Merge branch 'linus'
[linux-2.6/x86.git] / kernel / time / tick-sched.c
blobd5097c44b407e25a1acae0f5d85c520eda555ae5
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
24 #include <asm/irq_regs.h>
26 #include "tick-internal.h"
29 * Per cpu nohz control structure
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 static ktime_t last_jiffies_update;
38 struct tick_sched *tick_get_tick_sched(int cpu)
40 return &per_cpu(tick_cpu_sched, cpu);
44 * Must be called with interrupts disabled !
46 static void tick_do_update_jiffies64(ktime_t now)
48 unsigned long ticks = 0;
49 ktime_t delta;
52 * Do a quick check without holding xtime_lock:
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
72 ticks = ktime_divns(delta, incr);
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
77 do_timer(++ticks);
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 write_sequnlock(&xtime_lock);
86 * Initialize and return retrieve the jiffies update.
88 static ktime_t tick_init_jiffy_update(void)
90 ktime_t period;
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
102 * NOHZ - aka dynamic tick functionality
104 #ifdef CONFIG_NO_HZ
106 * NO HZ enabled ?
108 static int tick_nohz_enabled __read_mostly = 1;
111 * Enable / Disable tickless mode
113 static int __init setup_tick_nohz(char *str)
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
124 __setup("nohz=", setup_tick_nohz);
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 * Called from interrupt entry when the CPU was idle
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
136 static void tick_nohz_update_jiffies(ktime_t now)
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
142 cpumask_clear_cpu(cpu, nohz_cpu_mask);
143 ts->idle_waketime = now;
145 local_irq_save(flags);
146 tick_do_update_jiffies64(now);
147 local_irq_restore(flags);
149 touch_softlockup_watchdog();
153 * Updates the per cpu time idle statistics counters
155 static void
156 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
158 ktime_t delta;
160 if (ts->idle_active) {
161 delta = ktime_sub(now, ts->idle_entrytime);
162 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
163 if (nr_iowait_cpu(cpu) > 0)
164 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
165 ts->idle_entrytime = now;
168 if (last_update_time)
169 *last_update_time = ktime_to_us(now);
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
177 update_ts_time_stats(cpu, ts, now, NULL);
178 ts->idle_active = 0;
180 sched_clock_idle_wakeup_event(0);
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
185 ktime_t now;
187 now = ktime_get();
189 update_ts_time_stats(cpu, ts, now, NULL);
191 ts->idle_entrytime = now;
192 ts->idle_active = 1;
193 sched_clock_idle_sleep_event();
194 return now;
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in
202 * Return the cummulative idle time (since boot) for a given
203 * CPU, in microseconds. The idle time returned includes
204 * the iowait time (unlike what "top" and co report).
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
209 * This function returns -1 if NOHZ is not enabled.
211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
215 if (!tick_nohz_enabled)
216 return -1;
218 update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
220 return ktime_to_us(ts->idle_sleeptime);
222 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
225 * get_cpu_iowait_time_us - get the total iowait time of a cpu
226 * @cpu: CPU number to query
227 * @last_update_time: variable to store update time in
229 * Return the cummulative iowait time (since boot) for a given
230 * CPU, in microseconds.
232 * This time is measured via accounting rather than sampling,
233 * and is as accurate as ktime_get() is.
235 * This function returns -1 if NOHZ is not enabled.
237 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
239 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
241 if (!tick_nohz_enabled)
242 return -1;
244 update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
246 return ktime_to_us(ts->iowait_sleeptime);
248 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
251 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
253 * When the next event is more than a tick into the future, stop the idle tick
254 * Called either from the idle loop or from irq_exit() when an idle period was
255 * just interrupted by an interrupt which did not cause a reschedule.
257 void tick_nohz_stop_sched_tick(int inidle)
259 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
260 struct tick_sched *ts;
261 ktime_t last_update, expires, now;
262 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
263 u64 time_delta;
264 int cpu;
266 local_irq_save(flags);
268 cpu = smp_processor_id();
269 ts = &per_cpu(tick_cpu_sched, cpu);
272 * Call to tick_nohz_start_idle stops the last_update_time from being
273 * updated. Thus, it must not be called in the event we are called from
274 * irq_exit() with the prior state different than idle.
