2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
56 trace_ext4_begin_ordered_truncate(inode
, new_size
);
57 return jbd2_journal_begin_ordered_truncate(
58 EXT4_SB(inode
->i_sb
)->s_journal
,
59 &EXT4_I(inode
)->jinode
,
63 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
64 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
65 struct buffer_head
*bh_result
, int create
);
66 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
67 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
68 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
69 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
72 * Test whether an inode is a fast symlink.
74 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
76 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
77 (inode
->i_sb
->s_blocksize
>> 9) : 0;
79 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
83 * Work out how many blocks we need to proceed with the next chunk of a
84 * truncate transaction.
86 static unsigned long blocks_for_truncate(struct inode
*inode
)
90 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
92 /* Give ourselves just enough room to cope with inodes in which
93 * i_blocks is corrupt: we've seen disk corruptions in the past
94 * which resulted in random data in an inode which looked enough
95 * like a regular file for ext4 to try to delete it. Things
96 * will go a bit crazy if that happens, but at least we should
97 * try not to panic the whole kernel. */
101 /* But we need to bound the transaction so we don't overflow the
103 if (needed
> EXT4_MAX_TRANS_DATA
)
104 needed
= EXT4_MAX_TRANS_DATA
;
106 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
110 * Truncate transactions can be complex and absolutely huge. So we need to
111 * be able to restart the transaction at a conventient checkpoint to make
112 * sure we don't overflow the journal.
114 * start_transaction gets us a new handle for a truncate transaction,
115 * and extend_transaction tries to extend the existing one a bit. If
116 * extend fails, we need to propagate the failure up and restart the
117 * transaction in the top-level truncate loop. --sct
119 static handle_t
*start_transaction(struct inode
*inode
)
123 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
127 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
132 * Try to extend this transaction for the purposes of truncation.
134 * Returns 0 if we managed to create more room. If we can't create more
135 * room, and the transaction must be restarted we return 1.
137 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
139 if (!ext4_handle_valid(handle
))
141 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
143 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
149 * Restart the transaction associated with *handle. This does a commit,
150 * so before we call here everything must be consistently dirtied against
153 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
159 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
160 * moment, get_block can be called only for blocks inside i_size since
161 * page cache has been already dropped and writes are blocked by
162 * i_mutex. So we can safely drop the i_data_sem here.
164 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
165 jbd_debug(2, "restarting handle %p\n", handle
);
166 up_write(&EXT4_I(inode
)->i_data_sem
);
167 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
168 down_write(&EXT4_I(inode
)->i_data_sem
);
169 ext4_discard_preallocations(inode
);
175 * Called at the last iput() if i_nlink is zero.
177 void ext4_evict_inode(struct inode
*inode
)
182 trace_ext4_evict_inode(inode
);
183 if (inode
->i_nlink
) {
184 truncate_inode_pages(&inode
->i_data
, 0);
188 if (!is_bad_inode(inode
))
189 dquot_initialize(inode
);
191 if (ext4_should_order_data(inode
))
192 ext4_begin_ordered_truncate(inode
, 0);
193 truncate_inode_pages(&inode
->i_data
, 0);
195 if (is_bad_inode(inode
))
198 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
199 if (IS_ERR(handle
)) {
200 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
202 * If we're going to skip the normal cleanup, we still need to
203 * make sure that the in-core orphan linked list is properly
206 ext4_orphan_del(NULL
, inode
);
211 ext4_handle_sync(handle
);
213 err
= ext4_mark_inode_dirty(handle
, inode
);
215 ext4_warning(inode
->i_sb
,
216 "couldn't mark inode dirty (err %d)", err
);
220 ext4_truncate(inode
);
223 * ext4_ext_truncate() doesn't reserve any slop when it
224 * restarts journal transactions; therefore there may not be
225 * enough credits left in the handle to remove the inode from
226 * the orphan list and set the dtime field.
228 if (!ext4_handle_has_enough_credits(handle
, 3)) {
229 err
= ext4_journal_extend(handle
, 3);
231 err
= ext4_journal_restart(handle
, 3);
233 ext4_warning(inode
->i_sb
,
234 "couldn't extend journal (err %d)", err
);
236 ext4_journal_stop(handle
);
237 ext4_orphan_del(NULL
, inode
);
243 * Kill off the orphan record which ext4_truncate created.
244 * AKPM: I think this can be inside the above `if'.
245 * Note that ext4_orphan_del() has to be able to cope with the
246 * deletion of a non-existent orphan - this is because we don't
247 * know if ext4_truncate() actually created an orphan record.
248 * (Well, we could do this if we need to, but heck - it works)
250 ext4_orphan_del(handle
, inode
);
251 EXT4_I(inode
)->i_dtime
= get_seconds();
254 * One subtle ordering requirement: if anything has gone wrong
255 * (transaction abort, IO errors, whatever), then we can still
256 * do these next steps (the fs will already have been marked as
257 * having errors), but we can't free the inode if the mark_dirty
260 if (ext4_mark_inode_dirty(handle
, inode
))
261 /* If that failed, just do the required in-core inode clear. */
262 ext4_clear_inode(inode
);
264 ext4_free_inode(handle
, inode
);
265 ext4_journal_stop(handle
);
268 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
274 struct buffer_head
*bh
;
277 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
279 p
->key
= *(p
->p
= v
);
284 * ext4_block_to_path - parse the block number into array of offsets
285 * @inode: inode in question (we are only interested in its superblock)
286 * @i_block: block number to be parsed
287 * @offsets: array to store the offsets in
288 * @boundary: set this non-zero if the referred-to block is likely to be
289 * followed (on disk) by an indirect block.
291 * To store the locations of file's data ext4 uses a data structure common
292 * for UNIX filesystems - tree of pointers anchored in the inode, with
293 * data blocks at leaves and indirect blocks in intermediate nodes.
294 * This function translates the block number into path in that tree -
295 * return value is the path length and @offsets[n] is the offset of
296 * pointer to (n+1)th node in the nth one. If @block is out of range
297 * (negative or too large) warning is printed and zero returned.
299 * Note: function doesn't find node addresses, so no IO is needed. All
300 * we need to know is the capacity of indirect blocks (taken from the
305 * Portability note: the last comparison (check that we fit into triple
306 * indirect block) is spelled differently, because otherwise on an
307 * architecture with 32-bit longs and 8Kb pages we might get into trouble
308 * if our filesystem had 8Kb blocks. We might use long long, but that would
309 * kill us on x86. Oh, well, at least the sign propagation does not matter -
310 * i_block would have to be negative in the very beginning, so we would not
314 static int ext4_block_to_path(struct inode
*inode
,
316 ext4_lblk_t offsets
[4], int *boundary
)
318 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
319 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
320 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
321 indirect_blocks
= ptrs
,
322 double_blocks
= (1 << (ptrs_bits
* 2));
326 if (i_block
< direct_blocks
) {
327 offsets
[n
++] = i_block
;
328 final
= direct_blocks
;
329 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
330 offsets
[n
++] = EXT4_IND_BLOCK
;
331 offsets
[n
++] = i_block
;
333 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
334 offsets
[n
++] = EXT4_DIND_BLOCK
;
335 offsets
[n
++] = i_block
>> ptrs_bits
;
336 offsets
[n
++] = i_block
& (ptrs
- 1);
338 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
339 offsets
[n
++] = EXT4_TIND_BLOCK
;
340 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
341 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
342 offsets
[n
++] = i_block
& (ptrs
- 1);
345 ext4_warning(inode
->i_sb
, "block %lu > max in inode %lu",
346 i_block
+ direct_blocks
+
347 indirect_blocks
+ double_blocks
, inode
->i_ino
);
350 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
354 static int __ext4_check_blockref(const char *function
, unsigned int line
,
356 __le32
*p
, unsigned int max
)
358 struct ext4_super_block
*es
= EXT4_SB(inode
->i_sb
)->s_es
;
362 while (bref
< p
+max
) {
363 blk
= le32_to_cpu(*bref
++);
365 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
367 es
->s_last_error_block
= cpu_to_le64(blk
);
368 ext4_error_inode(inode
, function
, line
, blk
,
377 #define ext4_check_indirect_blockref(inode, bh) \
378 __ext4_check_blockref(__func__, __LINE__, inode, \
379 (__le32 *)(bh)->b_data, \
380 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
382 #define ext4_check_inode_blockref(inode) \
383 __ext4_check_blockref(__func__, __LINE__, inode, \
384 EXT4_I(inode)->i_data, \
388 * ext4_get_branch - read the chain of indirect blocks leading to data
389 * @inode: inode in question
390 * @depth: depth of the chain (1 - direct pointer, etc.)
391 * @offsets: offsets of pointers in inode/indirect blocks
392 * @chain: place to store the result
393 * @err: here we store the error value
395 * Function fills the array of triples <key, p, bh> and returns %NULL
396 * if everything went OK or the pointer to the last filled triple
397 * (incomplete one) otherwise. Upon the return chain[i].key contains
398 * the number of (i+1)-th block in the chain (as it is stored in memory,
399 * i.e. little-endian 32-bit), chain[i].p contains the address of that
400 * number (it points into struct inode for i==0 and into the bh->b_data
401 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
402 * block for i>0 and NULL for i==0. In other words, it holds the block
403 * numbers of the chain, addresses they were taken from (and where we can
404 * verify that chain did not change) and buffer_heads hosting these
407 * Function stops when it stumbles upon zero pointer (absent block)
408 * (pointer to last triple returned, *@err == 0)
409 * or when it gets an IO error reading an indirect block
410 * (ditto, *@err == -EIO)
411 * or when it reads all @depth-1 indirect blocks successfully and finds
412 * the whole chain, all way to the data (returns %NULL, *err == 0).
414 * Need to be called with
415 * down_read(&EXT4_I(inode)->i_data_sem)
417 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
418 ext4_lblk_t
*offsets
,
419 Indirect chain
[4], int *err
)
421 struct super_block
*sb
= inode
->i_sb
;
423 struct buffer_head
*bh
;
426 /* i_data is not going away, no lock needed */
427 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
431 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
435 if (!bh_uptodate_or_lock(bh
)) {
436 if (bh_submit_read(bh
) < 0) {
440 /* validate block references */
441 if (ext4_check_indirect_blockref(inode
, bh
)) {
447 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
461 * ext4_find_near - find a place for allocation with sufficient locality
463 * @ind: descriptor of indirect block.
465 * This function returns the preferred place for block allocation.
466 * It is used when heuristic for sequential allocation fails.
468 * + if there is a block to the left of our position - allocate near it.
469 * + if pointer will live in indirect block - allocate near that block.
470 * + if pointer will live in inode - allocate in the same
473 * In the latter case we colour the starting block by the callers PID to
474 * prevent it from clashing with concurrent allocations for a different inode
475 * in the same block group. The PID is used here so that functionally related
476 * files will be close-by on-disk.
478 * Caller must make sure that @ind is valid and will stay that way.
480 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
482 struct ext4_inode_info
*ei
= EXT4_I(inode
);
483 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
485 ext4_fsblk_t bg_start
;
486 ext4_fsblk_t last_block
;
487 ext4_grpblk_t colour
;
488 ext4_group_t block_group
;
489 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
491 /* Try to find previous block */
492 for (p
= ind
->p
- 1; p
>= start
; p
--) {
494 return le32_to_cpu(*p
);
497 /* No such thing, so let's try location of indirect block */
499 return ind
->bh
->b_blocknr
;
502 * It is going to be referred to from the inode itself? OK, just put it
503 * into the same cylinder group then.
505 block_group
= ei
->i_block_group
;
506 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
507 block_group
&= ~(flex_size
-1);
508 if (S_ISREG(inode
->i_mode
))
511 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
512 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
515 * If we are doing delayed allocation, we don't need take
516 * colour into account.
518 if (test_opt(inode
->i_sb
, DELALLOC
))
521 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
522 colour
= (current
->pid
% 16) *
523 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
525 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
526 return bg_start
+ colour
;
530 * ext4_find_goal - find a preferred place for allocation.
532 * @block: block we want
533 * @partial: pointer to the last triple within a chain
535 * Normally this function find the preferred place for block allocation,
537 * Because this is only used for non-extent files, we limit the block nr
540 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
546 * XXX need to get goal block from mballoc's data structures
549 goal
= ext4_find_near(inode
, partial
);
550 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
555 * ext4_blks_to_allocate: Look up the block map and count the number
556 * of direct blocks need to be allocated for the given branch.
558 * @branch: chain of indirect blocks
559 * @k: number of blocks need for indirect blocks
560 * @blks: number of data blocks to be mapped.
561 * @blocks_to_boundary: the offset in the indirect block
563 * return the total number of blocks to be allocate, including the
564 * direct and indirect blocks.
566 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
567 int blocks_to_boundary
)
569 unsigned int count
= 0;
572 * Simple case, [t,d]Indirect block(s) has not allocated yet
573 * then it's clear blocks on that path have not allocated
576 /* right now we don't handle cross boundary allocation */
577 if (blks
< blocks_to_boundary
+ 1)
580 count
+= blocks_to_boundary
+ 1;
585 while (count
< blks
&& count
<= blocks_to_boundary
&&
586 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
593 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
594 * @indirect_blks: the number of blocks need to allocate for indirect
597 * @new_blocks: on return it will store the new block numbers for
598 * the indirect blocks(if needed) and the first direct block,
599 * @blks: on return it will store the total number of allocated
602 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
603 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
604 int indirect_blks
, int blks
,
605 ext4_fsblk_t new_blocks
[4], int *err
)
607 struct ext4_allocation_request ar
;
609 unsigned long count
= 0, blk_allocated
= 0;
611 ext4_fsblk_t current_block
= 0;
615 * Here we try to allocate the requested multiple blocks at once,
616 * on a best-effort basis.
617 * To build a branch, we should allocate blocks for
618 * the indirect blocks(if not allocated yet), and at least
619 * the first direct block of this branch. That's the
620 * minimum number of blocks need to allocate(required)
622 /* first we try to allocate the indirect blocks */
623 target
= indirect_blks
;
626 /* allocating blocks for indirect blocks and direct blocks */
627 current_block
= ext4_new_meta_blocks(handle
, inode
,
632 if (unlikely(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
633 EXT4_ERROR_INODE(inode
,
634 "current_block %llu + count %lu > %d!",
635 current_block
, count
,
636 EXT4_MAX_BLOCK_FILE_PHYS
);
642 /* allocate blocks for indirect blocks */
643 while (index
< indirect_blks
&& count
) {
644 new_blocks
[index
++] = current_block
++;
649 * save the new block number
650 * for the first direct block
652 new_blocks
[index
] = current_block
;
653 printk(KERN_INFO
"%s returned more blocks than "
654 "requested\n", __func__
);
660 target
= blks
- count
;
661 blk_allocated
= count
;
664 /* Now allocate data blocks */
665 memset(&ar
, 0, sizeof(ar
));
670 if (S_ISREG(inode
->i_mode
))
671 /* enable in-core preallocation only for regular files */
672 ar
.flags
= EXT4_MB_HINT_DATA
;
674 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
675 if (unlikely(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
676 EXT4_ERROR_INODE(inode
,
677 "current_block %llu + ar.len %d > %d!",
678 current_block
, ar
.len
,
679 EXT4_MAX_BLOCK_FILE_PHYS
);
684 if (*err
&& (target
== blks
)) {
686 * if the allocation failed and we didn't allocate
692 if (target
== blks
) {
694 * save the new block number
695 * for the first direct block
697 new_blocks
[index
] = current_block
;
699 blk_allocated
+= ar
.len
;
702 /* total number of blocks allocated for direct blocks */
707 for (i
= 0; i
< index
; i
++)
708 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1, 0);
713 * ext4_alloc_branch - allocate and set up a chain of blocks.
715 * @indirect_blks: number of allocated indirect blocks
716 * @blks: number of allocated direct blocks
717 * @offsets: offsets (in the blocks) to store the pointers to next.
718 * @branch: place to store the chain in.
720 * This function allocates blocks, zeroes out all but the last one,
721 * links them into chain and (if we are synchronous) writes them to disk.
722 * In other words, it prepares a branch that can be spliced onto the
723 * inode. It stores the information about that chain in the branch[], in
724 * the same format as ext4_get_branch() would do. We are calling it after
725 * we had read the existing part of chain and partial points to the last
726 * triple of that (one with zero ->key). Upon the exit we have the same
727 * picture as after the successful ext4_get_block(), except that in one
728 * place chain is disconnected - *branch->p is still zero (we did not
729 * set the last link), but branch->key contains the number that should
730 * be placed into *branch->p to fill that gap.
732 * If allocation fails we free all blocks we've allocated (and forget
733 * their buffer_heads) and return the error value the from failed
734 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
735 * as described above and return 0.
737 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
738 ext4_lblk_t iblock
, int indirect_blks
,
739 int *blks
, ext4_fsblk_t goal
,
740 ext4_lblk_t
*offsets
, Indirect
*branch
)
742 int blocksize
= inode
->i_sb
->s_blocksize
;
745 struct buffer_head
*bh
;
747 ext4_fsblk_t new_blocks
[4];
748 ext4_fsblk_t current_block
;
750 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
751 *blks
, new_blocks
, &err
);
755 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
757 * metadata blocks and data blocks are allocated.
759 for (n
= 1; n
<= indirect_blks
; n
++) {
761 * Get buffer_head for parent block, zero it out
762 * and set the pointer to new one, then send
765 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
773 BUFFER_TRACE(bh
, "call get_create_access");
774 err
= ext4_journal_get_create_access(handle
, bh
);
776 /* Don't brelse(bh) here; it's done in
777 * ext4_journal_forget() below */
782 memset(bh
->b_data
, 0, blocksize
);
783 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
784 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
785 *branch
[n
].p
= branch
[n
].key
;
786 if (n
== indirect_blks
) {
787 current_block
= new_blocks
[n
];
789 * End of chain, update the last new metablock of
790 * the chain to point to the new allocated
791 * data blocks numbers
793 for (i
= 1; i
< num
; i
++)
794 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
796 BUFFER_TRACE(bh
, "marking uptodate");
797 set_buffer_uptodate(bh
);
800 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
801 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
808 /* Allocation failed, free what we already allocated */
809 ext4_free_blocks(handle
, inode
, 0, new_blocks
[0], 1, 0);
810 for (i
= 1; i
<= n
; i
++) {
812 * branch[i].bh is newly allocated, so there is no
813 * need to revoke the block, which is why we don't
814 * need to set EXT4_FREE_BLOCKS_METADATA.
