libata: reimplement link power management
[linux-2.6/x86.git] / drivers / ata / libata-core.c
blob7c5538b9fa3b39dc11360eeb25c5e4fe2ae6c7af
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
70 #include "libata.h"
71 #include "libata-transport.h"
73 /* debounce timing parameters in msecs { interval, duration, timeout } */
74 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78 const struct ata_port_operations ata_base_port_ops = {
79 .prereset = ata_std_prereset,
80 .postreset = ata_std_postreset,
81 .error_handler = ata_std_error_handler,
84 const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
87 .qc_defer = ata_std_qc_defer,
88 .hardreset = sata_std_hardreset,
91 static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97 unsigned int ata_print_id = 1;
99 struct ata_force_param {
100 const char *name;
101 unsigned int cbl;
102 int spd_limit;
103 unsigned long xfer_mask;
104 unsigned int horkage_on;
105 unsigned int horkage_off;
106 unsigned int lflags;
109 struct ata_force_ent {
110 int port;
111 int device;
112 struct ata_force_param param;
115 static struct ata_force_ent *ata_force_tbl;
116 static int ata_force_tbl_size;
118 static char ata_force_param_buf[PAGE_SIZE] __initdata;
119 /* param_buf is thrown away after initialization, disallow read */
120 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
121 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123 static int atapi_enabled = 1;
124 module_param(atapi_enabled, int, 0444);
125 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
127 static int atapi_dmadir = 0;
128 module_param(atapi_dmadir, int, 0444);
129 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
131 int atapi_passthru16 = 1;
132 module_param(atapi_passthru16, int, 0444);
133 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
135 int libata_fua = 0;
136 module_param_named(fua, libata_fua, int, 0444);
137 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
139 static int ata_ignore_hpa;
140 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
141 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
144 module_param_named(dma, libata_dma_mask, int, 0444);
145 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147 static int ata_probe_timeout;
148 module_param(ata_probe_timeout, int, 0444);
149 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151 int libata_noacpi = 0;
152 module_param_named(noacpi, libata_noacpi, int, 0444);
153 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
155 int libata_allow_tpm = 0;
156 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
157 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
159 static int atapi_an;
160 module_param(atapi_an, int, 0444);
161 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
163 MODULE_AUTHOR("Jeff Garzik");
164 MODULE_DESCRIPTION("Library module for ATA devices");
165 MODULE_LICENSE("GPL");
166 MODULE_VERSION(DRV_VERSION);
169 static bool ata_sstatus_online(u32 sstatus)
171 return (sstatus & 0xf) == 0x3;
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
180 * LOCKING:
181 * Host lock or EH context.
183 * RETURNS:
184 * Pointer to the next link.
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 /* NULL link indicates start of iteration */
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
213 return ap->slave_link;
214 /* fall through */
215 case ATA_LITER_EDGE:
216 return NULL;
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
223 /* we were over a PMP link */
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
230 return NULL;
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
239 * LOCKING:
240 * Host lock or EH context.
242 * RETURNS:
243 * Pointer to the next device.
245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
294 * LOCKING:
295 * Don't care.
297 * RETURNS:
298 * Pointer to the found physical link.
300 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302 struct ata_port *ap = dev->link->ap;
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
312 * ata_force_cbl - force cable type according to libata.force
313 * @ap: ATA port of interest
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
321 * LOCKING:
322 * EH context.
324 void ata_force_cbl(struct ata_port *ap)
326 int i;
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
337 ap->cbl = fe->param.cbl;
338 ata_port_printk(ap, KERN_NOTICE,
339 "FORCE: cable set to %s\n", fe->param.name);
340 return;
345 * ata_force_link_limits - force link limits according to libata.force
346 * @link: ATA link of interest
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
357 * LOCKING:
358 * EH context.
360 static void ata_force_link_limits(struct ata_link *link)
362 bool did_spd = false;
363 int linkno = link->pmp;
364 int i;
366 if (ata_is_host_link(link))
367 linkno += 15;
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_printk(link, KERN_NOTICE,
382 "FORCE: PHY spd limit set to %s\n",
383 fe->param.name);
384 did_spd = true;
387 /* let lflags stack */
388 if (fe->param.lflags) {
389 link->flags |= fe->param.lflags;
390 ata_link_printk(link, KERN_NOTICE,
391 "FORCE: link flag 0x%x forced -> 0x%x\n",
392 fe->param.lflags, link->flags);
398 * ata_force_xfermask - force xfermask according to libata.force
399 * @dev: ATA device of interest
401 * Force xfer_mask according to libata.force and whine about it.
402 * For consistency with link selection, device number 15 selects
403 * the first device connected to the host link.
405 * LOCKING:
406 * EH context.
408 static void ata_force_xfermask(struct ata_device *dev)
410 int devno = dev->link->pmp + dev->devno;
411 int alt_devno = devno;
412 int i;
414 /* allow n.15/16 for devices attached to host port */
415 if (ata_is_host_link(dev->link))
416 alt_devno += 15;
418 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419 const struct ata_force_ent *fe = &ata_force_tbl[i];
420 unsigned long pio_mask, mwdma_mask, udma_mask;
422 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 continue;
425 if (fe->device != -1 && fe->device != devno &&
426 fe->device != alt_devno)
427 continue;
429 if (!fe->param.xfer_mask)
430 continue;
432 ata_unpack_xfermask(fe->param.xfer_mask,
433 &pio_mask, &mwdma_mask, &udma_mask);
434 if (udma_mask)
435 dev->udma_mask = udma_mask;
436 else if (mwdma_mask) {
437 dev->udma_mask = 0;
438 dev->mwdma_mask = mwdma_mask;
439 } else {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = 0;
442 dev->pio_mask = pio_mask;
445 ata_dev_printk(dev, KERN_NOTICE,
446 "FORCE: xfer_mask set to %s\n", fe->param.name);
447 return;
452 * ata_force_horkage - force horkage according to libata.force
453 * @dev: ATA device of interest
455 * Force horkage according to libata.force and whine about it.
456 * For consistency with link selection, device number 15 selects
457 * the first device connected to the host link.
459 * LOCKING:
460 * EH context.
462 static void ata_force_horkage(struct ata_device *dev)
464 int devno = dev->link->pmp + dev->devno;
465 int alt_devno = devno;
466 int i;
468 /* allow n.15/16 for devices attached to host port */
469 if (ata_is_host_link(dev->link))
470 alt_devno += 15;
472 for (i = 0; i < ata_force_tbl_size; i++) {
473 const struct ata_force_ent *fe = &ata_force_tbl[i];
475 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 continue;
478 if (fe->device != -1 && fe->device != devno &&
479 fe->device != alt_devno)
480 continue;
482 if (!(~dev->horkage & fe->param.horkage_on) &&
483 !(dev->horkage & fe->param.horkage_off))
484 continue;
486 dev->horkage |= fe->param.horkage_on;
487 dev->horkage &= ~fe->param.horkage_off;
489 ata_dev_printk(dev, KERN_NOTICE,
490 "FORCE: horkage modified (%s)\n", fe->param.name);
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
498 * Determine ATAPI command type from @opcode.
500 * LOCKING:
501 * None.
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506 int atapi_cmd_type(u8 opcode)
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 /* fall thru */
527 default:
528 return ATAPI_MISC;
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
535 * @pmp: Port multiplier port
536 * @is_cmd: This FIS is for command
537 * @fis: Buffer into which data will output
539 * Converts a standard ATA taskfile to a Serial ATA
540 * FIS structure (Register - Host to Device).
542 * LOCKING:
543 * Inherited from caller.
545 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = pmp & 0xf; /* Port multiplier number*/
549 if (is_cmd)
550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
552 fis[2] = tf->command;
553 fis[3] = tf->feature;
555 fis[4] = tf->lbal;
556 fis[5] = tf->lbam;
557 fis[6] = tf->lbah;
558 fis[7] = tf->device;
560 fis[8] = tf->hob_lbal;
561 fis[9] = tf->hob_lbam;
562 fis[10] = tf->hob_lbah;
563 fis[11] = tf->hob_feature;
565 fis[12] = tf->nsect;
566 fis[13] = tf->hob_nsect;
567 fis[14] = 0;
568 fis[15] = tf->ctl;
570 fis[16] = 0;
571 fis[17] = 0;
572 fis[18] = 0;
573 fis[19] = 0;
577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578 * @fis: Buffer from which data will be input
579 * @tf: Taskfile to output
581 * Converts a serial ATA FIS structure to a standard ATA taskfile.
583 * LOCKING:
584 * Inherited from caller.
587 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
589 tf->command = fis[2]; /* status */
590 tf->feature = fis[3]; /* error */
592 tf->lbal = fis[4];
593 tf->lbam = fis[5];
594 tf->lbah = fis[6];
595 tf->device = fis[7];
597 tf->hob_lbal = fis[8];
598 tf->hob_lbam = fis[9];
599 tf->hob_lbah = fis[10];
601 tf->nsect = fis[12];
602 tf->hob_nsect = fis[13];
605 static const u8 ata_rw_cmds[] = {
606 /* pio multi */
607 ATA_CMD_READ_MULTI,
608 ATA_CMD_WRITE_MULTI,
609 ATA_CMD_READ_MULTI_EXT,
610 ATA_CMD_WRITE_MULTI_EXT,
614 ATA_CMD_WRITE_MULTI_FUA_EXT,
615 /* pio */
616 ATA_CMD_PIO_READ,
617 ATA_CMD_PIO_WRITE,
618 ATA_CMD_PIO_READ_EXT,
619 ATA_CMD_PIO_WRITE_EXT,
624 /* dma */
625 ATA_CMD_READ,
626 ATA_CMD_WRITE,
627 ATA_CMD_READ_EXT,
628 ATA_CMD_WRITE_EXT,
632 ATA_CMD_WRITE_FUA_EXT
636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
637 * @tf: command to examine and configure
638 * @dev: device tf belongs to
640 * Examine the device configuration and tf->flags to calculate
641 * the proper read/write commands and protocol to use.
643 * LOCKING:
644 * caller.
646 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
648 u8 cmd;
650 int index, fua, lba48, write;
652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
656 if (dev->flags & ATA_DFLAG_PIO) {
657 tf->protocol = ATA_PROT_PIO;
658 index = dev->multi_count ? 0 : 8;
659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
660 /* Unable to use DMA due to host limitation */
661 tf->protocol = ATA_PROT_PIO;
662 index = dev->multi_count ? 0 : 8;
663 } else {
664 tf->protocol = ATA_PROT_DMA;
665 index = 16;
668 cmd = ata_rw_cmds[index + fua + lba48 + write];
669 if (cmd) {
670 tf->command = cmd;
671 return 0;
673 return -1;
677 * ata_tf_read_block - Read block address from ATA taskfile
678 * @tf: ATA taskfile of interest
679 * @dev: ATA device @tf belongs to
681 * LOCKING:
682 * None.
684 * Read block address from @tf. This function can handle all
685 * three address formats - LBA, LBA48 and CHS. tf->protocol and
686 * flags select the address format to use.
688 * RETURNS:
689 * Block address read from @tf.
691 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693 u64 block = 0;
695 if (tf->flags & ATA_TFLAG_LBA) {
696 if (tf->flags & ATA_TFLAG_LBA48) {
697 block |= (u64)tf->hob_lbah << 40;
698 block |= (u64)tf->hob_lbam << 32;
699 block |= (u64)tf->hob_lbal << 24;
700 } else
701 block |= (tf->device & 0xf) << 24;
703 block |= tf->lbah << 16;
704 block |= tf->lbam << 8;
705 block |= tf->lbal;
706 } else {
707 u32 cyl, head, sect;
709 cyl = tf->lbam | (tf->lbah << 8);
710 head = tf->device & 0xf;
711 sect = tf->lbal;
713 if (!sect) {
714 ata_dev_printk(dev, KERN_WARNING, "device reported "
715 "invalid CHS sector 0\n");
716 sect = 1; /* oh well */
719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 return block;
726 * ata_build_rw_tf - Build ATA taskfile for given read/write request
727 * @tf: Target ATA taskfile
728 * @dev: ATA device @tf belongs to
729 * @block: Block address
730 * @n_block: Number of blocks
731 * @tf_flags: RW/FUA etc...
732 * @tag: tag
734 * LOCKING:
735 * None.
737 * Build ATA taskfile @tf for read/write request described by
738 * @block, @n_block, @tf_flags and @tag on @dev.
740 * RETURNS:
742 * 0 on success, -ERANGE if the request is too large for @dev,
743 * -EINVAL if the request is invalid.
745 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746 u64 block, u32 n_block, unsigned int tf_flags,
747 unsigned int tag)
749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750 tf->flags |= tf_flags;
752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
753 /* yay, NCQ */
754 if (!lba_48_ok(block, n_block))
755 return -ERANGE;
757 tf->protocol = ATA_PROT_NCQ;
758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
760 if (tf->flags & ATA_TFLAG_WRITE)
761 tf->command = ATA_CMD_FPDMA_WRITE;
762 else
763 tf->command = ATA_CMD_FPDMA_READ;
765 tf->nsect = tag << 3;
766 tf->hob_feature = (n_block >> 8) & 0xff;
767 tf->feature = n_block & 0xff;
769 tf->hob_lbah = (block >> 40) & 0xff;
770 tf->hob_lbam = (block >> 32) & 0xff;
771 tf->hob_lbal = (block >> 24) & 0xff;
772 tf->lbah = (block >> 16) & 0xff;
773 tf->lbam = (block >> 8) & 0xff;
774 tf->lbal = block & 0xff;
776 tf->device = 1 << 6;
777 if (tf->flags & ATA_TFLAG_FUA)
778 tf->device |= 1 << 7;
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
792 tf->hob_nsect = (n_block >> 8) & 0xff;
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
804 tf->nsect = n_block & 0xff;
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
845 return 0;
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
857 * LOCKING:
858 * None.
860 * RETURNS:
861 * Packed xfer_mask.
863 unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL distination masks will be ignored.
882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 static const struct ata_xfer_ent {
894 int shift, bits;
895 u8 base;
896 } ata_xfer_tbl[] = {
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
900 { -1, },
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
910 * LOCKING:
911 * None.
913 * RETURNS:
914 * Matching XFER_* value, 0xff if no match found.
916 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
924 return 0xff;
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
931 * Return matching xfer_mask for @xfer_mode.
933 * LOCKING:
934 * None.
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
939 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
941 const struct ata_xfer_ent *ent;
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
947 return 0;
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
954 * Return matching xfer_shift for @xfer_mode.
956 * LOCKING:
957 * None.
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
962 int ata_xfer_mode2shift(unsigned long xfer_mode)
964 const struct ata_xfer_ent *ent;
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
976 * Determine string which represents the highest speed
977 * (highest bit in @modemask).
979 * LOCKING:
980 * None.
982 * RETURNS:
983 * Constant C string representing highest speed listed in
984 * @mode_mask, or the constant C string "<n/a>".
986 const char *ata_mode_string(unsigned long xfer_mask)
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
994 "PIO5",
995 "PIO6",
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
999 "MWDMA3",
1000 "MWDMA4",
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1010 int highbit;
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1015 return "<n/a>";
1018 const char *sata_spd_string(unsigned int spd)
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1039 * LOCKING:
1040 * None.
1042 * RETURNS:
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1044 * %ATA_DEV_UNKNOWN the event of failure.
1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1069 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070 DPRINTK("found ATA device by sig\n");
1071 return ATA_DEV_ATA;
1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075 DPRINTK("found ATAPI device by sig\n");
1076 return ATA_DEV_ATAPI;
1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080 DPRINTK("found PMP device by sig\n");
1081 return ATA_DEV_PMP;
1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086 return ATA_DEV_SEMB;
1089 DPRINTK("unknown device\n");
1090 return ATA_DEV_UNKNOWN;
1094 * ata_id_string - Convert IDENTIFY DEVICE page into string
1095 * @id: IDENTIFY DEVICE results we will examine
1096 * @s: string into which data is output
1097 * @ofs: offset into identify device page
1098 * @len: length of string to return. must be an even number.
1100 * The strings in the IDENTIFY DEVICE page are broken up into
1101 * 16-bit chunks. Run through the string, and output each
1102 * 8-bit chunk linearly, regardless of platform.
1104 * LOCKING:
1105 * caller.
1108 void ata_id_string(const u16 *id, unsigned char *s,
1109 unsigned int ofs, unsigned int len)
1111 unsigned int c;
1113 BUG_ON(len & 1);
1115 while (len > 0) {
1116 c = id[ofs] >> 8;
1117 *s = c;
1118 s++;
1120 c = id[ofs] & 0xff;
1121 *s = c;
1122 s++;
1124 ofs++;
1125 len -= 2;
1130 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1131 * @id: IDENTIFY DEVICE results we will examine
1132 * @s: string into which data is output
1133 * @ofs: offset into identify device page
1134 * @len: length of string to return. must be an odd number.
1136 * This function is identical to ata_id_string except that it
1137 * trims trailing spaces and terminates the resulting string with
1138 * null. @len must be actual maximum length (even number) + 1.
1140 * LOCKING:
1141 * caller.
1143 void ata_id_c_string(const u16 *id, unsigned char *s,
1144 unsigned int ofs, unsigned int len)
1146 unsigned char *p;
1148 ata_id_string(id, s, ofs, len - 1);
1150 p = s + strnlen(s, len - 1);
1151 while (p > s && p[-1] == ' ')
1152 p--;
1153 *p = '\0';
1156 static u64 ata_id_n_sectors(const u16 *id)
1158 if (ata_id_has_lba(id)) {
1159 if (ata_id_has_lba48(id))
1160 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1161 else
1162 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1163 } else {
1164 if (ata_id_current_chs_valid(id))
1165 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1166 id[ATA_ID_CUR_SECTORS];
1167 else
1168 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1169 id[ATA_ID_SECTORS];
1173 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1175 u64 sectors = 0;
1177 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1178 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1179 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1180 sectors |= (tf->lbah & 0xff) << 16;
1181 sectors |= (tf->lbam & 0xff) << 8;
1182 sectors |= (tf->lbal & 0xff);
1184 return sectors;
1187 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1189 u64 sectors = 0;
1191 sectors |= (tf->device & 0x0f) << 24;
1192 sectors |= (tf->lbah & 0xff) << 16;
1193 sectors |= (tf->lbam & 0xff) << 8;
1194 sectors |= (tf->lbal & 0xff);
1196 return sectors;
1200 * ata_read_native_max_address - Read native max address
1201 * @dev: target device
1202 * @max_sectors: out parameter for the result native max address
1204 * Perform an LBA48 or LBA28 native size query upon the device in
1205 * question.
1207 * RETURNS:
1208 * 0 on success, -EACCES if command is aborted by the drive.
1209 * -EIO on other errors.
1211 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1213 unsigned int err_mask;
1214 struct ata_taskfile tf;
1215 int lba48 = ata_id_has_lba48(dev->id);
1217 ata_tf_init(dev, &tf);
1219 /* always clear all address registers */
1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222 if (lba48) {
1223 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1224 tf.flags |= ATA_TFLAG_LBA48;
1225 } else
1226 tf.command = ATA_CMD_READ_NATIVE_MAX;
1228 tf.protocol |= ATA_PROT_NODATA;
1229 tf.device |= ATA_LBA;
1231 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1232 if (err_mask) {
1233 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1234 "max address (err_mask=0x%x)\n", err_mask);
1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236 return -EACCES;
1237 return -EIO;
1240 if (lba48)
1241 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1242 else
1243 *max_sectors = ata_tf_to_lba(&tf) + 1;
1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245 (*max_sectors)--;
1246 return 0;
1250 * ata_set_max_sectors - Set max sectors
1251 * @dev: target device
1252 * @new_sectors: new max sectors value to set for the device
1254 * Set max sectors of @dev to @new_sectors.
1256 * RETURNS:
1257 * 0 on success, -EACCES if command is aborted or denied (due to
1258 * previous non-volatile SET_MAX) by the drive. -EIO on other
1259 * errors.