276 if (!inidle && !ts->inidle)
277 goto end;
280 * Set ts->inidle unconditionally. Even if the system did not
281 * switch to NOHZ mode the cpu frequency governers rely on the
282 * update of the idle time accounting in tick_nohz_start_idle().
284 ts->inidle = 1;
286 now = tick_nohz_start_idle(cpu, ts);
289 * If this cpu is offline and it is the one which updates
290 * jiffies, then give up the assignment and let it be taken by
291 * the cpu which runs the tick timer next. If we don't drop
292 * this here the jiffies might be stale and do_timer() never
293 * invoked.
295 if (unlikely(!cpu_online(cpu))) {
296 if (cpu == tick_do_timer_cpu)
297 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
300 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
301 goto end;
303 if (need_resched())
304 goto end;
306 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
307 static int ratelimit;
309 if (ratelimit < 10) {
310 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
311 (unsigned int) local_softirq_pending());
312 ratelimit++;
314 goto end;
317 ts->idle_calls++;
318 /* Read jiffies and the time when jiffies were updated last */
319 do {
320 seq = read_seqbegin(&xtime_lock);
321 last_update = last_jiffies_update;
322 last_jiffies = jiffies;
323 time_delta = timekeeping_max_deferment();
324 } while (read_seqretry(&xtime_lock, seq));
326 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
327 arch_needs_cpu(cpu)) {
328 next_jiffies = last_jiffies + 1;
329 delta_jiffies = 1;
330 } else {
331 /* Get the next timer wheel timer */
332 next_jiffies = get_next_timer_interrupt(last_jiffies);
333 delta_jiffies = next_jiffies - last_jiffies;
336 * Do not stop the tick, if we are only one off
337 * or if the cpu is required for rcu
339 if (!ts->tick_stopped && delta_jiffies == 1)
340 goto out;
342 /* Schedule the tick, if we are at least one jiffie off */
343 if ((long)delta_jiffies >= 1) {
346 * If this cpu is the one which updates jiffies, then
347 * give up the assignment and let it be taken by the
348 * cpu which runs the tick timer next, which might be
349 * this cpu as well. If we don't drop this here the
350 * jiffies might be stale and do_timer() never
351 * invoked. Keep track of the fact that it was the one
352 * which had the do_timer() duty last. If this cpu is
353 * the one which had the do_timer() duty last, we
354 * limit the sleep time to the timekeeping
355 * max_deferement value which we retrieved
356 * above. Otherwise we can sleep as long as we want.
358 if (cpu == tick_do_timer_cpu) {
359 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
360 ts->do_timer_last = 1;
361 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
362 time_delta = KTIME_MAX;
363 ts->do_timer_last = 0;
364 } else if (!ts->do_timer_last) {
365 time_delta = KTIME_MAX;
369 * calculate the expiry time for the next timer wheel
370 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
371 * that there is no timer pending or at least extremely
372 * far into the future (12 days for HZ=1000). In this
373 * case we set the expiry to the end of time.
375 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
377 * Calculate the time delta for the next timer event.
378 * If the time delta exceeds the maximum time delta
379 * permitted by the current clocksource then adjust
380 * the time delta accordingly to ensure the
381 * clocksource does not wrap.
383 time_delta = min_t(u64, time_delta,
384 tick_period.tv64 * delta_jiffies);
387 if (time_delta < KTIME_MAX)
388 expires = ktime_add_ns(last_update, time_delta);
389 else
390 expires.tv64 = KTIME_MAX;
392 if (delta_jiffies > 1)
393 cpumask_set_cpu(cpu, nohz_cpu_mask);
395 /* Skip reprogram of event if its not changed */
396 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
397 goto out;
400 * nohz_stop_sched_tick can be called several times before
401 * the nohz_restart_sched_tick is called. This happens when
402 * interrupts arrive which do not cause a reschedule. In the
403 * first call we save the current tick time, so we can restart
404 * the scheduler tick in nohz_restart_sched_tick.