816 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1,
817 EXT4_FREE_BLOCKS_FORGET
);
819 for (i
= n
+1; i
< indirect_blks
; i
++)
820 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1, 0);
822 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], num
, 0);
828 * ext4_splice_branch - splice the allocated branch onto inode.
830 * @block: (logical) number of block we are adding
831 * @chain: chain of indirect blocks (with a missing link - see
833 * @where: location of missing link
834 * @num: number of indirect blocks we are adding
835 * @blks: number of direct blocks we are adding
837 * This function fills the missing link and does all housekeeping needed in
838 * inode (->i_blocks, etc.). In case of success we end up with the full
839 * chain to new block and return 0.
841 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
842 ext4_lblk_t block
, Indirect
*where
, int num
,
847 ext4_fsblk_t current_block
;
850 * If we're splicing into a [td]indirect block (as opposed to the
851 * inode) then we need to get write access to the [td]indirect block
855 BUFFER_TRACE(where
->bh
, "get_write_access");
856 err
= ext4_journal_get_write_access(handle
, where
->bh
);
862 *where
->p
= where
->key
;
865 * Update the host buffer_head or inode to point to more just allocated
866 * direct blocks blocks
868 if (num
== 0 && blks
> 1) {
869 current_block
= le32_to_cpu(where
->key
) + 1;
870 for (i
= 1; i
< blks
; i
++)
871 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
874 /* We are done with atomic stuff, now do the rest of housekeeping */
875 /* had we spliced it onto indirect block? */
878 * If we spliced it onto an indirect block, we haven't
879 * altered the inode. Note however that if it is being spliced
880 * onto an indirect block at the very end of the file (the
881 * file is growing) then we *will* alter the inode to reflect
882 * the new i_size. But that is not done here - it is done in
883 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
885 jbd_debug(5, "splicing indirect only\n");
886 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
887 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
892 * OK, we spliced it into the inode itself on a direct block.
894 ext4_mark_inode_dirty(handle
, inode
);
895 jbd_debug(5, "splicing direct\n");
900 for (i
= 1; i
<= num
; i
++) {
902 * branch[i].bh is newly allocated, so there is no
903 * need to revoke the block, which is why we don't
904 * need to set EXT4_FREE_BLOCKS_METADATA.
906 ext4_free_blocks(handle
, inode
, where
[i
].bh
, 0, 1,
907 EXT4_FREE_BLOCKS_FORGET
);
909 ext4_free_blocks(handle
, inode
, 0, le32_to_cpu(where
[num
].key
),
916 * The ext4_ind_map_blocks() function handles non-extents inodes
917 * (i.e., using the traditional indirect/double-indirect i_blocks
918 * scheme) for ext4_map_blocks().
920 * Allocation strategy is simple: if we have to allocate something, we will
921 * have to go the whole way to leaf. So let's do it before attaching anything
922 * to tree, set linkage between the newborn blocks, write them if sync is
923 * required, recheck the path, free and repeat if check fails, otherwise
924 * set the last missing link (that will protect us from any truncate-generated
925 * removals - all blocks on the path are immune now) and possibly force the
926 * write on the parent block.
927 * That has a nice additional property: no special recovery from the failed
928 * allocations is needed - we simply release blocks and do not touch anything
929 * reachable from inode.
931 * `handle' can be NULL if create == 0.
933 * return > 0, # of blocks mapped or allocated.
934 * return = 0, if plain lookup failed.
935 * return < 0, error case.
937 * The ext4_ind_get_blocks() function should be called with
938 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
939 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
940 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
943 static int ext4_ind_map_blocks(handle_t
*handle
, struct inode
*inode
,
944 struct ext4_map_blocks
*map
,
948 ext4_lblk_t offsets
[4];
953 int blocks_to_boundary
= 0;
956 ext4_fsblk_t first_block
= 0;
958 J_ASSERT(!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)));
959 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
960 depth
= ext4_block_to_path(inode
, map
->m_lblk
, offsets
,
961 &blocks_to_boundary
);
966 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
968 /* Simplest case - block found, no allocation needed */
970 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
973 while (count
< map
->m_len
&& count
<= blocks_to_boundary
) {
976 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
978 if (blk
== first_block
+ count
)
986 /* Next simple case - plain lookup or failed read of indirect block */
987 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
991 * Okay, we need to do block allocation.
993 goal
= ext4_find_goal(inode
, map
->m_lblk
, partial
);
995 /* the number of blocks need to allocate for [d,t]indirect blocks */
996 indirect_blks
= (chain
+ depth
) - partial
- 1;
999 * Next look up the indirect map to count the totoal number of
1000 * direct blocks to allocate for this branch.
1002 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1003 map
->m_len
, blocks_to_boundary
);
1005 * Block out ext4_truncate while we alter the tree
1007 err
= ext4_alloc_branch(handle
, inode
, map
->m_lblk
, indirect_blks
,
1009 offsets
+ (partial
- chain
), partial
);
1012 * The ext4_splice_branch call will free and forget any buffers
1013 * on the new chain if there is a failure, but that risks using
1014 * up transaction credits, especially for bitmaps where the
1015 * credits cannot be returned. Can we handle this somehow? We
1016 * may need to return -EAGAIN upwards in the worst case. --sct
1019 err
= ext4_splice_branch(handle
, inode
, map
->m_lblk
,
1020 partial
, indirect_blks
, count
);
1024 map
->m_flags
|= EXT4_MAP_NEW
;
1026 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1028 map
->m_flags
|= EXT4_MAP_MAPPED
;
1029 map
->m_pblk
= le32_to_cpu(chain
[depth
-1].key
);
1031 if (count
> blocks_to_boundary
)
1032 map
->m_flags
|= EXT4_MAP_BOUNDARY
;
1034 /* Clean up and exit */
1035 partial
= chain
+ depth
- 1; /* the whole chain */
1037 while (partial
> chain
) {
1038 BUFFER_TRACE(partial
->bh
, "call brelse");
1039 brelse(partial
->bh
);
1047 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
1049 return &EXT4_I(inode
)->i_reserved_quota
;
1054 * Calculate the number of metadata blocks need to reserve
1055 * to allocate a new block at @lblocks for non extent file based file
1057 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
,
1060 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1061 sector_t dind_mask
= ~((sector_t
)EXT4_ADDR_PER_BLOCK(inode
->i_sb
) - 1);
1064 if (lblock
< EXT4_NDIR_BLOCKS
)
1067 lblock
-= EXT4_NDIR_BLOCKS
;
1069 if (ei
->i_da_metadata_calc_len
&&
1070 (lblock
& dind_mask
) == ei
->i_da_metadata_calc_last_lblock
) {
1071 ei
->i_da_metadata_calc_len
++;
1074 ei
->i_da_metadata_calc_last_lblock
= lblock
& dind_mask
;
1075 ei
->i_da_metadata_calc_len
= 1;
1076 blk_bits
= order_base_2(lblock
);
1077 return (blk_bits
/ EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
)) + 1;
1081 * Calculate the number of metadata blocks need to reserve
1082 * to allocate a block located at @lblock
1084 static int ext4_calc_metadata_amount(struct inode
*inode
, sector_t lblock
)
1086 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1087 return ext4_ext_calc_metadata_amount(inode
, lblock
);
1089 return ext4_indirect_calc_metadata_amount(inode
, lblock
);
1093 * Called with i_data_sem down, which is important since we can call
1094 * ext4_discard_preallocations() from here.
1096 void ext4_da_update_reserve_space(struct inode
*inode
,
1097 int used
, int quota_claim
)
1099 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1100 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1102 spin_lock(&ei
->i_block_reservation_lock
);
1103 trace_ext4_da_update_reserve_space(inode
, used
);
1104 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
1105 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
1106 "with only %d reserved data blocks\n",
1107 __func__
, inode
->i_ino
, used
,
1108 ei
->i_reserved_data_blocks
);
1110 used
= ei
->i_reserved_data_blocks
;
1113 /* Update per-inode reservations */
1114 ei
->i_reserved_data_blocks
-= used
;
1115 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
1116 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1117 used
+ ei
->i_allocated_meta_blocks
);
1118 ei
->i_allocated_meta_blocks
= 0;
1120 if (ei
->i_reserved_data_blocks
== 0) {
1122 * We can release all of the reserved metadata blocks
1123 * only when we have written all of the delayed
1124 * allocation blocks.
1126 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1127 ei
->i_reserved_meta_blocks
);
1128 ei
->i_reserved_meta_blocks
= 0;
1129 ei
->i_da_metadata_calc_len
= 0;
1131 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1133 /* Update quota subsystem for data blocks */
1135 dquot_claim_block(inode
, used
);
1138 * We did fallocate with an offset that is already delayed
1139 * allocated. So on delayed allocated writeback we should
1140 * not re-claim the quota for fallocated blocks.
1142 dquot_release_reservation_block(inode
, used
);
1146 * If we have done all the pending block allocations and if
1147 * there aren't any writers on the inode, we can discard the
1148 * inode's preallocations.
1150 if ((ei
->i_reserved_data_blocks
== 0) &&
1151 (atomic_read(&inode
->i_writecount
) == 0))
1152 ext4_discard_preallocations(inode
);
1155 static int __check_block_validity(struct inode
*inode
, const char *func
,
1157 struct ext4_map_blocks
*map
)
1159 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
1161 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
1162 "lblock %lu mapped to illegal pblock "
1163 "(length %d)", (unsigned long) map
->m_lblk
,
1170 #define check_block_validity(inode, map) \
1171 __check_block_validity((inode), __func__, __LINE__, (map))
1174 * Return the number of contiguous dirty pages in a given inode
1175 * starting at page frame idx.
1177 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1178 unsigned int max_pages
)
1180 struct address_space
*mapping
= inode
->i_mapping
;
1182 struct pagevec pvec
;
1184 int i
, nr_pages
, done
= 0;
1188 pagevec_init(&pvec
, 0);
1191 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1192 PAGECACHE_TAG_DIRTY
,
1193 (pgoff_t
)PAGEVEC_SIZE
);
1196 for (i
= 0; i
< nr_pages
; i
++) {
1197 struct page
*page
= pvec
.pages
[i
];
1198 struct buffer_head
*bh
, *head
;
1201 if (unlikely(page
->mapping
!= mapping
) ||
1203 PageWriteback(page
) ||
1204 page
->index
!= idx
) {
1209 if (page_has_buffers(page
)) {
1210 bh
= head
= page_buffers(page
);
1212 if (!buffer_delay(bh
) &&
1213 !buffer_unwritten(bh
))
1215 bh
= bh
->b_this_page
;
1216 } while (!done
&& (bh
!= head
));
1223 if (num
>= max_pages
) {
1228 pagevec_release(&pvec
);
1234 * The ext4_map_blocks() function tries to look up the requested blocks,
1235 * and returns if the blocks are already mapped.
1237 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1238 * and store the allocated blocks in the result buffer head and mark it
1241 * If file type is extents based, it will call ext4_ext_map_blocks(),
1242 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1245 * On success, it returns the number of blocks being mapped or allocate.
1246 * if create==0 and the blocks are pre-allocated and uninitialized block,
1247 * the result buffer head is unmapped. If the create ==1, it will make sure
1248 * the buffer head is mapped.
1250 * It returns 0 if plain look up failed (blocks have not been allocated), in
1251 * that casem, buffer head is unmapped
1253 * It returns the error in case of allocation failure.
1255 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
1256 struct ext4_map_blocks
*map
, int flags
)
1261 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1262 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
1263 (unsigned long) map
->m_lblk
);
1265 * Try to see if we can get the block without requesting a new
1266 * file system block.
1268 down_read((&EXT4_I(inode
)->i_data_sem
));
1269 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1270 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
1272 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
1274 up_read((&EXT4_I(inode
)->i_data_sem
));
1276 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
1277 int ret
= check_block_validity(inode
, map
);
1282 /* If it is only a block(s) look up */
1283 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1287 * Returns if the blocks have already allocated
1289 * Note that if blocks have been preallocated
1290 * ext4_ext_get_block() returns th create = 0
1291 * with buffer head unmapped.
1293 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
1297 * When we call get_blocks without the create flag, the
1298 * BH_Unwritten flag could have gotten set if the blocks
1299 * requested were part of a uninitialized extent. We need to
1300 * clear this flag now that we are committed to convert all or
1301 * part of the uninitialized extent to be an initialized
1302 * extent. This is because we need to avoid the combination
1303 * of BH_Unwritten and BH_Mapped flags being simultaneously
1304 * set on the buffer_head.
1306 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
1309 * New blocks allocate and/or writing to uninitialized extent
1310 * will possibly result in updating i_data, so we take
1311 * the write lock of i_data_sem, and call get_blocks()
1312 * with create == 1 flag.
1314 down_write((&EXT4_I(inode
)->i_data_sem
));
1317 * if the caller is from delayed allocation writeout path
1318 * we have already reserved fs blocks for allocation
1319 * let the underlying get_block() function know to
1320 * avoid double accounting
1322 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1323 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1325 * We need to check for EXT4 here because migrate
1326 * could have changed the inode type in between
1328 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1329 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
1331 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
1333 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
1335 * We allocated new blocks which will result in
1336 * i_data's format changing. Force the migrate
1337 * to fail by clearing migrate flags
1339 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
1343 * Update reserved blocks/metadata blocks after successful
1344 * block allocation which had been deferred till now. We don't
1345 * support fallocate for non extent files. So we can update
1346 * reserve space here.
1349 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
1350 ext4_da_update_reserve_space(inode
, retval
, 1);
1352 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1353 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1355 up_write((&EXT4_I(inode
)->i_data_sem
));
1356 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
1357 int ret
= check_block_validity(inode
, map
);
1364 /* Maximum number of blocks we map for direct IO at once. */
1365 #define DIO_MAX_BLOCKS 4096
1367 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
1368 struct buffer_head
*bh
, int flags
)
1370 handle_t
*handle
= ext4_journal_current_handle();
1371 struct ext4_map_blocks map
;
1372 int ret
= 0, started
= 0;
1375 map
.m_lblk
= iblock
;
1376 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
1378 if (flags
&& !handle
) {
1379 /* Direct IO write... */
1380 if (map
.m_len
> DIO_MAX_BLOCKS
)
1381 map
.m_len
= DIO_MAX_BLOCKS
;
1382 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
1383 handle
= ext4_journal_start(inode
, dio_credits
);
1384 if (IS_ERR(handle
)) {
1385 ret
= PTR_ERR(handle
);
1391 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
1393 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1394 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1395 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
1399 ext4_journal_stop(handle
);
1403 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1404 struct buffer_head
*bh
, int create
)
1406 return _ext4_get_block(inode
, iblock
, bh
,
1407 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1411 * `handle' can be NULL if create is zero
1413 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1414 ext4_lblk_t block
, int create
, int *errp
)
1416 struct ext4_map_blocks map
;
1417 struct buffer_head
*bh
;
1420 J_ASSERT(handle
!= NULL
|| create
== 0);
1424 err
= ext4_map_blocks(handle
, inode
, &map
,
1425 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1433 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
1438 if (map
.m_flags
& EXT4_MAP_NEW
) {
1439 J_ASSERT(create
!= 0);
1440 J_ASSERT(handle
!= NULL
);
1443 * Now that we do not always journal data, we should
1444 * keep in mind whether this should always journal the
1445 * new buffer as metadata. For now, regular file
1446 * writes use ext4_get_block instead, so it's not a
1450 BUFFER_TRACE(bh
, "call get_create_access");
1451 fatal
= ext4_journal_get_create_access(handle
, bh
);
1452 if (!fatal
&& !buffer_uptodate(bh
)) {
1453 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1454 set_buffer_uptodate(bh
);
1457 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1458 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1462 BUFFER_TRACE(bh
, "not a new buffer");
1472 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1473 ext4_lblk_t block
, int create
, int *err
)
1475 struct buffer_head
*bh
;
1477 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1480 if (buffer_uptodate(bh
))
1482 ll_rw_block(READ_META
, 1, &bh
);
1484 if (buffer_uptodate(bh
))
1491 static int walk_page_buffers(handle_t
*handle
,
1492 struct buffer_head
*head
,
1496 int (*fn
)(handle_t
*handle
,
1497 struct buffer_head
*bh
))
1499 struct buffer_head
*bh
;
1500 unsigned block_start
, block_end
;
1501 unsigned blocksize
= head
->b_size
;
1503 struct buffer_head
*next
;
1505 for (bh
= head
, block_start
= 0;
1506 ret
== 0 && (bh
!= head
|| !block_start
);
1507 block_start
= block_end
, bh
= next
) {
1508 next
= bh
->b_this_page
;
1509 block_end
= block_start
+ blocksize
;
1510 if (block_end
<= from
|| block_start
>= to
) {
1511 if (partial
&& !buffer_uptodate(bh
))
1515 err
= (*fn
)(handle
, bh
);
1523 * To preserve ordering, it is essential that the hole instantiation and
1524 * the data write be encapsulated in a single transaction. We cannot
1525 * close off a transaction and start a new one between the ext4_get_block()
1526 * and the commit_write(). So doing the jbd2_journal_start at the start of
1527 * prepare_write() is the right place.