1261 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1263 unsigned int err_mask;
1264 struct ata_taskfile tf;
1265 int lba48 = ata_id_has_lba48(dev->id);
1267 new_sectors--;
1269 ata_tf_init(dev, &tf);
1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1273 if (lba48) {
1274 tf.command = ATA_CMD_SET_MAX_EXT;
1275 tf.flags |= ATA_TFLAG_LBA48;
1277 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280 } else {
1281 tf.command = ATA_CMD_SET_MAX;
1283 tf.device |= (new_sectors >> 24) & 0xf;
1286 tf.protocol |= ATA_PROT_NODATA;
1287 tf.device |= ATA_LBA;
1289 tf.lbal = (new_sectors >> 0) & 0xff;
1290 tf.lbam = (new_sectors >> 8) & 0xff;
1291 tf.lbah = (new_sectors >> 16) & 0xff;
1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294 if (err_mask) {
1295 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1296 "max address (err_mask=0x%x)\n", err_mask);
1297 if (err_mask == AC_ERR_DEV &&
1298 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1299 return -EACCES;
1300 return -EIO;
1303 return 0;
1307 * ata_hpa_resize - Resize a device with an HPA set
1308 * @dev: Device to resize
1310 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311 * it if required to the full size of the media. The caller must check
1312 * the drive has the HPA feature set enabled.
1314 * RETURNS:
1315 * 0 on success, -errno on failure.
1317 static int ata_hpa_resize(struct ata_device *dev)
1319 struct ata_eh_context *ehc = &dev->link->eh_context;
1320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1321 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1322 u64 sectors = ata_id_n_sectors(dev->id);
1323 u64 native_sectors;
1324 int rc;
1326 /* do we need to do it? */
1327 if (dev->class != ATA_DEV_ATA ||
1328 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1329 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1330 return 0;
1332 /* read native max address */
1333 rc = ata_read_native_max_address(dev, &native_sectors);
1334 if (rc) {
1335 /* If device aborted the command or HPA isn't going to
1336 * be unlocked, skip HPA resizing.
1338 if (rc == -EACCES || !unlock_hpa) {
1339 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1340 "broken, skipping HPA handling\n");
1341 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343 /* we can continue if device aborted the command */
1344 if (rc == -EACCES)
1345 rc = 0;
1348 return rc;
1350 dev->n_native_sectors = native_sectors;
1352 /* nothing to do? */
1353 if (native_sectors <= sectors || !unlock_hpa) {
1354 if (!print_info || native_sectors == sectors)
1355 return 0;
1357 if (native_sectors > sectors)
1358 ata_dev_printk(dev, KERN_INFO,
1359 "HPA detected: current %llu, native %llu\n",
1360 (unsigned long long)sectors,
1361 (unsigned long long)native_sectors);
1362 else if (native_sectors < sectors)
1363 ata_dev_printk(dev, KERN_WARNING,
1364 "native sectors (%llu) is smaller than "
1365 "sectors (%llu)\n",
1366 (unsigned long long)native_sectors,
1367 (unsigned long long)sectors);
1368 return 0;
1371 /* let's unlock HPA */
1372 rc = ata_set_max_sectors(dev, native_sectors);
1373 if (rc == -EACCES) {
1374 /* if device aborted the command, skip HPA resizing */
1375 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1376 "(%llu -> %llu), skipping HPA handling\n",
1377 (unsigned long long)sectors,
1378 (unsigned long long)native_sectors);
1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380 return 0;
1381 } else if (rc)
1382 return rc;
1384 /* re-read IDENTIFY data */
1385 rc = ata_dev_reread_id(dev, 0);
1386 if (rc) {
1387 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1388 "data after HPA resizing\n");
1389 return rc;
1392 if (print_info) {
1393 u64 new_sectors = ata_id_n_sectors(dev->id);
1394 ata_dev_printk(dev, KERN_INFO,
1395 "HPA unlocked: %llu -> %llu, native %llu\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)new_sectors,
1398 (unsigned long long)native_sectors);
1401 return 0;
1405 * ata_dump_id - IDENTIFY DEVICE info debugging output
1406 * @id: IDENTIFY DEVICE page to dump
1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 * page.
1411 * LOCKING:
1412 * caller.
1415 static inline void ata_dump_id(const u16 *id)
1417 DPRINTK("49==0x%04x "
1418 "53==0x%04x "
1419 "63==0x%04x "
1420 "64==0x%04x "
1421 "75==0x%04x \n",
1422 id[49],
1423 id[53],
1424 id[63],
1425 id[64],
1426 id[75]);
1427 DPRINTK("80==0x%04x "
1428 "81==0x%04x "
1429 "82==0x%04x "
1430 "83==0x%04x "
1431 "84==0x%04x \n",
1432 id[80],
1433 id[81],
1434 id[82],
1435 id[83],
1436 id[84]);
1437 DPRINTK("88==0x%04x "
1438 "93==0x%04x\n",
1439 id[88],
1440 id[93]);
1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 * @id: IDENTIFY data to compute xfer mask from
1447 * Compute the xfermask for this device. This is not as trivial
1448 * as it seems if we must consider early devices correctly.
1450 * FIXME: pre IDE drive timing (do we care ?).
1452 * LOCKING:
1453 * None.
1455 * RETURNS:
1456 * Computed xfermask
1458 unsigned long ata_id_xfermask(const u16 *id)
1460 unsigned long pio_mask, mwdma_mask, udma_mask;
1462 /* Usual case. Word 53 indicates word 64 is valid */
1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 pio_mask <<= 3;
1466 pio_mask |= 0x7;
1467 } else {
1468 /* If word 64 isn't valid then Word 51 high byte holds
1469 * the PIO timing number for the maximum. Turn it into
1470 * a mask.
1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473 if (mode < 5) /* Valid PIO range */
1474 pio_mask = (2 << mode) - 1;
1475 else
1476 pio_mask = 1;
1478 /* But wait.. there's more. Design your standards by
1479 * committee and you too can get a free iordy field to
1480 * process. However its the speeds not the modes that
1481 * are supported... Note drivers using the timing API
1482 * will get this right anyway
1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1488 if (ata_id_is_cfa(id)) {
1490 * Process compact flash extended modes
1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1495 if (pio)
1496 pio_mask |= (1 << 5);
1497 if (pio > 1)
1498 pio_mask |= (1 << 6);
1499 if (dma)
1500 mwdma_mask |= (1 << 3);
1501 if (dma > 1)
1502 mwdma_mask |= (1 << 4);
1505 udma_mask = 0;
1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1514 struct completion *waiting = qc->private_data;
1516 complete(waiting);
1520 * ata_exec_internal_sg - execute libata internal command
1521 * @dev: Device to which the command is sent
1522 * @tf: Taskfile registers for the command and the result
1523 * @cdb: CDB for packet command
1524 * @dma_dir: Data tranfer direction of the command
1525 * @sgl: sg list for the data buffer of the command
1526 * @n_elem: Number of sg entries
1527 * @timeout: Timeout in msecs (0 for default)
1529 * Executes libata internal command with timeout. @tf contains
1530 * command on entry and result on return. Timeout and error
1531 * conditions are reported via return value. No recovery action
1532 * is taken after a command times out. It's caller's duty to
1533 * clean up after timeout.
1535 * LOCKING:
1536 * None. Should be called with kernel context, might sleep.
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
1541 unsigned ata_exec_internal_sg(struct ata_device *dev,
1542 struct ata_taskfile *tf, const u8 *cdb,
1543 int dma_dir, struct scatterlist *sgl,
1544 unsigned int n_elem, unsigned long timeout)
1546 struct ata_link *link = dev->link;
1547 struct ata_port *ap = link->ap;
1548 u8 command = tf->command;
1549 int auto_timeout = 0;
1550 struct ata_queued_cmd *qc;
1551 unsigned int tag, preempted_tag;
1552 u32 preempted_sactive, preempted_qc_active;
1553 int preempted_nr_active_links;
1554 DECLARE_COMPLETION_ONSTACK(wait);
1555 unsigned long flags;
1556 unsigned int err_mask;
1557 int rc;
1559 spin_lock_irqsave(ap->lock, flags);
1561 /* no internal command while frozen */
1562 if (ap->pflags & ATA_PFLAG_FROZEN) {
1563 spin_unlock_irqrestore(ap->lock, flags);
1564 return AC_ERR_SYSTEM;
1567 /* initialize internal qc */
1569 /* XXX: Tag 0 is used for drivers with legacy EH as some
1570 * drivers choke if any other tag is given. This breaks
1571 * ata_tag_internal() test for those drivers. Don't use new
1572 * EH stuff without converting to it.
1574 if (ap->ops->error_handler)
1575 tag = ATA_TAG_INTERNAL;
1576 else
1577 tag = 0;
1579 if (test_and_set_bit(tag, &ap->qc_allocated))
1580 BUG();
1581 qc = __ata_qc_from_tag(ap, tag);
1583 qc->tag = tag;
1584 qc->scsicmd = NULL;
1585 qc->ap = ap;
1586 qc->dev = dev;
1587 ata_qc_reinit(qc);
1589 preempted_tag = link->active_tag;
1590 preempted_sactive = link->sactive;
1591 preempted_qc_active = ap->qc_active;
1592 preempted_nr_active_links = ap->nr_active_links;
1593 link->active_tag = ATA_TAG_POISON;
1594 link->sactive = 0;
1595 ap->qc_active = 0;
1596 ap->nr_active_links = 0;
1598 /* prepare & issue qc */
1599 qc->tf = *tf;
1600 if (cdb)
1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602 qc->flags |= ATA_QCFLAG_RESULT_TF;
1603 qc->dma_dir = dma_dir;
1604 if (dma_dir != DMA_NONE) {
1605 unsigned int i, buflen = 0;
1606 struct scatterlist *sg;
1608 for_each_sg(sgl, sg, n_elem, i)
1609 buflen += sg->length;
1611 ata_sg_init(qc, sgl, n_elem);
1612 qc->nbytes = buflen;
1615 qc->private_data = &wait;
1616 qc->complete_fn = ata_qc_complete_internal;
1618 ata_qc_issue(qc);
1620 spin_unlock_irqrestore(ap->lock, flags);
1622 if (!timeout) {
1623 if (ata_probe_timeout)
1624 timeout = ata_probe_timeout * 1000;
1625 else {
1626 timeout = ata_internal_cmd_timeout(dev, command);
1627 auto_timeout = 1;
1631 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1633 ata_sff_flush_pio_task(ap);
1635 if (!rc) {
1636 spin_lock_irqsave(ap->lock, flags);
1638 /* We're racing with irq here. If we lose, the
1639 * following test prevents us from completing the qc
1640 * twice. If we win, the port is frozen and will be
1641 * cleaned up by ->post_internal_cmd().
1643 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1644 qc->err_mask |= AC_ERR_TIMEOUT;
1646 if (ap->ops->error_handler)
1647 ata_port_freeze(ap);
1648 else
1649 ata_qc_complete(qc);
1651 if (ata_msg_warn(ap))
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "qc timeout (cmd 0x%x)\n", command);
1656 spin_unlock_irqrestore(ap->lock, flags);
1659 /* do post_internal_cmd */
1660 if (ap->ops->post_internal_cmd)
1661 ap->ops->post_internal_cmd(qc);
1663 /* perform minimal error analysis */
1664 if (qc->flags & ATA_QCFLAG_FAILED) {
1665 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1666 qc->err_mask |= AC_ERR_DEV;
1668 if (!qc->err_mask)
1669 qc->err_mask |= AC_ERR_OTHER;
1671 if (qc->err_mask & ~AC_ERR_OTHER)
1672 qc->err_mask &= ~AC_ERR_OTHER;
1675 /* finish up */
1676 spin_lock_irqsave(ap->lock, flags);
1678 *tf = qc->result_tf;
1679 err_mask = qc->err_mask;
1681 ata_qc_free(qc);
1682 link->active_tag = preempted_tag;
1683 link->sactive = preempted_sactive;
1684 ap->qc_active = preempted_qc_active;
1685 ap->nr_active_links = preempted_nr_active_links;
1687 spin_unlock_irqrestore(ap->lock, flags);
1689 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1690 ata_internal_cmd_timed_out(dev, command);
1692 return err_mask;
1696 * ata_exec_internal - execute libata internal command
1697 * @dev: Device to which the command is sent
1698 * @tf: Taskfile registers for the command and the result
1699 * @cdb: CDB for packet command
1700 * @dma_dir: Data tranfer direction of the command
1701 * @buf: Data buffer of the command
1702 * @buflen: Length of data buffer
1703 * @timeout: Timeout in msecs (0 for default)
1705 * Wrapper around ata_exec_internal_sg() which takes simple
1706 * buffer instead of sg list.
1708 * LOCKING:
1709 * None. Should be called with kernel context, might sleep.
1711 * RETURNS:
1712 * Zero on success, AC_ERR_* mask on failure
1714 unsigned ata_exec_internal(struct ata_device *dev,
1715 struct ata_taskfile *tf, const u8 *cdb,
1716 int dma_dir, void *buf, unsigned int buflen,
1717 unsigned long timeout)
1719 struct scatterlist *psg = NULL, sg;
1720 unsigned int n_elem = 0;
1722 if (dma_dir != DMA_NONE) {
1723 WARN_ON(!buf);
1724 sg_init_one(&sg, buf, buflen);
1725 psg = &sg;
1726 n_elem++;
1729 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1730 timeout);
1734 * ata_do_simple_cmd - execute simple internal command
1735 * @dev: Device to which the command is sent
1736 * @cmd: Opcode to execute
1738 * Execute a 'simple' command, that only consists of the opcode
1739 * 'cmd' itself, without filling any other registers
1741 * LOCKING:
1742 * Kernel thread context (may sleep).
1744 * RETURNS:
1745 * Zero on success, AC_ERR_* mask on failure
1747 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1749 struct ata_taskfile tf;
1751 ata_tf_init(dev, &tf);
1753 tf.command = cmd;
1754 tf.flags |= ATA_TFLAG_DEVICE;
1755 tf.protocol = ATA_PROT_NODATA;
1757 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1761 * ata_pio_need_iordy - check if iordy needed
1762 * @adev: ATA device
1764 * Check if the current speed of the device requires IORDY. Used
1765 * by various controllers for chip configuration.
1767 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1769 /* Don't set IORDY if we're preparing for reset. IORDY may
1770 * lead to controller lock up on certain controllers if the
1771 * port is not occupied. See bko#11703 for details.
1773 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1774 return 0;
1775 /* Controller doesn't support IORDY. Probably a pointless
1776 * check as the caller should know this.
1778 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1779 return 0;
1780 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1781 if (ata_id_is_cfa(adev->id)
1782 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1783 return 0;
1784 /* PIO3 and higher it is mandatory */
1785 if (adev->pio_mode > XFER_PIO_2)
1786 return 1;
1787 /* We turn it on when possible */
1788 if (ata_id_has_iordy(adev->id))
1789 return 1;
1790 return 0;
1794 * ata_pio_mask_no_iordy - Return the non IORDY mask
1795 * @adev: ATA device
1797 * Compute the highest mode possible if we are not using iordy. Return
1798 * -1 if no iordy mode is available.
1800 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1802 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1803 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1804 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1805 /* Is the speed faster than the drive allows non IORDY ? */
1806 if (pio) {
1807 /* This is cycle times not frequency - watch the logic! */
1808 if (pio > 240) /* PIO2 is 240nS per cycle */
1809 return 3 << ATA_SHIFT_PIO;
1810 return 7 << ATA_SHIFT_PIO;
1813 return 3 << ATA_SHIFT_PIO;
1817 * ata_do_dev_read_id - default ID read method
1818 * @dev: device
1819 * @tf: proposed taskfile
1820 * @id: data buffer
1822 * Issue the identify taskfile and hand back the buffer containing
1823 * identify data. For some RAID controllers and for pre ATA devices
1824 * this function is wrapped or replaced by the driver
1826 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1827 struct ata_taskfile *tf, u16 *id)
1829 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1830 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1834 * ata_dev_read_id - Read ID data from the specified device
1835 * @dev: target device
1836 * @p_class: pointer to class of the target device (may be changed)
1837 * @flags: ATA_READID_* flags
1838 * @id: buffer to read IDENTIFY data into
1840 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1841 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1842 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1843 * for pre-ATA4 drives.
1845 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1846 * now we abort if we hit that case.
1848 * LOCKING:
1849 * Kernel thread context (may sleep)
1851 * RETURNS:
1852 * 0 on success, -errno otherwise.
1854 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1855 unsigned int flags, u16 *id)
1857 struct ata_port *ap = dev->link->ap;
1858 unsigned int class = *p_class;
1859 struct ata_taskfile tf;
1860 unsigned int err_mask = 0;
1861 const char *reason;
1862 bool is_semb = class == ATA_DEV_SEMB;
1863 int may_fallback = 1, tried_spinup = 0;
1864 int rc;
1866 if (ata_msg_ctl(ap))
1867 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1869 retry:
1870 ata_tf_init(dev, &tf);
1872 switch (class) {
1873 case ATA_DEV_SEMB:
1874 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1875 case ATA_DEV_ATA:
1876 tf.command = ATA_CMD_ID_ATA;
1877 break;
1878 case ATA_DEV_ATAPI:
1879 tf.command = ATA_CMD_ID_ATAPI;
1880 break;
1881 default:
1882 rc = -ENODEV;
1883 reason = "unsupported class";
1884 goto err_out;
1887 tf.protocol = ATA_PROT_PIO;
1889 /* Some devices choke if TF registers contain garbage. Make
1890 * sure those are properly initialized.
1892 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1894 /* Device presence detection is unreliable on some
1895 * controllers. Always poll IDENTIFY if available.
1897 tf.flags |= ATA_TFLAG_POLLING;
1899 if (ap->ops->read_id)
1900 err_mask = ap->ops->read_id(dev, &tf, id);
1901 else
1902 err_mask = ata_do_dev_read_id(dev, &tf, id);
1904 if (err_mask) {
1905 if (err_mask & AC_ERR_NODEV_HINT) {
1906 ata_dev_printk(dev, KERN_DEBUG,
1907 "NODEV after polling detection\n");
1908 return -ENOENT;
1911 if (is_semb) {
1912 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
1913 "device w/ SEMB sig, disabled\n");
1914 /* SEMB is not supported yet */
1915 *p_class = ATA_DEV_SEMB_UNSUP;
1916 return 0;
1919 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1920 /* Device or controller might have reported
1921 * the wrong device class. Give a shot at the
1922 * other IDENTIFY if the current one is
1923 * aborted by the device.
1925 if (may_fallback) {
1926 may_fallback = 0;
1928 if (class == ATA_DEV_ATA)
1929 class = ATA_DEV_ATAPI;
1930 else
1931 class = ATA_DEV_ATA;
1932 goto retry;
1935 /* Control reaches here iff the device aborted
1936 * both flavors of IDENTIFYs which happens
1937 * sometimes with phantom devices.
1939 ata_dev_printk(dev, KERN_DEBUG,
1940 "both IDENTIFYs aborted, assuming NODEV\n");
1941 return -ENOENT;
1944 rc = -EIO;
1945 reason = "I/O error";
1946 goto err_out;
1949 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1950 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
1951 "class=%d may_fallback=%d tried_spinup=%d\n",
1952 class, may_fallback, tried_spinup);
1953 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1954 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1957 /* Falling back doesn't make sense if ID data was read
1958 * successfully at least once.
1960 may_fallback = 0;
1962 swap_buf_le16(id, ATA_ID_WORDS);
1964 /* sanity check */
1965 rc = -EINVAL;
1966 reason = "device reports invalid type";
1968 if (class == ATA_DEV_ATA) {
1969 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1970 goto err_out;
1971 } else {
1972 if (ata_id_is_ata(id))
1973 goto err_out;
1976 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1977 tried_spinup = 1;
1979 * Drive powered-up in standby mode, and requires a specific
1980 * SET_FEATURES spin-up subcommand before it will accept
1981 * anything other than the original IDENTIFY command.
1983 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1984 if (err_mask && id[2] != 0x738c) {
1985 rc = -EIO;
1986 reason = "SPINUP failed";
1987 goto err_out;
1990 * If the drive initially returned incomplete IDENTIFY info,
1991 * we now must reissue the IDENTIFY command.
1993 if (id[2] == 0x37c8)
1994 goto retry;
1997 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1999 * The exact sequence expected by certain pre-ATA4 drives is:
2000 * SRST RESET
2001 * IDENTIFY (optional in early ATA)
2002 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2003 * anything else..
2004 * Some drives were very specific about that exact sequence.
2006 * Note that ATA4 says lba is mandatory so the second check
2007 * should never trigger.
2009 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2010 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2011 if (err_mask) {
2012 rc = -EIO;
2013 reason = "INIT_DEV_PARAMS failed";
2014 goto err_out;
2017 /* current CHS translation info (id[53-58]) might be
2018 * changed. reread the identify device info.
