566 create_mapping(io_desc + i);
569 static unsigned long __initdata vmalloc_reserve = SZ_128M;
572 * vmalloc=size forces the vmalloc area to be exactly 'size'
573 * bytes. This can be used to increase (or decrease) the vmalloc
574 * area - the default is 128m.
576 static void __init early_vmalloc(char **arg)
578 vmalloc_reserve = memparse(*arg, arg);
580 if (vmalloc_reserve < SZ_16M) {
581 vmalloc_reserve = SZ_16M;
582 printk(KERN_WARNING
583 "vmalloc area too small, limiting to %luMB\n",
584 vmalloc_reserve >> 20);
587 __early_param("vmalloc=", early_vmalloc);
589 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
591 static int __init check_membank_valid(struct membank *mb)
594 * Check whether this memory region has non-zero size or
595 * invalid node number.
597 if (mb->size == 0 || mb->node >= MAX_NUMNODES)
598 return 0;
601 * Check whether this memory region would entirely overlap
602 * the vmalloc area.
604 if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
605 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
606 "(vmalloc region overlap).\n",
607 mb->start, mb->start + mb->size - 1);
608 return 0;
612 * Check whether this memory region would partially overlap
613 * the vmalloc area.
615 if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
616 phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
617 unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);
619 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
620 "to -%.8lx (vmalloc region overlap).\n",
621 mb->start, mb->start + mb->size - 1,
622 mb->start + newsize - 1);
623 mb->size = newsize;
626 return 1;
629 static void __init sanity_check_meminfo(struct meminfo *mi)
631 int i, j;
633 for (i = 0, j = 0; i < mi->nr_banks; i++) {
634 if (check_membank_valid(&mi->bank[i]))
635 mi->bank[j++] = mi->bank[i];
637 mi->nr_banks = j;
640 static inline void prepare_page_table(struct meminfo *mi)
642 unsigned long addr;
645 * Clear out all the mappings below the kernel image.
647 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
648 pmd_clear(pmd_off_k(addr));
650 #ifdef CONFIG_XIP_KERNEL
651 /* The XIP kernel is mapped in the module area -- skip over it */
652 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
653 #endif
654 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
655 pmd_clear(pmd_off_k(addr));
658 * Clear out all the kernel space mappings, except for the first
659 * memory bank, up to the end of the vmalloc region.
661 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
662 addr < VMALLOC_END; addr += PGDIR_SIZE)
663 pmd_clear(pmd_off_k(addr));
667 * Reserve the various regions of node 0
669 void __init reserve_node_zero(pg_data_t *pgdat)
671 unsigned long res_size = 0;
674 * Register the kernel text and data with bootmem.
675 * Note that this can only be in node 0.
677 #ifdef CONFIG_XIP_KERNEL
678 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
679 BOOTMEM_DEFAULT);
680 #else
681 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
682 BOOTMEM_DEFAULT);
683 #endif
686 * Reserve the page tables. These are already in use,
687 * and can only be in node 0.
689 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
690 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
693 * Hmm... This should go elsewhere, but we really really need to
694 * stop things allocating the low memory; ideally we need a better
695 * implementation of GFP_DMA which does not assume that DMA-able
696 * memory starts at zero.
698 if (machine_is_integrator() || machine_is_cintegrator())
699 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
702 * These should likewise go elsewhere. They pre-reserve the
703 * screen memory region at the start of main system memory.
705 if (machine_is_edb7211())
706 res_size = 0x00020000;
707 if (machine_is_p720t())
708 res_size = 0x00014000;
710 /* H1940 and RX3715 need to reserve this for suspend */
712 if (machine_is_h1940() || machine_is_rx3715()) {
713 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
714 BOOTMEM_DEFAULT);
715 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
716 BOOTMEM_DEFAULT);
719 #ifdef CONFIG_SA1111
721 * Because of the SA1111 DMA bug, we want to preserve our
722 * precious DMA-able memory...
724 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
725 #endif
726 if (res_size)
727 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
728 BOOTMEM_DEFAULT);
732 * Set up device the mappings. Since we clear out the page tables for all
733 * mappings above VMALLOC_END, we will remove any debug device mappings.
734 * This means you have to be careful how you debug this function, or any
735 * called function. This means you can't use any function or debugging
736 * method which may touch any device, otherwise the kernel _will_ crash.
738 static void __init devicemaps_init(struct machine_desc *mdesc)
740 struct map_desc map;
741 unsigned long addr;
742 void *vectors;
745 * Allocate the vector page early.
747 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
748 BUG_ON(!vectors);
750 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
751 pmd_clear(pmd_off_k(addr));
754 * Map the kernel if it is XIP.
755 * It is always first in the modulearea.
757 #ifdef CONFIG_XIP_KERNEL
758 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
759 map.virtual = MODULE_START;
760 map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
761 map.type = MT_ROM;
762 create_mapping(&map);
763 #endif
766 * Map the cache flushing regions.
768 #ifdef FLUSH_BASE
769 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
770 map.virtual = FLUSH_BASE;
771 map.length = SZ_1M;
772 map.type = MT_CACHECLEAN;
773 create_mapping(&map);
774 #endif
775 #ifdef FLUSH_BASE_MINICACHE
776 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
777 map.virtual = FLUSH_BASE_MINICACHE;
778 map.length = SZ_1M;
779 map.type = MT_MINICLEAN;
780 create_mapping(&map);
781 #endif
784 * Create a mapping for the machine vectors at the high-vectors
785 * location (0xffff0000). If we aren't using high-vectors, also
786 * create a mapping at the low-vectors virtual address.
788 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
789 map.virtual = 0xffff0000;
790 map.length = PAGE_SIZE;
791 map.type = MT_HIGH_VECTORS;
792 create_mapping(&map);
794 if (!vectors_high()) {
795 map.virtual = 0;
796 map.type = MT_LOW_VECTORS;
797 create_mapping(&map);
801 * Ask the machine support to map in the statically mapped devices.
803 if (mdesc->map_io)
804 mdesc->map_io();
807 * Finally flush the caches and tlb to ensure that we're in a
808 * consistent state wrt the writebuffer. This also ensures that
809 * any write-allocated cache lines in the vector page are written
810 * back. After this point, we can start to touch devices again.
812 local_flush_tlb_all();
813 flush_cache_all();
817 * paging_init() sets up the page tables, initialises the zone memory
818 * maps, and sets up the zero page, bad page and bad page tables.
820 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
822 void *zero_page;
824 build_mem_type_table();
825 sanity_check_meminfo(mi);
826 prepare_page_table(mi);
827 bootmem_init(mi);
828 devicemaps_init(mdesc);
830 top_pmd = pmd_off_k(0xffff0000);
833 * allocate the zero page. Note that we count on this going ok.
835 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
836 memzero(zero_page, PAGE_SIZE);
837 empty_zero_page = virt_to_page(zero_page);
838 flush_dcache_page(empty_zero_page);
842 * In order to soft-boot, we need to insert a 1:1 mapping in place of
843 * the user-mode pages. This will then ensure that we have predictable
844 * results when turning the mmu off
846 void setup_mm_for_reboot(char mode)
848 unsigned long base_pmdval;
849 pgd_t *pgd;
850 int i;
852 if (current->mm && current->mm->pgd)
853 pgd = current->mm->pgd;
854 else
855 pgd = init_mm.pgd;
857 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
858 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
859 base_pmdval |= PMD_BIT4;
861 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
862 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
863 pmd_t *pmd;
865 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
866 pmd[0] = __pmd(pmdval);
867 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
868 flush_pmd_entry(pmd);