1529 * Also, this function can nest inside ext4_writepage() ->
1530 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1531 * has generated enough buffer credits to do the whole page. So we won't
1532 * block on the journal in that case, which is good, because the caller may
1535 * By accident, ext4 can be reentered when a transaction is open via
1536 * quota file writes. If we were to commit the transaction while thus
1537 * reentered, there can be a deadlock - we would be holding a quota
1538 * lock, and the commit would never complete if another thread had a
1539 * transaction open and was blocking on the quota lock - a ranking
1542 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1543 * will _not_ run commit under these circumstances because handle->h_ref
1544 * is elevated. We'll still have enough credits for the tiny quotafile
1547 static int do_journal_get_write_access(handle_t
*handle
,
1548 struct buffer_head
*bh
)
1550 int dirty
= buffer_dirty(bh
);
1553 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1556 * __block_write_begin() could have dirtied some buffers. Clean
1557 * the dirty bit as jbd2_journal_get_write_access() could complain
1558 * otherwise about fs integrity issues. Setting of the dirty bit
1559 * by __block_write_begin() isn't a real problem here as we clear
1560 * the bit before releasing a page lock and thus writeback cannot
1561 * ever write the buffer.
1564 clear_buffer_dirty(bh
);
1565 ret
= ext4_journal_get_write_access(handle
, bh
);
1567 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1572 * Truncate blocks that were not used by write. We have to truncate the
1573 * pagecache as well so that corresponding buffers get properly unmapped.
1575 static void ext4_truncate_failed_write(struct inode
*inode
)
1577 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1578 ext4_truncate(inode
);
1581 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
1582 struct buffer_head
*bh_result
, int create
);
1583 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1584 loff_t pos
, unsigned len
, unsigned flags
,
1585 struct page
**pagep
, void **fsdata
)
1587 struct inode
*inode
= mapping
->host
;
1588 int ret
, needed_blocks
;
1595 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1597 * Reserve one block more for addition to orphan list in case
1598 * we allocate blocks but write fails for some reason
1600 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1601 index
= pos
>> PAGE_CACHE_SHIFT
;
1602 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1606 handle
= ext4_journal_start(inode
, needed_blocks
);
1607 if (IS_ERR(handle
)) {
1608 ret
= PTR_ERR(handle
);
1612 /* We cannot recurse into the filesystem as the transaction is already
1614 flags
|= AOP_FLAG_NOFS
;
1616 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1618 ext4_journal_stop(handle
);
1624 if (ext4_should_dioread_nolock(inode
))
1625 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1627 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1629 if (!ret
&& ext4_should_journal_data(inode
)) {
1630 ret
= walk_page_buffers(handle
, page_buffers(page
),
1631 from
, to
, NULL
, do_journal_get_write_access
);
1636 page_cache_release(page
);
1638 * __block_write_begin may have instantiated a few blocks
1639 * outside i_size. Trim these off again. Don't need
1640 * i_size_read because we hold i_mutex.
1642 * Add inode to orphan list in case we crash before
1645 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1646 ext4_orphan_add(handle
, inode
);
1648 ext4_journal_stop(handle
);
1649 if (pos
+ len
> inode
->i_size
) {
1650 ext4_truncate_failed_write(inode
);
1652 * If truncate failed early the inode might
1653 * still be on the orphan list; we need to
1654 * make sure the inode is removed from the
1655 * orphan list in that case.
1658 ext4_orphan_del(NULL
, inode
);
1662 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1668 /* For write_end() in data=journal mode */
1669 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1671 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1673 set_buffer_uptodate(bh
);
1674 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1677 static int ext4_generic_write_end(struct file
*file
,
1678 struct address_space
*mapping
,
1679 loff_t pos
, unsigned len
, unsigned copied
,
1680 struct page
*page
, void *fsdata
)
1682 int i_size_changed
= 0;
1683 struct inode
*inode
= mapping
->host
;
1684 handle_t
*handle
= ext4_journal_current_handle();
1686 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1689 * No need to use i_size_read() here, the i_size
1690 * cannot change under us because we hold i_mutex.
1692 * But it's important to update i_size while still holding page lock:
1693 * page writeout could otherwise come in and zero beyond i_size.
1695 if (pos
+ copied
> inode
->i_size
) {
1696 i_size_write(inode
, pos
+ copied
);
1700 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1701 /* We need to mark inode dirty even if
1702 * new_i_size is less that inode->i_size
1703 * bu greater than i_disksize.(hint delalloc)
1705 ext4_update_i_disksize(inode
, (pos
+ copied
));
1709 page_cache_release(page
);
1712 * Don't mark the inode dirty under page lock. First, it unnecessarily
1713 * makes the holding time of page lock longer. Second, it forces lock
1714 * ordering of page lock and transaction start for journaling
1718 ext4_mark_inode_dirty(handle
, inode
);
1724 * We need to pick up the new inode size which generic_commit_write gave us
1725 * `file' can be NULL - eg, when called from page_symlink().
1727 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1728 * buffers are managed internally.
1730 static int ext4_ordered_write_end(struct file
*file
,
1731 struct address_space
*mapping
,
1732 loff_t pos
, unsigned len
, unsigned copied
,
1733 struct page
*page
, void *fsdata
)
1735 handle_t
*handle
= ext4_journal_current_handle();
1736 struct inode
*inode
= mapping
->host
;
1739 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1740 ret
= ext4_jbd2_file_inode(handle
, inode
);
1743 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1746 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1747 /* if we have allocated more blocks and copied
1748 * less. We will have blocks allocated outside
1749 * inode->i_size. So truncate them
1751 ext4_orphan_add(handle
, inode
);
1755 ret2
= ext4_journal_stop(handle
);
1759 if (pos
+ len
> inode
->i_size
) {
1760 ext4_truncate_failed_write(inode
);
1762 * If truncate failed early the inode might still be
1763 * on the orphan list; we need to make sure the inode
1764 * is removed from the orphan list in that case.
1767 ext4_orphan_del(NULL
, inode
);
1771 return ret
? ret
: copied
;
1774 static int ext4_writeback_write_end(struct file
*file
,
1775 struct address_space
*mapping
,
1776 loff_t pos
, unsigned len
, unsigned copied
,
1777 struct page
*page
, void *fsdata
)
1779 handle_t
*handle
= ext4_journal_current_handle();
1780 struct inode
*inode
= mapping
->host
;
1783 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1784 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1787 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1788 /* if we have allocated more blocks and copied
1789 * less. We will have blocks allocated outside
1790 * inode->i_size. So truncate them
1792 ext4_orphan_add(handle
, inode
);
1797 ret2
= ext4_journal_stop(handle
);
1801 if (pos
+ len
> inode
->i_size
) {
1802 ext4_truncate_failed_write(inode
);
1804 * If truncate failed early the inode might still be
1805 * on the orphan list; we need to make sure the inode
1806 * is removed from the orphan list in that case.
1809 ext4_orphan_del(NULL
, inode
);
1812 return ret
? ret
: copied
;
1815 static int ext4_journalled_write_end(struct file
*file
,
1816 struct address_space
*mapping
,
1817 loff_t pos
, unsigned len
, unsigned copied
,
1818 struct page
*page
, void *fsdata
)
1820 handle_t
*handle
= ext4_journal_current_handle();
1821 struct inode
*inode
= mapping
->host
;
1827 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1828 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1832 if (!PageUptodate(page
))
1834 page_zero_new_buffers(page
, from
+copied
, to
);
1837 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1838 to
, &partial
, write_end_fn
);
1840 SetPageUptodate(page
);
1841 new_i_size
= pos
+ copied
;
1842 if (new_i_size
> inode
->i_size
)
1843 i_size_write(inode
, pos
+copied
);
1844 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1845 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1846 ext4_update_i_disksize(inode
, new_i_size
);
1847 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1853 page_cache_release(page
);
1854 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1855 /* if we have allocated more blocks and copied
1856 * less. We will have blocks allocated outside
1857 * inode->i_size. So truncate them
1859 ext4_orphan_add(handle
, inode
);
1861 ret2
= ext4_journal_stop(handle
);
1864 if (pos
+ len
> inode
->i_size
) {
1865 ext4_truncate_failed_write(inode
);
1867 * If truncate failed early the inode might still be
1868 * on the orphan list; we need to make sure the inode
1869 * is removed from the orphan list in that case.
1872 ext4_orphan_del(NULL
, inode
);
1875 return ret
? ret
: copied
;
1879 * Reserve a single block located at lblock
1881 static int ext4_da_reserve_space(struct inode
*inode
, sector_t lblock
)
1884 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1885 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1886 unsigned long md_needed
;
1890 * recalculate the amount of metadata blocks to reserve
1891 * in order to allocate nrblocks
1892 * worse case is one extent per block
1895 spin_lock(&ei
->i_block_reservation_lock
);
1896 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1897 trace_ext4_da_reserve_space(inode
, md_needed
);
1898 spin_unlock(&ei
->i_block_reservation_lock
);
1901 * We will charge metadata quota at writeout time; this saves
1902 * us from metadata over-estimation, though we may go over by
1903 * a small amount in the end. Here we just reserve for data.
1905 ret
= dquot_reserve_block(inode
, 1);
1909 * We do still charge estimated metadata to the sb though;
1910 * we cannot afford to run out of free blocks.
1912 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1)) {
1913 dquot_release_reservation_block(inode
, 1);
1914 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1920 spin_lock(&ei
->i_block_reservation_lock
);
1921 ei
->i_reserved_data_blocks
++;
1922 ei
->i_reserved_meta_blocks
+= md_needed
;
1923 spin_unlock(&ei
->i_block_reservation_lock
);
1925 return 0; /* success */
1928 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1930 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1931 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1934 return; /* Nothing to release, exit */
1936 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1938 trace_ext4_da_release_space(inode
, to_free
);
1939 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1941 * if there aren't enough reserved blocks, then the
1942 * counter is messed up somewhere. Since this
1943 * function is called from invalidate page, it's
1944 * harmless to return without any action.
1946 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1947 "ino %lu, to_free %d with only %d reserved "
1948 "data blocks\n", inode
->i_ino
, to_free
,
1949 ei
->i_reserved_data_blocks
);
1951 to_free
= ei
->i_reserved_data_blocks
;
1953 ei
->i_reserved_data_blocks
-= to_free
;
1955 if (ei
->i_reserved_data_blocks
== 0) {
1957 * We can release all of the reserved metadata blocks
1958 * only when we have written all of the delayed
1959 * allocation blocks.
1961 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1962 ei
->i_reserved_meta_blocks
);
1963 ei
->i_reserved_meta_blocks
= 0;
1964 ei
->i_da_metadata_calc_len
= 0;
1967 /* update fs dirty data blocks counter */
1968 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1970 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1972 dquot_release_reservation_block(inode
, to_free
);
1975 static void ext4_da_page_release_reservation(struct page
*page
,
1976 unsigned long offset
)
1979 struct buffer_head
*head
, *bh
;
1980 unsigned int curr_off
= 0;
1982 head
= page_buffers(page
);
1985 unsigned int next_off
= curr_off
+ bh
->b_size
;
1987 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1989 clear_buffer_delay(bh
);
1991 curr_off
= next_off
;
1992 } while ((bh
= bh
->b_this_page
) != head
);
1993 ext4_da_release_space(page
->mapping
->host
, to_release
);
1997 * Delayed allocation stuff
2001 * mpage_da_submit_io - walks through extent of pages and try to write
2002 * them with writepage() call back
2004 * @mpd->inode: inode
2005 * @mpd->first_page: first page of the extent
2006 * @mpd->next_page: page after the last page of the extent
2008 * By the time mpage_da_submit_io() is called we expect all blocks
2009 * to be allocated. this may be wrong if allocation failed.
2011 * As pages are already locked by write_cache_pages(), we can't use it
2013 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
2014 struct ext4_map_blocks
*map
)
2016 struct pagevec pvec
;
2017 unsigned long index
, end
;
2018 int ret
= 0, err
, nr_pages
, i
;
2019 struct inode
*inode
= mpd
->inode
;
2020 struct address_space
*mapping
= inode
->i_mapping
;
2021 loff_t size
= i_size_read(inode
);
2022 unsigned int len
, block_start
;
2023 struct buffer_head
*bh
, *page_bufs
= NULL
;
2024 int journal_data
= ext4_should_journal_data(inode
);
2025 sector_t pblock
= 0, cur_logical
= 0;
2026 struct ext4_io_submit io_submit
;
2028 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
2029 memset(&io_submit
, 0, sizeof(io_submit
));
2031 * We need to start from the first_page to the next_page - 1
2032 * to make sure we also write the mapped dirty buffer_heads.
2033 * If we look at mpd->b_blocknr we would only be looking
2034 * at the currently mapped buffer_heads.
2036 index
= mpd
->first_page
;
2037 end
= mpd
->next_page
- 1;
2039 pagevec_init(&pvec
, 0);
2040 while (index
<= end
) {
2041 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2044 for (i
= 0; i
< nr_pages
; i
++) {
2045 int commit_write
= 0, redirty_page
= 0;
2046 struct page
*page
= pvec
.pages
[i
];
2048 index
= page
->index
;
2052 if (index
== size
>> PAGE_CACHE_SHIFT
)
2053 len
= size
& ~PAGE_CACHE_MASK
;
2055 len
= PAGE_CACHE_SIZE
;
2057 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
2059 pblock
= map
->m_pblk
+ (cur_logical
-
2064 BUG_ON(!PageLocked(page
));
2065 BUG_ON(PageWriteback(page
));
2068 * If the page does not have buffers (for
2069 * whatever reason), try to create them using
2070 * __block_write_begin. If this fails,
2071 * redirty the page and move on.
2073 if (!page_has_buffers(page
)) {
2074 if (__block_write_begin(page
, 0, len
,
2075 noalloc_get_block_write
)) {
2077 redirty_page_for_writepage(mpd
->wbc
,
2085 bh
= page_bufs
= page_buffers(page
);
2090 if (map
&& (cur_logical
>= map
->m_lblk
) &&
2091 (cur_logical
<= (map
->m_lblk
+
2092 (map
->m_len
- 1)))) {
2093 if (buffer_delay(bh
)) {
2094 clear_buffer_delay(bh
);
2095 bh
->b_blocknr
= pblock
;
2097 if (buffer_unwritten(bh
) ||
2099 BUG_ON(bh
->b_blocknr
!= pblock
);
2100 if (map
->m_flags
& EXT4_MAP_UNINIT
)
2101 set_buffer_uninit(bh
);
2102 clear_buffer_unwritten(bh
);
2105 /* redirty page if block allocation undone */
2106 if (buffer_delay(bh
) || buffer_unwritten(bh
))
2108 bh
= bh
->b_this_page
;
2109 block_start
+= bh
->b_size
;
2112 } while (bh
!= page_bufs
);
2118 /* mark the buffer_heads as dirty & uptodate */
2119 block_commit_write(page
, 0, len
);
2122 * Delalloc doesn't support data journalling,
2123 * but eventually maybe we'll lift this
2126 if (unlikely(journal_data
&& PageChecked(page
)))
2127 err
= __ext4_journalled_writepage(page
, len
);
2128 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
2129 err
= ext4_bio_write_page(&io_submit
, page
,
2132 err
= block_write_full_page(page
,
2133 noalloc_get_block_write
, mpd
->wbc
);
2136 mpd
->pages_written
++;
2138 * In error case, we have to continue because
2139 * remaining pages are still locked
2144 pagevec_release(&pvec
);
2146 ext4_io_submit(&io_submit
);
2150 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2151 sector_t logical
, long blk_cnt
)
2155 struct pagevec pvec
;
2156 struct inode
*inode
= mpd
->inode
;
2157 struct address_space
*mapping
= inode
->i_mapping
;
2159 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2160 end
= (logical
+ blk_cnt
- 1) >>
2161 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2162 while (index
<= end
) {
2163 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2166 for (i
= 0; i
< nr_pages
; i
++) {
2167 struct page
*page
= pvec
.pages
[i
];
2168 if (page
->index
> end
)
2170 BUG_ON(!PageLocked(page
));
2171 BUG_ON(PageWriteback(page
));
2172 block_invalidatepage(page
, 0);
2173 ClearPageUptodate(page
);
2176 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
2177 pagevec_release(&pvec
);
2182 static void ext4_print_free_blocks(struct inode
*inode
)
2184 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2185 printk(KERN_CRIT
"Total free blocks count %lld\n",
2186 ext4_count_free_blocks(inode
->i_sb
));
2187 printk(KERN_CRIT
"Free/Dirty block details\n");
2188 printk(KERN_CRIT
"free_blocks=%lld\n",
2189 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2190 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2191 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2192 printk(KERN_CRIT
"Block reservation details\n");
2193 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2194 EXT4_I(inode
)->i_reserved_data_blocks
);
2195 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2196 EXT4_I(inode
)->i_reserved_meta_blocks
);
2201 * mpage_da_map_and_submit - go through given space, map them
2202 * if necessary, and then submit them for I/O
2204 * @mpd - bh describing space
2206 * The function skips space we know is already mapped to disk blocks.
2209 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
2211 int err
, blks
, get_blocks_flags
;
2212 struct ext4_map_blocks map
, *mapp
= NULL
;
2213 sector_t next
= mpd
->b_blocknr
;
2214 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2215 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2216 handle_t
*handle
= NULL
;
2219 * If the blocks are mapped already, or we couldn't accumulate
2220 * any blocks, then proceed immediately to the submission stage.
2222 if ((mpd
->b_size
== 0) ||
2223 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2224 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2225 !(mpd
->b_state
& (1 << BH_Unwritten
))))
2228 handle
= ext4_journal_current_handle();
2232 * Call ext4_map_blocks() to allocate any delayed allocation
2233 * blocks, or to convert an uninitialized extent to be
2234 * initialized (in the case where we have written into
2235 * one or more preallocated blocks).
2237 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2238 * indicate that we are on the delayed allocation path. This
2239 * affects functions in many different parts of the allocation
2240 * call path. This flag exists primarily because we don't
2241 * want to change *many* call functions, so ext4_map_blocks()
2242 * will set the magic i_delalloc_reserved_flag once the
2243 * inode's allocation semaphore is taken.
2245 * If the blocks in questions were delalloc blocks, set
2246 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2247 * variables are updated after the blocks have been allocated.