2020 flags &= ~ATA_READID_POSTRESET;
2021 goto retry;
2025 *p_class = class;
2027 return 0;
2029 err_out:
2030 if (ata_msg_warn(ap))
2031 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2032 "(%s, err_mask=0x%x)\n", reason, err_mask);
2033 return rc;
2036 static int ata_do_link_spd_horkage(struct ata_device *dev)
2038 struct ata_link *plink = ata_dev_phys_link(dev);
2039 u32 target, target_limit;
2041 if (!sata_scr_valid(plink))
2042 return 0;
2044 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2045 target = 1;
2046 else
2047 return 0;
2049 target_limit = (1 << target) - 1;
2051 /* if already on stricter limit, no need to push further */
2052 if (plink->sata_spd_limit <= target_limit)
2053 return 0;
2055 plink->sata_spd_limit = target_limit;
2057 /* Request another EH round by returning -EAGAIN if link is
2058 * going faster than the target speed. Forward progress is
2059 * guaranteed by setting sata_spd_limit to target_limit above.
2061 if (plink->sata_spd > target) {
2062 ata_dev_printk(dev, KERN_INFO,
2063 "applying link speed limit horkage to %s\n",
2064 sata_spd_string(target));
2065 return -EAGAIN;
2067 return 0;
2070 static inline u8 ata_dev_knobble(struct ata_device *dev)
2072 struct ata_port *ap = dev->link->ap;
2074 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2075 return 0;
2077 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2080 static int ata_dev_config_ncq(struct ata_device *dev,
2081 char *desc, size_t desc_sz)
2083 struct ata_port *ap = dev->link->ap;
2084 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2085 unsigned int err_mask;
2086 char *aa_desc = "";
2088 if (!ata_id_has_ncq(dev->id)) {
2089 desc[0] = '\0';
2090 return 0;
2092 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2093 snprintf(desc, desc_sz, "NCQ (not used)");
2094 return 0;
2096 if (ap->flags & ATA_FLAG_NCQ) {
2097 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2098 dev->flags |= ATA_DFLAG_NCQ;
2101 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2102 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2103 ata_id_has_fpdma_aa(dev->id)) {
2104 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2105 SATA_FPDMA_AA);
2106 if (err_mask) {
2107 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2108 "(error_mask=0x%x)\n", err_mask);
2109 if (err_mask != AC_ERR_DEV) {
2110 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2111 return -EIO;
2113 } else
2114 aa_desc = ", AA";
2117 if (hdepth >= ddepth)
2118 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2119 else
2120 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2121 ddepth, aa_desc);
2122 return 0;
2126 * ata_dev_configure - Configure the specified ATA/ATAPI device
2127 * @dev: Target device to configure
2129 * Configure @dev according to @dev->id. Generic and low-level
2130 * driver specific fixups are also applied.
2132 * LOCKING:
2133 * Kernel thread context (may sleep)
2135 * RETURNS:
2136 * 0 on success, -errno otherwise
2138 int ata_dev_configure(struct ata_device *dev)
2140 struct ata_port *ap = dev->link->ap;
2141 struct ata_eh_context *ehc = &dev->link->eh_context;
2142 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2143 const u16 *id = dev->id;
2144 unsigned long xfer_mask;
2145 char revbuf[7]; /* XYZ-99\0 */
2146 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2147 char modelbuf[ATA_ID_PROD_LEN+1];
2148 int rc;
2150 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2151 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2152 __func__);
2153 return 0;
2156 if (ata_msg_probe(ap))
2157 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2159 /* set horkage */
2160 dev->horkage |= ata_dev_blacklisted(dev);
2161 ata_force_horkage(dev);
2163 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2164 ata_dev_printk(dev, KERN_INFO,
2165 "unsupported device, disabling\n");
2166 ata_dev_disable(dev);
2167 return 0;
2170 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2171 dev->class == ATA_DEV_ATAPI) {
2172 ata_dev_printk(dev, KERN_WARNING,
2173 "WARNING: ATAPI is %s, device ignored.\n",
2174 atapi_enabled ? "not supported with this driver"
2175 : "disabled");
2176 ata_dev_disable(dev);
2177 return 0;
2180 rc = ata_do_link_spd_horkage(dev);
2181 if (rc)
2182 return rc;
2184 /* let ACPI work its magic */
2185 rc = ata_acpi_on_devcfg(dev);
2186 if (rc)
2187 return rc;
2189 /* massage HPA, do it early as it might change IDENTIFY data */
2190 rc = ata_hpa_resize(dev);
2191 if (rc)
2192 return rc;
2194 /* print device capabilities */
2195 if (ata_msg_probe(ap))
2196 ata_dev_printk(dev, KERN_DEBUG,
2197 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2198 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2199 __func__,
2200 id[49], id[82], id[83], id[84],
2201 id[85], id[86], id[87], id[88]);
2203 /* initialize to-be-configured parameters */
2204 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2205 dev->max_sectors = 0;
2206 dev->cdb_len = 0;
2207 dev->n_sectors = 0;
2208 dev->cylinders = 0;
2209 dev->heads = 0;
2210 dev->sectors = 0;
2211 dev->multi_count = 0;
2214 * common ATA, ATAPI feature tests
2217 /* find max transfer mode; for printk only */
2218 xfer_mask = ata_id_xfermask(id);
2220 if (ata_msg_probe(ap))
2221 ata_dump_id(id);
2223 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2224 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2225 sizeof(fwrevbuf));
2227 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2228 sizeof(modelbuf));
2230 /* ATA-specific feature tests */
2231 if (dev->class == ATA_DEV_ATA) {
2232 if (ata_id_is_cfa(id)) {
2233 /* CPRM may make this media unusable */
2234 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2235 ata_dev_printk(dev, KERN_WARNING,
2236 "supports DRM functions and may "
2237 "not be fully accessable.\n");
2238 snprintf(revbuf, 7, "CFA");
2239 } else {
2240 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2241 /* Warn the user if the device has TPM extensions */
2242 if (ata_id_has_tpm(id))
2243 ata_dev_printk(dev, KERN_WARNING,
2244 "supports DRM functions and may "
2245 "not be fully accessable.\n");
2248 dev->n_sectors = ata_id_n_sectors(id);
2250 /* get current R/W Multiple count setting */
2251 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2252 unsigned int max = dev->id[47] & 0xff;
2253 unsigned int cnt = dev->id[59] & 0xff;
2254 /* only recognize/allow powers of two here */
2255 if (is_power_of_2(max) && is_power_of_2(cnt))
2256 if (cnt <= max)
2257 dev->multi_count = cnt;
2260 if (ata_id_has_lba(id)) {
2261 const char *lba_desc;
2262 char ncq_desc[24];
2264 lba_desc = "LBA";
2265 dev->flags |= ATA_DFLAG_LBA;
2266 if (ata_id_has_lba48(id)) {
2267 dev->flags |= ATA_DFLAG_LBA48;
2268 lba_desc = "LBA48";
2270 if (dev->n_sectors >= (1UL << 28) &&
2271 ata_id_has_flush_ext(id))
2272 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2275 /* config NCQ */
2276 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2277 if (rc)
2278 return rc;
2280 /* print device info to dmesg */
2281 if (ata_msg_drv(ap) && print_info) {
2282 ata_dev_printk(dev, KERN_INFO,
2283 "%s: %s, %s, max %s\n",
2284 revbuf, modelbuf, fwrevbuf,
2285 ata_mode_string(xfer_mask));
2286 ata_dev_printk(dev, KERN_INFO,
2287 "%Lu sectors, multi %u: %s %s\n",
2288 (unsigned long long)dev->n_sectors,
2289 dev->multi_count, lba_desc, ncq_desc);
2291 } else {
2292 /* CHS */
2294 /* Default translation */
2295 dev->cylinders = id[1];
2296 dev->heads = id[3];
2297 dev->sectors = id[6];
2299 if (ata_id_current_chs_valid(id)) {
2300 /* Current CHS translation is valid. */
2301 dev->cylinders = id[54];
2302 dev->heads = id[55];
2303 dev->sectors = id[56];
2306 /* print device info to dmesg */
2307 if (ata_msg_drv(ap) && print_info) {
2308 ata_dev_printk(dev, KERN_INFO,
2309 "%s: %s, %s, max %s\n",
2310 revbuf, modelbuf, fwrevbuf,
2311 ata_mode_string(xfer_mask));
2312 ata_dev_printk(dev, KERN_INFO,
2313 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2314 (unsigned long long)dev->n_sectors,
2315 dev->multi_count, dev->cylinders,
2316 dev->heads, dev->sectors);
2320 dev->cdb_len = 16;
2323 /* ATAPI-specific feature tests */
2324 else if (dev->class == ATA_DEV_ATAPI) {
2325 const char *cdb_intr_string = "";
2326 const char *atapi_an_string = "";
2327 const char *dma_dir_string = "";
2328 u32 sntf;
2330 rc = atapi_cdb_len(id);
2331 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2332 if (ata_msg_warn(ap))
2333 ata_dev_printk(dev, KERN_WARNING,
2334 "unsupported CDB len\n");
2335 rc = -EINVAL;
2336 goto err_out_nosup;
2338 dev->cdb_len = (unsigned int) rc;
2340 /* Enable ATAPI AN if both the host and device have
2341 * the support. If PMP is attached, SNTF is required
2342 * to enable ATAPI AN to discern between PHY status
2343 * changed notifications and ATAPI ANs.
2345 if (atapi_an &&
2346 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2347 (!sata_pmp_attached(ap) ||
2348 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2349 unsigned int err_mask;
2351 /* issue SET feature command to turn this on */
2352 err_mask = ata_dev_set_feature(dev,
2353 SETFEATURES_SATA_ENABLE, SATA_AN);
2354 if (err_mask)
2355 ata_dev_printk(dev, KERN_ERR,
2356 "failed to enable ATAPI AN "
2357 "(err_mask=0x%x)\n", err_mask);
2358 else {
2359 dev->flags |= ATA_DFLAG_AN;
2360 atapi_an_string = ", ATAPI AN";
2364 if (ata_id_cdb_intr(dev->id)) {
2365 dev->flags |= ATA_DFLAG_CDB_INTR;
2366 cdb_intr_string = ", CDB intr";
2369 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2370 dev->flags |= ATA_DFLAG_DMADIR;
2371 dma_dir_string = ", DMADIR";
2374 /* print device info to dmesg */
2375 if (ata_msg_drv(ap) && print_info)
2376 ata_dev_printk(dev, KERN_INFO,
2377 "ATAPI: %s, %s, max %s%s%s%s\n",
2378 modelbuf, fwrevbuf,
2379 ata_mode_string(xfer_mask),
2380 cdb_intr_string, atapi_an_string,
2381 dma_dir_string);
2384 /* determine max_sectors */
2385 dev->max_sectors = ATA_MAX_SECTORS;
2386 if (dev->flags & ATA_DFLAG_LBA48)
2387 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2389 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2390 200 sectors */
2391 if (ata_dev_knobble(dev)) {
2392 if (ata_msg_drv(ap) && print_info)
2393 ata_dev_printk(dev, KERN_INFO,
2394 "applying bridge limits\n");
2395 dev->udma_mask &= ATA_UDMA5;
2396 dev->max_sectors = ATA_MAX_SECTORS;
2399 if ((dev->class == ATA_DEV_ATAPI) &&
2400 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2401 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2402 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2405 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2406 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2407 dev->max_sectors);
2409 if (ap->ops->dev_config)
2410 ap->ops->dev_config(dev);
2412 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2413 /* Let the user know. We don't want to disallow opens for
2414 rescue purposes, or in case the vendor is just a blithering
2415 idiot. Do this after the dev_config call as some controllers
2416 with buggy firmware may want to avoid reporting false device
2417 bugs */
2419 if (print_info) {
2420 ata_dev_printk(dev, KERN_WARNING,
2421 "Drive reports diagnostics failure. This may indicate a drive\n");
2422 ata_dev_printk(dev, KERN_WARNING,
2423 "fault or invalid emulation. Contact drive vendor for information.\n");
2427 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2428 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2429 "firmware update to be fully functional.\n");
2430 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2431 "or visit http://ata.wiki.kernel.org.\n");
2434 return 0;
2436 err_out_nosup:
2437 if (ata_msg_probe(ap))
2438 ata_dev_printk(dev, KERN_DEBUG,
2439 "%s: EXIT, err\n", __func__);
2440 return rc;
2444 * ata_cable_40wire - return 40 wire cable type
2445 * @ap: port
2447 * Helper method for drivers which want to hardwire 40 wire cable
2448 * detection.
2451 int ata_cable_40wire(struct ata_port *ap)
2453 return ATA_CBL_PATA40;
2457 * ata_cable_80wire - return 80 wire cable type
2458 * @ap: port
2460 * Helper method for drivers which want to hardwire 80 wire cable
2461 * detection.
2464 int ata_cable_80wire(struct ata_port *ap)
2466 return ATA_CBL_PATA80;
2470 * ata_cable_unknown - return unknown PATA cable.
2471 * @ap: port
2473 * Helper method for drivers which have no PATA cable detection.
2476 int ata_cable_unknown(struct ata_port *ap)
2478 return ATA_CBL_PATA_UNK;
2482 * ata_cable_ignore - return ignored PATA cable.
2483 * @ap: port
2485 * Helper method for drivers which don't use cable type to limit
2486 * transfer mode.
2488 int ata_cable_ignore(struct ata_port *ap)
2490 return ATA_CBL_PATA_IGN;
2494 * ata_cable_sata - return SATA cable type
2495 * @ap: port
2497 * Helper method for drivers which have SATA cables
2500 int ata_cable_sata(struct ata_port *ap)
2502 return ATA_CBL_SATA;
2506 * ata_bus_probe - Reset and probe ATA bus
2507 * @ap: Bus to probe
2509 * Master ATA bus probing function. Initiates a hardware-dependent
2510 * bus reset, then attempts to identify any devices found on
2511 * the bus.
2513 * LOCKING:
2514 * PCI/etc. bus probe sem.
2516 * RETURNS:
2517 * Zero on success, negative errno otherwise.
2520 int ata_bus_probe(struct ata_port *ap)
2522 unsigned int classes[ATA_MAX_DEVICES];
2523 int tries[ATA_MAX_DEVICES];
2524 int rc;
2525 struct ata_device *dev;
2527 ata_for_each_dev(dev, &ap->link, ALL)
2528 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2530 retry:
2531 ata_for_each_dev(dev, &ap->link, ALL) {
2532 /* If we issue an SRST then an ATA drive (not ATAPI)
2533 * may change configuration and be in PIO0 timing. If
2534 * we do a hard reset (or are coming from power on)
2535 * this is true for ATA or ATAPI. Until we've set a
2536 * suitable controller mode we should not touch the
2537 * bus as we may be talking too fast.
2539 dev->pio_mode = XFER_PIO_0;
2541 /* If the controller has a pio mode setup function
2542 * then use it to set the chipset to rights. Don't
2543 * touch the DMA setup as that will be dealt with when
2544 * configuring devices.
2546 if (ap->ops->set_piomode)
2547 ap->ops->set_piomode(ap, dev);
2550 /* reset and determine device classes */
2551 ap->ops->phy_reset(ap);
2553 ata_for_each_dev(dev, &ap->link, ALL) {
2554 if (dev->class != ATA_DEV_UNKNOWN)
2555 classes[dev->devno] = dev->class;
2556 else
2557 classes[dev->devno] = ATA_DEV_NONE;
2559 dev->class = ATA_DEV_UNKNOWN;
2562 /* read IDENTIFY page and configure devices. We have to do the identify
2563 specific sequence bass-ackwards so that PDIAG- is released by
2564 the slave device */
2566 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2567 if (tries[dev->devno])
2568 dev->class = classes[dev->devno];
2570 if (!ata_dev_enabled(dev))
2571 continue;
2573 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2574 dev->id);
2575 if (rc)
2576 goto fail;
2579 /* Now ask for the cable type as PDIAG- should have been released */
2580 if (ap->ops->cable_detect)
2581 ap->cbl = ap->ops->cable_detect(ap);
2583 /* We may have SATA bridge glue hiding here irrespective of
2584 * the reported cable types and sensed types. When SATA
2585 * drives indicate we have a bridge, we don't know which end
2586 * of the link the bridge is which is a problem.
2588 ata_for_each_dev(dev, &ap->link, ENABLED)
2589 if (ata_id_is_sata(dev->id))
2590 ap->cbl = ATA_CBL_SATA;
2592 /* After the identify sequence we can now set up the devices. We do
2593 this in the normal order so that the user doesn't get confused */
2595 ata_for_each_dev(dev, &ap->link, ENABLED) {
2596 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2597 rc = ata_dev_configure(dev);
2598 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2599 if (rc)
2600 goto fail;
2603 /* configure transfer mode */
2604 rc = ata_set_mode(&ap->link, &dev);
2605 if (rc)
2606 goto fail;
2608 ata_for_each_dev(dev, &ap->link, ENABLED)
2609 return 0;
2611 return -ENODEV;
2613 fail:
2614 tries[dev->devno]--;
2616 switch (rc) {
2617 case -EINVAL:
2618 /* eeek, something went very wrong, give up */
2619 tries[dev->devno] = 0;
2620 break;
2622 case -ENODEV:
2623 /* give it just one more chance */
2624 tries[dev->devno] = min(tries[dev->devno], 1);
2625 case -EIO:
2626 if (tries[dev->devno] == 1) {
2627 /* This is the last chance, better to slow
2628 * down than lose it.
2630 sata_down_spd_limit(&ap->link, 0);
2631 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2635 if (!tries[dev->devno])
2636 ata_dev_disable(dev);
2638 goto retry;
2642 * sata_print_link_status - Print SATA link status
2643 * @link: SATA link to printk link status about
2645 * This function prints link speed and status of a SATA link.
2647 * LOCKING:
2648 * None.
2650 static void sata_print_link_status(struct ata_link *link)
2652 u32 sstatus, scontrol, tmp;
2654 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2655 return;
2656 sata_scr_read(link, SCR_CONTROL, &scontrol);
2658 if (ata_phys_link_online(link)) {
2659 tmp = (sstatus >> 4) & 0xf;
2660 ata_link_printk(link, KERN_INFO,
2661 "SATA link up %s (SStatus %X SControl %X)\n",
2662 sata_spd_string(tmp), sstatus, scontrol);
2663 } else {
2664 ata_link_printk(link, KERN_INFO,
2665 "SATA link down (SStatus %X SControl %X)\n",
2666 sstatus, scontrol);
2671 * ata_dev_pair - return other device on cable
2672 * @adev: device
2674 * Obtain the other device on the same cable, or if none is
2675 * present NULL is returned
2678 struct ata_device *ata_dev_pair(struct ata_device *adev)
2680 struct ata_link *link = adev->link;
2681 struct ata_device *pair = &link->device[1 - adev->devno];
2682 if (!ata_dev_enabled(pair))
2683 return NULL;
2684 return pair;
2688 * sata_down_spd_limit - adjust SATA spd limit downward
2689 * @link: Link to adjust SATA spd limit for
2690 * @spd_limit: Additional limit
2692 * Adjust SATA spd limit of @link downward. Note that this
2693 * function only adjusts the limit. The change must be applied
2694 * using sata_set_spd().
2696 * If @spd_limit is non-zero, the speed is limited to equal to or
2697 * lower than @spd_limit if such speed is supported. If
2698 * @spd_limit is slower than any supported speed, only the lowest
2699 * supported speed is allowed.
2701 * LOCKING:
2702 * Inherited from caller.
2704 * RETURNS:
2705 * 0 on success, negative errno on failure
2707 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2709 u32 sstatus, spd, mask;
2710 int rc, bit;
2712 if (!sata_scr_valid(link))
2713 return -EOPNOTSUPP;
2715 /* If SCR can be read, use it to determine the current SPD.
2716 * If not, use cached value in link->sata_spd.
2718 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2719 if (rc == 0 && ata_sstatus_online(sstatus))
2720 spd = (sstatus >> 4) & 0xf;
2721 else
2722 spd = link->sata_spd;
2724 mask = link->sata_spd_limit;
2725 if (mask <= 1)
2726 return -EINVAL;
2728 /* unconditionally mask off the highest bit */
2729 bit = fls(mask) - 1;
2730 mask &= ~(1 << bit);
2732 /* Mask off all speeds higher than or equal to the current
2733 * one. Force 1.5Gbps if current SPD is not available.