406 if (!ts->tick_stopped) {
407 select_nohz_load_balancer(1);
409 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
410 ts->tick_stopped = 1;
411 ts->idle_jiffies = last_jiffies;
412 rcu_enter_nohz();
415 ts->idle_sleeps++;
417 /* Mark expires */
418 ts->idle_expires = expires;
421 * If the expiration time == KTIME_MAX, then
422 * in this case we simply stop the tick timer.
424 if (unlikely(expires.tv64 == KTIME_MAX)) {
425 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
426 hrtimer_cancel(&ts->sched_timer);
427 goto out;
430 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
431 hrtimer_start(&ts->sched_timer, expires,
432 HRTIMER_MODE_ABS_PINNED);
433 /* Check, if the timer was already in the past */
434 if (hrtimer_active(&ts->sched_timer))
435 goto out;
436 } else if (!tick_program_event(expires, 0))
437 goto out;
439 * We are past the event already. So we crossed a
440 * jiffie boundary. Update jiffies and raise the
441 * softirq.
443 tick_do_update_jiffies64(ktime_get());
444 cpumask_clear_cpu(cpu, nohz_cpu_mask);
446 raise_softirq_irqoff(TIMER_SOFTIRQ);
447 out:
448 ts->next_jiffies = next_jiffies;
449 ts->last_jiffies = last_jiffies;
450 ts->sleep_length = ktime_sub(dev->next_event, now);
451 end:
452 local_irq_restore(flags);
456 * tick_nohz_get_sleep_length - return the length of the current sleep
458 * Called from power state control code with interrupts disabled
460 ktime_t tick_nohz_get_sleep_length(void)
462 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
464 return ts->sleep_length;
467 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
469 hrtimer_cancel(&ts->sched_timer);
470 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
472 while (1) {
473 /* Forward the time to expire in the future */
474 hrtimer_forward(&ts->sched_timer, now, tick_period);
476 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
477 hrtimer_start_expires(&ts->sched_timer,
478 HRTIMER_MODE_ABS_PINNED);
479 /* Check, if the timer was already in the past */
480 if (hrtimer_active(&ts->sched_timer))
481 break;
482 } else {
483 if (!tick_program_event(
484 hrtimer_get_expires(&ts->sched_timer), 0))
485 break;
487 /* Update jiffies and reread time */
488 tick_do_update_jiffies64(now);
489 now = ktime_get();
494 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
496 * Restart the idle tick when the CPU is woken up from idle
498 void tick_nohz_restart_sched_tick(void)
500 int cpu = smp_processor_id();
501 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
502 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
503 unsigned long ticks;
504 #endif
505 ktime_t now;
507 local_irq_disable();
508 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
509 now = ktime_get();
511 if (ts->idle_active)
512 tick_nohz_stop_idle(cpu, now);
514 if (!ts->inidle || !ts->tick_stopped) {
515 ts->inidle = 0;
516 local_irq_enable();
517 return;
520 ts->inidle = 0;
522 rcu_exit_nohz();
524 /* Update jiffies first */
525 select_nohz_load_balancer(0);
526 tick_do_update_jiffies64(now);
527 cpumask_clear_cpu(cpu, nohz_cpu_mask);
529 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
531 * We stopped the tick in idle. Update process times would miss the
532 * time we slept as update_process_times does only a 1 tick
533 * accounting. Enforce that this is accounted to idle !
535 ticks = jiffies - ts->idle_jiffies;
537 * We might be one off. Do not randomly account a huge number of ticks!