2250 map
.m_len
= max_blocks
;
2251 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
2252 if (ext4_should_dioread_nolock(mpd
->inode
))
2253 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2254 if (mpd
->b_state
& (1 << BH_Delay
))
2255 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2257 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
2259 struct super_block
*sb
= mpd
->inode
->i_sb
;
2263 * If get block returns EAGAIN or ENOSPC and there
2264 * appears to be free blocks we will call
2265 * ext4_writepage() for all of the pages which will
2266 * just redirty the pages.
2271 if (err
== -ENOSPC
&&
2272 ext4_count_free_blocks(sb
)) {
2278 * get block failure will cause us to loop in
2279 * writepages, because a_ops->writepage won't be able
2280 * to make progress. The page will be redirtied by
2281 * writepage and writepages will again try to write
2284 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2285 ext4_msg(sb
, KERN_CRIT
,
2286 "delayed block allocation failed for inode %lu "
2287 "at logical offset %llu with max blocks %zd "
2288 "with error %d", mpd
->inode
->i_ino
,
2289 (unsigned long long) next
,
2290 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2291 ext4_msg(sb
, KERN_CRIT
,
2292 "This should not happen!! Data will be lost\n");
2294 ext4_print_free_blocks(mpd
->inode
);
2296 /* invalidate all the pages */
2297 ext4_da_block_invalidatepages(mpd
, next
,
2298 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2304 if (map
.m_flags
& EXT4_MAP_NEW
) {
2305 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
2308 for (i
= 0; i
< map
.m_len
; i
++)
2309 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
2312 if (ext4_should_order_data(mpd
->inode
)) {
2313 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2315 /* This only happens if the journal is aborted */
2320 * Update on-disk size along with block allocation.
2322 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2323 if (disksize
> i_size_read(mpd
->inode
))
2324 disksize
= i_size_read(mpd
->inode
);
2325 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2326 ext4_update_i_disksize(mpd
->inode
, disksize
);
2327 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
2329 ext4_error(mpd
->inode
->i_sb
,
2330 "Failed to mark inode %lu dirty",
2335 mpage_da_submit_io(mpd
, mapp
);
2339 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2340 (1 << BH_Delay) | (1 << BH_Unwritten))
2343 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2345 * @mpd->lbh - extent of blocks
2346 * @logical - logical number of the block in the file
2347 * @bh - bh of the block (used to access block's state)
2349 * the function is used to collect contig. blocks in same state
2351 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2352 sector_t logical
, size_t b_size
,
2353 unsigned long b_state
)
2356 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2359 * XXX Don't go larger than mballoc is willing to allocate
2360 * This is a stopgap solution. We eventually need to fold
2361 * mpage_da_submit_io() into this function and then call
2362 * ext4_map_blocks() multiple times in a loop
2364 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
2367 /* check if thereserved journal credits might overflow */
2368 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
2369 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2371 * With non-extent format we are limited by the journal
2372 * credit available. Total credit needed to insert
2373 * nrblocks contiguous blocks is dependent on the
2374 * nrblocks. So limit nrblocks.
2377 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2378 EXT4_MAX_TRANS_DATA
) {
2380 * Adding the new buffer_head would make it cross the
2381 * allowed limit for which we have journal credit
2382 * reserved. So limit the new bh->b_size
2384 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2385 mpd
->inode
->i_blkbits
;
2386 /* we will do mpage_da_submit_io in the next loop */
2390 * First block in the extent
2392 if (mpd
->b_size
== 0) {
2393 mpd
->b_blocknr
= logical
;
2394 mpd
->b_size
= b_size
;
2395 mpd
->b_state
= b_state
& BH_FLAGS
;
2399 next
= mpd
->b_blocknr
+ nrblocks
;
2401 * Can we merge the block to our big extent?
2403 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2404 mpd
->b_size
+= b_size
;
2410 * We couldn't merge the block to our extent, so we
2411 * need to flush current extent and start new one
2413 mpage_da_map_and_submit(mpd
);
2417 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2419 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2423 * __mpage_da_writepage - finds extent of pages and blocks
2425 * @page: page to consider
2426 * @wbc: not used, we just follow rules
2429 * The function finds extents of pages and scan them for all blocks.
2431 static int __mpage_da_writepage(struct page
*page
,
2432 struct writeback_control
*wbc
,
2433 struct mpage_da_data
*mpd
)
2435 struct inode
*inode
= mpd
->inode
;
2436 struct buffer_head
*bh
, *head
;
2440 * Can we merge this page to current extent?
2442 if (mpd
->next_page
!= page
->index
) {
2444 * Nope, we can't. So, we map non-allocated blocks
2445 * and start IO on them
2447 if (mpd
->next_page
!= mpd
->first_page
) {
2448 mpage_da_map_and_submit(mpd
);
2450 * skip rest of the page in the page_vec
2452 redirty_page_for_writepage(wbc
, page
);
2454 return MPAGE_DA_EXTENT_TAIL
;
2458 * Start next extent of pages ...
2460 mpd
->first_page
= page
->index
;
2470 mpd
->next_page
= page
->index
+ 1;
2471 logical
= (sector_t
) page
->index
<<
2472 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2474 if (!page_has_buffers(page
)) {
2475 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2476 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2478 return MPAGE_DA_EXTENT_TAIL
;
2481 * Page with regular buffer heads, just add all dirty ones
2483 head
= page_buffers(page
);
2486 BUG_ON(buffer_locked(bh
));
2488 * We need to try to allocate
2489 * unmapped blocks in the same page.
2490 * Otherwise we won't make progress
2491 * with the page in ext4_writepage
2493 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2494 mpage_add_bh_to_extent(mpd
, logical
,
2498 return MPAGE_DA_EXTENT_TAIL
;
2499 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2501 * mapped dirty buffer. We need to update
2502 * the b_state because we look at
2503 * b_state in mpage_da_map_blocks. We don't
2504 * update b_size because if we find an
2505 * unmapped buffer_head later we need to
2506 * use the b_state flag of that buffer_head.
2508 if (mpd
->b_size
== 0)
2509 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2512 } while ((bh
= bh
->b_this_page
) != head
);
2519 * This is a special get_blocks_t callback which is used by
2520 * ext4_da_write_begin(). It will either return mapped block or
2521 * reserve space for a single block.
2523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2524 * We also have b_blocknr = -1 and b_bdev initialized properly
2526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2528 * initialized properly.
2530 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2531 struct buffer_head
*bh
, int create
)
2533 struct ext4_map_blocks map
;
2535 sector_t invalid_block
= ~((sector_t
) 0xffff);
2537 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2540 BUG_ON(create
== 0);
2541 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
2543 map
.m_lblk
= iblock
;
2547 * first, we need to know whether the block is allocated already
2548 * preallocated blocks are unmapped but should treated
2549 * the same as allocated blocks.
2551 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
2555 if (buffer_delay(bh
))
2556 return 0; /* Not sure this could or should happen */
2558 * XXX: __block_write_begin() unmaps passed block, is it OK?
2560 ret
= ext4_da_reserve_space(inode
, iblock
);
2562 /* not enough space to reserve */
2565 map_bh(bh
, inode
->i_sb
, invalid_block
);
2567 set_buffer_delay(bh
);
2571 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
2572 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
2574 if (buffer_unwritten(bh
)) {
2575 /* A delayed write to unwritten bh should be marked
2576 * new and mapped. Mapped ensures that we don't do
2577 * get_block multiple times when we write to the same
2578 * offset and new ensures that we do proper zero out
2579 * for partial write.
2582 set_buffer_mapped(bh
);
2588 * This function is used as a standard get_block_t calback function
2589 * when there is no desire to allocate any blocks. It is used as a
2590 * callback function for block_write_begin() and block_write_full_page().
2591 * These functions should only try to map a single block at a time.
2593 * Since this function doesn't do block allocations even if the caller
2594 * requests it by passing in create=1, it is critically important that
2595 * any caller checks to make sure that any buffer heads are returned
2596 * by this function are either all already mapped or marked for
2597 * delayed allocation before calling block_write_full_page(). Otherwise,
2598 * b_blocknr could be left unitialized, and the page write functions will
2599 * be taken by surprise.
2601 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2602 struct buffer_head
*bh_result
, int create
)
2604 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2605 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
2608 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2614 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2620 static int __ext4_journalled_writepage(struct page
*page
,
2623 struct address_space
*mapping
= page
->mapping
;
2624 struct inode
*inode
= mapping
->host
;
2625 struct buffer_head
*page_bufs
;
2626 handle_t
*handle
= NULL
;
2630 ClearPageChecked(page
);
2631 page_bufs
= page_buffers(page
);
2633 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2634 /* As soon as we unlock the page, it can go away, but we have
2635 * references to buffers so we are safe */
2638 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2639 if (IS_ERR(handle
)) {
2640 ret
= PTR_ERR(handle
);
2644 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2645 do_journal_get_write_access
);
2647 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2651 err
= ext4_journal_stop(handle
);
2655 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2656 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2661 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
2662 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
2665 * Note that we don't need to start a transaction unless we're journaling data
2666 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2667 * need to file the inode to the transaction's list in ordered mode because if
2668 * we are writing back data added by write(), the inode is already there and if
2669 * we are writing back data modified via mmap(), noone guarantees in which
2670 * transaction the data will hit the disk. In case we are journaling data, we
2671 * cannot start transaction directly because transaction start ranks above page
2672 * lock so we have to do some magic.
2674 * This function can get called via...
2675 * - ext4_da_writepages after taking page lock (have journal handle)
2676 * - journal_submit_inode_data_buffers (no journal handle)
2677 * - shrink_page_list via pdflush (no journal handle)
2678 * - grab_page_cache when doing write_begin (have journal handle)
2680 * We don't do any block allocation in this function. If we have page with
2681 * multiple blocks we need to write those buffer_heads that are mapped. This
2682 * is important for mmaped based write. So if we do with blocksize 1K
2683 * truncate(f, 1024);
2684 * a = mmap(f, 0, 4096);
2686 * truncate(f, 4096);
2687 * we have in the page first buffer_head mapped via page_mkwrite call back
2688 * but other bufer_heads would be unmapped but dirty(dirty done via the
2689 * do_wp_page). So writepage should write the first block. If we modify
2690 * the mmap area beyond 1024 we will again get a page_fault and the
2691 * page_mkwrite callback will do the block allocation and mark the
2692 * buffer_heads mapped.
2694 * We redirty the page if we have any buffer_heads that is either delay or
2695 * unwritten in the page.
2697 * We can get recursively called as show below.
2699 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2702 * But since we don't do any block allocation we should not deadlock.
2703 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2705 static int ext4_writepage(struct page
*page
,
2706 struct writeback_control
*wbc
)
2708 int ret
= 0, commit_write
= 0;
2711 struct buffer_head
*page_bufs
= NULL
;
2712 struct inode
*inode
= page
->mapping
->host
;
2714 trace_ext4_writepage(inode
, page
);
2715 size
= i_size_read(inode
);
2716 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2717 len
= size
& ~PAGE_CACHE_MASK
;
2719 len
= PAGE_CACHE_SIZE
;
2722 * If the page does not have buffers (for whatever reason),
2723 * try to create them using __block_write_begin. If this
2724 * fails, redirty the page and move on.
2726 if (!page_has_buffers(page
)) {
2727 if (__block_write_begin(page
, 0, len
,
2728 noalloc_get_block_write
)) {
2730 redirty_page_for_writepage(wbc
, page
);
2736 page_bufs
= page_buffers(page
);
2737 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2738 ext4_bh_delay_or_unwritten
)) {
2740 * We don't want to do block allocation, so redirty
2741 * the page and return. We may reach here when we do
2742 * a journal commit via journal_submit_inode_data_buffers.
2743 * We can also reach here via shrink_page_list
2748 /* now mark the buffer_heads as dirty and uptodate */
2749 block_commit_write(page
, 0, len
);
2751 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2753 * It's mmapped pagecache. Add buffers and journal it. There
2754 * doesn't seem much point in redirtying the page here.
2756 return __ext4_journalled_writepage(page
, len
);
2758 if (buffer_uninit(page_bufs
)) {
2759 ext4_set_bh_endio(page_bufs
, inode
);
2760 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
2761 wbc
, ext4_end_io_buffer_write
);
2763 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2770 * This is called via ext4_da_writepages() to
2771 * calulate the total number of credits to reserve to fit
2772 * a single extent allocation into a single transaction,
2773 * ext4_da_writpeages() will loop calling this before
2774 * the block allocation.
2777 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2779 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2782 * With non-extent format the journal credit needed to
2783 * insert nrblocks contiguous block is dependent on
2784 * number of contiguous block. So we will limit
2785 * number of contiguous block to a sane value
2787 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2788 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2789 max_blocks
= EXT4_MAX_TRANS_DATA
;
2791 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2795 * write_cache_pages_da - walk the list of dirty pages of the given
2796 * address space and call the callback function (which usually writes
2799 * This is a forked version of write_cache_pages(). Differences:
2800 * Range cyclic is ignored.
2801 * no_nrwrite_index_update is always presumed true
2803 static int write_cache_pages_da(struct address_space
*mapping
,
2804 struct writeback_control
*wbc
,
2805 struct mpage_da_data
*mpd
,
2806 pgoff_t
*done_index
)
2810 struct pagevec pvec
;
2813 pgoff_t end
; /* Inclusive */
2814 long nr_to_write
= wbc
->nr_to_write
;
2817 pagevec_init(&pvec
, 0);
2818 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2819 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2821 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2822 tag
= PAGECACHE_TAG_TOWRITE
;
2824 tag
= PAGECACHE_TAG_DIRTY
;
2826 *done_index
= index
;
2827 while (!done
&& (index
<= end
)) {
2830 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2831 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2835 for (i
= 0; i
< nr_pages
; i
++) {
2836 struct page
*page
= pvec
.pages
[i
];
2839 * At this point, the page may be truncated or
2840 * invalidated (changing page->mapping to NULL), or
2841 * even swizzled back from swapper_space to tmpfs file
2842 * mapping. However, page->index will not change
2843 * because we have a reference on the page.
2845 if (page
->index
> end
) {
2850 *done_index
= page
->index
+ 1;
2855 * Page truncated or invalidated. We can freely skip it
2856 * then, even for data integrity operations: the page
2857 * has disappeared concurrently, so there could be no
2858 * real expectation of this data interity operation
2859 * even if there is now a new, dirty page at the same
2860 * pagecache address.
2862 if (unlikely(page
->mapping
!= mapping
)) {
2868 if (!PageDirty(page
)) {
2869 /* someone wrote it for us */
2870 goto continue_unlock
;
2873 if (PageWriteback(page
)) {
2874 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
2875 wait_on_page_writeback(page
);
2877 goto continue_unlock
;
2880 BUG_ON(PageWriteback(page
));
2881 if (!clear_page_dirty_for_io(page
))
2882 goto continue_unlock
;
2884 ret
= __mpage_da_writepage(page
, wbc
, mpd
);
2885 if (unlikely(ret
)) {
2886 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
2895 if (nr_to_write
> 0) {
2897 if (nr_to_write
== 0 &&
2898 wbc
->sync_mode
== WB_SYNC_NONE
) {
2900 * We stop writing back only if we are
2901 * not doing integrity sync. In case of
2902 * integrity sync we have to keep going
2903 * because someone may be concurrently
2904 * dirtying pages, and we might have
2905 * synced a lot of newly appeared dirty
2906 * pages, but have not synced all of the
2914 pagevec_release(&pvec
);
2921 static int ext4_da_writepages(struct address_space
*mapping
,
2922 struct writeback_control
*wbc
)
2925 int range_whole
= 0;
2926 handle_t
*handle
= NULL
;
2927 struct mpage_da_data mpd
;
2928 struct inode
*inode
= mapping
->host
;
2929 int pages_written
= 0;
2931 unsigned int max_pages
;
2932 int range_cyclic
, cycled
= 1, io_done
= 0;
2933 int needed_blocks
, ret
= 0;
2934 long desired_nr_to_write
, nr_to_writebump
= 0;
2935 loff_t range_start
= wbc
->range_start
;
2936 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2937 pgoff_t done_index
= 0;
2940 trace_ext4_da_writepages(inode
, wbc
);
2943 * No pages to write? This is mainly a kludge to avoid starting
2944 * a transaction for special inodes like journal inode on last iput()
2945 * because that could violate lock ordering on umount
2947 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2951 * If the filesystem has aborted, it is read-only, so return
2952 * right away instead of dumping stack traces later on that
2953 * will obscure the real source of the problem. We test
2954 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2955 * the latter could be true if the filesystem is mounted
2956 * read-only, and in that case, ext4_da_writepages should
2957 * *never* be called, so if that ever happens, we would want
2960 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2963 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2966 range_cyclic
= wbc
->range_cyclic
;
2967 if (wbc
->range_cyclic
) {
2968 index
= mapping
->writeback_index
;
2971 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2972 wbc
->range_end
= LLONG_MAX
;
2973 wbc
->range_cyclic
= 0;
2976 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2977 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2981 * This works around two forms of stupidity. The first is in
2982 * the writeback code, which caps the maximum number of pages
2983 * written to be 1024 pages. This is wrong on multiple
2984 * levels; different architectues have a different page size,
2985 * which changes the maximum amount of data which gets
2986 * written. Secondly, 4 megabytes is way too small. XFS
2987 * forces this value to be 16 megabytes by multiplying
2988 * nr_to_write parameter by four, and then relies on its
2989 * allocator to allocate larger extents to make them
2990 * contiguous. Unfortunately this brings us to the second
2991 * stupidity, which is that ext4's mballoc code only allocates
2992 * at most 2048 blocks. So we force contiguous writes up to
2993 * the number of dirty blocks in the inode, or
2994 * sbi->max_writeback_mb_bump whichever is smaller.
2996 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2997 if (!range_cyclic
&& range_whole
) {
2998 if (wbc
->nr_to_write
== LONG_MAX
)
2999 desired_nr_to_write
= wbc
->nr_to_write
;
3001 desired_nr_to_write
= wbc
->nr_to_write
* 8;
3003 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
3005 if (desired_nr_to_write
> max_pages
)
3006 desired_nr_to_write
= max_pages
;
3008 if (wbc
->nr_to_write
< desired_nr_to_write
) {
3009 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
3010 wbc
->nr_to_write
= desired_nr_to_write
;
3014 mpd
.inode
= mapping
->host
;
3016 pages_skipped
= wbc
->pages_skipped
;
3019 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3020 tag_pages_for_writeback(mapping
, index
, end
);
3022 while (!ret
&& wbc
->nr_to_write
> 0) {
3025 * we insert one extent at a time. So we need
3026 * credit needed for single extent allocation.