2735 if (spd > 1)
2736 mask &= (1 << (spd - 1)) - 1;
2737 else
2738 mask &= 1;
2740 /* were we already at the bottom? */
2741 if (!mask)
2742 return -EINVAL;
2744 if (spd_limit) {
2745 if (mask & ((1 << spd_limit) - 1))
2746 mask &= (1 << spd_limit) - 1;
2747 else {
2748 bit = ffs(mask) - 1;
2749 mask = 1 << bit;
2753 link->sata_spd_limit = mask;
2755 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2756 sata_spd_string(fls(mask)));
2758 return 0;
2761 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2763 struct ata_link *host_link = &link->ap->link;
2764 u32 limit, target, spd;
2766 limit = link->sata_spd_limit;
2768 /* Don't configure downstream link faster than upstream link.
2769 * It doesn't speed up anything and some PMPs choke on such
2770 * configuration.
2772 if (!ata_is_host_link(link) && host_link->sata_spd)
2773 limit &= (1 << host_link->sata_spd) - 1;
2775 if (limit == UINT_MAX)
2776 target = 0;
2777 else
2778 target = fls(limit);
2780 spd = (*scontrol >> 4) & 0xf;
2781 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2783 return spd != target;
2787 * sata_set_spd_needed - is SATA spd configuration needed
2788 * @link: Link in question
2790 * Test whether the spd limit in SControl matches
2791 * @link->sata_spd_limit. This function is used to determine
2792 * whether hardreset is necessary to apply SATA spd
2793 * configuration.
2795 * LOCKING:
2796 * Inherited from caller.
2798 * RETURNS:
2799 * 1 if SATA spd configuration is needed, 0 otherwise.
2801 static int sata_set_spd_needed(struct ata_link *link)
2803 u32 scontrol;
2805 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2806 return 1;
2808 return __sata_set_spd_needed(link, &scontrol);
2812 * sata_set_spd - set SATA spd according to spd limit
2813 * @link: Link to set SATA spd for
2815 * Set SATA spd of @link according to sata_spd_limit.
2817 * LOCKING:
2818 * Inherited from caller.
2820 * RETURNS:
2821 * 0 if spd doesn't need to be changed, 1 if spd has been
2822 * changed. Negative errno if SCR registers are inaccessible.
2824 int sata_set_spd(struct ata_link *link)
2826 u32 scontrol;
2827 int rc;
2829 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2830 return rc;
2832 if (!__sata_set_spd_needed(link, &scontrol))
2833 return 0;
2835 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2836 return rc;
2838 return 1;
2842 * This mode timing computation functionality is ported over from
2843 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2846 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2847 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2848 * for UDMA6, which is currently supported only by Maxtor drives.
2850 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2853 static const struct ata_timing ata_timing[] = {
2854 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2855 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2856 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2857 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2858 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2859 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2860 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2861 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2863 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2864 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2865 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2867 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2868 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2869 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2870 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2871 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2873 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2874 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2875 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2876 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2877 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2878 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2879 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2880 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2882 { 0xFF }
2885 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2886 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2888 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2890 q->setup = EZ(t->setup * 1000, T);
2891 q->act8b = EZ(t->act8b * 1000, T);
2892 q->rec8b = EZ(t->rec8b * 1000, T);
2893 q->cyc8b = EZ(t->cyc8b * 1000, T);
2894 q->active = EZ(t->active * 1000, T);
2895 q->recover = EZ(t->recover * 1000, T);
2896 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2897 q->cycle = EZ(t->cycle * 1000, T);
2898 q->udma = EZ(t->udma * 1000, UT);
2901 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2902 struct ata_timing *m, unsigned int what)
2904 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2905 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2906 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2907 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2908 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2909 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2910 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2911 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2912 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2915 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2917 const struct ata_timing *t = ata_timing;
2919 while (xfer_mode > t->mode)
2920 t++;
2922 if (xfer_mode == t->mode)
2923 return t;
2924 return NULL;
2927 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2928 struct ata_timing *t, int T, int UT)
2930 const u16 *id = adev->id;
2931 const struct ata_timing *s;
2932 struct ata_timing p;
2935 * Find the mode.
2938 if (!(s = ata_timing_find_mode(speed)))
2939 return -EINVAL;
2941 memcpy(t, s, sizeof(*s));
2944 * If the drive is an EIDE drive, it can tell us it needs extended
2945 * PIO/MW_DMA cycle timing.
2948 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2949 memset(&p, 0, sizeof(p));
2951 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2952 if (speed <= XFER_PIO_2)
2953 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2954 else if ((speed <= XFER_PIO_4) ||
2955 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2956 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2957 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2958 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2960 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2964 * Convert the timing to bus clock counts.
2967 ata_timing_quantize(t, t, T, UT);
2970 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2971 * S.M.A.R.T * and some other commands. We have to ensure that the
2972 * DMA cycle timing is slower/equal than the fastest PIO timing.
2975 if (speed > XFER_PIO_6) {
2976 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2977 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2981 * Lengthen active & recovery time so that cycle time is correct.
2984 if (t->act8b + t->rec8b < t->cyc8b) {
2985 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2986 t->rec8b = t->cyc8b - t->act8b;
2989 if (t->active + t->recover < t->cycle) {
2990 t->active += (t->cycle - (t->active + t->recover)) / 2;
2991 t->recover = t->cycle - t->active;
2994 /* In a few cases quantisation may produce enough errors to
2995 leave t->cycle too low for the sum of active and recovery
2996 if so we must correct this */
2997 if (t->active + t->recover > t->cycle)
2998 t->cycle = t->active + t->recover;
3000 return 0;
3004 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3005 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3006 * @cycle: cycle duration in ns
3008 * Return matching xfer mode for @cycle. The returned mode is of
3009 * the transfer type specified by @xfer_shift. If @cycle is too
3010 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3011 * than the fastest known mode, the fasted mode is returned.
3013 * LOCKING:
3014 * None.
3016 * RETURNS:
3017 * Matching xfer_mode, 0xff if no match found.
3019 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3021 u8 base_mode = 0xff, last_mode = 0xff;
3022 const struct ata_xfer_ent *ent;
3023 const struct ata_timing *t;
3025 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3026 if (ent->shift == xfer_shift)
3027 base_mode = ent->base;
3029 for (t = ata_timing_find_mode(base_mode);
3030 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3031 unsigned short this_cycle;
3033 switch (xfer_shift) {
3034 case ATA_SHIFT_PIO:
3035 case ATA_SHIFT_MWDMA:
3036 this_cycle = t->cycle;
3037 break;
3038 case ATA_SHIFT_UDMA:
3039 this_cycle = t->udma;
3040 break;
3041 default:
3042 return 0xff;
3045 if (cycle > this_cycle)
3046 break;
3048 last_mode = t->mode;
3051 return last_mode;
3055 * ata_down_xfermask_limit - adjust dev xfer masks downward
3056 * @dev: Device to adjust xfer masks
3057 * @sel: ATA_DNXFER_* selector
3059 * Adjust xfer masks of @dev downward. Note that this function
3060 * does not apply the change. Invoking ata_set_mode() afterwards
3061 * will apply the limit.
3063 * LOCKING:
3064 * Inherited from caller.
3066 * RETURNS:
3067 * 0 on success, negative errno on failure
3069 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3071 char buf[32];
3072 unsigned long orig_mask, xfer_mask;
3073 unsigned long pio_mask, mwdma_mask, udma_mask;
3074 int quiet, highbit;
3076 quiet = !!(sel & ATA_DNXFER_QUIET);
3077 sel &= ~ATA_DNXFER_QUIET;
3079 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3080 dev->mwdma_mask,
3081 dev->udma_mask);
3082 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3084 switch (sel) {
3085 case ATA_DNXFER_PIO:
3086 highbit = fls(pio_mask) - 1;
3087 pio_mask &= ~(1 << highbit);
3088 break;
3090 case ATA_DNXFER_DMA:
3091 if (udma_mask) {
3092 highbit = fls(udma_mask) - 1;
3093 udma_mask &= ~(1 << highbit);
3094 if (!udma_mask)
3095 return -ENOENT;
3096 } else if (mwdma_mask) {
3097 highbit = fls(mwdma_mask) - 1;
3098 mwdma_mask &= ~(1 << highbit);
3099 if (!mwdma_mask)
3100 return -ENOENT;
3102 break;
3104 case ATA_DNXFER_40C:
3105 udma_mask &= ATA_UDMA_MASK_40C;
3106 break;
3108 case ATA_DNXFER_FORCE_PIO0:
3109 pio_mask &= 1;
3110 case ATA_DNXFER_FORCE_PIO:
3111 mwdma_mask = 0;
3112 udma_mask = 0;
3113 break;
3115 default:
3116 BUG();
3119 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3121 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3122 return -ENOENT;
3124 if (!quiet) {
3125 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3126 snprintf(buf, sizeof(buf), "%s:%s",
3127 ata_mode_string(xfer_mask),
3128 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3129 else
3130 snprintf(buf, sizeof(buf), "%s",
3131 ata_mode_string(xfer_mask));
3133 ata_dev_printk(dev, KERN_WARNING,
3134 "limiting speed to %s\n", buf);
3137 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3138 &dev->udma_mask);
3140 return 0;
3143 static int ata_dev_set_mode(struct ata_device *dev)
3145 struct ata_port *ap = dev->link->ap;
3146 struct ata_eh_context *ehc = &dev->link->eh_context;
3147 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3148 const char *dev_err_whine = "";
3149 int ign_dev_err = 0;
3150 unsigned int err_mask = 0;
3151 int rc;
3153 dev->flags &= ~ATA_DFLAG_PIO;
3154 if (dev->xfer_shift == ATA_SHIFT_PIO)
3155 dev->flags |= ATA_DFLAG_PIO;
3157 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3158 dev_err_whine = " (SET_XFERMODE skipped)";
3159 else {
3160 if (nosetxfer)
3161 ata_dev_printk(dev, KERN_WARNING,
3162 "NOSETXFER but PATA detected - can't "
3163 "skip SETXFER, might malfunction\n");
3164 err_mask = ata_dev_set_xfermode(dev);
3167 if (err_mask & ~AC_ERR_DEV)
3168 goto fail;
3170 /* revalidate */
3171 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3172 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3173 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3174 if (rc)
3175 return rc;
3177 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3178 /* Old CFA may refuse this command, which is just fine */
3179 if (ata_id_is_cfa(dev->id))
3180 ign_dev_err = 1;
3181 /* Catch several broken garbage emulations plus some pre
3182 ATA devices */
3183 if (ata_id_major_version(dev->id) == 0 &&
3184 dev->pio_mode <= XFER_PIO_2)
3185 ign_dev_err = 1;
3186 /* Some very old devices and some bad newer ones fail
3187 any kind of SET_XFERMODE request but support PIO0-2
3188 timings and no IORDY */
3189 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3190 ign_dev_err = 1;
3192 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3193 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3194 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3195 dev->dma_mode == XFER_MW_DMA_0 &&
3196 (dev->id[63] >> 8) & 1)
3197 ign_dev_err = 1;
3199 /* if the device is actually configured correctly, ignore dev err */
3200 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3201 ign_dev_err = 1;
3203 if (err_mask & AC_ERR_DEV) {
3204 if (!ign_dev_err)
3205 goto fail;
3206 else
3207 dev_err_whine = " (device error ignored)";
3210 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3211 dev->xfer_shift, (int)dev->xfer_mode);
3213 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3214 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3215 dev_err_whine);
3217 return 0;
3219 fail:
3220 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3221 "(err_mask=0x%x)\n", err_mask);
3222 return -EIO;
3226 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3227 * @link: link on which timings will be programmed
3228 * @r_failed_dev: out parameter for failed device
3230 * Standard implementation of the function used to tune and set
3231 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3232 * ata_dev_set_mode() fails, pointer to the failing device is
3233 * returned in @r_failed_dev.
3235 * LOCKING:
3236 * PCI/etc. bus probe sem.
3238 * RETURNS:
3239 * 0 on success, negative errno otherwise
3242 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3244 struct ata_port *ap = link->ap;
3245 struct ata_device *dev;
3246 int rc = 0, used_dma = 0, found = 0;
3248 /* step 1: calculate xfer_mask */
3249 ata_for_each_dev(dev, link, ENABLED) {
3250 unsigned long pio_mask, dma_mask;
3251 unsigned int mode_mask;
3253 mode_mask = ATA_DMA_MASK_ATA;
3254 if (dev->class == ATA_DEV_ATAPI)
3255 mode_mask = ATA_DMA_MASK_ATAPI;
3256 else if (ata_id_is_cfa(dev->id))
3257 mode_mask = ATA_DMA_MASK_CFA;
3259 ata_dev_xfermask(dev);
3260 ata_force_xfermask(dev);
3262 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3263 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3265 if (libata_dma_mask & mode_mask)
3266 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3267 else
3268 dma_mask = 0;
3270 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3271 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3273 found = 1;
3274 if (ata_dma_enabled(dev))
3275 used_dma = 1;
3277 if (!found)
3278 goto out;
3280 /* step 2: always set host PIO timings */
3281 ata_for_each_dev(dev, link, ENABLED) {
3282 if (dev->pio_mode == 0xff) {
3283 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3284 rc = -EINVAL;
3285 goto out;
3288 dev->xfer_mode = dev->pio_mode;
3289 dev->xfer_shift = ATA_SHIFT_PIO;
3290 if (ap->ops->set_piomode)
3291 ap->ops->set_piomode(ap, dev);
3294 /* step 3: set host DMA timings */
3295 ata_for_each_dev(dev, link, ENABLED) {
3296 if (!ata_dma_enabled(dev))
3297 continue;
3299 dev->xfer_mode = dev->dma_mode;
3300 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3301 if (ap->ops->set_dmamode)
3302 ap->ops->set_dmamode(ap, dev);
3305 /* step 4: update devices' xfer mode */
3306 ata_for_each_dev(dev, link, ENABLED) {
3307 rc = ata_dev_set_mode(dev);
3308 if (rc)
3309 goto out;
3312 /* Record simplex status. If we selected DMA then the other
3313 * host channels are not permitted to do so.
3315 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3316 ap->host->simplex_claimed = ap;
3318 out:
3319 if (rc)
3320 *r_failed_dev = dev;
3321 return rc;
3325 * ata_wait_ready - wait for link to become ready
3326 * @link: link to be waited on
3327 * @deadline: deadline jiffies for the operation
3328 * @check_ready: callback to check link readiness
3330 * Wait for @link to become ready. @check_ready should return
3331 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3332 * link doesn't seem to be occupied, other errno for other error
3333 * conditions.
3335 * Transient -ENODEV conditions are allowed for
3336 * ATA_TMOUT_FF_WAIT.
3338 * LOCKING:
3339 * EH context.
3341 * RETURNS:
3342 * 0 if @linke is ready before @deadline; otherwise, -errno.
3344 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3345 int (*check_ready)(struct ata_link *link))
3347 unsigned long start = jiffies;
3348 unsigned long nodev_deadline;
3349 int warned = 0;
3351 /* choose which 0xff timeout to use, read comment in libata.h */
3352 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3353 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3354 else
3355 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3357 /* Slave readiness can't be tested separately from master. On
3358 * M/S emulation configuration, this function should be called
3359 * only on the master and it will handle both master and slave.
3361 WARN_ON(link == link->ap->slave_link);
3363 if (time_after(nodev_deadline, deadline))
3364 nodev_deadline = deadline;
3366 while (1) {
3367 unsigned long now = jiffies;
3368 int ready, tmp;
3370 ready = tmp = check_ready(link);
3371 if (ready > 0)
3372 return 0;
3375 * -ENODEV could be transient. Ignore -ENODEV if link
3376 * is online. Also, some SATA devices take a long
3377 * time to clear 0xff after reset. Wait for
3378 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3379 * offline.
3381 * Note that some PATA controllers (pata_ali) explode
3382 * if status register is read more than once when
3383 * there's no device attached.
3385 if (ready == -ENODEV) {
3386 if (ata_link_online(link))
3387 ready = 0;
3388 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3389 !ata_link_offline(link) &&
3390 time_before(now, nodev_deadline))
3391 ready = 0;
3394 if (ready)
3395 return ready;
3396 if (time_after(now, deadline))
3397 return -EBUSY;
3399 if (!warned && time_after(now, start + 5 * HZ) &&
3400 (deadline - now > 3 * HZ)) {
3401 ata_link_printk(link, KERN_WARNING,
3402 "link is slow to respond, please be patient "
3403 "(ready=%d)\n", tmp);
3404 warned = 1;
3407 msleep(50);
3412 * ata_wait_after_reset - wait for link to become ready after reset
3413 * @link: link to be waited on
3414 * @deadline: deadline jiffies for the operation
3415 * @check_ready: callback to check link readiness
3417 * Wait for @link to become ready after reset.
3419 * LOCKING:
3420 * EH context.
3422 * RETURNS:
3423 * 0 if @linke is ready before @deadline; otherwise, -errno.
3425 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3426 int (*check_ready)(struct ata_link *link))
3428 msleep(ATA_WAIT_AFTER_RESET);
3430 return ata_wait_ready(link, deadline, check_ready);
3434 * sata_link_debounce - debounce SATA phy status
3435 * @link: ATA link to debounce SATA phy status for
3436 * @params: timing parameters { interval, duratinon, timeout } in msec
3437 * @deadline: deadline jiffies for the operation
3439 * Make sure SStatus of @link reaches stable state, determined by
3440 * holding the same value where DET is not 1 for @duration polled
3441 * every @interval, before @timeout. Timeout constraints the
3442 * beginning of the stable state. Because DET gets stuck at 1 on
3443 * some controllers after hot unplugging, this functions waits
3444 * until timeout then returns 0 if DET is stable at 1.
3446 * @timeout is further limited by @deadline. The sooner of the
3447 * two is used.
3449 * LOCKING:
3450 * Kernel thread context (may sleep)
3452 * RETURNS:
3453 * 0 on success, -errno on failure.
3455 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3456 unsigned long deadline)
3458 unsigned long interval = params[0];
3459 unsigned long duration = params[1];
3460 unsigned long last_jiffies, t;
3461 u32 last, cur;
3462 int rc;
3464 t = ata_deadline(jiffies, params[2]);
3465 if (time_before(t, deadline))
3466 deadline = t;
3468 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3469 return rc;
3470 cur &= 0xf;
3472 last = cur;
3473 last_jiffies = jiffies;
3475 while (1) {
3476 msleep(interval);
3477 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3478 return rc;
3479 cur &= 0xf;
3481 /* DET stable? */
3482 if (cur == last) {
3483 if (cur == 1 && time_before(jiffies, deadline))
3484 continue;
3485 if (time_after(jiffies,
3486 ata_deadline(last_jiffies, duration)))
3487 return 0;
3488 continue;
3491 /* unstable, start over */
3492 last = cur;
3493 last_jiffies = jiffies;
3495 /* Check deadline. If debouncing failed, return
3496 * -EPIPE to tell upper layer to lower link speed.
3498 if (time_after(jiffies, deadline))
3499 return -EPIPE;
3504 * sata_link_resume - resume SATA link
3505 * @link: ATA link to resume SATA
3506 * @params: timing parameters { interval, duratinon, timeout } in msec
3507 * @deadline: deadline jiffies for the operation
3509 * Resume SATA phy @link and debounce it.
3511 * LOCKING:
3512 * Kernel thread context (may sleep)
3514 * RETURNS:
3515 * 0 on success, -errno on failure.
3517 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3518 unsigned long deadline)
3520 int tries = ATA_LINK_RESUME_TRIES;
3521 u32 scontrol, serror;
3522 int rc;
3524 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3525 return rc;
3528 * Writes to SControl sometimes get ignored under certain
3529 * controllers (ata_piix SIDPR). Make sure DET actually is
3530 * cleared.
3532 do {
3533 scontrol = (scontrol & 0x0f0) | 0x300;
3534 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3535 return rc;
3537 * Some PHYs react badly if SStatus is pounded
3538 * immediately after resuming. Delay 200ms before
3539 * debouncing.
3541 msleep(200);
3543 /* is SControl restored correctly? */
3544 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3545 return rc;
3546 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3548 if ((scontrol & 0xf0f) != 0x300) {
3549 ata_link_printk(link, KERN_ERR,
3550 "failed to resume link (SControl %X)\n",
3551 scontrol);
3552 return 0;
3555 if (tries < ATA_LINK_RESUME_TRIES)
3556 ata_link_printk(link, KERN_WARNING,
3557 "link resume succeeded after %d retries\n",
3558 ATA_LINK_RESUME_TRIES - tries);
3560 if ((rc = sata_link_debounce(link, params, deadline)))
3561 return rc;
3563 /* clear SError, some PHYs require this even for SRST to work */
3564 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3565 rc = sata_scr_write(link, SCR_ERROR, serror);
3567 return rc != -EINVAL ? rc : 0;
3571 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3572 * @link: ATA link to manipulate SControl for
3573 * @policy: LPM policy to configure
3574 * @spm_wakeup: initiate LPM transition to active state
3576 * Manipulate the IPM field of the SControl register of @link
3577 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3578 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3579 * the link. This function also clears PHYRDY_CHG before
3580 * returning.