539 if (ticks && ticks < LONG_MAX)
540 account_idle_ticks(ticks);
541 #endif
543 touch_softlockup_watchdog();
545 * Cancel the scheduled timer and restore the tick
547 ts->tick_stopped = 0;
548 ts->idle_exittime = now;
550 tick_nohz_restart(ts, now);
552 local_irq_enable();
555 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
557 hrtimer_forward(&ts->sched_timer, now, tick_period);
558 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
562 * The nohz low res interrupt handler
564 static void tick_nohz_handler(struct clock_event_device *dev)
566 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
567 struct pt_regs *regs = get_irq_regs();
568 int cpu = smp_processor_id();
569 ktime_t now = ktime_get();
571 dev->next_event.tv64 = KTIME_MAX;
574 * Check if the do_timer duty was dropped. We don't care about
575 * concurrency: This happens only when the cpu in charge went
576 * into a long sleep. If two cpus happen to assign themself to
577 * this duty, then the jiffies update is still serialized by
578 * xtime_lock.
580 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
581 tick_do_timer_cpu = cpu;
583 /* Check, if the jiffies need an update */
584 if (tick_do_timer_cpu == cpu)
585 tick_do_update_jiffies64(now);
588 * When we are idle and the tick is stopped, we have to touch
589 * the watchdog as we might not schedule for a really long
590 * time. This happens on complete idle SMP systems while
591 * waiting on the login prompt. We also increment the "start
592 * of idle" jiffy stamp so the idle accounting adjustment we
593 * do when we go busy again does not account too much ticks.
595 if (ts->tick_stopped) {
596 touch_softlockup_watchdog();
597 ts->idle_jiffies++;
600 update_process_times(user_mode(regs));
601 profile_tick(CPU_PROFILING);
603 while (tick_nohz_reprogram(ts, now)) {
604 now = ktime_get();
605 tick_do_update_jiffies64(now);
610 * tick_nohz_switch_to_nohz - switch to nohz mode
612 static void tick_nohz_switch_to_nohz(void)
614 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
615 ktime_t next;
617 if (!tick_nohz_enabled)
618 return;
620 local_irq_disable();
621 if (tick_switch_to_oneshot(tick_nohz_handler)) {
622 local_irq_enable();
623 return;
626 ts->nohz_mode = NOHZ_MODE_LOWRES;
629 * Recycle the hrtimer in ts, so we can share the
630 * hrtimer_forward with the highres code.
632 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
633 /* Get the next period */
634 next = tick_init_jiffy_update();
636 for (;;) {
637 hrtimer_set_expires(&ts->sched_timer, next);
638 if (!tick_program_event(next, 0))
639 break;
640 next = ktime_add(next, tick_period);
642 local_irq_enable();
644 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
648 * When NOHZ is enabled and the tick is stopped, we need to kick the
649 * tick timer from irq_enter() so that the jiffies update is kept
650 * alive during long running softirqs. That's ugly as hell, but
651 * correctness is key even if we need to fix the offending softirq in
652 * the first place.
654 * Note, this is different to tick_nohz_restart. We just kick the
655 * timer and do not touch the other magic bits which need to be done
656 * when idle is left.
658 static void tick_nohz_kick_tick(int cpu, ktime_t now)
660 #if 0
661 /* Switch back to 2.6.27 behaviour */
663 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
664 ktime_t delta;
667 * Do not touch the tick device, when the next expiry is either
668 * already reached or less/equal than the tick period.
670 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
671 if (delta.tv64 <= tick_period.tv64)
672 return;
674 tick_nohz_restart(ts, now);
675 #endif
678 static inline void tick_check_nohz(int cpu)
680 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
681 ktime_t now;
683 if (!ts->idle_active && !ts->tick_stopped)
684 return;
685 now = ktime_get();
686 if (ts->idle_active)
687 tick_nohz_stop_idle(cpu, now);
688 if (ts->tick_stopped) {
689 tick_nohz_update_jiffies(now);
690 tick_nohz_kick_tick(cpu, now);
694 #else
696 static inline void tick_nohz_switch_to_nohz(void) { }
697 static inline void tick_check_nohz(int cpu) { }
699 #endif /* NO_HZ */
702 * Called from irq_enter to notify about the possible interruption of idle()
704 void tick_check_idle(int cpu)
706 tick_check_oneshot_broadcast(cpu);
707 tick_check_nohz(cpu);
711 * High resolution timer specific code
713 #ifdef CONFIG_HIGH_RES_TIMERS
715 * We rearm the timer until we get disabled by the idle code.