3027 * journalled mode is currently not supported
3030 BUG_ON(ext4_should_journal_data(inode
));
3031 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
3033 /* start a new transaction*/
3034 handle
= ext4_journal_start(inode
, needed_blocks
);
3035 if (IS_ERR(handle
)) {
3036 ret
= PTR_ERR(handle
);
3037 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
3038 "%ld pages, ino %lu; err %d", __func__
,
3039 wbc
->nr_to_write
, inode
->i_ino
, ret
);
3040 goto out_writepages
;
3044 * Now call __mpage_da_writepage to find the next
3045 * contiguous region of logical blocks that need
3046 * blocks to be allocated by ext4. We don't actually
3047 * submit the blocks for I/O here, even though
3048 * write_cache_pages thinks it will, and will set the
3049 * pages as clean for write before calling
3050 * __mpage_da_writepage().
3058 mpd
.pages_written
= 0;
3060 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
3062 * If we have a contiguous extent of pages and we
3063 * haven't done the I/O yet, map the blocks and submit
3066 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
3067 mpage_da_map_and_submit(&mpd
);
3068 ret
= MPAGE_DA_EXTENT_TAIL
;
3070 trace_ext4_da_write_pages(inode
, &mpd
);
3071 wbc
->nr_to_write
-= mpd
.pages_written
;
3073 ext4_journal_stop(handle
);
3075 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
3076 /* commit the transaction which would
3077 * free blocks released in the transaction
3080 jbd2_journal_force_commit_nested(sbi
->s_journal
);
3081 wbc
->pages_skipped
= pages_skipped
;
3083 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
3085 * got one extent now try with
3088 pages_written
+= mpd
.pages_written
;
3089 wbc
->pages_skipped
= pages_skipped
;
3092 } else if (wbc
->nr_to_write
)
3094 * There is no more writeout needed
3095 * or we requested for a noblocking writeout
3096 * and we found the device congested
3100 if (!io_done
&& !cycled
) {
3103 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
3104 wbc
->range_end
= mapping
->writeback_index
- 1;
3107 if (pages_skipped
!= wbc
->pages_skipped
)
3108 ext4_msg(inode
->i_sb
, KERN_CRIT
,
3109 "This should not happen leaving %s "
3110 "with nr_to_write = %ld ret = %d",
3111 __func__
, wbc
->nr_to_write
, ret
);
3114 wbc
->range_cyclic
= range_cyclic
;
3115 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3117 * set the writeback_index so that range_cyclic
3118 * mode will write it back later
3120 mapping
->writeback_index
= done_index
;
3123 wbc
->nr_to_write
-= nr_to_writebump
;
3124 wbc
->range_start
= range_start
;
3125 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3129 #define FALL_BACK_TO_NONDELALLOC 1
3130 static int ext4_nonda_switch(struct super_block
*sb
)
3132 s64 free_blocks
, dirty_blocks
;
3133 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3136 * switch to non delalloc mode if we are running low
3137 * on free block. The free block accounting via percpu
3138 * counters can get slightly wrong with percpu_counter_batch getting
3139 * accumulated on each CPU without updating global counters
3140 * Delalloc need an accurate free block accounting. So switch
3141 * to non delalloc when we are near to error range.
3143 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3144 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3145 if (2 * free_blocks
< 3 * dirty_blocks
||
3146 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3148 * free block count is less than 150% of dirty blocks
3149 * or free blocks is less than watermark
3154 * Even if we don't switch but are nearing capacity,
3155 * start pushing delalloc when 1/2 of free blocks are dirty.
3157 if (free_blocks
< 2 * dirty_blocks
)
3158 writeback_inodes_sb_if_idle(sb
);
3163 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3164 loff_t pos
, unsigned len
, unsigned flags
,
3165 struct page
**pagep
, void **fsdata
)
3167 int ret
, retries
= 0;
3170 struct inode
*inode
= mapping
->host
;
3173 index
= pos
>> PAGE_CACHE_SHIFT
;
3175 if (ext4_nonda_switch(inode
->i_sb
)) {
3176 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3177 return ext4_write_begin(file
, mapping
, pos
,
3178 len
, flags
, pagep
, fsdata
);
3180 *fsdata
= (void *)0;
3181 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3184 * With delayed allocation, we don't log the i_disksize update
3185 * if there is delayed block allocation. But we still need
3186 * to journalling the i_disksize update if writes to the end
3187 * of file which has an already mapped buffer.
3189 handle
= ext4_journal_start(inode
, 1);
3190 if (IS_ERR(handle
)) {
3191 ret
= PTR_ERR(handle
);
3194 /* We cannot recurse into the filesystem as the transaction is already
3196 flags
|= AOP_FLAG_NOFS
;
3198 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3200 ext4_journal_stop(handle
);
3206 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
3209 ext4_journal_stop(handle
);
3210 page_cache_release(page
);
3212 * block_write_begin may have instantiated a few blocks
3213 * outside i_size. Trim these off again. Don't need
3214 * i_size_read because we hold i_mutex.
3216 if (pos
+ len
> inode
->i_size
)
3217 ext4_truncate_failed_write(inode
);
3220 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3227 * Check if we should update i_disksize
3228 * when write to the end of file but not require block allocation
3230 static int ext4_da_should_update_i_disksize(struct page
*page
,
3231 unsigned long offset
)
3233 struct buffer_head
*bh
;
3234 struct inode
*inode
= page
->mapping
->host
;
3238 bh
= page_buffers(page
);
3239 idx
= offset
>> inode
->i_blkbits
;
3241 for (i
= 0; i
< idx
; i
++)
3242 bh
= bh
->b_this_page
;
3244 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3249 static int ext4_da_write_end(struct file
*file
,
3250 struct address_space
*mapping
,
3251 loff_t pos
, unsigned len
, unsigned copied
,
3252 struct page
*page
, void *fsdata
)
3254 struct inode
*inode
= mapping
->host
;
3256 handle_t
*handle
= ext4_journal_current_handle();
3258 unsigned long start
, end
;
3259 int write_mode
= (int)(unsigned long)fsdata
;
3261 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3262 if (ext4_should_order_data(inode
)) {
3263 return ext4_ordered_write_end(file
, mapping
, pos
,
3264 len
, copied
, page
, fsdata
);
3265 } else if (ext4_should_writeback_data(inode
)) {
3266 return ext4_writeback_write_end(file
, mapping
, pos
,
3267 len
, copied
, page
, fsdata
);
3273 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3274 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3275 end
= start
+ copied
- 1;
3278 * generic_write_end() will run mark_inode_dirty() if i_size
3279 * changes. So let's piggyback the i_disksize mark_inode_dirty
3283 new_i_size
= pos
+ copied
;
3284 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3285 if (ext4_da_should_update_i_disksize(page
, end
)) {
3286 down_write(&EXT4_I(inode
)->i_data_sem
);
3287 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3289 * Updating i_disksize when extending file
3290 * without needing block allocation
3292 if (ext4_should_order_data(inode
))
3293 ret
= ext4_jbd2_file_inode(handle
,
3296 EXT4_I(inode
)->i_disksize
= new_i_size
;
3298 up_write(&EXT4_I(inode
)->i_data_sem
);
3299 /* We need to mark inode dirty even if
3300 * new_i_size is less that inode->i_size
3301 * bu greater than i_disksize.(hint delalloc)
3303 ext4_mark_inode_dirty(handle
, inode
);
3306 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3311 ret2
= ext4_journal_stop(handle
);
3315 return ret
? ret
: copied
;
3318 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3321 * Drop reserved blocks
3323 BUG_ON(!PageLocked(page
));
3324 if (!page_has_buffers(page
))
3327 ext4_da_page_release_reservation(page
, offset
);
3330 ext4_invalidatepage(page
, offset
);
3336 * Force all delayed allocation blocks to be allocated for a given inode.
3338 int ext4_alloc_da_blocks(struct inode
*inode
)
3340 trace_ext4_alloc_da_blocks(inode
);
3342 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3343 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3347 * We do something simple for now. The filemap_flush() will
3348 * also start triggering a write of the data blocks, which is
3349 * not strictly speaking necessary (and for users of
3350 * laptop_mode, not even desirable). However, to do otherwise
3351 * would require replicating code paths in:
3353 * ext4_da_writepages() ->
3354 * write_cache_pages() ---> (via passed in callback function)
3355 * __mpage_da_writepage() -->
3356 * mpage_add_bh_to_extent()
3357 * mpage_da_map_blocks()
3359 * The problem is that write_cache_pages(), located in
3360 * mm/page-writeback.c, marks pages clean in preparation for
3361 * doing I/O, which is not desirable if we're not planning on
3364 * We could call write_cache_pages(), and then redirty all of
3365 * the pages by calling redirty_page_for_writeback() but that
3366 * would be ugly in the extreme. So instead we would need to
3367 * replicate parts of the code in the above functions,
3368 * simplifying them becuase we wouldn't actually intend to
3369 * write out the pages, but rather only collect contiguous
3370 * logical block extents, call the multi-block allocator, and
3371 * then update the buffer heads with the block allocations.
3373 * For now, though, we'll cheat by calling filemap_flush(),
3374 * which will map the blocks, and start the I/O, but not
3375 * actually wait for the I/O to complete.
3377 return filemap_flush(inode
->i_mapping
);
3381 * bmap() is special. It gets used by applications such as lilo and by
3382 * the swapper to find the on-disk block of a specific piece of data.
3384 * Naturally, this is dangerous if the block concerned is still in the
3385 * journal. If somebody makes a swapfile on an ext4 data-journaling
3386 * filesystem and enables swap, then they may get a nasty shock when the
3387 * data getting swapped to that swapfile suddenly gets overwritten by
3388 * the original zero's written out previously to the journal and
3389 * awaiting writeback in the kernel's buffer cache.
3391 * So, if we see any bmap calls here on a modified, data-journaled file,
3392 * take extra steps to flush any blocks which might be in the cache.
3394 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3396 struct inode
*inode
= mapping
->host
;
3400 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3401 test_opt(inode
->i_sb
, DELALLOC
)) {
3403 * With delalloc we want to sync the file
3404 * so that we can make sure we allocate
3407 filemap_write_and_wait(mapping
);
3410 if (EXT4_JOURNAL(inode
) &&
3411 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3413 * This is a REALLY heavyweight approach, but the use of
3414 * bmap on dirty files is expected to be extremely rare:
3415 * only if we run lilo or swapon on a freshly made file
3416 * do we expect this to happen.
3418 * (bmap requires CAP_SYS_RAWIO so this does not
3419 * represent an unprivileged user DOS attack --- we'd be
3420 * in trouble if mortal users could trigger this path at
3423 * NB. EXT4_STATE_JDATA is not set on files other than
3424 * regular files. If somebody wants to bmap a directory
3425 * or symlink and gets confused because the buffer
3426 * hasn't yet been flushed to disk, they deserve
3427 * everything they get.
3430 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3431 journal
= EXT4_JOURNAL(inode
);
3432 jbd2_journal_lock_updates(journal
);
3433 err
= jbd2_journal_flush(journal
);
3434 jbd2_journal_unlock_updates(journal
);
3440 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3443 static int ext4_readpage(struct file
*file
, struct page
*page
)
3445 return mpage_readpage(page
, ext4_get_block
);
3449 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3450 struct list_head
*pages
, unsigned nr_pages
)
3452 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3455 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
3457 struct buffer_head
*head
, *bh
;
3458 unsigned int curr_off
= 0;
3460 if (!page_has_buffers(page
))
3462 head
= bh
= page_buffers(page
);
3464 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
3466 ext4_free_io_end(bh
->b_private
);
3467 bh
->b_private
= NULL
;
3468 bh
->b_end_io
= NULL
;
3470 curr_off
= curr_off
+ bh
->b_size
;
3471 bh
= bh
->b_this_page
;
3472 } while (bh
!= head
);
3475 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3477 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3480 * free any io_end structure allocated for buffers to be discarded
3482 if (ext4_should_dioread_nolock(page
->mapping
->host
))
3483 ext4_invalidatepage_free_endio(page
, offset
);
3485 * If it's a full truncate we just forget about the pending dirtying
3488 ClearPageChecked(page
);
3491 jbd2_journal_invalidatepage(journal
, page
, offset
);
3493 block_invalidatepage(page
, offset
);
3496 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3498 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3500 WARN_ON(PageChecked(page
));
3501 if (!page_has_buffers(page
))
3504 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3506 return try_to_free_buffers(page
);
3510 * O_DIRECT for ext3 (or indirect map) based files
3512 * If the O_DIRECT write will extend the file then add this inode to the
3513 * orphan list. So recovery will truncate it back to the original size
3514 * if the machine crashes during the write.
3516 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3517 * crashes then stale disk data _may_ be exposed inside the file. But current
3518 * VFS code falls back into buffered path in that case so we are safe.
3520 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3521 const struct iovec
*iov
, loff_t offset
,
3522 unsigned long nr_segs
)
3524 struct file
*file
= iocb
->ki_filp
;
3525 struct inode
*inode
= file
->f_mapping
->host
;
3526 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3530 size_t count
= iov_length(iov
, nr_segs
);
3534 loff_t final_size
= offset
+ count
;
3536 if (final_size
> inode
->i_size
) {
3537 /* Credits for sb + inode write */
3538 handle
= ext4_journal_start(inode
, 2);
3539 if (IS_ERR(handle
)) {
3540 ret
= PTR_ERR(handle
);
3543 ret
= ext4_orphan_add(handle
, inode
);
3545 ext4_journal_stop(handle
);
3549 ei
->i_disksize
= inode
->i_size
;
3550 ext4_journal_stop(handle
);
3555 if (rw
== READ
&& ext4_should_dioread_nolock(inode
))
3556 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3557 inode
->i_sb
->s_bdev
, iov
,
3559 ext4_get_block
, NULL
, NULL
, 0);
3561 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3562 inode
->i_sb
->s_bdev
, iov
,
3564 ext4_get_block
, NULL
);
3566 if (unlikely((rw
& WRITE
) && ret
< 0)) {
3567 loff_t isize
= i_size_read(inode
);
3568 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
3571 vmtruncate(inode
, isize
);
3574 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3580 /* Credits for sb + inode write */
3581 handle
= ext4_journal_start(inode
, 2);
3582 if (IS_ERR(handle
)) {
3583 /* This is really bad luck. We've written the data
3584 * but cannot extend i_size. Bail out and pretend
3585 * the write failed... */
3586 ret
= PTR_ERR(handle
);
3588 ext4_orphan_del(NULL
, inode
);
3593 ext4_orphan_del(handle
, inode
);
3595 loff_t end
= offset
+ ret
;
3596 if (end
> inode
->i_size
) {
3597 ei
->i_disksize
= end
;
3598 i_size_write(inode
, end
);
3600 * We're going to return a positive `ret'
3601 * here due to non-zero-length I/O, so there's
3602 * no way of reporting error returns from
3603 * ext4_mark_inode_dirty() to userspace. So
3606 ext4_mark_inode_dirty(handle
, inode
);
3609 err
= ext4_journal_stop(handle
);
3618 * ext4_get_block used when preparing for a DIO write or buffer write.
3619 * We allocate an uinitialized extent if blocks haven't been allocated.
3620 * The extent will be converted to initialized after the IO is complete.
3622 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3623 struct buffer_head
*bh_result
, int create
)
3625 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3626 inode
->i_ino
, create
);
3627 return _ext4_get_block(inode
, iblock
, bh_result
,
3628 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3631 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3632 ssize_t size
, void *private, int ret
,
3635 ext4_io_end_t
*io_end
= iocb
->private;
3636 struct workqueue_struct
*wq
;
3637 unsigned long flags
;
3638 struct ext4_inode_info
*ei
;
3640 /* if not async direct IO or dio with 0 bytes write, just return */
3641 if (!io_end
|| !size
)
3644 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3645 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3646 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3649 /* if not aio dio with unwritten extents, just free io and return */
3650 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
3651 ext4_free_io_end(io_end
);
3652 iocb
->private = NULL
;
3655 aio_complete(iocb
, ret
, 0);
3659 io_end
->offset
= offset
;
3660 io_end
->size
= size
;
3662 io_end
->iocb
= iocb
;
3663 io_end
->result
= ret
;
3665 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3667 /* Add the io_end to per-inode completed aio dio list*/
3668 ei
= EXT4_I(io_end
->inode
);
3669 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3670 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
3671 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3673 /* queue the work to convert unwritten extents to written */
3674 queue_work(wq
, &io_end
->work
);
3675 iocb
->private = NULL
;
3678 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
3680 ext4_io_end_t
*io_end
= bh
->b_private
;
3681 struct workqueue_struct
*wq
;
3682 struct inode
*inode
;
3683 unsigned long flags
;
3685 if (!test_clear_buffer_uninit(bh
) || !io_end
)
3688 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
3689 printk("sb umounted, discard end_io request for inode %lu\n",
3690 io_end
->inode
->i_ino
);
3691 ext4_free_io_end(io_end
);
3695 io_end
->flag
= EXT4_IO_END_UNWRITTEN
;
3696 inode
= io_end
->inode
;
3698 /* Add the io_end to per-inode completed io list*/
3699 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3700 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
3701 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3703 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
3704 /* queue the work to convert unwritten extents to written */
3705 queue_work(wq
, &io_end
->work
);
3707 bh
->b_private
= NULL
;
3708 bh
->b_end_io
= NULL
;
3709 clear_buffer_uninit(bh
);
3710 end_buffer_async_write(bh
, uptodate
);
3713 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
3715 ext4_io_end_t
*io_end
;
3716 struct page
*page
= bh
->b_page
;
3717 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
3718 size_t size
= bh
->b_size
;
3721 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
3723 if (printk_ratelimit())
3724 printk(KERN_WARNING
"%s: allocation fail\n", __func__
);
3728 io_end
->offset
= offset
;
3729 io_end
->size
= size
;
3731 * We need to hold a reference to the page to make sure it
3732 * doesn't get evicted before ext4_end_io_work() has a chance
3733 * to convert the extent from written to unwritten.