3582 * LOCKING:
3583 * EH context.
3585 * RETURNS:
3586 * 0 on succes, -errno otherwise.
3588 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3589 bool spm_wakeup)
3591 struct ata_eh_context *ehc = &link->eh_context;
3592 bool woken_up = false;
3593 u32 scontrol;
3594 int rc;
3596 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3597 if (rc)
3598 return rc;
3600 switch (policy) {
3601 case ATA_LPM_MAX_POWER:
3602 /* disable all LPM transitions */
3603 scontrol |= (0x3 << 8);
3604 /* initiate transition to active state */
3605 if (spm_wakeup) {
3606 scontrol |= (0x4 << 12);
3607 woken_up = true;
3609 break;
3610 case ATA_LPM_MED_POWER:
3611 /* allow LPM to PARTIAL */
3612 scontrol &= ~(0x1 << 8);
3613 scontrol |= (0x2 << 8);
3614 break;
3615 case ATA_LPM_MIN_POWER:
3616 /* no restrictions on LPM transitions */
3617 scontrol &= ~(0x3 << 8);
3618 break;
3619 default:
3620 WARN_ON(1);
3623 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3624 if (rc)
3625 return rc;
3627 /* give the link time to transit out of LPM state */
3628 if (woken_up)
3629 msleep(10);
3631 /* clear PHYRDY_CHG from SError */
3632 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3633 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3637 * ata_std_prereset - prepare for reset
3638 * @link: ATA link to be reset
3639 * @deadline: deadline jiffies for the operation
3641 * @link is about to be reset. Initialize it. Failure from
3642 * prereset makes libata abort whole reset sequence and give up
3643 * that port, so prereset should be best-effort. It does its
3644 * best to prepare for reset sequence but if things go wrong, it
3645 * should just whine, not fail.
3647 * LOCKING:
3648 * Kernel thread context (may sleep)
3650 * RETURNS:
3651 * 0 on success, -errno otherwise.
3653 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3655 struct ata_port *ap = link->ap;
3656 struct ata_eh_context *ehc = &link->eh_context;
3657 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3658 int rc;
3660 /* if we're about to do hardreset, nothing more to do */
3661 if (ehc->i.action & ATA_EH_HARDRESET)
3662 return 0;
3664 /* if SATA, resume link */
3665 if (ap->flags & ATA_FLAG_SATA) {
3666 rc = sata_link_resume(link, timing, deadline);
3667 /* whine about phy resume failure but proceed */
3668 if (rc && rc != -EOPNOTSUPP)
3669 ata_link_printk(link, KERN_WARNING, "failed to resume "
3670 "link for reset (errno=%d)\n", rc);
3673 /* no point in trying softreset on offline link */
3674 if (ata_phys_link_offline(link))
3675 ehc->i.action &= ~ATA_EH_SOFTRESET;
3677 return 0;
3681 * sata_link_hardreset - reset link via SATA phy reset
3682 * @link: link to reset
3683 * @timing: timing parameters { interval, duratinon, timeout } in msec
3684 * @deadline: deadline jiffies for the operation
3685 * @online: optional out parameter indicating link onlineness
3686 * @check_ready: optional callback to check link readiness
3688 * SATA phy-reset @link using DET bits of SControl register.
3689 * After hardreset, link readiness is waited upon using
3690 * ata_wait_ready() if @check_ready is specified. LLDs are
3691 * allowed to not specify @check_ready and wait itself after this
3692 * function returns. Device classification is LLD's
3693 * responsibility.
3695 * *@online is set to one iff reset succeeded and @link is online
3696 * after reset.
3698 * LOCKING:
3699 * Kernel thread context (may sleep)
3701 * RETURNS:
3702 * 0 on success, -errno otherwise.
3704 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3705 unsigned long deadline,
3706 bool *online, int (*check_ready)(struct ata_link *))
3708 u32 scontrol;
3709 int rc;
3711 DPRINTK("ENTER\n");
3713 if (online)
3714 *online = false;
3716 if (sata_set_spd_needed(link)) {
3717 /* SATA spec says nothing about how to reconfigure
3718 * spd. To be on the safe side, turn off phy during
3719 * reconfiguration. This works for at least ICH7 AHCI
3720 * and Sil3124.
3722 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3723 goto out;
3725 scontrol = (scontrol & 0x0f0) | 0x304;
3727 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3728 goto out;
3730 sata_set_spd(link);
3733 /* issue phy wake/reset */
3734 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3735 goto out;
3737 scontrol = (scontrol & 0x0f0) | 0x301;
3739 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3740 goto out;
3742 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3743 * 10.4.2 says at least 1 ms.
3745 msleep(1);
3747 /* bring link back */
3748 rc = sata_link_resume(link, timing, deadline);
3749 if (rc)
3750 goto out;
3751 /* if link is offline nothing more to do */
3752 if (ata_phys_link_offline(link))
3753 goto out;
3755 /* Link is online. From this point, -ENODEV too is an error. */
3756 if (online)
3757 *online = true;
3759 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3760 /* If PMP is supported, we have to do follow-up SRST.
3761 * Some PMPs don't send D2H Reg FIS after hardreset if
3762 * the first port is empty. Wait only for
3763 * ATA_TMOUT_PMP_SRST_WAIT.
3765 if (check_ready) {
3766 unsigned long pmp_deadline;
3768 pmp_deadline = ata_deadline(jiffies,
3769 ATA_TMOUT_PMP_SRST_WAIT);
3770 if (time_after(pmp_deadline, deadline))
3771 pmp_deadline = deadline;
3772 ata_wait_ready(link, pmp_deadline, check_ready);
3774 rc = -EAGAIN;
3775 goto out;
3778 rc = 0;
3779 if (check_ready)
3780 rc = ata_wait_ready(link, deadline, check_ready);
3781 out:
3782 if (rc && rc != -EAGAIN) {
3783 /* online is set iff link is online && reset succeeded */
3784 if (online)
3785 *online = false;
3786 ata_link_printk(link, KERN_ERR,
3787 "COMRESET failed (errno=%d)\n", rc);
3789 DPRINTK("EXIT, rc=%d\n", rc);
3790 return rc;
3794 * sata_std_hardreset - COMRESET w/o waiting or classification
3795 * @link: link to reset
3796 * @class: resulting class of attached device
3797 * @deadline: deadline jiffies for the operation
3799 * Standard SATA COMRESET w/o waiting or classification.
3801 * LOCKING:
3802 * Kernel thread context (may sleep)
3804 * RETURNS:
3805 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3807 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3808 unsigned long deadline)
3810 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3811 bool online;
3812 int rc;
3814 /* do hardreset */
3815 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3816 return online ? -EAGAIN : rc;
3820 * ata_std_postreset - standard postreset callback
3821 * @link: the target ata_link
3822 * @classes: classes of attached devices
3824 * This function is invoked after a successful reset. Note that
3825 * the device might have been reset more than once using
3826 * different reset methods before postreset is invoked.
3828 * LOCKING:
3829 * Kernel thread context (may sleep)
3831 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3833 u32 serror;
3835 DPRINTK("ENTER\n");
3837 /* reset complete, clear SError */
3838 if (!sata_scr_read(link, SCR_ERROR, &serror))
3839 sata_scr_write(link, SCR_ERROR, serror);
3841 /* print link status */
3842 sata_print_link_status(link);
3844 DPRINTK("EXIT\n");
3848 * ata_dev_same_device - Determine whether new ID matches configured device
3849 * @dev: device to compare against
3850 * @new_class: class of the new device
3851 * @new_id: IDENTIFY page of the new device
3853 * Compare @new_class and @new_id against @dev and determine
3854 * whether @dev is the device indicated by @new_class and
3855 * @new_id.
3857 * LOCKING:
3858 * None.
3860 * RETURNS:
3861 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3863 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3864 const u16 *new_id)
3866 const u16 *old_id = dev->id;
3867 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3868 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3870 if (dev->class != new_class) {
3871 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3872 dev->class, new_class);
3873 return 0;
3876 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3877 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3878 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3879 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3881 if (strcmp(model[0], model[1])) {
3882 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3883 "'%s' != '%s'\n", model[0], model[1]);
3884 return 0;
3887 if (strcmp(serial[0], serial[1])) {
3888 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3889 "'%s' != '%s'\n", serial[0], serial[1]);
3890 return 0;
3893 return 1;
3897 * ata_dev_reread_id - Re-read IDENTIFY data
3898 * @dev: target ATA device
3899 * @readid_flags: read ID flags
3901 * Re-read IDENTIFY page and make sure @dev is still attached to
3902 * the port.
3904 * LOCKING:
3905 * Kernel thread context (may sleep)
3907 * RETURNS:
3908 * 0 on success, negative errno otherwise
3910 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3912 unsigned int class = dev->class;
3913 u16 *id = (void *)dev->link->ap->sector_buf;
3914 int rc;
3916 /* read ID data */
3917 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3918 if (rc)
3919 return rc;
3921 /* is the device still there? */
3922 if (!ata_dev_same_device(dev, class, id))
3923 return -ENODEV;
3925 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3926 return 0;
3930 * ata_dev_revalidate - Revalidate ATA device
3931 * @dev: device to revalidate
3932 * @new_class: new class code
3933 * @readid_flags: read ID flags
3935 * Re-read IDENTIFY page, make sure @dev is still attached to the
3936 * port and reconfigure it according to the new IDENTIFY page.
3938 * LOCKING:
3939 * Kernel thread context (may sleep)
3941 * RETURNS:
3942 * 0 on success, negative errno otherwise
3944 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3945 unsigned int readid_flags)
3947 u64 n_sectors = dev->n_sectors;
3948 u64 n_native_sectors = dev->n_native_sectors;
3949 int rc;
3951 if (!ata_dev_enabled(dev))
3952 return -ENODEV;
3954 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3955 if (ata_class_enabled(new_class) &&
3956 new_class != ATA_DEV_ATA &&
3957 new_class != ATA_DEV_ATAPI &&
3958 new_class != ATA_DEV_SEMB) {
3959 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3960 dev->class, new_class);
3961 rc = -ENODEV;
3962 goto fail;
3965 /* re-read ID */
3966 rc = ata_dev_reread_id(dev, readid_flags);
3967 if (rc)
3968 goto fail;
3970 /* configure device according to the new ID */
3971 rc = ata_dev_configure(dev);
3972 if (rc)
3973 goto fail;
3975 /* verify n_sectors hasn't changed */
3976 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3977 dev->n_sectors == n_sectors)
3978 return 0;
3980 /* n_sectors has changed */
3981 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
3982 (unsigned long long)n_sectors,
3983 (unsigned long long)dev->n_sectors);
3986 * Something could have caused HPA to be unlocked
3987 * involuntarily. If n_native_sectors hasn't changed and the
3988 * new size matches it, keep the device.
3990 if (dev->n_native_sectors == n_native_sectors &&
3991 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3992 ata_dev_printk(dev, KERN_WARNING,
3993 "new n_sectors matches native, probably "
3994 "late HPA unlock, n_sectors updated\n");
3995 /* use the larger n_sectors */
3996 return 0;
4000 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4001 * unlocking HPA in those cases.
4003 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4005 if (dev->n_native_sectors == n_native_sectors &&
4006 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4007 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4008 ata_dev_printk(dev, KERN_WARNING,
4009 "old n_sectors matches native, probably "
4010 "late HPA lock, will try to unlock HPA\n");
4011 /* try unlocking HPA */
4012 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4013 rc = -EIO;
4014 } else
4015 rc = -ENODEV;
4017 /* restore original n_[native_]sectors and fail */
4018 dev->n_native_sectors = n_native_sectors;
4019 dev->n_sectors = n_sectors;
4020 fail:
4021 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4022 return rc;
4025 struct ata_blacklist_entry {
4026 const char *model_num;
4027 const char *model_rev;
4028 unsigned long horkage;
4031 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4032 /* Devices with DMA related problems under Linux */
4033 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4034 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4035 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4036 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4037 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4038 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4039 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4040 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4041 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4042 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4043 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4044 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4045 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4046 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4047 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4048 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4049 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4050 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4051 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4052 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4053 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4054 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4055 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4056 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4057 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4058 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4059 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4060 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4061 /* Odd clown on sil3726/4726 PMPs */
4062 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4064 /* Weird ATAPI devices */
4065 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4066 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4068 /* Devices we expect to fail diagnostics */
4070 /* Devices where NCQ should be avoided */
4071 /* NCQ is slow */
4072 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4073 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4074 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4075 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4076 /* NCQ is broken */
4077 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4078 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4079 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4080 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4081 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4083 /* Seagate NCQ + FLUSH CACHE firmware bug */
4084 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4085 ATA_HORKAGE_FIRMWARE_WARN },
4087 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4088 ATA_HORKAGE_FIRMWARE_WARN },
4090 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4091 ATA_HORKAGE_FIRMWARE_WARN },
4093 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4094 ATA_HORKAGE_FIRMWARE_WARN },
4096 /* Blacklist entries taken from Silicon Image 3124/3132
4097 Windows driver .inf file - also several Linux problem reports */
4098 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4099 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4100 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4102 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4103 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4105 /* devices which puke on READ_NATIVE_MAX */
4106 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4107 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4108 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4109 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4111 /* this one allows HPA unlocking but fails IOs on the area */
4112 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4114 /* Devices which report 1 sector over size HPA */
4115 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4116 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4117 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4119 /* Devices which get the IVB wrong */
4120 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4121 /* Maybe we should just blacklist TSSTcorp... */
4122 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4124 /* Devices that do not need bridging limits applied */
4125 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4127 /* Devices which aren't very happy with higher link speeds */
4128 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4131 * Devices which choke on SETXFER. Applies only if both the
4132 * device and controller are SATA.
4134 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4136 /* End Marker */
4141 * glob_match - match a text string against a glob-style pattern
4142 * @text: the string to be examined
4143 * @pattern: the glob-style pattern to be matched against
4145 * Either/both of text and pattern can be empty strings.
4147 * Match text against a glob-style pattern, with wildcards and simple sets:
4149 * ? matches any single character.
4150 * * matches any run of characters.
4151 * [xyz] matches a single character from the set: x, y, or z.
4152 * [a-d] matches a single character from the range: a, b, c, or d.
4153 * [a-d0-9] matches a single character from either range.
4155 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4156 * Behaviour with malformed patterns is undefined, though generally reasonable.
4158 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4160 * This function uses one level of recursion per '*' in pattern.
4161 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4162 * this will not cause stack problems for any reasonable use here.
4164 * RETURNS:
4165 * 0 on match, 1 otherwise.
4167 static int glob_match (const char *text, const char *pattern)
4169 do {
4170 /* Match single character or a '?' wildcard */
4171 if (*text == *pattern || *pattern == '?') {
4172 if (!*pattern++)
4173 return 0; /* End of both strings: match */
4174 } else {
4175 /* Match single char against a '[' bracketed ']' pattern set */
4176 if (!*text || *pattern != '[')
4177 break; /* Not a pattern set */
4178 while (*++pattern && *pattern != ']' && *text != *pattern) {
4179 if (*pattern == '-' && *(pattern - 1) != '[')
4180 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4181 ++pattern;
4182 break;
4185 if (!*pattern || *pattern == ']')
4186 return 1; /* No match */
4187 while (*pattern && *pattern++ != ']');
4189 } while (*++text && *pattern);
4191 /* Match any run of chars against a '*' wildcard */
4192 if (*pattern == '*') {
4193 if (!*++pattern)
4194 return 0; /* Match: avoid recursion at end of pattern */
4195 /* Loop to handle additional pattern chars after the wildcard */
4196 while (*text) {
4197 if (glob_match(text, pattern) == 0)
4198 return 0; /* Remainder matched */
4199 ++text; /* Absorb (match) this char and try again */
4202 if (!*text && !*pattern)
4203 return 0; /* End of both strings: match */
4204 return 1; /* No match */
4207 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4209 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4210 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4211 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4213 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4214 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4216 while (ad->model_num) {
4217 if (!glob_match(model_num, ad->model_num)) {
4218 if (ad->model_rev == NULL)
4219 return ad->horkage;
4220 if (!glob_match(model_rev, ad->model_rev))
4221 return ad->horkage;
4223 ad++;
4225 return 0;
4228 static int ata_dma_blacklisted(const struct ata_device *dev)
4230 /* We don't support polling DMA.
4231 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4232 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4234 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4235 (dev->flags & ATA_DFLAG_CDB_INTR))
4236 return 1;
4237 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4241 * ata_is_40wire - check drive side detection
4242 * @dev: device
4244 * Perform drive side detection decoding, allowing for device vendors
4245 * who can't follow the documentation.
4248 static int ata_is_40wire(struct ata_device *dev)
4250 if (dev->horkage & ATA_HORKAGE_IVB)
4251 return ata_drive_40wire_relaxed(dev->id);
4252 return ata_drive_40wire(dev->id);
4256 * cable_is_40wire - 40/80/SATA decider
4257 * @ap: port to consider
4259 * This function encapsulates the policy for speed management
4260 * in one place. At the moment we don't cache the result but
4261 * there is a good case for setting ap->cbl to the result when
4262 * we are called with unknown cables (and figuring out if it
4263 * impacts hotplug at all).
4265 * Return 1 if the cable appears to be 40 wire.
4268 static int cable_is_40wire(struct ata_port *ap)
4270 struct ata_link *link;
4271 struct ata_device *dev;
4273 /* If the controller thinks we are 40 wire, we are. */
4274 if (ap->cbl == ATA_CBL_PATA40)
4275 return 1;
4277 /* If the controller thinks we are 80 wire, we are. */
4278 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4279 return 0;
4281 /* If the system is known to be 40 wire short cable (eg
4282 * laptop), then we allow 80 wire modes even if the drive
4283 * isn't sure.
4285 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4286 return 0;
4288 /* If the controller doesn't know, we scan.
4290 * Note: We look for all 40 wire detects at this point. Any
4291 * 80 wire detect is taken to be 80 wire cable because
4292 * - in many setups only the one drive (slave if present) will
4293 * give a valid detect
4294 * - if you have a non detect capable drive you don't want it
4295 * to colour the choice
4297 ata_for_each_link(link, ap, EDGE) {
4298 ata_for_each_dev(dev, link, ENABLED) {
4299 if (!ata_is_40wire(dev))
4300 return 0;
4303 return 1;
4307 * ata_dev_xfermask - Compute supported xfermask of the given device
4308 * @dev: Device to compute xfermask for
4310 * Compute supported xfermask of @dev and store it in
4311 * dev->*_mask. This function is responsible for applying all
4312 * known limits including host controller limits, device
4313 * blacklist, etc...
4315 * LOCKING:
4316 * None.
4318 static void ata_dev_xfermask(struct ata_device *dev)
4320 struct ata_link *link = dev->link;
4321 struct ata_port *ap = link->ap;
4322 struct ata_host *host = ap->host;
4323 unsigned long xfer_mask;
4325 /* controller modes available */
4326 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4327 ap->mwdma_mask, ap->udma_mask);
4329 /* drive modes available */
4330 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4331 dev->mwdma_mask, dev->udma_mask);
4332 xfer_mask &= ata_id_xfermask(dev->id);
4335 * CFA Advanced TrueIDE timings are not allowed on a shared
4336 * cable
4338 if (ata_dev_pair(dev)) {
4339 /* No PIO5 or PIO6 */
4340 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4341 /* No MWDMA3 or MWDMA 4 */
4342 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4345 if (ata_dma_blacklisted(dev)) {
4346 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4347 ata_dev_printk(dev, KERN_WARNING,
4348 "device is on DMA blacklist, disabling DMA\n");
4351 if ((host->flags & ATA_HOST_SIMPLEX) &&
4352 host->simplex_claimed && host->simplex_claimed != ap) {
4353 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4354 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4355 "other device, disabling DMA\n");
4358 if (ap->flags & ATA_FLAG_NO_IORDY)
4359 xfer_mask &= ata_pio_mask_no_iordy(dev);
4361 if (ap->ops->mode_filter)
4362 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4364 /* Apply cable rule here. Don't apply it early because when
4365 * we handle hot plug the cable type can itself change.