716 * Called with interrupts disabled and timer->base->cpu_base->lock held.
718 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
720 struct tick_sched *ts =
721 container_of(timer, struct tick_sched, sched_timer);
722 struct pt_regs *regs = get_irq_regs();
723 ktime_t now = ktime_get();
724 int cpu = smp_processor_id();
726 #ifdef CONFIG_NO_HZ
728 * Check if the do_timer duty was dropped. We don't care about
729 * concurrency: This happens only when the cpu in charge went
730 * into a long sleep. If two cpus happen to assign themself to
731 * this duty, then the jiffies update is still serialized by
732 * xtime_lock.
734 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
735 tick_do_timer_cpu = cpu;
736 #endif
738 /* Check, if the jiffies need an update */
739 if (tick_do_timer_cpu == cpu)
740 tick_do_update_jiffies64(now);
743 * Do not call, when we are not in irq context and have
744 * no valid regs pointer
746 if (regs) {
748 * When we are idle and the tick is stopped, we have to touch
749 * the watchdog as we might not schedule for a really long
750 * time. This happens on complete idle SMP systems while
751 * waiting on the login prompt. We also increment the "start of
752 * idle" jiffy stamp so the idle accounting adjustment we do
753 * when we go busy again does not account too much ticks.
755 if (ts->tick_stopped) {
756 touch_softlockup_watchdog();
757 ts->idle_jiffies++;
759 update_process_times(user_mode(regs));
760 profile_tick(CPU_PROFILING);
763 hrtimer_forward(timer, now, tick_period);
765 return HRTIMER_RESTART;
769 * tick_setup_sched_timer - setup the tick emulation timer
771 void tick_setup_sched_timer(void)
773 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
774 ktime_t now = ktime_get();
777 * Emulate tick processing via per-CPU hrtimers:
779 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
780 ts->sched_timer.function = tick_sched_timer;
782 /* Get the next period (per cpu) */
783 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
785 for (;;) {
786 hrtimer_forward(&ts->sched_timer, now, tick_period);
787 hrtimer_start_expires(&ts->sched_timer,
788 HRTIMER_MODE_ABS_PINNED);
789 /* Check, if the timer was already in the past */
790 if (hrtimer_active(&ts->sched_timer))
791 break;
792 now = ktime_get();
795 #ifdef CONFIG_NO_HZ
796 if (tick_nohz_enabled) {
797 ts->nohz_mode = NOHZ_MODE_HIGHRES;
798 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
800 #endif
802 #endif /* HIGH_RES_TIMERS */
804 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
805 void tick_cancel_sched_timer(int cpu)
807 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
809 # ifdef CONFIG_HIGH_RES_TIMERS
810 if (ts->sched_timer.base)
811 hrtimer_cancel(&ts->sched_timer);
812 # endif
814 ts->nohz_mode = NOHZ_MODE_INACTIVE;
816 #endif
819 * Async notification about clocksource changes
821 void tick_clock_notify(void)
823 int cpu;
825 for_each_possible_cpu(cpu)
826 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
830 * Async notification about clock event changes
832 void tick_oneshot_notify(void)
834 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
836 set_bit(0, &ts->check_clocks);
840 * Check, if a change happened, which makes oneshot possible.
842 * Called cyclic from the hrtimer softirq (driven by the timer
843 * softirq) allow_nohz signals, that we can switch into low-res nohz
844 * mode, because high resolution timers are disabled (either compile
845 * or runtime).
847 int tick_check_oneshot_change(int allow_nohz)
849 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
851 if (!test_and_clear_bit(0, &ts->check_clocks))
852 return 0;
854 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
855 return 0;
857 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
858 return 0;
860 if (!allow_nohz)
861 return 1;
863 tick_nohz_switch_to_nohz();
864 return 0;