3735 io_end
->page
= page
;
3736 get_page(io_end
->page
);
3738 bh
->b_private
= io_end
;
3739 bh
->b_end_io
= ext4_end_io_buffer_write
;
3744 * For ext4 extent files, ext4 will do direct-io write to holes,
3745 * preallocated extents, and those write extend the file, no need to
3746 * fall back to buffered IO.
3748 * For holes, we fallocate those blocks, mark them as unintialized
3749 * If those blocks were preallocated, we mark sure they are splited, but
3750 * still keep the range to write as unintialized.
3752 * The unwrritten extents will be converted to written when DIO is completed.
3753 * For async direct IO, since the IO may still pending when return, we
3754 * set up an end_io call back function, which will do the convertion
3755 * when async direct IO completed.
3757 * If the O_DIRECT write will extend the file then add this inode to the
3758 * orphan list. So recovery will truncate it back to the original size
3759 * if the machine crashes during the write.
3762 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3763 const struct iovec
*iov
, loff_t offset
,
3764 unsigned long nr_segs
)
3766 struct file
*file
= iocb
->ki_filp
;
3767 struct inode
*inode
= file
->f_mapping
->host
;
3769 size_t count
= iov_length(iov
, nr_segs
);
3771 loff_t final_size
= offset
+ count
;
3772 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3774 * We could direct write to holes and fallocate.
3776 * Allocated blocks to fill the hole are marked as uninitialized
3777 * to prevent paralel buffered read to expose the stale data
3778 * before DIO complete the data IO.
3780 * As to previously fallocated extents, ext4 get_block
3781 * will just simply mark the buffer mapped but still
3782 * keep the extents uninitialized.
3784 * for non AIO case, we will convert those unwritten extents
3785 * to written after return back from blockdev_direct_IO.
3787 * for async DIO, the conversion needs to be defered when
3788 * the IO is completed. The ext4 end_io callback function
3789 * will be called to take care of the conversion work.
3790 * Here for async case, we allocate an io_end structure to
3793 iocb
->private = NULL
;
3794 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3795 if (!is_sync_kiocb(iocb
)) {
3796 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
3800 * we save the io structure for current async
3801 * direct IO, so that later ext4_map_blocks()
3802 * could flag the io structure whether there
3803 * is a unwritten extents needs to be converted
3804 * when IO is completed.
3806 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3809 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3810 inode
->i_sb
->s_bdev
, iov
,
3812 ext4_get_block_write
,
3815 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3817 * The io_end structure takes a reference to the inode,
3818 * that structure needs to be destroyed and the
3819 * reference to the inode need to be dropped, when IO is
3820 * complete, even with 0 byte write, or failed.
3822 * In the successful AIO DIO case, the io_end structure will be
3823 * desctroyed and the reference to the inode will be dropped
3824 * after the end_io call back function is called.
3826 * In the case there is 0 byte write, or error case, since
3827 * VFS direct IO won't invoke the end_io call back function,
3828 * we need to free the end_io structure here.
3830 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3831 ext4_free_io_end(iocb
->private);
3832 iocb
->private = NULL
;
3833 } else if (ret
> 0 && ext4_test_inode_state(inode
,
3834 EXT4_STATE_DIO_UNWRITTEN
)) {
3837 * for non AIO case, since the IO is already
3838 * completed, we could do the convertion right here
3840 err
= ext4_convert_unwritten_extents(inode
,
3844 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3849 /* for write the the end of file case, we fall back to old way */
3850 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3853 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3854 const struct iovec
*iov
, loff_t offset
,
3855 unsigned long nr_segs
)
3857 struct file
*file
= iocb
->ki_filp
;
3858 struct inode
*inode
= file
->f_mapping
->host
;
3860 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3861 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3863 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3867 * Pages can be marked dirty completely asynchronously from ext4's journalling
3868 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3869 * much here because ->set_page_dirty is called under VFS locks. The page is
3870 * not necessarily locked.
3872 * We cannot just dirty the page and leave attached buffers clean, because the
3873 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3874 * or jbddirty because all the journalling code will explode.
3876 * So what we do is to mark the page "pending dirty" and next time writepage
3877 * is called, propagate that into the buffers appropriately.
3879 static int ext4_journalled_set_page_dirty(struct page
*page
)
3881 SetPageChecked(page
);
3882 return __set_page_dirty_nobuffers(page
);
3885 static const struct address_space_operations ext4_ordered_aops
= {
3886 .readpage
= ext4_readpage
,
3887 .readpages
= ext4_readpages
,
3888 .writepage
= ext4_writepage
,
3889 .sync_page
= block_sync_page
,
3890 .write_begin
= ext4_write_begin
,
3891 .write_end
= ext4_ordered_write_end
,
3893 .invalidatepage
= ext4_invalidatepage
,
3894 .releasepage
= ext4_releasepage
,
3895 .direct_IO
= ext4_direct_IO
,
3896 .migratepage
= buffer_migrate_page
,
3897 .is_partially_uptodate
= block_is_partially_uptodate
,
3898 .error_remove_page
= generic_error_remove_page
,
3901 static const struct address_space_operations ext4_writeback_aops
= {
3902 .readpage
= ext4_readpage
,
3903 .readpages
= ext4_readpages
,
3904 .writepage
= ext4_writepage
,
3905 .sync_page
= block_sync_page
,
3906 .write_begin
= ext4_write_begin
,
3907 .write_end
= ext4_writeback_write_end
,
3909 .invalidatepage
= ext4_invalidatepage
,
3910 .releasepage
= ext4_releasepage
,
3911 .direct_IO
= ext4_direct_IO
,
3912 .migratepage
= buffer_migrate_page
,
3913 .is_partially_uptodate
= block_is_partially_uptodate
,
3914 .error_remove_page
= generic_error_remove_page
,
3917 static const struct address_space_operations ext4_journalled_aops
= {
3918 .readpage
= ext4_readpage
,
3919 .readpages
= ext4_readpages
,
3920 .writepage
= ext4_writepage
,
3921 .sync_page
= block_sync_page
,
3922 .write_begin
= ext4_write_begin
,
3923 .write_end
= ext4_journalled_write_end
,
3924 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3926 .invalidatepage
= ext4_invalidatepage
,
3927 .releasepage
= ext4_releasepage
,
3928 .is_partially_uptodate
= block_is_partially_uptodate
,
3929 .error_remove_page
= generic_error_remove_page
,
3932 static const struct address_space_operations ext4_da_aops
= {
3933 .readpage
= ext4_readpage
,
3934 .readpages
= ext4_readpages
,
3935 .writepage
= ext4_writepage
,
3936 .writepages
= ext4_da_writepages
,
3937 .sync_page
= block_sync_page
,
3938 .write_begin
= ext4_da_write_begin
,
3939 .write_end
= ext4_da_write_end
,
3941 .invalidatepage
= ext4_da_invalidatepage
,
3942 .releasepage
= ext4_releasepage
,
3943 .direct_IO
= ext4_direct_IO
,
3944 .migratepage
= buffer_migrate_page
,
3945 .is_partially_uptodate
= block_is_partially_uptodate
,
3946 .error_remove_page
= generic_error_remove_page
,
3949 void ext4_set_aops(struct inode
*inode
)
3951 if (ext4_should_order_data(inode
) &&
3952 test_opt(inode
->i_sb
, DELALLOC
))
3953 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3954 else if (ext4_should_order_data(inode
))
3955 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3956 else if (ext4_should_writeback_data(inode
) &&
3957 test_opt(inode
->i_sb
, DELALLOC
))
3958 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3959 else if (ext4_should_writeback_data(inode
))
3960 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3962 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3966 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3967 * up to the end of the block which corresponds to `from'.
3968 * This required during truncate. We need to physically zero the tail end
3969 * of that block so it doesn't yield old data if the file is later grown.
3971 int ext4_block_truncate_page(handle_t
*handle
,
3972 struct address_space
*mapping
, loff_t from
)
3974 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3975 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3976 unsigned blocksize
, length
, pos
;
3978 struct inode
*inode
= mapping
->host
;
3979 struct buffer_head
*bh
;
3983 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3984 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3988 blocksize
= inode
->i_sb
->s_blocksize
;
3989 length
= blocksize
- (offset
& (blocksize
- 1));
3990 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3992 if (!page_has_buffers(page
))
3993 create_empty_buffers(page
, blocksize
, 0);
3995 /* Find the buffer that contains "offset" */
3996 bh
= page_buffers(page
);
3998 while (offset
>= pos
) {
3999 bh
= bh
->b_this_page
;
4005 if (buffer_freed(bh
)) {
4006 BUFFER_TRACE(bh
, "freed: skip");
4010 if (!buffer_mapped(bh
)) {
4011 BUFFER_TRACE(bh
, "unmapped");
4012 ext4_get_block(inode
, iblock
, bh
, 0);
4013 /* unmapped? It's a hole - nothing to do */
4014 if (!buffer_mapped(bh
)) {
4015 BUFFER_TRACE(bh
, "still unmapped");
4020 /* Ok, it's mapped. Make sure it's up-to-date */
4021 if (PageUptodate(page
))
4022 set_buffer_uptodate(bh
);
4024 if (!buffer_uptodate(bh
)) {
4026 ll_rw_block(READ
, 1, &bh
);
4028 /* Uhhuh. Read error. Complain and punt. */
4029 if (!buffer_uptodate(bh
))
4033 if (ext4_should_journal_data(inode
)) {
4034 BUFFER_TRACE(bh
, "get write access");
4035 err
= ext4_journal_get_write_access(handle
, bh
);
4040 zero_user(page
, offset
, length
);
4042 BUFFER_TRACE(bh
, "zeroed end of block");
4045 if (ext4_should_journal_data(inode
)) {
4046 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4048 if (ext4_should_order_data(inode
))
4049 err
= ext4_jbd2_file_inode(handle
, inode
);
4050 mark_buffer_dirty(bh
);
4055 page_cache_release(page
);
4060 * Probably it should be a library function... search for first non-zero word
4061 * or memcmp with zero_page, whatever is better for particular architecture.
4064 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4073 * ext4_find_shared - find the indirect blocks for partial truncation.
4074 * @inode: inode in question
4075 * @depth: depth of the affected branch
4076 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4077 * @chain: place to store the pointers to partial indirect blocks
4078 * @top: place to the (detached) top of branch
4080 * This is a helper function used by ext4_truncate().
4082 * When we do truncate() we may have to clean the ends of several
4083 * indirect blocks but leave the blocks themselves alive. Block is
4084 * partially truncated if some data below the new i_size is refered
4085 * from it (and it is on the path to the first completely truncated
4086 * data block, indeed). We have to free the top of that path along
4087 * with everything to the right of the path. Since no allocation
4088 * past the truncation point is possible until ext4_truncate()
4089 * finishes, we may safely do the latter, but top of branch may
4090 * require special attention - pageout below the truncation point
4091 * might try to populate it.
4093 * We atomically detach the top of branch from the tree, store the
4094 * block number of its root in *@top, pointers to buffer_heads of
4095 * partially truncated blocks - in @chain[].bh and pointers to
4096 * their last elements that should not be removed - in
4097 * @chain[].p. Return value is the pointer to last filled element
4100 * The work left to caller to do the actual freeing of subtrees:
4101 * a) free the subtree starting from *@top
4102 * b) free the subtrees whose roots are stored in
4103 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4104 * c) free the subtrees growing from the inode past the @chain[0].
4105 * (no partially truncated stuff there). */
4107 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4108 ext4_lblk_t offsets
[4], Indirect chain
[4],
4111 Indirect
*partial
, *p
;
4115 /* Make k index the deepest non-null offset + 1 */
4116 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4118 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4119 /* Writer: pointers */
4121 partial
= chain
+ k
-1;
4123 * If the branch acquired continuation since we've looked at it -
4124 * fine, it should all survive and (new) top doesn't belong to us.
4126 if (!partial
->key
&& *partial
->p
)
4129 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4132 * OK, we've found the last block that must survive. The rest of our
4133 * branch should be detached before unlocking. However, if that rest
4134 * of branch is all ours and does not grow immediately from the inode
4135 * it's easier to cheat and just decrement partial->p.
4137 if (p
== chain
+ k
- 1 && p
> chain
) {
4141 /* Nope, don't do this in ext4. Must leave the tree intact */
4148 while (partial
> p
) {
4149 brelse(partial
->bh
);
4157 * Zero a number of block pointers in either an inode or an indirect block.
4158 * If we restart the transaction we must again get write access to the
4159 * indirect block for further modification.
4161 * We release `count' blocks on disk, but (last - first) may be greater
4162 * than `count' because there can be holes in there.
4164 static int ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4165 struct buffer_head
*bh
,
4166 ext4_fsblk_t block_to_free
,
4167 unsigned long count
, __le32
*first
,
4171 int flags
= EXT4_FREE_BLOCKS_FORGET
| EXT4_FREE_BLOCKS_VALIDATED
;
4173 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
4174 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4176 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block_to_free
,
4178 EXT4_ERROR_INODE(inode
, "attempt to clear invalid "
4179 "blocks %llu len %lu",
4180 (unsigned long long) block_to_free
, count
);
4184 if (try_to_extend_transaction(handle
, inode
)) {
4186 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4187 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4189 ext4_mark_inode_dirty(handle
, inode
);
4190 ext4_truncate_restart_trans(handle
, inode
,
4191 blocks_for_truncate(inode
));
4193 BUFFER_TRACE(bh
, "retaking write access");
4194 ext4_journal_get_write_access(handle
, bh
);
4198 for (p
= first
; p
< last
; p
++)
4201 ext4_free_blocks(handle
, inode
, 0, block_to_free
, count
, flags
);
4206 * ext4_free_data - free a list of data blocks
4207 * @handle: handle for this transaction
4208 * @inode: inode we are dealing with
4209 * @this_bh: indirect buffer_head which contains *@first and *@last
4210 * @first: array of block numbers
4211 * @last: points immediately past the end of array
4213 * We are freeing all blocks refered from that array (numbers are stored as
4214 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4216 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4217 * blocks are contiguous then releasing them at one time will only affect one
4218 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4219 * actually use a lot of journal space.
4221 * @this_bh will be %NULL if @first and @last point into the inode's direct
4224 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4225 struct buffer_head
*this_bh
,
4226 __le32
*first
, __le32
*last
)
4228 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4229 unsigned long count
= 0; /* Number of blocks in the run */
4230 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4233 ext4_fsblk_t nr
; /* Current block # */
4234 __le32
*p
; /* Pointer into inode/ind
4235 for current block */
4238 if (this_bh
) { /* For indirect block */
4239 BUFFER_TRACE(this_bh
, "get_write_access");
4240 err
= ext4_journal_get_write_access(handle
, this_bh
);
4241 /* Important: if we can't update the indirect pointers
4242 * to the blocks, we can't free them. */
4247 for (p
= first
; p
< last
; p
++) {
4248 nr
= le32_to_cpu(*p
);
4250 /* accumulate blocks to free if they're contiguous */
4253 block_to_free_p
= p
;
4255 } else if (nr
== block_to_free
+ count
) {
4258 if (ext4_clear_blocks(handle
, inode
, this_bh
,
4259 block_to_free
, count
,
4260 block_to_free_p
, p
))
4263 block_to_free_p
= p
;
4270 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4271 count
, block_to_free_p
, p
);
4274 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4277 * The buffer head should have an attached journal head at this
4278 * point. However, if the data is corrupted and an indirect
4279 * block pointed to itself, it would have been detached when
4280 * the block was cleared. Check for this instead of OOPSing.
4282 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4283 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4285 EXT4_ERROR_INODE(inode
,
4286 "circular indirect block detected at "
4288 (unsigned long long) this_bh
->b_blocknr
);
4293 * ext4_free_branches - free an array of branches
4294 * @handle: JBD handle for this transaction
4295 * @inode: inode we are dealing with
4296 * @parent_bh: the buffer_head which contains *@first and *@last
4297 * @first: array of block numbers
4298 * @last: pointer immediately past the end of array
4299 * @depth: depth of the branches to free
4301 * We are freeing all blocks refered from these branches (numbers are
4302 * stored as little-endian 32-bit) and updating @inode->i_blocks
4305 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4306 struct buffer_head
*parent_bh
,
4307 __le32
*first
, __le32
*last
, int depth
)
4312 if (ext4_handle_is_aborted(handle
))
4316 struct buffer_head
*bh
;
4317 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4319 while (--p
>= first
) {
4320 nr
= le32_to_cpu(*p
);
4322 continue; /* A hole */
4324 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
4326 EXT4_ERROR_INODE(inode
,
4327 "invalid indirect mapped "
4328 "block %lu (level %d)",
4329 (unsigned long) nr
, depth
);
4333 /* Go read the buffer for the next level down */
4334 bh
= sb_bread(inode
->i_sb
, nr
);
4337 * A read failure? Report error and clear slot
4341 EXT4_ERROR_INODE_BLOCK(inode
, nr
,
4346 /* This zaps the entire block. Bottom up. */
4347 BUFFER_TRACE(bh
, "free child branches");
4348 ext4_free_branches(handle
, inode
, bh
,
4349 (__le32
*) bh
->b_data
,
4350 (__le32
*) bh
->b_data
+ addr_per_block
,
4354 * Everything below this this pointer has been
4355 * released. Now let this top-of-subtree go.
4357 * We want the freeing of this indirect block to be
4358 * atomic in the journal with the updating of the
4359 * bitmap block which owns it. So make some room in
4362 * We zero the parent pointer *after* freeing its
4363 * pointee in the bitmaps, so if extend_transaction()
4364 * for some reason fails to put the bitmap changes and
4365 * the release into the same transaction, recovery
4366 * will merely complain about releasing a free block,
4367 * rather than leaking blocks.