4366 * Check this last so that we know if the transfer rate was
4367 * solely limited by the cable.
4368 * Unknown or 80 wire cables reported host side are checked
4369 * drive side as well. Cases where we know a 40wire cable
4370 * is used safely for 80 are not checked here.
4372 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4373 /* UDMA/44 or higher would be available */
4374 if (cable_is_40wire(ap)) {
4375 ata_dev_printk(dev, KERN_WARNING,
4376 "limited to UDMA/33 due to 40-wire cable\n");
4377 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4380 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4381 &dev->mwdma_mask, &dev->udma_mask);
4385 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4386 * @dev: Device to which command will be sent
4388 * Issue SET FEATURES - XFER MODE command to device @dev
4389 * on port @ap.
4391 * LOCKING:
4392 * PCI/etc. bus probe sem.
4394 * RETURNS:
4395 * 0 on success, AC_ERR_* mask otherwise.
4398 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4400 struct ata_taskfile tf;
4401 unsigned int err_mask;
4403 /* set up set-features taskfile */
4404 DPRINTK("set features - xfer mode\n");
4406 /* Some controllers and ATAPI devices show flaky interrupt
4407 * behavior after setting xfer mode. Use polling instead.
4409 ata_tf_init(dev, &tf);
4410 tf.command = ATA_CMD_SET_FEATURES;
4411 tf.feature = SETFEATURES_XFER;
4412 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4413 tf.protocol = ATA_PROT_NODATA;
4414 /* If we are using IORDY we must send the mode setting command */
4415 if (ata_pio_need_iordy(dev))
4416 tf.nsect = dev->xfer_mode;
4417 /* If the device has IORDY and the controller does not - turn it off */
4418 else if (ata_id_has_iordy(dev->id))
4419 tf.nsect = 0x01;
4420 else /* In the ancient relic department - skip all of this */
4421 return 0;
4423 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4425 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4426 return err_mask;
4430 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4431 * @dev: Device to which command will be sent
4432 * @enable: Whether to enable or disable the feature
4433 * @feature: The sector count represents the feature to set
4435 * Issue SET FEATURES - SATA FEATURES command to device @dev
4436 * on port @ap with sector count
4438 * LOCKING:
4439 * PCI/etc. bus probe sem.
4441 * RETURNS:
4442 * 0 on success, AC_ERR_* mask otherwise.
4444 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4446 struct ata_taskfile tf;
4447 unsigned int err_mask;
4449 /* set up set-features taskfile */
4450 DPRINTK("set features - SATA features\n");
4452 ata_tf_init(dev, &tf);
4453 tf.command = ATA_CMD_SET_FEATURES;
4454 tf.feature = enable;
4455 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4456 tf.protocol = ATA_PROT_NODATA;
4457 tf.nsect = feature;
4459 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4461 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4462 return err_mask;
4466 * ata_dev_init_params - Issue INIT DEV PARAMS command
4467 * @dev: Device to which command will be sent
4468 * @heads: Number of heads (taskfile parameter)
4469 * @sectors: Number of sectors (taskfile parameter)
4471 * LOCKING:
4472 * Kernel thread context (may sleep)
4474 * RETURNS:
4475 * 0 on success, AC_ERR_* mask otherwise.
4477 static unsigned int ata_dev_init_params(struct ata_device *dev,
4478 u16 heads, u16 sectors)
4480 struct ata_taskfile tf;
4481 unsigned int err_mask;
4483 /* Number of sectors per track 1-255. Number of heads 1-16 */
4484 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4485 return AC_ERR_INVALID;
4487 /* set up init dev params taskfile */
4488 DPRINTK("init dev params \n");
4490 ata_tf_init(dev, &tf);
4491 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4492 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4493 tf.protocol = ATA_PROT_NODATA;
4494 tf.nsect = sectors;
4495 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4497 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4498 /* A clean abort indicates an original or just out of spec drive
4499 and we should continue as we issue the setup based on the
4500 drive reported working geometry */
4501 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4502 err_mask = 0;
4504 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4505 return err_mask;
4509 * ata_sg_clean - Unmap DMA memory associated with command
4510 * @qc: Command containing DMA memory to be released
4512 * Unmap all mapped DMA memory associated with this command.
4514 * LOCKING:
4515 * spin_lock_irqsave(host lock)
4517 void ata_sg_clean(struct ata_queued_cmd *qc)
4519 struct ata_port *ap = qc->ap;
4520 struct scatterlist *sg = qc->sg;
4521 int dir = qc->dma_dir;
4523 WARN_ON_ONCE(sg == NULL);
4525 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4527 if (qc->n_elem)
4528 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4530 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4531 qc->sg = NULL;
4535 * atapi_check_dma - Check whether ATAPI DMA can be supported
4536 * @qc: Metadata associated with taskfile to check
4538 * Allow low-level driver to filter ATA PACKET commands, returning
4539 * a status indicating whether or not it is OK to use DMA for the
4540 * supplied PACKET command.
4542 * LOCKING:
4543 * spin_lock_irqsave(host lock)
4545 * RETURNS: 0 when ATAPI DMA can be used
4546 * nonzero otherwise
4548 int atapi_check_dma(struct ata_queued_cmd *qc)
4550 struct ata_port *ap = qc->ap;
4552 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4553 * few ATAPI devices choke on such DMA requests.
4555 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4556 unlikely(qc->nbytes & 15))
4557 return 1;
4559 if (ap->ops->check_atapi_dma)
4560 return ap->ops->check_atapi_dma(qc);
4562 return 0;
4566 * ata_std_qc_defer - Check whether a qc needs to be deferred
4567 * @qc: ATA command in question
4569 * Non-NCQ commands cannot run with any other command, NCQ or
4570 * not. As upper layer only knows the queue depth, we are
4571 * responsible for maintaining exclusion. This function checks
4572 * whether a new command @qc can be issued.
4574 * LOCKING:
4575 * spin_lock_irqsave(host lock)
4577 * RETURNS:
4578 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4580 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4582 struct ata_link *link = qc->dev->link;
4584 if (qc->tf.protocol == ATA_PROT_NCQ) {
4585 if (!ata_tag_valid(link->active_tag))
4586 return 0;
4587 } else {
4588 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4589 return 0;
4592 return ATA_DEFER_LINK;
4595 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4598 * ata_sg_init - Associate command with scatter-gather table.
4599 * @qc: Command to be associated
4600 * @sg: Scatter-gather table.
4601 * @n_elem: Number of elements in s/g table.
4603 * Initialize the data-related elements of queued_cmd @qc
4604 * to point to a scatter-gather table @sg, containing @n_elem
4605 * elements.
4607 * LOCKING:
4608 * spin_lock_irqsave(host lock)
4610 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4611 unsigned int n_elem)
4613 qc->sg = sg;
4614 qc->n_elem = n_elem;
4615 qc->cursg = qc->sg;
4619 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4620 * @qc: Command with scatter-gather table to be mapped.
4622 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4624 * LOCKING:
4625 * spin_lock_irqsave(host lock)
4627 * RETURNS:
4628 * Zero on success, negative on error.
4631 static int ata_sg_setup(struct ata_queued_cmd *qc)
4633 struct ata_port *ap = qc->ap;
4634 unsigned int n_elem;
4636 VPRINTK("ENTER, ata%u\n", ap->print_id);
4638 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4639 if (n_elem < 1)
4640 return -1;
4642 DPRINTK("%d sg elements mapped\n", n_elem);
4643 qc->orig_n_elem = qc->n_elem;
4644 qc->n_elem = n_elem;
4645 qc->flags |= ATA_QCFLAG_DMAMAP;
4647 return 0;
4651 * swap_buf_le16 - swap halves of 16-bit words in place
4652 * @buf: Buffer to swap
4653 * @buf_words: Number of 16-bit words in buffer.
4655 * Swap halves of 16-bit words if needed to convert from
4656 * little-endian byte order to native cpu byte order, or
4657 * vice-versa.
4659 * LOCKING:
4660 * Inherited from caller.
4662 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4664 #ifdef __BIG_ENDIAN
4665 unsigned int i;
4667 for (i = 0; i < buf_words; i++)
4668 buf[i] = le16_to_cpu(buf[i]);
4669 #endif /* __BIG_ENDIAN */
4673 * ata_qc_new - Request an available ATA command, for queueing
4674 * @ap: target port
4676 * LOCKING:
4677 * None.
4680 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4682 struct ata_queued_cmd *qc = NULL;
4683 unsigned int i;
4685 /* no command while frozen */
4686 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4687 return NULL;
4689 /* the last tag is reserved for internal command. */
4690 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4691 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4692 qc = __ata_qc_from_tag(ap, i);
4693 break;
4696 if (qc)
4697 qc->tag = i;
4699 return qc;
4703 * ata_qc_new_init - Request an available ATA command, and initialize it
4704 * @dev: Device from whom we request an available command structure
4706 * LOCKING:
4707 * None.
4710 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4712 struct ata_port *ap = dev->link->ap;
4713 struct ata_queued_cmd *qc;
4715 qc = ata_qc_new(ap);
4716 if (qc) {
4717 qc->scsicmd = NULL;
4718 qc->ap = ap;
4719 qc->dev = dev;
4721 ata_qc_reinit(qc);
4724 return qc;
4728 * ata_qc_free - free unused ata_queued_cmd
4729 * @qc: Command to complete
4731 * Designed to free unused ata_queued_cmd object
4732 * in case something prevents using it.
4734 * LOCKING:
4735 * spin_lock_irqsave(host lock)
4737 void ata_qc_free(struct ata_queued_cmd *qc)
4739 struct ata_port *ap;
4740 unsigned int tag;
4742 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4743 ap = qc->ap;
4745 qc->flags = 0;
4746 tag = qc->tag;
4747 if (likely(ata_tag_valid(tag))) {
4748 qc->tag = ATA_TAG_POISON;
4749 clear_bit(tag, &ap->qc_allocated);
4753 void __ata_qc_complete(struct ata_queued_cmd *qc)
4755 struct ata_port *ap;
4756 struct ata_link *link;
4758 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4759 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4760 ap = qc->ap;
4761 link = qc->dev->link;
4763 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4764 ata_sg_clean(qc);
4766 /* command should be marked inactive atomically with qc completion */
4767 if (qc->tf.protocol == ATA_PROT_NCQ) {
4768 link->sactive &= ~(1 << qc->tag);
4769 if (!link->sactive)
4770 ap->nr_active_links--;
4771 } else {
4772 link->active_tag = ATA_TAG_POISON;
4773 ap->nr_active_links--;
4776 /* clear exclusive status */
4777 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4778 ap->excl_link == link))
4779 ap->excl_link = NULL;
4781 /* atapi: mark qc as inactive to prevent the interrupt handler
4782 * from completing the command twice later, before the error handler
4783 * is called. (when rc != 0 and atapi request sense is needed)
4785 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4786 ap->qc_active &= ~(1 << qc->tag);
4788 /* call completion callback */
4789 qc->complete_fn(qc);
4792 static void fill_result_tf(struct ata_queued_cmd *qc)
4794 struct ata_port *ap = qc->ap;
4796 qc->result_tf.flags = qc->tf.flags;
4797 ap->ops->qc_fill_rtf(qc);
4800 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4802 struct ata_device *dev = qc->dev;
4804 if (ata_tag_internal(qc->tag))
4805 return;
4807 if (ata_is_nodata(qc->tf.protocol))
4808 return;
4810 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4811 return;
4813 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4817 * ata_qc_complete - Complete an active ATA command
4818 * @qc: Command to complete
4820 * Indicate to the mid and upper layers that an ATA command has
4821 * completed, with either an ok or not-ok status.
4823 * Refrain from calling this function multiple times when
4824 * successfully completing multiple NCQ commands.
4825 * ata_qc_complete_multiple() should be used instead, which will
4826 * properly update IRQ expect state.
4828 * LOCKING:
4829 * spin_lock_irqsave(host lock)
4831 void ata_qc_complete(struct ata_queued_cmd *qc)
4833 struct ata_port *ap = qc->ap;
4835 /* XXX: New EH and old EH use different mechanisms to
4836 * synchronize EH with regular execution path.
4838 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4839 * Normal execution path is responsible for not accessing a
4840 * failed qc. libata core enforces the rule by returning NULL
4841 * from ata_qc_from_tag() for failed qcs.
4843 * Old EH depends on ata_qc_complete() nullifying completion
4844 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4845 * not synchronize with interrupt handler. Only PIO task is
4846 * taken care of.
4848 if (ap->ops->error_handler) {
4849 struct ata_device *dev = qc->dev;
4850 struct ata_eh_info *ehi = &dev->link->eh_info;
4852 if (unlikely(qc->err_mask))
4853 qc->flags |= ATA_QCFLAG_FAILED;
4855 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4856 /* always fill result TF for failed qc */
4857 fill_result_tf(qc);
4859 if (!ata_tag_internal(qc->tag))
4860 ata_qc_schedule_eh(qc);
4861 else
4862 __ata_qc_complete(qc);
4863 return;
4866 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4868 /* read result TF if requested */
4869 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4870 fill_result_tf(qc);
4872 /* Some commands need post-processing after successful
4873 * completion.
4875 switch (qc->tf.command) {
4876 case ATA_CMD_SET_FEATURES:
4877 if (qc->tf.feature != SETFEATURES_WC_ON &&
4878 qc->tf.feature != SETFEATURES_WC_OFF)
4879 break;
4880 /* fall through */
4881 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4882 case ATA_CMD_SET_MULTI: /* multi_count changed */
4883 /* revalidate device */
4884 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4885 ata_port_schedule_eh(ap);
4886 break;
4888 case ATA_CMD_SLEEP:
4889 dev->flags |= ATA_DFLAG_SLEEPING;
4890 break;
4893 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4894 ata_verify_xfer(qc);
4896 __ata_qc_complete(qc);
4897 } else {
4898 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4899 return;
4901 /* read result TF if failed or requested */
4902 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4903 fill_result_tf(qc);
4905 __ata_qc_complete(qc);
4910 * ata_qc_complete_multiple - Complete multiple qcs successfully
4911 * @ap: port in question
4912 * @qc_active: new qc_active mask
4914 * Complete in-flight commands. This functions is meant to be
4915 * called from low-level driver's interrupt routine to complete
4916 * requests normally. ap->qc_active and @qc_active is compared
4917 * and commands are completed accordingly.
4919 * Always use this function when completing multiple NCQ commands
4920 * from IRQ handlers instead of calling ata_qc_complete()
4921 * multiple times to keep IRQ expect status properly in sync.
4923 * LOCKING:
4924 * spin_lock_irqsave(host lock)
4926 * RETURNS:
4927 * Number of completed commands on success, -errno otherwise.
4929 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4931 int nr_done = 0;
4932 u32 done_mask;
4934 done_mask = ap->qc_active ^ qc_active;
4936 if (unlikely(done_mask & qc_active)) {
4937 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4938 "(%08x->%08x)\n", ap->qc_active, qc_active);
4939 return -EINVAL;
4942 while (done_mask) {
4943 struct ata_queued_cmd *qc;
4944 unsigned int tag = __ffs(done_mask);
4946 qc = ata_qc_from_tag(ap, tag);
4947 if (qc) {
4948 ata_qc_complete(qc);
4949 nr_done++;
4951 done_mask &= ~(1 << tag);
4954 return nr_done;
4958 * ata_qc_issue - issue taskfile to device
4959 * @qc: command to issue to device
4961 * Prepare an ATA command to submission to device.
4962 * This includes mapping the data into a DMA-able
4963 * area, filling in the S/G table, and finally
4964 * writing the taskfile to hardware, starting the command.
4966 * LOCKING:
4967 * spin_lock_irqsave(host lock)
4969 void ata_qc_issue(struct ata_queued_cmd *qc)
4971 struct ata_port *ap = qc->ap;
4972 struct ata_link *link = qc->dev->link;
4973 u8 prot = qc->tf.protocol;
4975 /* Make sure only one non-NCQ command is outstanding. The
4976 * check is skipped for old EH because it reuses active qc to
4977 * request ATAPI sense.
4979 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4981 if (ata_is_ncq(prot)) {
4982 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4984 if (!link->sactive)
4985 ap->nr_active_links++;
4986 link->sactive |= 1 << qc->tag;
4987 } else {
4988 WARN_ON_ONCE(link->sactive);
4990 ap->nr_active_links++;
4991 link->active_tag = qc->tag;
4994 qc->flags |= ATA_QCFLAG_ACTIVE;
4995 ap->qc_active |= 1 << qc->tag;
4998 * We guarantee to LLDs that they will have at least one
4999 * non-zero sg if the command is a data command.
5001 if (WARN_ON_ONCE(ata_is_data(prot) &&
5002 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5003 goto sys_err;
5005 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5006 (ap->flags & ATA_FLAG_PIO_DMA)))
5007 if (ata_sg_setup(qc))
5008 goto sys_err;
5010 /* if device is sleeping, schedule reset and abort the link */
5011 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5012 link->eh_info.action |= ATA_EH_RESET;
5013 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5014 ata_link_abort(link);
5015 return;
5018 ap->ops->qc_prep(qc);
5020 qc->err_mask |= ap->ops->qc_issue(qc);
5021 if (unlikely(qc->err_mask))
5022 goto err;
5023 return;
5025 sys_err:
5026 qc->err_mask |= AC_ERR_SYSTEM;
5027 err:
5028 ata_qc_complete(qc);
5032 * sata_scr_valid - test whether SCRs are accessible
5033 * @link: ATA link to test SCR accessibility for
5035 * Test whether SCRs are accessible for @link.
5037 * LOCKING:
5038 * None.
5040 * RETURNS:
5041 * 1 if SCRs are accessible, 0 otherwise.
5043 int sata_scr_valid(struct ata_link *link)
5045 struct ata_port *ap = link->ap;
5047 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5051 * sata_scr_read - read SCR register of the specified port
5052 * @link: ATA link to read SCR for
5053 * @reg: SCR to read
5054 * @val: Place to store read value
5056 * Read SCR register @reg of @link into *@val. This function is
5057 * guaranteed to succeed if @link is ap->link, the cable type of
5058 * the port is SATA and the port implements ->scr_read.
5060 * LOCKING:
5061 * None if @link is ap->link. Kernel thread context otherwise.
5063 * RETURNS:
5064 * 0 on success, negative errno on failure.
5066 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5068 if (ata_is_host_link(link)) {
5069 if (sata_scr_valid(link))
5070 return link->ap->ops->scr_read(link, reg, val);
5071 return -EOPNOTSUPP;
5074 return sata_pmp_scr_read(link, reg, val);
5078 * sata_scr_write - write SCR register of the specified port
5079 * @link: ATA link to write SCR for
5080 * @reg: SCR to write
5081 * @val: value to write
5083 * Write @val to SCR register @reg of @link. This function is
5084 * guaranteed to succeed if @link is ap->link, the cable type of
5085 * the port is SATA and the port implements ->scr_read.
5087 * LOCKING:
5088 * None if @link is ap->link. Kernel thread context otherwise.
5090 * RETURNS:
5091 * 0 on success, negative errno on failure.
5093 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5095 if (ata_is_host_link(link)) {
5096 if (sata_scr_valid(link))
5097 return link->ap->ops->scr_write(link, reg, val);
5098 return -EOPNOTSUPP;
5101 return sata_pmp_scr_write(link, reg, val);
5105 * sata_scr_write_flush - write SCR register of the specified port and flush
5106 * @link: ATA link to write SCR for
5107 * @reg: SCR to write
5108 * @val: value to write
5110 * This function is identical to sata_scr_write() except that this
5111 * function performs flush after writing to the register.
5113 * LOCKING:
5114 * None if @link is ap->link. Kernel thread context otherwise.
5116 * RETURNS:
5117 * 0 on success, negative errno on failure.
5119 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5121 if (ata_is_host_link(link)) {
5122 int rc;
5124 if (sata_scr_valid(link)) {
5125 rc = link->ap->ops->scr_write(link, reg, val);
5126 if (rc == 0)
5127 rc = link->ap->ops->scr_read(link, reg, &val);
5128 return rc;
5130 return -EOPNOTSUPP;
5133 return sata_pmp_scr_write(link, reg, val);
5137 * ata_phys_link_online - test whether the given link is online
5138 * @link: ATA link to test
5140 * Test whether @link is online. Note that this function returns
5141 * 0 if online status of @link cannot be obtained, so
5142 * ata_link_online(link) != !ata_link_offline(link).
5144 * LOCKING:
5145 * None.
5147 * RETURNS:
5148 * True if the port online status is available and online.
5150 bool ata_phys_link_online(struct ata_link *link)
5152 u32 sstatus;
5154 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5155 ata_sstatus_online(sstatus))
5156 return true;
5157 return false;
5161 * ata_phys_link_offline - test whether the given link is offline
5162 * @link: ATA link to test
5164 * Test whether @link is offline. Note that this function
5165 * returns 0 if offline status of @link cannot be obtained, so
5166 * ata_link_online(link) != !ata_link_offline(link).
5168 * LOCKING:
5169 * None.
5171 * RETURNS:
5172 * True if the port offline status is available and offline.
5174 bool ata_phys_link_offline(struct ata_link *link)
5176 u32 sstatus;
5178 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5179 !ata_sstatus_online(sstatus))
5180 return true;
5181 return false;
5185 * ata_link_online - test whether the given link is online
5186 * @link: ATA link to test
5188 * Test whether @link is online. This is identical to
5189 * ata_phys_link_online() when there's no slave link. When
5190 * there's a slave link, this function should only be called on
5191 * the master link and will return true if any of M/S links is
5192 * online.
5194 * LOCKING:
5195 * None.
5197 * RETURNS:
5198 * True if the port online status is available and online.
5200 bool ata_link_online(struct ata_link *link)
5202 struct ata_link *slave = link->ap->slave_link;
5204 WARN_ON(link == slave); /* shouldn't be called on slave link */
5206 return ata_phys_link_online(link) ||
5207 (slave && ata_phys_link_online(slave));
5211 * ata_link_offline - test whether the given link is offline
5212 * @link: ATA link to test
5214 * Test whether @link is offline. This is identical to
5215 * ata_phys_link_offline() when there's no slave link. When
5216 * there's a slave link, this function should only be called on
5217 * the master link and will return true if both M/S links are
5218 * offline.
5220 * LOCKING:
5221 * None.
5223 * RETURNS:
5224 * True if the port offline status is available and offline.
5226 bool ata_link_offline(struct ata_link *link)
5228 struct ata_link *slave = link->ap->slave_link;
5230 WARN_ON(link == slave); /* shouldn't be called on slave link */
5232 return ata_phys_link_offline(link) &&
5233 (!slave || ata_phys_link_offline(slave));
5236 #ifdef CONFIG_PM
5237 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5238 unsigned int action, unsigned int ehi_flags,
5239 int wait)
5241 unsigned long flags;
5242 int i, rc;
5244 for (i = 0; i < host->n_ports; i++) {
5245 struct ata_port *ap = host->ports[i];
5246 struct ata_link *link;
5248 /* Previous resume operation might still be in
5249 * progress. Wait for PM_PENDING to clear.
5251 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5252 ata_port_wait_eh(ap);
5253 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5256 /* request PM ops to EH */
5257 spin_lock_irqsave(ap->lock, flags);
5259 ap->pm_mesg = mesg;
5260 if (wait) {
5261 rc = 0;
5262 ap->pm_result = &rc;
5265 ap->pflags |= ATA_PFLAG_PM_PENDING;
5266 ata_for_each_link(link, ap, HOST_FIRST) {
5267 link->eh_info.action |= action;
5268 link->eh_info.flags |= ehi_flags;
5271 ata_port_schedule_eh(ap);
5273 spin_unlock_irqrestore(ap->lock, flags);
5275 /* wait and check result */
5276 if (wait) {
5277 ata_port_wait_eh(ap);
5278 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5279 if (rc)
5280 return rc;
5284 return 0;
5288 * ata_host_suspend - suspend host
5289 * @host: host to suspend
5290 * @mesg: PM message
5292 * Suspend @host. Actual operation is performed by EH. This
5293 * function requests EH to perform PM operations and waits for EH
5294 * to finish.
5296 * LOCKING:
5297 * Kernel thread context (may sleep).
5299 * RETURNS:
5300 * 0 on success, -errno on failure.
5302 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5304 unsigned int ehi_flags = ATA_EHI_QUIET;
5305 int rc;
5308 * On some hardware, device fails to respond after spun down
5309 * for suspend. As the device won't be used before being
5310 * resumed, we don't need to touch the device. Ask EH to skip
5311 * the usual stuff and proceed directly to suspend.
5313 * http://thread.gmane.org/gmane.linux.ide/46764
5315 if (mesg.event == PM_EVENT_SUSPEND)
5316 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5318 rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
5319 if (rc == 0)
5320 host->dev->power.power_state = mesg;
5321 return rc;
5325 * ata_host_resume - resume host
5326 * @host: host to resume
5328 * Resume @host. Actual operation is performed by EH. This
5329 * function requests EH to perform PM operations and returns.
5330 * Note that all resume operations are performed parallely.
5332 * LOCKING:
5333 * Kernel thread context (may sleep).
5335 void ata_host_resume(struct ata_host *host)
5337 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5338 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5339 host->dev->power.power_state = PMSG_ON;
5341 #endif
5344 * ata_dev_init - Initialize an ata_device structure
5345 * @dev: Device structure to initialize
5347 * Initialize @dev in preparation for probing.
5349 * LOCKING:
5350 * Inherited from caller.
5352 void ata_dev_init(struct ata_device *dev)
5354 struct ata_link *link = ata_dev_phys_link(dev);
5355 struct ata_port *ap = link->ap;
5356 unsigned long flags;
5358 /* SATA spd limit is bound to the attached device, reset together */
5359 link->sata_spd_limit = link->hw_sata_spd_limit;
5360 link->sata_spd = 0;
5362 /* High bits of dev->flags are used to record warm plug
5363 * requests which occur asynchronously. Synchronize using
5364 * host lock.
5366 spin_lock_irqsave(ap->lock, flags);
5367 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5368 dev->horkage = 0;
5369 spin_unlock_irqrestore(ap->lock, flags);
5371 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5372 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5373 dev->pio_mask = UINT_MAX;
5374 dev->mwdma_mask = UINT_MAX;
5375 dev->udma_mask = UINT_MAX;
5379 * ata_link_init - Initialize an ata_link structure
5380 * @ap: ATA port link is attached to
5381 * @link: Link structure to initialize
5382 * @pmp: Port multiplier port number
5384 * Initialize @link.
5386 * LOCKING:
5387 * Kernel thread context (may sleep)
5389 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5391 int i;
5393 /* clear everything except for devices */
5394 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5395 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5397 link->ap = ap;
5398 link->pmp = pmp;
5399 link->active_tag = ATA_TAG_POISON;
5400 link->hw_sata_spd_limit = UINT_MAX;
5402 /* can't use iterator, ap isn't initialized yet */
5403 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5404 struct ata_device *dev = &link->device[i];
5406 dev->link = link;
5407 dev->devno = dev - link->device;
5408 #ifdef CONFIG_ATA_ACPI
5409 dev->gtf_filter = ata_acpi_gtf_filter;
5410 #endif
5411 ata_dev_init(dev);
5416 * sata_link_init_spd - Initialize link->sata_spd_limit
5417 * @link: Link to configure sata_spd_limit for
5419 * Initialize @link->[hw_]sata_spd_limit to the currently
5420 * configured value.
5422 * LOCKING:
5423 * Kernel thread context (may sleep).
5425 * RETURNS:
5426 * 0 on success, -errno on failure.
5428 int sata_link_init_spd(struct ata_link *link)
5430 u8 spd;
5431 int rc;
5433 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5434 if (rc)
5435 return rc;
5437 spd = (link->saved_scontrol >> 4) & 0xf;
5438 if (spd)
5439 link->hw_sata_spd_limit &= (1 << spd) - 1;
5441 ata_force_link_limits(link);
5443 link->sata_spd_limit = link->hw_sata_spd_limit;
5445 return 0;
5449 * ata_port_alloc - allocate and initialize basic ATA port resources
5450 * @host: ATA host this allocated port belongs to
5452 * Allocate and initialize basic ATA port resources.
5454 * RETURNS:
5455 * Allocate ATA port on success, NULL on failure.
5457 * LOCKING:
5458 * Inherited from calling layer (may sleep).
5460 struct ata_port *ata_port_alloc(struct ata_host *host)
5462 struct ata_port *ap;
5464 DPRINTK("ENTER\n");
5466 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5467 if (!ap)
5468 return NULL;
5470 ap->pflags |= ATA_PFLAG_INITIALIZING;
5471 ap->lock = &host->lock;
5472 ap->print_id = -1;
5473 ap->host = host;
5474 ap->dev = host->dev;
5476 #if defined(ATA_VERBOSE_DEBUG)
5477 /* turn on all debugging levels */
5478 ap->msg_enable = 0x00FF;
5479 #elif defined(ATA_DEBUG)
5480 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5481 #else
5482 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5483 #endif
5485 mutex_init(&ap->scsi_scan_mutex);
5486 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5487 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5488 INIT_LIST_HEAD(&ap->eh_done_q);
5489 init_waitqueue_head(&ap->eh_wait_q);
5490 init_completion(&ap->park_req_pending);
5491 init_timer_deferrable(&ap->fastdrain_timer);
5492 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5493 ap->fastdrain_timer.data = (unsigned long)ap;
5495 ap->cbl = ATA_CBL_NONE;
5497 ata_link_init(ap, &ap->link, 0);
5499 #ifdef ATA_IRQ_TRAP
5500 ap->stats.unhandled_irq = 1;
5501 ap->stats.idle_irq = 1;
5502 #endif
5503 ata_sff_port_init(ap);
5505 return ap;
5508 static void ata_host_release(struct device *gendev, void *res)
5510 struct ata_host *host = dev_get_drvdata(gendev);
5511 int i;
5513 for (i = 0; i < host->n_ports; i++) {
5514 struct ata_port *ap = host->ports[i];
5516 if (!ap)
5517 continue;
5519 if (ap->scsi_host)
5520 scsi_host_put(ap->scsi_host);
5522 kfree(ap->pmp_link);
5523 kfree(ap->slave_link);
5524 kfree(ap);
5525 host->ports[i] = NULL;
5528 dev_set_drvdata(gendev, NULL);
5532 * ata_host_alloc - allocate and init basic ATA host resources
5533 * @dev: generic device this host is associated with
5534 * @max_ports: maximum number of ATA ports associated with this host
5536 * Allocate and initialize basic ATA host resources. LLD calls
5537 * this function to allocate a host, initializes it fully and
5538 * attaches it using ata_host_register().
5540 * @max_ports ports are allocated and host->n_ports is
5541 * initialized to @max_ports. The caller is allowed to decrease
5542 * host->n_ports before calling ata_host_register(). The unused
5543 * ports will be automatically freed on registration.
5545 * RETURNS:
5546 * Allocate ATA host on success, NULL on failure.
5548 * LOCKING:
5549 * Inherited from calling layer (may sleep).
5551 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5553 struct ata_host *host;
5554 size_t sz;
5555 int i;
5557 DPRINTK("ENTER\n");
5559 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5560 return NULL;
5562 /* alloc a container for our list of ATA ports (buses) */
5563 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5564 /* alloc a container for our list of ATA ports (buses) */
5565 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5566 if (!host)
5567 goto err_out;
5569 devres_add(dev, host);
5570 dev_set_drvdata(dev, host);
5572 spin_lock_init(&host->lock);
5573 host->dev = dev;
5574 host->n_ports = max_ports;
5576 /* allocate ports bound to this host */
5577 for (i = 0; i < max_ports; i++) {
5578 struct ata_port *ap;
5580 ap = ata_port_alloc(host);
5581 if (!ap)
5582 goto err_out;
5584 ap->port_no = i;
5585 host->ports[i] = ap;
5588 devres_remove_group(dev, NULL);
5589 return host;
5591 err_out:
5592 devres_release_group(dev, NULL);
5593 return NULL;
5597 * ata_host_alloc_pinfo - alloc host and init with port_info array
5598 * @dev: generic device this host is associated with
5599 * @ppi: array of ATA port_info to initialize host with
5600 * @n_ports: number of ATA ports attached to this host
5602 * Allocate ATA host and initialize with info from @ppi. If NULL
5603 * terminated, @ppi may contain fewer entries than @n_ports. The
5604 * last entry will be used for the remaining ports.
5606 * RETURNS:
5607 * Allocate ATA host on success, NULL on failure.
5609 * LOCKING:
5610 * Inherited from calling layer (may sleep).
5612 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5613 const struct ata_port_info * const * ppi,
5614 int n_ports)
5616 const struct ata_port_info *pi;
5617 struct ata_host *host;
5618 int i, j;
5620 host = ata_host_alloc(dev, n_ports);
5621 if (!host)
5622 return NULL;
5624 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5625 struct ata_port *ap = host->ports[i];
5627 if (ppi[j])
5628 pi = ppi[j++];
5630 ap->pio_mask = pi->pio_mask;
5631 ap->mwdma_mask = pi->mwdma_mask;
5632 ap->udma_mask = pi->udma_mask;
5633 ap->flags |= pi->flags;
5634 ap->link.flags |= pi->link_flags;
5635 ap->ops = pi->port_ops;
5637 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5638 host->ops = pi->port_ops;
5641 return host;
5645 * ata_slave_link_init - initialize slave link
5646 * @ap: port to initialize slave link for
5648 * Create and initialize slave link for @ap. This enables slave
5649 * link handling on the port.
5651 * In libata, a port contains links and a link contains devices.
5652 * There is single host link but if a PMP is attached to it,
5653 * there can be multiple fan-out links. On SATA, there's usually
5654 * a single device connected to a link but PATA and SATA
5655 * controllers emulating TF based interface can have two - master
5656 * and slave.
5658 * However, there are a few controllers which don't fit into this
5659 * abstraction too well - SATA controllers which emulate TF
5660 * interface with both master and slave devices but also have
5661 * separate SCR register sets for each device. These controllers
5662 * need separate links for physical link handling
5663 * (e.g. onlineness, link speed) but should be treated like a
5664 * traditional M/S controller for everything else (e.g. command
5665 * issue, softreset).
5667 * slave_link is libata's way of handling this class of
5668 * controllers without impacting core layer too much. For
5669 * anything other than physical link handling, the default host
5670 * link is used for both master and slave. For physical link
5671 * handling, separate @ap->slave_link is used. All dirty details
5672 * are implemented inside libata core layer. From LLD's POV, the
5673 * only difference is that prereset, hardreset and postreset are
5674 * called once more for the slave link, so the reset sequence
5675 * looks like the following.
5677 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5678 * softreset(M) -> postreset(M) -> postreset(S)
5680 * Note that softreset is called only for the master. Softreset
5681 * resets both M/S by definition, so SRST on master should handle
5682 * both (the standard method will work just fine).
5684 * LOCKING:
5685 * Should be called before host is registered.
5687 * RETURNS:
5688 * 0 on success, -errno on failure.
5690 int ata_slave_link_init(struct ata_port *ap)
5692 struct ata_link *link;
5694 WARN_ON(ap->slave_link);
5695 WARN_ON(ap->flags & ATA_FLAG_PMP);
5697 link = kzalloc(sizeof(*link), GFP_KERNEL);
5698 if (!link)
5699 return -ENOMEM;
5701 ata_link_init(ap, link, 1);
5702 ap->slave_link = link;
5703 return 0;
5706 static void ata_host_stop(struct device *gendev, void *res)
5708 struct ata_host *host = dev_get_drvdata(gendev);
5709 int i;
5711 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5713 for (i = 0; i < host->n_ports; i++) {
5714 struct ata_port *ap = host->ports[i];
5716 if (ap->ops->port_stop)
5717 ap->ops->port_stop(ap);
5720 if (host->ops->host_stop)
5721 host->ops->host_stop(host);
5725 * ata_finalize_port_ops - finalize ata_port_operations
5726 * @ops: ata_port_operations to finalize
5728 * An ata_port_operations can inherit from another ops and that
5729 * ops can again inherit from another. This can go on as many
5730 * times as necessary as long as there is no loop in the
5731 * inheritance chain.
5733 * Ops tables are finalized when the host is started. NULL or
5734 * unspecified entries are inherited from the closet ancestor
5735 * which has the method and the entry is populated with it.
5736 * After finalization, the ops table directly points to all the
5737 * methods and ->inherits is no longer necessary and cleared.
5739 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5741 * LOCKING:
5742 * None.
5744 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5746 static DEFINE_SPINLOCK(lock);
5747 const struct ata_port_operations *cur;
5748 void **begin = (void **)ops;
5749 void **end = (void **)&ops->inherits;
5750 void **pp;
5752 if (!ops || !ops->inherits)
5753 return;
5755 spin_lock(&lock);
5757 for (cur = ops->inherits; cur; cur = cur->inherits) {
5758 void **inherit = (void **)cur;
5760 for (pp = begin; pp < end; pp++, inherit++)
5761 if (!*pp)
5762 *pp = *inherit;
5765 for (pp = begin; pp < end; pp++)
5766 if (IS_ERR(*pp))
5767 *pp = NULL;
5769 ops->inherits = NULL;
5771 spin_unlock(&lock);
5775 * ata_host_start - start and freeze ports of an ATA host
5776 * @host: ATA host to start ports for
5778 * Start and then freeze ports of @host. Started status is
5779 * recorded in host->flags, so this function can be called
5780 * multiple times. Ports are guaranteed to get started only
5781 * once. If host->ops isn't initialized yet, its set to the
5782 * first non-dummy port ops.
5784 * LOCKING:
5785 * Inherited from calling layer (may sleep).
5787 * RETURNS:
5788 * 0 if all ports are started successfully, -errno otherwise.
5790 int ata_host_start(struct ata_host *host)
5792 int have_stop = 0;
5793 void *start_dr = NULL;
5794 int i, rc;
5796 if (host->flags & ATA_HOST_STARTED)
5797 return 0;
5799 ata_finalize_port_ops(host->ops);
5801 for (i = 0; i < host->n_ports; i++) {
5802 struct ata_port *ap = host->ports[i];
5804 ata_finalize_port_ops(ap->ops);
5806 if (!host->ops && !ata_port_is_dummy(ap))
5807 host->ops = ap->ops;
5809 if (ap->ops->port_stop)
5810 have_stop = 1;
5813 if (host->ops->host_stop)
5814 have_stop = 1;
5816 if (have_stop) {
5817 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5818 if (!start_dr)
5819 return -ENOMEM;
5822 for (i = 0; i < host->n_ports; i++) {
5823 struct ata_port *ap = host->ports[i];
5825 if (ap->ops->port_start) {
5826 rc = ap->ops->port_start(ap);
5827 if (rc) {
5828 if (rc != -ENODEV)
5829 dev_printk(KERN_ERR, host->dev,
5830 "failed to start port %d "
5831 "(errno=%d)\n", i, rc);
5832 goto err_out;
5835 ata_eh_freeze_port(ap);
5838 if (start_dr)
5839 devres_add(host->dev, start_dr);
5840 host->flags |= ATA_HOST_STARTED;
5841 return 0;
5843 err_out:
5844 while (--i >= 0) {
5845 struct ata_port *ap = host->ports[i];
5847 if (ap->ops->port_stop)
5848 ap->ops->port_stop(ap);
5850 devres_free(start_dr);
5851 return rc;
5855 * ata_sas_host_init - Initialize a host struct
5856 * @host: host to initialize
5857 * @dev: device host is attached to
5858 * @flags: host flags
5859 * @ops: port_ops
5861 * LOCKING:
5862 * PCI/etc. bus probe sem.
5865 /* KILLME - the only user left is ipr */
5866 void ata_host_init(struct ata_host *host, struct device *dev,
5867 unsigned long flags, struct ata_port_operations *ops)
5869 spin_lock_init(&host->lock);
5870 host->dev = dev;
5871 host->flags = flags;
5872 host->ops = ops;
5876 static void async_port_probe(void *data, async_cookie_t cookie)
5878 int rc;
5879 struct ata_port *ap = data;
5882 * If we're not allowed to scan this host in parallel,
5883 * we need to wait until all previous scans have completed
5884 * before going further.
5885 * Jeff Garzik says this is only within a controller, so we
5886 * don't need to wait for port 0, only for later ports.