4369 if (ext4_handle_is_aborted(handle
))
4371 if (try_to_extend_transaction(handle
, inode
)) {
4372 ext4_mark_inode_dirty(handle
, inode
);
4373 ext4_truncate_restart_trans(handle
, inode
,
4374 blocks_for_truncate(inode
));
4378 * The forget flag here is critical because if
4379 * we are journaling (and not doing data
4380 * journaling), we have to make sure a revoke
4381 * record is written to prevent the journal
4382 * replay from overwriting the (former)
4383 * indirect block if it gets reallocated as a
4384 * data block. This must happen in the same
4385 * transaction where the data blocks are
4388 ext4_free_blocks(handle
, inode
, 0, nr
, 1,
4389 EXT4_FREE_BLOCKS_METADATA
|
4390 EXT4_FREE_BLOCKS_FORGET
);
4394 * The block which we have just freed is
4395 * pointed to by an indirect block: journal it
4397 BUFFER_TRACE(parent_bh
, "get_write_access");
4398 if (!ext4_journal_get_write_access(handle
,
4401 BUFFER_TRACE(parent_bh
,
4402 "call ext4_handle_dirty_metadata");
4403 ext4_handle_dirty_metadata(handle
,
4410 /* We have reached the bottom of the tree. */
4411 BUFFER_TRACE(parent_bh
, "free data blocks");
4412 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4416 int ext4_can_truncate(struct inode
*inode
)
4418 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4420 if (S_ISREG(inode
->i_mode
))
4422 if (S_ISDIR(inode
->i_mode
))
4424 if (S_ISLNK(inode
->i_mode
))
4425 return !ext4_inode_is_fast_symlink(inode
);
4432 * We block out ext4_get_block() block instantiations across the entire
4433 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4434 * simultaneously on behalf of the same inode.
4436 * As we work through the truncate and commmit bits of it to the journal there
4437 * is one core, guiding principle: the file's tree must always be consistent on
4438 * disk. We must be able to restart the truncate after a crash.
4440 * The file's tree may be transiently inconsistent in memory (although it
4441 * probably isn't), but whenever we close off and commit a journal transaction,
4442 * the contents of (the filesystem + the journal) must be consistent and
4443 * restartable. It's pretty simple, really: bottom up, right to left (although
4444 * left-to-right works OK too).
4446 * Note that at recovery time, journal replay occurs *before* the restart of
4447 * truncate against the orphan inode list.
4449 * The committed inode has the new, desired i_size (which is the same as
4450 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4451 * that this inode's truncate did not complete and it will again call
4452 * ext4_truncate() to have another go. So there will be instantiated blocks
4453 * to the right of the truncation point in a crashed ext4 filesystem. But
4454 * that's fine - as long as they are linked from the inode, the post-crash
4455 * ext4_truncate() run will find them and release them.
4457 void ext4_truncate(struct inode
*inode
)
4460 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4461 __le32
*i_data
= ei
->i_data
;
4462 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4463 struct address_space
*mapping
= inode
->i_mapping
;
4464 ext4_lblk_t offsets
[4];
4469 ext4_lblk_t last_block
;
4470 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4472 if (!ext4_can_truncate(inode
))
4475 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4477 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4478 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4480 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4481 ext4_ext_truncate(inode
);
4485 handle
= start_transaction(inode
);
4487 return; /* AKPM: return what? */
4489 last_block
= (inode
->i_size
+ blocksize
-1)
4490 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4492 if (inode
->i_size
& (blocksize
- 1))
4493 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4496 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4498 goto out_stop
; /* error */
4501 * OK. This truncate is going to happen. We add the inode to the
4502 * orphan list, so that if this truncate spans multiple transactions,
4503 * and we crash, we will resume the truncate when the filesystem
4504 * recovers. It also marks the inode dirty, to catch the new size.
4506 * Implication: the file must always be in a sane, consistent
4507 * truncatable state while each transaction commits.
4509 if (ext4_orphan_add(handle
, inode
))
4513 * From here we block out all ext4_get_block() callers who want to
4514 * modify the block allocation tree.
4516 down_write(&ei
->i_data_sem
);
4518 ext4_discard_preallocations(inode
);
4521 * The orphan list entry will now protect us from any crash which
4522 * occurs before the truncate completes, so it is now safe to propagate
4523 * the new, shorter inode size (held for now in i_size) into the
4524 * on-disk inode. We do this via i_disksize, which is the value which
4525 * ext4 *really* writes onto the disk inode.
4527 ei
->i_disksize
= inode
->i_size
;
4529 if (n
== 1) { /* direct blocks */
4530 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4531 i_data
+ EXT4_NDIR_BLOCKS
);
4535 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4536 /* Kill the top of shared branch (not detached) */
4538 if (partial
== chain
) {
4539 /* Shared branch grows from the inode */
4540 ext4_free_branches(handle
, inode
, NULL
,
4541 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4544 * We mark the inode dirty prior to restart,
4545 * and prior to stop. No need for it here.
4548 /* Shared branch grows from an indirect block */
4549 BUFFER_TRACE(partial
->bh
, "get_write_access");
4550 ext4_free_branches(handle
, inode
, partial
->bh
,
4552 partial
->p
+1, (chain
+n
-1) - partial
);
4555 /* Clear the ends of indirect blocks on the shared branch */
4556 while (partial
> chain
) {
4557 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4558 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4559 (chain
+n
-1) - partial
);
4560 BUFFER_TRACE(partial
->bh
, "call brelse");
4561 brelse(partial
->bh
);
4565 /* Kill the remaining (whole) subtrees */
4566 switch (offsets
[0]) {
4568 nr
= i_data
[EXT4_IND_BLOCK
];
4570 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4571 i_data
[EXT4_IND_BLOCK
] = 0;
4573 case EXT4_IND_BLOCK
:
4574 nr
= i_data
[EXT4_DIND_BLOCK
];
4576 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4577 i_data
[EXT4_DIND_BLOCK
] = 0;
4579 case EXT4_DIND_BLOCK
:
4580 nr
= i_data
[EXT4_TIND_BLOCK
];
4582 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4583 i_data
[EXT4_TIND_BLOCK
] = 0;
4585 case EXT4_TIND_BLOCK
:
4589 up_write(&ei
->i_data_sem
);
4590 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4591 ext4_mark_inode_dirty(handle
, inode
);
4594 * In a multi-transaction truncate, we only make the final transaction
4598 ext4_handle_sync(handle
);
4601 * If this was a simple ftruncate(), and the file will remain alive
4602 * then we need to clear up the orphan record which we created above.
4603 * However, if this was a real unlink then we were called by
4604 * ext4_delete_inode(), and we allow that function to clean up the
4605 * orphan info for us.
4608 ext4_orphan_del(handle
, inode
);
4610 ext4_journal_stop(handle
);
4614 * ext4_get_inode_loc returns with an extra refcount against the inode's
4615 * underlying buffer_head on success. If 'in_mem' is true, we have all
4616 * data in memory that is needed to recreate the on-disk version of this
4619 static int __ext4_get_inode_loc(struct inode
*inode
,
4620 struct ext4_iloc
*iloc
, int in_mem
)
4622 struct ext4_group_desc
*gdp
;
4623 struct buffer_head
*bh
;
4624 struct super_block
*sb
= inode
->i_sb
;
4626 int inodes_per_block
, inode_offset
;
4629 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4632 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4633 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4638 * Figure out the offset within the block group inode table
4640 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4641 inode_offset
= ((inode
->i_ino
- 1) %
4642 EXT4_INODES_PER_GROUP(sb
));
4643 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4644 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4646 bh
= sb_getblk(sb
, block
);
4648 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4649 "unable to read itable block");
4652 if (!buffer_uptodate(bh
)) {
4656 * If the buffer has the write error flag, we have failed
4657 * to write out another inode in the same block. In this
4658 * case, we don't have to read the block because we may
4659 * read the old inode data successfully.
4661 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4662 set_buffer_uptodate(bh
);
4664 if (buffer_uptodate(bh
)) {
4665 /* someone brought it uptodate while we waited */
4671 * If we have all information of the inode in memory and this
4672 * is the only valid inode in the block, we need not read the
4676 struct buffer_head
*bitmap_bh
;
4679 start
= inode_offset
& ~(inodes_per_block
- 1);
4681 /* Is the inode bitmap in cache? */
4682 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4687 * If the inode bitmap isn't in cache then the
4688 * optimisation may end up performing two reads instead
4689 * of one, so skip it.
4691 if (!buffer_uptodate(bitmap_bh
)) {
4695 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4696 if (i
== inode_offset
)
4698 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4702 if (i
== start
+ inodes_per_block
) {
4703 /* all other inodes are free, so skip I/O */
4704 memset(bh
->b_data
, 0, bh
->b_size
);
4705 set_buffer_uptodate(bh
);
4713 * If we need to do any I/O, try to pre-readahead extra
4714 * blocks from the inode table.
4716 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4717 ext4_fsblk_t b
, end
, table
;
4720 table
= ext4_inode_table(sb
, gdp
);
4721 /* s_inode_readahead_blks is always a power of 2 */
4722 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4725 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4726 num
= EXT4_INODES_PER_GROUP(sb
);
4727 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4728 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4729 num
-= ext4_itable_unused_count(sb
, gdp
);
4730 table
+= num
/ inodes_per_block
;
4734 sb_breadahead(sb
, b
++);
4738 * There are other valid inodes in the buffer, this inode
4739 * has in-inode xattrs, or we don't have this inode in memory.
4740 * Read the block from disk.
4743 bh
->b_end_io
= end_buffer_read_sync
;
4744 submit_bh(READ_META
, bh
);
4746 if (!buffer_uptodate(bh
)) {
4747 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4748 "unable to read itable block");
4758 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4760 /* We have all inode data except xattrs in memory here. */
4761 return __ext4_get_inode_loc(inode
, iloc
,
4762 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4765 void ext4_set_inode_flags(struct inode
*inode
)
4767 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4769 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4770 if (flags
& EXT4_SYNC_FL
)
4771 inode
->i_flags
|= S_SYNC
;
4772 if (flags
& EXT4_APPEND_FL
)
4773 inode
->i_flags
|= S_APPEND
;
4774 if (flags
& EXT4_IMMUTABLE_FL
)
4775 inode
->i_flags
|= S_IMMUTABLE
;
4776 if (flags
& EXT4_NOATIME_FL
)
4777 inode
->i_flags
|= S_NOATIME
;
4778 if (flags
& EXT4_DIRSYNC_FL
)
4779 inode
->i_flags
|= S_DIRSYNC
;
4782 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4783 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4785 unsigned int vfs_fl
;
4786 unsigned long old_fl
, new_fl
;
4789 vfs_fl
= ei
->vfs_inode
.i_flags
;
4790 old_fl
= ei
->i_flags
;
4791 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4792 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4794 if (vfs_fl
& S_SYNC
)
4795 new_fl
|= EXT4_SYNC_FL
;
4796 if (vfs_fl
& S_APPEND
)
4797 new_fl
|= EXT4_APPEND_FL
;
4798 if (vfs_fl
& S_IMMUTABLE
)
4799 new_fl
|= EXT4_IMMUTABLE_FL
;
4800 if (vfs_fl
& S_NOATIME
)
4801 new_fl
|= EXT4_NOATIME_FL
;
4802 if (vfs_fl
& S_DIRSYNC
)
4803 new_fl
|= EXT4_DIRSYNC_FL
;
4804 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4807 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4808 struct ext4_inode_info
*ei
)
4811 struct inode
*inode
= &(ei
->vfs_inode
);
4812 struct super_block
*sb
= inode
->i_sb
;
4814 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4815 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4816 /* we are using combined 48 bit field */
4817 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4818 le32_to_cpu(raw_inode
->i_blocks_lo
);
4819 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4820 /* i_blocks represent file system block size */
4821 return i_blocks
<< (inode
->i_blkbits
- 9);
4826 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4830 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4832 struct ext4_iloc iloc
;
4833 struct ext4_inode
*raw_inode
;
4834 struct ext4_inode_info
*ei
;
4835 struct inode
*inode
;
4836 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4840 inode
= iget_locked(sb
, ino
);
4842 return ERR_PTR(-ENOMEM
);
4843 if (!(inode
->i_state
& I_NEW
))
4849 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4852 raw_inode
= ext4_raw_inode(&iloc
);
4853 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4854 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4855 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4856 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4857 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4858 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4860 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4862 ei
->i_state_flags
= 0;
4863 ei
->i_dir_start_lookup
= 0;
4864 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4865 /* We now have enough fields to check if the inode was active or not.
4866 * This is needed because nfsd might try to access dead inodes
4867 * the test is that same one that e2fsck uses
4868 * NeilBrown 1999oct15
4870 if (inode
->i_nlink
== 0) {
4871 if (inode
->i_mode
== 0 ||
4872 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4873 /* this inode is deleted */
4877 /* The only unlinked inodes we let through here have
4878 * valid i_mode and are being read by the orphan
4879 * recovery code: that's fine, we're about to complete
4880 * the process of deleting those. */
4882 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4883 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4884 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4885 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4887 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4888 inode
->i_size
= ext4_isize(raw_inode
);
4889 ei
->i_disksize
= inode
->i_size
;
4891 ei
->i_reserved_quota
= 0;
4893 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4894 ei
->i_block_group
= iloc
.block_group
;
4895 ei
->i_last_alloc_group
= ~0;
4897 * NOTE! The in-memory inode i_data array is in little-endian order
4898 * even on big-endian machines: we do NOT byteswap the block numbers!
4900 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4901 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4902 INIT_LIST_HEAD(&ei
->i_orphan
);
4905 * Set transaction id's of transactions that have to be committed
4906 * to finish f[data]sync. We set them to currently running transaction
4907 * as we cannot be sure that the inode or some of its metadata isn't
4908 * part of the transaction - the inode could have been reclaimed and
4909 * now it is reread from disk.
4912 transaction_t
*transaction
;
4915 read_lock(&journal
->j_state_lock
);
4916 if (journal
->j_running_transaction
)
4917 transaction
= journal
->j_running_transaction
;
4919 transaction
= journal
->j_committing_transaction
;
4921 tid
= transaction
->t_tid
;
4923 tid
= journal
->j_commit_sequence
;
4924 read_unlock(&journal
->j_state_lock
);
4925 ei
->i_sync_tid
= tid
;
4926 ei
->i_datasync_tid
= tid
;
4929 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4930 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4931 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4932 EXT4_INODE_SIZE(inode
->i_sb
)) {
4936 if (ei
->i_extra_isize
== 0) {
4937 /* The extra space is currently unused. Use it. */
4938 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4939 EXT4_GOOD_OLD_INODE_SIZE
;
4941 __le32
*magic
= (void *)raw_inode
+
4942 EXT4_GOOD_OLD_INODE_SIZE
+
4944 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4945 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4948 ei
->i_extra_isize
= 0;
4950 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4951 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4952 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4953 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4955 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4956 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4957 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4959 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4963 if (ei
->i_file_acl
&&
4964 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4965 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4969 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4970 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4971 (S_ISLNK(inode
->i_mode
) &&
4972 !ext4_inode_is_fast_symlink(inode
)))
4973 /* Validate extent which is part of inode */
4974 ret
= ext4_ext_check_inode(inode
);
4975 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4976 (S_ISLNK(inode
->i_mode
) &&
4977 !ext4_inode_is_fast_symlink(inode
))) {
4978 /* Validate block references which are part of inode */
4979 ret
= ext4_check_inode_blockref(inode
);
4984 if (S_ISREG(inode
->i_mode
)) {
4985 inode
->i_op
= &ext4_file_inode_operations
;
4986 inode
->i_fop
= &ext4_file_operations
;
4987 ext4_set_aops(inode
);
4988 } else if (S_ISDIR(inode
->i_mode
)) {
4989 inode
->i_op
= &ext4_dir_inode_operations
;
4990 inode
->i_fop
= &ext4_dir_operations
;
4991 } else if (S_ISLNK(inode
->i_mode
)) {
4992 if (ext4_inode_is_fast_symlink(inode
)) {
4993 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4994 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4995 sizeof(ei
->i_data
) - 1);
4997 inode
->i_op
= &ext4_symlink_inode_operations
;
4998 ext4_set_aops(inode
);
5000 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
5001 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
5002 inode
->i_op
= &ext4_special_inode_operations
;
5003 if (raw_inode
->i_block
[0])
5004 init_special_inode(inode
, inode
->i_mode
,
5005 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
5007 init_special_inode(inode
, inode
->i_mode
,
5008 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
5011 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
5015 ext4_set_inode_flags(inode
);
5016 unlock_new_inode(inode
);
5022 return ERR_PTR(ret
);
5025 static int ext4_inode_blocks_set(handle_t
*handle
,
5026 struct ext4_inode
*raw_inode
,
5027 struct ext4_inode_info
*ei
)
5029 struct inode
*inode
= &(ei
->vfs_inode
);
5030 u64 i_blocks
= inode
->i_blocks
;
5031 struct super_block
*sb
= inode
->i_sb
;
5033 if (i_blocks
<= ~0U) {
5035 * i_blocks can be represnted in a 32 bit variable
5036 * as multiple of 512 bytes
5038 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5039 raw_inode
->i_blocks_high
= 0;
5040 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5043 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
5046 if (i_blocks
<= 0xffffffffffffULL
) {
5048 * i_blocks can be represented in a 48 bit variable
5049 * as multiple of 512 bytes
5051 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5052 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5053 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5055 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5056 /* i_block is stored in file system block size */
5057 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5058 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5059 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5065 * Post the struct inode info into an on-disk inode location in the
5066 * buffer-cache. This gobbles the caller's reference to the
5067 * buffer_head in the inode location struct.
5069 * The caller must have write access to iloc->bh.