5888 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5889 async_synchronize_cookie(cookie);
5891 /* probe */
5892 if (ap->ops->error_handler) {
5893 struct ata_eh_info *ehi = &ap->link.eh_info;
5894 unsigned long flags;
5896 /* kick EH for boot probing */
5897 spin_lock_irqsave(ap->lock, flags);
5899 ehi->probe_mask |= ATA_ALL_DEVICES;
5900 ehi->action |= ATA_EH_RESET;
5901 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5903 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5904 ap->pflags |= ATA_PFLAG_LOADING;
5905 ata_port_schedule_eh(ap);
5907 spin_unlock_irqrestore(ap->lock, flags);
5909 /* wait for EH to finish */
5910 ata_port_wait_eh(ap);
5911 } else {
5912 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5913 rc = ata_bus_probe(ap);
5914 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5916 if (rc) {
5917 /* FIXME: do something useful here?
5918 * Current libata behavior will
5919 * tear down everything when
5920 * the module is removed
5921 * or the h/w is unplugged.
5926 /* in order to keep device order, we need to synchronize at this point */
5927 async_synchronize_cookie(cookie);
5929 ata_scsi_scan_host(ap, 1);
5933 * ata_host_register - register initialized ATA host
5934 * @host: ATA host to register
5935 * @sht: template for SCSI host
5937 * Register initialized ATA host. @host is allocated using
5938 * ata_host_alloc() and fully initialized by LLD. This function
5939 * starts ports, registers @host with ATA and SCSI layers and
5940 * probe registered devices.
5942 * LOCKING:
5943 * Inherited from calling layer (may sleep).
5945 * RETURNS:
5946 * 0 on success, -errno otherwise.
5948 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5950 int i, rc;
5952 /* host must have been started */
5953 if (!(host->flags & ATA_HOST_STARTED)) {
5954 dev_printk(KERN_ERR, host->dev,
5955 "BUG: trying to register unstarted host\n");
5956 WARN_ON(1);
5957 return -EINVAL;
5960 /* Blow away unused ports. This happens when LLD can't
5961 * determine the exact number of ports to allocate at
5962 * allocation time.
5964 for (i = host->n_ports; host->ports[i]; i++)
5965 kfree(host->ports[i]);
5967 /* give ports names and add SCSI hosts */
5968 for (i = 0; i < host->n_ports; i++)
5969 host->ports[i]->print_id = ata_print_id++;
5972 /* Create associated sysfs transport objects */
5973 for (i = 0; i < host->n_ports; i++) {
5974 rc = ata_tport_add(host->dev,host->ports[i]);
5975 if (rc) {
5976 goto err_tadd;
5980 rc = ata_scsi_add_hosts(host, sht);
5981 if (rc)
5982 goto err_tadd;
5984 /* associate with ACPI nodes */
5985 ata_acpi_associate(host);
5987 /* set cable, sata_spd_limit and report */
5988 for (i = 0; i < host->n_ports; i++) {
5989 struct ata_port *ap = host->ports[i];
5990 unsigned long xfer_mask;
5992 /* set SATA cable type if still unset */
5993 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5994 ap->cbl = ATA_CBL_SATA;
5996 /* init sata_spd_limit to the current value */
5997 sata_link_init_spd(&ap->link);
5998 if (ap->slave_link)
5999 sata_link_init_spd(ap->slave_link);
6001 /* print per-port info to dmesg */
6002 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6003 ap->udma_mask);
6005 if (!ata_port_is_dummy(ap)) {
6006 ata_port_printk(ap, KERN_INFO,
6007 "%cATA max %s %s\n",
6008 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6009 ata_mode_string(xfer_mask),
6010 ap->link.eh_info.desc);
6011 ata_ehi_clear_desc(&ap->link.eh_info);
6012 } else
6013 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6016 /* perform each probe asynchronously */
6017 for (i = 0; i < host->n_ports; i++) {
6018 struct ata_port *ap = host->ports[i];
6019 async_schedule(async_port_probe, ap);
6022 return 0;
6024 err_tadd:
6025 while (--i >= 0) {
6026 ata_tport_delete(host->ports[i]);
6028 return rc;
6033 * ata_host_activate - start host, request IRQ and register it
6034 * @host: target ATA host
6035 * @irq: IRQ to request
6036 * @irq_handler: irq_handler used when requesting IRQ
6037 * @irq_flags: irq_flags used when requesting IRQ
6038 * @sht: scsi_host_template to use when registering the host
6040 * After allocating an ATA host and initializing it, most libata
6041 * LLDs perform three steps to activate the host - start host,
6042 * request IRQ and register it. This helper takes necessasry
6043 * arguments and performs the three steps in one go.
6045 * An invalid IRQ skips the IRQ registration and expects the host to
6046 * have set polling mode on the port. In this case, @irq_handler
6047 * should be NULL.
6049 * LOCKING:
6050 * Inherited from calling layer (may sleep).
6052 * RETURNS:
6053 * 0 on success, -errno otherwise.
6055 int ata_host_activate(struct ata_host *host, int irq,
6056 irq_handler_t irq_handler, unsigned long irq_flags,
6057 struct scsi_host_template *sht)
6059 int i, rc;
6061 rc = ata_host_start(host);
6062 if (rc)
6063 return rc;
6065 /* Special case for polling mode */
6066 if (!irq) {
6067 WARN_ON(irq_handler);
6068 return ata_host_register(host, sht);
6071 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6072 dev_driver_string(host->dev), host);
6073 if (rc)
6074 return rc;
6076 for (i = 0; i < host->n_ports; i++)
6077 ata_port_desc(host->ports[i], "irq %d", irq);
6079 rc = ata_host_register(host, sht);
6080 /* if failed, just free the IRQ and leave ports alone */
6081 if (rc)
6082 devm_free_irq(host->dev, irq, host);
6084 return rc;
6088 * ata_port_detach - Detach ATA port in prepration of device removal
6089 * @ap: ATA port to be detached
6091 * Detach all ATA devices and the associated SCSI devices of @ap;
6092 * then, remove the associated SCSI host. @ap is guaranteed to
6093 * be quiescent on return from this function.
6095 * LOCKING:
6096 * Kernel thread context (may sleep).
6098 static void ata_port_detach(struct ata_port *ap)
6100 unsigned long flags;
6102 if (!ap->ops->error_handler)
6103 goto skip_eh;
6105 /* tell EH we're leaving & flush EH */
6106 spin_lock_irqsave(ap->lock, flags);
6107 ap->pflags |= ATA_PFLAG_UNLOADING;
6108 ata_port_schedule_eh(ap);
6109 spin_unlock_irqrestore(ap->lock, flags);
6111 /* wait till EH commits suicide */
6112 ata_port_wait_eh(ap);
6114 /* it better be dead now */
6115 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6117 cancel_rearming_delayed_work(&ap->hotplug_task);
6119 skip_eh:
6120 if (ap->pmp_link) {
6121 int i;
6122 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6123 ata_tlink_delete(&ap->pmp_link[i]);
6125 ata_tport_delete(ap);
6127 /* remove the associated SCSI host */
6128 scsi_remove_host(ap->scsi_host);
6132 * ata_host_detach - Detach all ports of an ATA host
6133 * @host: Host to detach
6135 * Detach all ports of @host.
6137 * LOCKING:
6138 * Kernel thread context (may sleep).
6140 void ata_host_detach(struct ata_host *host)
6142 int i;
6144 for (i = 0; i < host->n_ports; i++)
6145 ata_port_detach(host->ports[i]);
6147 /* the host is dead now, dissociate ACPI */
6148 ata_acpi_dissociate(host);
6151 #ifdef CONFIG_PCI
6154 * ata_pci_remove_one - PCI layer callback for device removal
6155 * @pdev: PCI device that was removed
6157 * PCI layer indicates to libata via this hook that hot-unplug or
6158 * module unload event has occurred. Detach all ports. Resource
6159 * release is handled via devres.
6161 * LOCKING:
6162 * Inherited from PCI layer (may sleep).
6164 void ata_pci_remove_one(struct pci_dev *pdev)
6166 struct device *dev = &pdev->dev;
6167 struct ata_host *host = dev_get_drvdata(dev);
6169 ata_host_detach(host);
6172 /* move to PCI subsystem */
6173 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6175 unsigned long tmp = 0;
6177 switch (bits->width) {
6178 case 1: {
6179 u8 tmp8 = 0;
6180 pci_read_config_byte(pdev, bits->reg, &tmp8);
6181 tmp = tmp8;
6182 break;
6184 case 2: {
6185 u16 tmp16 = 0;
6186 pci_read_config_word(pdev, bits->reg, &tmp16);
6187 tmp = tmp16;
6188 break;
6190 case 4: {
6191 u32 tmp32 = 0;
6192 pci_read_config_dword(pdev, bits->reg, &tmp32);
6193 tmp = tmp32;
6194 break;
6197 default:
6198 return -EINVAL;
6201 tmp &= bits->mask;
6203 return (tmp == bits->val) ? 1 : 0;
6206 #ifdef CONFIG_PM
6207 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6209 pci_save_state(pdev);
6210 pci_disable_device(pdev);
6212 if (mesg.event & PM_EVENT_SLEEP)
6213 pci_set_power_state(pdev, PCI_D3hot);
6216 int ata_pci_device_do_resume(struct pci_dev *pdev)
6218 int rc;
6220 pci_set_power_state(pdev, PCI_D0);
6221 pci_restore_state(pdev);
6223 rc = pcim_enable_device(pdev);
6224 if (rc) {
6225 dev_printk(KERN_ERR, &pdev->dev,
6226 "failed to enable device after resume (%d)\n", rc);
6227 return rc;
6230 pci_set_master(pdev);
6231 return 0;
6234 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6236 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6237 int rc = 0;
6239 rc = ata_host_suspend(host, mesg);
6240 if (rc)
6241 return rc;
6243 ata_pci_device_do_suspend(pdev, mesg);
6245 return 0;
6248 int ata_pci_device_resume(struct pci_dev *pdev)
6250 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6251 int rc;
6253 rc = ata_pci_device_do_resume(pdev);
6254 if (rc == 0)
6255 ata_host_resume(host);
6256 return rc;
6258 #endif /* CONFIG_PM */
6260 #endif /* CONFIG_PCI */
6262 static int __init ata_parse_force_one(char **cur,
6263 struct ata_force_ent *force_ent,
6264 const char **reason)
6266 /* FIXME: Currently, there's no way to tag init const data and
6267 * using __initdata causes build failure on some versions of
6268 * gcc. Once __initdataconst is implemented, add const to the
6269 * following structure.
6271 static struct ata_force_param force_tbl[] __initdata = {
6272 { "40c", .cbl = ATA_CBL_PATA40 },
6273 { "80c", .cbl = ATA_CBL_PATA80 },
6274 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6275 { "unk", .cbl = ATA_CBL_PATA_UNK },
6276 { "ign", .cbl = ATA_CBL_PATA_IGN },
6277 { "sata", .cbl = ATA_CBL_SATA },
6278 { "1.5Gbps", .spd_limit = 1 },
6279 { "3.0Gbps", .spd_limit = 2 },
6280 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6281 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6282 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6283 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6284 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6285 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6286 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6287 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6288 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6289 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6290 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6291 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6292 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6293 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6294 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6295 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6296 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6297 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6298 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6299 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6300 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6301 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6302 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6303 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6304 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6305 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6306 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6307 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6308 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6309 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6310 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6311 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6312 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6313 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6314 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6315 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6316 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6317 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6318 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6319 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6321 char *start = *cur, *p = *cur;
6322 char *id, *val, *endp;
6323 const struct ata_force_param *match_fp = NULL;
6324 int nr_matches = 0, i;
6326 /* find where this param ends and update *cur */
6327 while (*p != '\0' && *p != ',')
6328 p++;
6330 if (*p == '\0')
6331 *cur = p;
6332 else
6333 *cur = p + 1;
6335 *p = '\0';
6337 /* parse */
6338 p = strchr(start, ':');
6339 if (!p) {
6340 val = strstrip(start);
6341 goto parse_val;
6343 *p = '\0';
6345 id = strstrip(start);
6346 val = strstrip(p + 1);
6348 /* parse id */
6349 p = strchr(id, '.');
6350 if (p) {
6351 *p++ = '\0';
6352 force_ent->device = simple_strtoul(p, &endp, 10);
6353 if (p == endp || *endp != '\0') {
6354 *reason = "invalid device";
6355 return -EINVAL;
6359 force_ent->port = simple_strtoul(id, &endp, 10);
6360 if (p == endp || *endp != '\0') {
6361 *reason = "invalid port/link";
6362 return -EINVAL;
6365 parse_val:
6366 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6367 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6368 const struct ata_force_param *fp = &force_tbl[i];
6370 if (strncasecmp(val, fp->name, strlen(val)))
6371 continue;
6373 nr_matches++;
6374 match_fp = fp;
6376 if (strcasecmp(val, fp->name) == 0) {
6377 nr_matches = 1;
6378 break;
6382 if (!nr_matches) {
6383 *reason = "unknown value";
6384 return -EINVAL;
6386 if (nr_matches > 1) {
6387 *reason = "ambigious value";
6388 return -EINVAL;
6391 force_ent->param = *match_fp;
6393 return 0;
6396 static void __init ata_parse_force_param(void)
6398 int idx = 0, size = 1;
6399 int last_port = -1, last_device = -1;
6400 char *p, *cur, *next;
6402 /* calculate maximum number of params and allocate force_tbl */
6403 for (p = ata_force_param_buf; *p; p++)
6404 if (*p == ',')
6405 size++;
6407 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6408 if (!ata_force_tbl) {
6409 printk(KERN_WARNING "ata: failed to extend force table, "
6410 "libata.force ignored\n");
6411 return;
6414 /* parse and populate the table */
6415 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6416 const char *reason = "";
6417 struct ata_force_ent te = { .port = -1, .device = -1 };
6419 next = cur;
6420 if (ata_parse_force_one(&next, &te, &reason)) {
6421 printk(KERN_WARNING "ata: failed to parse force "
6422 "parameter \"%s\" (%s)\n",
6423 cur, reason);
6424 continue;
6427 if (te.port == -1) {
6428 te.port = last_port;
6429 te.device = last_device;
6432 ata_force_tbl[idx++] = te;
6434 last_port = te.port;
6435 last_device = te.device;
6438 ata_force_tbl_size = idx;
6441 static int __init ata_init(void)
6443 int rc;
6445 ata_parse_force_param();
6447 rc = ata_sff_init();
6448 if (rc) {
6449 kfree(ata_force_tbl);
6450 return rc;
6453 libata_transport_init();
6454 ata_scsi_transport_template = ata_attach_transport();
6455 if (!ata_scsi_transport_template) {
6456 ata_sff_exit();
6457 rc = -ENOMEM;
6458 goto err_out;
6461 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6462 return 0;
6464 err_out:
6465 return rc;
6468 static void __exit ata_exit(void)
6470 ata_release_transport(ata_scsi_transport_template);
6471 libata_transport_exit();
6472 ata_sff_exit();
6473 kfree(ata_force_tbl);
6476 subsys_initcall(ata_init);
6477 module_exit(ata_exit);
6479 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6481 int ata_ratelimit(void)
6483 return __ratelimit(&ratelimit);
6487 * ata_wait_register - wait until register value changes
6488 * @reg: IO-mapped register
6489 * @mask: Mask to apply to read register value
6490 * @val: Wait condition
6491 * @interval: polling interval in milliseconds
6492 * @timeout: timeout in milliseconds
6494 * Waiting for some bits of register to change is a common
6495 * operation for ATA controllers. This function reads 32bit LE
6496 * IO-mapped register @reg and tests for the following condition.
6498 * (*@reg & mask) != val
6500 * If the condition is met, it returns; otherwise, the process is
6501 * repeated after @interval_msec until timeout.
6503 * LOCKING:
6504 * Kernel thread context (may sleep)
6506 * RETURNS:
6507 * The final register value.
6509 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6510 unsigned long interval, unsigned long timeout)
6512 unsigned long deadline;
6513 u32 tmp;
6515 tmp = ioread32(reg);
6517 /* Calculate timeout _after_ the first read to make sure
6518 * preceding writes reach the controller before starting to
6519 * eat away the timeout.
6521 deadline = ata_deadline(jiffies, timeout);
6523 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6524 msleep(interval);
6525 tmp = ioread32(reg);
6528 return tmp;
6532 * Dummy port_ops
6534 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6536 return AC_ERR_SYSTEM;
6539 static void ata_dummy_error_handler(struct ata_port *ap)
6541 /* truly dummy */
6544 struct ata_port_operations ata_dummy_port_ops = {
6545 .qc_prep = ata_noop_qc_prep,
6546 .qc_issue = ata_dummy_qc_issue,
6547 .error_handler = ata_dummy_error_handler,
6550 const struct ata_port_info ata_dummy_port_info = {
6551 .port_ops = &ata_dummy_port_ops,
6555 * libata is essentially a library of internal helper functions for
6556 * low-level ATA host controller drivers. As such, the API/ABI is
6557 * likely to change as new drivers are added and updated.
6558 * Do not depend on ABI/API stability.
6560 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6561 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6562 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6563 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6564 EXPORT_SYMBOL_GPL(sata_port_ops);
6565 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6566 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6567 EXPORT_SYMBOL_GPL(ata_link_next);
6568 EXPORT_SYMBOL_GPL(ata_dev_next);
6569 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6570 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6571 EXPORT_SYMBOL_GPL(ata_host_init);
6572 EXPORT_SYMBOL_GPL(ata_host_alloc);
6573 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6574 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6575 EXPORT_SYMBOL_GPL(ata_host_start);
6576 EXPORT_SYMBOL_GPL(ata_host_register);
6577 EXPORT_SYMBOL_GPL(ata_host_activate);
6578 EXPORT_SYMBOL_GPL(ata_host_detach);
6579 EXPORT_SYMBOL_GPL(ata_sg_init);
6580 EXPORT_SYMBOL_GPL(ata_qc_complete);
6581 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6582 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6583 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6584 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6585 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6586 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6587 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6588 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6589 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6590 EXPORT_SYMBOL_GPL(ata_mode_string);
6591 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6592 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6593 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6594 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6595 EXPORT_SYMBOL_GPL(ata_dev_disable);
6596 EXPORT_SYMBOL_GPL(sata_set_spd);
6597 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6598 EXPORT_SYMBOL_GPL(sata_link_debounce);
6599 EXPORT_SYMBOL_GPL(sata_link_resume);
6600 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6601 EXPORT_SYMBOL_GPL(ata_std_prereset);
6602 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6603 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6604 EXPORT_SYMBOL_GPL(ata_std_postreset);
6605 EXPORT_SYMBOL_GPL(ata_dev_classify);
6606 EXPORT_SYMBOL_GPL(ata_dev_pair);
6607 EXPORT_SYMBOL_GPL(ata_ratelimit);
6608 EXPORT_SYMBOL_GPL(ata_wait_register);
6609 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6610 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6611 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6612 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6613 EXPORT_SYMBOL_GPL(sata_scr_valid);
6614 EXPORT_SYMBOL_GPL(sata_scr_read);
6615 EXPORT_SYMBOL_GPL(sata_scr_write);
6616 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6617 EXPORT_SYMBOL_GPL(ata_link_online);
6618 EXPORT_SYMBOL_GPL(ata_link_offline);
6619 #ifdef CONFIG_PM
6620 EXPORT_SYMBOL_GPL(ata_host_suspend);
6621 EXPORT_SYMBOL_GPL(ata_host_resume);
6622 #endif /* CONFIG_PM */
6623 EXPORT_SYMBOL_GPL(ata_id_string);
6624 EXPORT_SYMBOL_GPL(ata_id_c_string);
6625 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6626 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6628 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6629 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6630 EXPORT_SYMBOL_GPL(ata_timing_compute);
6631 EXPORT_SYMBOL_GPL(ata_timing_merge);
6632 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6634 #ifdef CONFIG_PCI
6635 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6636 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6637 #ifdef CONFIG_PM
6638 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6639 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6640 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6641 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6642 #endif /* CONFIG_PM */
6643 #endif /* CONFIG_PCI */
6645 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6646 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6647 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6648 EXPORT_SYMBOL_GPL(ata_port_desc);
6649 #ifdef CONFIG_PCI
6650 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6651 #endif /* CONFIG_PCI */
6652 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6653 EXPORT_SYMBOL_GPL(ata_link_abort);
6654 EXPORT_SYMBOL_GPL(ata_port_abort);
6655 EXPORT_SYMBOL_GPL(ata_port_freeze);
6656 EXPORT_SYMBOL_GPL(sata_async_notification);
6657 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6658 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6659 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6660 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6661 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6662 EXPORT_SYMBOL_GPL(ata_do_eh);
6663 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6665 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6666 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6667 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6668 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6669 EXPORT_SYMBOL_GPL(ata_cable_sata);