5071 static int ext4_do_update_inode(handle_t
*handle
,
5072 struct inode
*inode
,
5073 struct ext4_iloc
*iloc
)
5075 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5076 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5077 struct buffer_head
*bh
= iloc
->bh
;
5078 int err
= 0, rc
, block
;
5080 /* For fields not not tracking in the in-memory inode,
5081 * initialise them to zero for new inodes. */
5082 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
5083 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5085 ext4_get_inode_flags(ei
);
5086 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5087 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5088 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5089 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5091 * Fix up interoperability with old kernels. Otherwise, old inodes get
5092 * re-used with the upper 16 bits of the uid/gid intact
5095 raw_inode
->i_uid_high
=
5096 cpu_to_le16(high_16_bits(inode
->i_uid
));
5097 raw_inode
->i_gid_high
=
5098 cpu_to_le16(high_16_bits(inode
->i_gid
));
5100 raw_inode
->i_uid_high
= 0;
5101 raw_inode
->i_gid_high
= 0;
5104 raw_inode
->i_uid_low
=
5105 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5106 raw_inode
->i_gid_low
=
5107 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5108 raw_inode
->i_uid_high
= 0;
5109 raw_inode
->i_gid_high
= 0;
5111 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5113 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5114 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5115 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5116 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5118 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5120 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5121 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5122 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5123 cpu_to_le32(EXT4_OS_HURD
))
5124 raw_inode
->i_file_acl_high
=
5125 cpu_to_le16(ei
->i_file_acl
>> 32);
5126 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5127 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5128 if (ei
->i_disksize
> 0x7fffffffULL
) {
5129 struct super_block
*sb
= inode
->i_sb
;
5130 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5131 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5132 EXT4_SB(sb
)->s_es
->s_rev_level
==
5133 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5134 /* If this is the first large file
5135 * created, add a flag to the superblock.
5137 err
= ext4_journal_get_write_access(handle
,
5138 EXT4_SB(sb
)->s_sbh
);
5141 ext4_update_dynamic_rev(sb
);
5142 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5143 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5145 ext4_handle_sync(handle
);
5146 err
= ext4_handle_dirty_metadata(handle
, NULL
,
5147 EXT4_SB(sb
)->s_sbh
);
5150 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5151 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5152 if (old_valid_dev(inode
->i_rdev
)) {
5153 raw_inode
->i_block
[0] =
5154 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5155 raw_inode
->i_block
[1] = 0;
5157 raw_inode
->i_block
[0] = 0;
5158 raw_inode
->i_block
[1] =
5159 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5160 raw_inode
->i_block
[2] = 0;
5163 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5164 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5166 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5167 if (ei
->i_extra_isize
) {
5168 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5169 raw_inode
->i_version_hi
=
5170 cpu_to_le32(inode
->i_version
>> 32);
5171 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5174 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5175 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5178 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5180 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5183 ext4_std_error(inode
->i_sb
, err
);
5188 * ext4_write_inode()
5190 * We are called from a few places:
5192 * - Within generic_file_write() for O_SYNC files.
5193 * Here, there will be no transaction running. We wait for any running
5194 * trasnaction to commit.
5196 * - Within sys_sync(), kupdate and such.
5197 * We wait on commit, if tol to.
5199 * - Within prune_icache() (PF_MEMALLOC == true)
5200 * Here we simply return. We can't afford to block kswapd on the
5203 * In all cases it is actually safe for us to return without doing anything,
5204 * because the inode has been copied into a raw inode buffer in
5205 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5208 * Note that we are absolutely dependent upon all inode dirtiers doing the
5209 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5210 * which we are interested.
5212 * It would be a bug for them to not do this. The code:
5214 * mark_inode_dirty(inode)
5216 * inode->i_size = expr;
5218 * is in error because a kswapd-driven write_inode() could occur while
5219 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5220 * will no longer be on the superblock's dirty inode list.
5222 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5226 if (current
->flags
& PF_MEMALLOC
)
5229 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5230 if (ext4_journal_current_handle()) {
5231 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5236 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
5239 err
= ext4_force_commit(inode
->i_sb
);
5241 struct ext4_iloc iloc
;
5243 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
5246 if (wbc
->sync_mode
== WB_SYNC_ALL
)
5247 sync_dirty_buffer(iloc
.bh
);
5248 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5249 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
5250 "IO error syncing inode");
5261 * Called from notify_change.
5263 * We want to trap VFS attempts to truncate the file as soon as
5264 * possible. In particular, we want to make sure that when the VFS
5265 * shrinks i_size, we put the inode on the orphan list and modify
5266 * i_disksize immediately, so that during the subsequent flushing of
5267 * dirty pages and freeing of disk blocks, we can guarantee that any
5268 * commit will leave the blocks being flushed in an unused state on
5269 * disk. (On recovery, the inode will get truncated and the blocks will
5270 * be freed, so we have a strong guarantee that no future commit will
5271 * leave these blocks visible to the user.)
5273 * Another thing we have to assure is that if we are in ordered mode
5274 * and inode is still attached to the committing transaction, we must
5275 * we start writeout of all the dirty pages which are being truncated.
5276 * This way we are sure that all the data written in the previous
5277 * transaction are already on disk (truncate waits for pages under
5280 * Called with inode->i_mutex down.
5282 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5284 struct inode
*inode
= dentry
->d_inode
;
5287 const unsigned int ia_valid
= attr
->ia_valid
;
5289 error
= inode_change_ok(inode
, attr
);
5293 if (is_quota_modification(inode
, attr
))
5294 dquot_initialize(inode
);
5295 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5296 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5299 /* (user+group)*(old+new) structure, inode write (sb,
5300 * inode block, ? - but truncate inode update has it) */
5301 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5302 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5303 if (IS_ERR(handle
)) {
5304 error
= PTR_ERR(handle
);
5307 error
= dquot_transfer(inode
, attr
);
5309 ext4_journal_stop(handle
);
5312 /* Update corresponding info in inode so that everything is in
5313 * one transaction */
5314 if (attr
->ia_valid
& ATTR_UID
)
5315 inode
->i_uid
= attr
->ia_uid
;
5316 if (attr
->ia_valid
& ATTR_GID
)
5317 inode
->i_gid
= attr
->ia_gid
;
5318 error
= ext4_mark_inode_dirty(handle
, inode
);
5319 ext4_journal_stop(handle
);
5322 if (attr
->ia_valid
& ATTR_SIZE
) {
5323 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
5324 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5326 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
5331 if (S_ISREG(inode
->i_mode
) &&
5332 attr
->ia_valid
& ATTR_SIZE
&&
5333 (attr
->ia_size
< inode
->i_size
||
5334 (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
)))) {
5337 handle
= ext4_journal_start(inode
, 3);
5338 if (IS_ERR(handle
)) {
5339 error
= PTR_ERR(handle
);
5342 if (ext4_handle_valid(handle
)) {
5343 error
= ext4_orphan_add(handle
, inode
);
5346 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5347 rc
= ext4_mark_inode_dirty(handle
, inode
);
5350 ext4_journal_stop(handle
);
5352 if (ext4_should_order_data(inode
)) {
5353 error
= ext4_begin_ordered_truncate(inode
,
5356 /* Do as much error cleanup as possible */
5357 handle
= ext4_journal_start(inode
, 3);
5358 if (IS_ERR(handle
)) {
5359 ext4_orphan_del(NULL
, inode
);
5362 ext4_orphan_del(handle
, inode
);
5364 ext4_journal_stop(handle
);
5368 /* ext4_truncate will clear the flag */
5369 if ((ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
)))
5370 ext4_truncate(inode
);
5373 if ((attr
->ia_valid
& ATTR_SIZE
) &&
5374 attr
->ia_size
!= i_size_read(inode
))
5375 rc
= vmtruncate(inode
, attr
->ia_size
);
5378 setattr_copy(inode
, attr
);
5379 mark_inode_dirty(inode
);
5383 * If the call to ext4_truncate failed to get a transaction handle at
5384 * all, we need to clean up the in-core orphan list manually.
5386 if (orphan
&& inode
->i_nlink
)
5387 ext4_orphan_del(NULL
, inode
);
5389 if (!rc
&& (ia_valid
& ATTR_MODE
))
5390 rc
= ext4_acl_chmod(inode
);
5393 ext4_std_error(inode
->i_sb
, error
);
5399 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5402 struct inode
*inode
;
5403 unsigned long delalloc_blocks
;
5405 inode
= dentry
->d_inode
;
5406 generic_fillattr(inode
, stat
);
5409 * We can't update i_blocks if the block allocation is delayed
5410 * otherwise in the case of system crash before the real block
5411 * allocation is done, we will have i_blocks inconsistent with
5412 * on-disk file blocks.
5413 * We always keep i_blocks updated together with real
5414 * allocation. But to not confuse with user, stat
5415 * will return the blocks that include the delayed allocation
5416 * blocks for this file.
5418 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5420 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5424 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5429 /* if nrblocks are contiguous */
5432 * With N contiguous data blocks, it need at most
5433 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5434 * 2 dindirect blocks
5437 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5438 return indirects
+ 3;
5441 * if nrblocks are not contiguous, worse case, each block touch
5442 * a indirect block, and each indirect block touch a double indirect
5443 * block, plus a triple indirect block
5445 indirects
= nrblocks
* 2 + 1;
5449 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5451 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5452 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5453 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5457 * Account for index blocks, block groups bitmaps and block group
5458 * descriptor blocks if modify datablocks and index blocks
5459 * worse case, the indexs blocks spread over different block groups
5461 * If datablocks are discontiguous, they are possible to spread over
5462 * different block groups too. If they are contiuguous, with flexbg,
5463 * they could still across block group boundary.
5465 * Also account for superblock, inode, quota and xattr blocks
5467 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5469 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5475 * How many index blocks need to touch to modify nrblocks?
5476 * The "Chunk" flag indicating whether the nrblocks is
5477 * physically contiguous on disk
5479 * For Direct IO and fallocate, they calls get_block to allocate
5480 * one single extent at a time, so they could set the "Chunk" flag
5482 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5487 * Now let's see how many group bitmaps and group descriptors need
5497 if (groups
> ngroups
)
5499 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5500 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5502 /* bitmaps and block group descriptor blocks */
5503 ret
+= groups
+ gdpblocks
;
5505 /* Blocks for super block, inode, quota and xattr blocks */
5506 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5512 * Calulate the total number of credits to reserve to fit
5513 * the modification of a single pages into a single transaction,
5514 * which may include multiple chunks of block allocations.
5516 * This could be called via ext4_write_begin()
5518 * We need to consider the worse case, when
5519 * one new block per extent.
5521 int ext4_writepage_trans_blocks(struct inode
*inode
)
5523 int bpp
= ext4_journal_blocks_per_page(inode
);
5526 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5528 /* Account for data blocks for journalled mode */
5529 if (ext4_should_journal_data(inode
))
5535 * Calculate the journal credits for a chunk of data modification.
5537 * This is called from DIO, fallocate or whoever calling
5538 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5540 * journal buffers for data blocks are not included here, as DIO
5541 * and fallocate do no need to journal data buffers.
5543 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5545 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5549 * The caller must have previously called ext4_reserve_inode_write().
5550 * Give this, we know that the caller already has write access to iloc->bh.
5552 int ext4_mark_iloc_dirty(handle_t
*handle
,
5553 struct inode
*inode
, struct ext4_iloc
*iloc
)
5557 if (test_opt(inode
->i_sb
, I_VERSION
))
5558 inode_inc_iversion(inode
);
5560 /* the do_update_inode consumes one bh->b_count */
5563 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5564 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5570 * On success, We end up with an outstanding reference count against
5571 * iloc->bh. This _must_ be cleaned up later.
5575 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5576 struct ext4_iloc
*iloc
)
5580 err
= ext4_get_inode_loc(inode
, iloc
);
5582 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5583 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5589 ext4_std_error(inode
->i_sb
, err
);
5594 * Expand an inode by new_extra_isize bytes.
5595 * Returns 0 on success or negative error number on failure.
5597 static int ext4_expand_extra_isize(struct inode
*inode
,
5598 unsigned int new_extra_isize
,
5599 struct ext4_iloc iloc
,
5602 struct ext4_inode
*raw_inode
;
5603 struct ext4_xattr_ibody_header
*header
;
5605 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5608 raw_inode
= ext4_raw_inode(&iloc
);
5610 header
= IHDR(inode
, raw_inode
);
5612 /* No extended attributes present */
5613 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5614 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5615 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5617 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5621 /* try to expand with EAs present */
5622 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5627 * What we do here is to mark the in-core inode as clean with respect to inode
5628 * dirtiness (it may still be data-dirty).
5629 * This means that the in-core inode may be reaped by prune_icache
5630 * without having to perform any I/O. This is a very good thing,
5631 * because *any* task may call prune_icache - even ones which
5632 * have a transaction open against a different journal.
5634 * Is this cheating? Not really. Sure, we haven't written the
5635 * inode out, but prune_icache isn't a user-visible syncing function.
5636 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5637 * we start and wait on commits.
5639 * Is this efficient/effective? Well, we're being nice to the system
5640 * by cleaning up our inodes proactively so they can be reaped
5641 * without I/O. But we are potentially leaving up to five seconds'
5642 * worth of inodes floating about which prune_icache wants us to
5643 * write out. One way to fix that would be to get prune_icache()
5644 * to do a write_super() to free up some memory. It has the desired
5647 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5649 struct ext4_iloc iloc
;
5650 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5651 static unsigned int mnt_count
;
5655 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5656 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5657 if (ext4_handle_valid(handle
) &&
5658 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5659 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5661 * We need extra buffer credits since we may write into EA block
5662 * with this same handle. If journal_extend fails, then it will
5663 * only result in a minor loss of functionality for that inode.
5664 * If this is felt to be critical, then e2fsck should be run to
5665 * force a large enough s_min_extra_isize.
5667 if ((jbd2_journal_extend(handle
,
5668 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5669 ret
= ext4_expand_extra_isize(inode
,
5670 sbi
->s_want_extra_isize
,
5673 ext4_set_inode_state(inode
,
5674 EXT4_STATE_NO_EXPAND
);
5676 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5677 ext4_warning(inode
->i_sb
,
5678 "Unable to expand inode %lu. Delete"
5679 " some EAs or run e2fsck.",
5682 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5688 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5693 * ext4_dirty_inode() is called from __mark_inode_dirty()
5695 * We're really interested in the case where a file is being extended.
5696 * i_size has been changed by generic_commit_write() and we thus need
5697 * to include the updated inode in the current transaction.
5699 * Also, dquot_alloc_block() will always dirty the inode when blocks
5700 * are allocated to the file.
5702 * If the inode is marked synchronous, we don't honour that here - doing
5703 * so would cause a commit on atime updates, which we don't bother doing.
5704 * We handle synchronous inodes at the highest possible level.
5706 void ext4_dirty_inode(struct inode
*inode
)
5710 handle
= ext4_journal_start(inode
, 2);
5714 ext4_mark_inode_dirty(handle
, inode
);
5716 ext4_journal_stop(handle
);
5723 * Bind an inode's backing buffer_head into this transaction, to prevent
5724 * it from being flushed to disk early. Unlike
5725 * ext4_reserve_inode_write, this leaves behind no bh reference and
5726 * returns no iloc structure, so the caller needs to repeat the iloc
5727 * lookup to mark the inode dirty later.
5729 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5731 struct ext4_iloc iloc
;
5735 err
= ext4_get_inode_loc(inode
, &iloc
);
5737 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5738 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5740 err
= ext4_handle_dirty_metadata(handle
,
5746 ext4_std_error(inode
->i_sb
, err
);
5751 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5758 * We have to be very careful here: changing a data block's
5759 * journaling status dynamically is dangerous. If we write a
5760 * data block to the journal, change the status and then delete
5761 * that block, we risk forgetting to revoke the old log record
5762 * from the journal and so a subsequent replay can corrupt data.
5763 * So, first we make sure that the journal is empty and that
5764 * nobody is changing anything.
5767 journal
= EXT4_JOURNAL(inode
);
5770 if (is_journal_aborted(journal
))
5773 jbd2_journal_lock_updates(journal
);
5774 jbd2_journal_flush(journal
);
5777 * OK, there are no updates running now, and all cached data is
5778 * synced to disk. We are now in a completely consistent state
5779 * which doesn't have anything in the journal, and we know that
5780 * no filesystem updates are running, so it is safe to modify
5781 * the inode's in-core data-journaling state flag now.
5785 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5787 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5788 ext4_set_aops(inode
);
5790 jbd2_journal_unlock_updates(journal
);
5792 /* Finally we can mark the inode as dirty. */
5794 handle
= ext4_journal_start(inode
, 1);
5796 return PTR_ERR(handle
);
5798 err
= ext4_mark_inode_dirty(handle
, inode
);
5799 ext4_handle_sync(handle
);
5800 ext4_journal_stop(handle
);
5801 ext4_std_error(inode
->i_sb
, err
);
5806 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5808 return !buffer_mapped(bh
);
5811 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5813 struct page
*page
= vmf
->page
;
5818 struct file
*file
= vma
->vm_file
;
5819 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5820 struct address_space
*mapping
= inode
->i_mapping
;
5823 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5824 * get i_mutex because we are already holding mmap_sem.
5826 down_read(&inode
->i_alloc_sem
);
5827 size
= i_size_read(inode
);
5828 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5829 || !PageUptodate(page
)) {
5830 /* page got truncated from under us? */
5834 if (PageMappedToDisk(page
))
5837 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5838 len
= size
& ~PAGE_CACHE_MASK
;
5840 len
= PAGE_CACHE_SIZE
;
5844 * return if we have all the buffers mapped. This avoid
5845 * the need to call write_begin/write_end which does a
5846 * journal_start/journal_stop which can block and take
5849 if (page_has_buffers(page
)) {
5850 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5851 ext4_bh_unmapped
)) {
5858 * OK, we need to fill the hole... Do write_begin write_end
5859 * to do block allocation/reservation.We are not holding
5860 * inode.i__mutex here. That allow * parallel write_begin,
5861 * write_end call. lock_page prevent this from happening
5862 * on the same page though
5864 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5865 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5868 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5869 len
, len
, page
, fsdata
);
5875 ret
= VM_FAULT_SIGBUS
;
5876 up_read(&inode
->i_alloc_sem
);