x86: rename the struct pt_regs members for 32/64-bit consistency
[linux-2.6/x86.git] / arch / x86 / kernel / kprobes_64.c
blobf6837cd3bed58b40e9220c013ff1af2e6035584e
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
30 * Added function return probes functionality
33 #include <linux/kprobes.h>
34 #include <linux/ptrace.h>
35 #include <linux/string.h>
36 #include <linux/slab.h>
37 #include <linux/preempt.h>
38 #include <linux/module.h>
39 #include <linux/kdebug.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/alternative.h>
45 void jprobe_return_end(void);
46 static void __kprobes arch_copy_kprobe(struct kprobe *p);
48 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
49 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
51 struct kretprobe_blackpoint kretprobe_blacklist[] = {
52 {"__switch_to", }, /* This function switches only current task, but
53 doesn't switch kernel stack.*/
54 {NULL, NULL} /* Terminator */
56 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
59 * returns non-zero if opcode modifies the interrupt flag.
61 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
63 switch (*insn) {
64 case 0xfa: /* cli */
65 case 0xfb: /* sti */
66 case 0xcf: /* iret/iretd */
67 case 0x9d: /* popf/popfd */
68 return 1;
71 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
72 return 1;
73 return 0;
76 int __kprobes arch_prepare_kprobe(struct kprobe *p)
78 /* insn: must be on special executable page on x86_64. */
79 p->ainsn.insn = get_insn_slot();
80 if (!p->ainsn.insn) {
81 return -ENOMEM;
83 arch_copy_kprobe(p);
84 return 0;
88 * Determine if the instruction uses the %rip-relative addressing mode.
89 * If it does, return the address of the 32-bit displacement word.
90 * If not, return null.
92 static s32 __kprobes *is_riprel(u8 *insn)
94 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
95 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
96 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
97 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
98 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
99 << (row % 64))
100 static const u64 onebyte_has_modrm[256 / 64] = {
101 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
102 /* ------------------------------- */
103 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
104 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
105 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
106 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
107 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
108 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
109 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
110 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
111 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
112 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
113 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
114 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
115 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
116 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
117 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
118 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
119 /* ------------------------------- */
120 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
122 static const u64 twobyte_has_modrm[256 / 64] = {
123 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
124 /* ------------------------------- */
125 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
126 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
127 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
128 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
129 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
130 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
131 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
132 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
133 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
134 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
135 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
136 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
137 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
138 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
139 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
140 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
141 /* ------------------------------- */
142 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
144 #undef W
145 int need_modrm;
147 /* Skip legacy instruction prefixes. */
148 while (1) {
149 switch (*insn) {
150 case 0x66:
151 case 0x67:
152 case 0x2e:
153 case 0x3e:
154 case 0x26:
155 case 0x64:
156 case 0x65:
157 case 0x36:
158 case 0xf0:
159 case 0xf3:
160 case 0xf2:
161 ++insn;
162 continue;
164 break;
167 /* Skip REX instruction prefix. */
168 if ((*insn & 0xf0) == 0x40)
169 ++insn;
171 if (*insn == 0x0f) { /* Two-byte opcode. */
172 ++insn;
173 need_modrm = test_bit(*insn, twobyte_has_modrm);
174 } else { /* One-byte opcode. */
175 need_modrm = test_bit(*insn, onebyte_has_modrm);
178 if (need_modrm) {
179 u8 modrm = *++insn;
180 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
181 /* Displacement follows ModRM byte. */
182 return (s32 *) ++insn;
186 /* No %rip-relative addressing mode here. */
187 return NULL;
190 static void __kprobes arch_copy_kprobe(struct kprobe *p)
192 s32 *ripdisp;
193 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
194 ripdisp = is_riprel(p->ainsn.insn);
195 if (ripdisp) {
197 * The copied instruction uses the %rip-relative
198 * addressing mode. Adjust the displacement for the
199 * difference between the original location of this
200 * instruction and the location of the copy that will
201 * actually be run. The tricky bit here is making sure
202 * that the sign extension happens correctly in this
203 * calculation, since we need a signed 32-bit result to
204 * be sign-extended to 64 bits when it's added to the
205 * %rip value and yield the same 64-bit result that the
206 * sign-extension of the original signed 32-bit
207 * displacement would have given.
209 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
210 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
211 *ripdisp = disp;
213 p->opcode = *p->addr;
216 void __kprobes arch_arm_kprobe(struct kprobe *p)
218 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
221 void __kprobes arch_disarm_kprobe(struct kprobe *p)
223 text_poke(p->addr, &p->opcode, 1);
226 void __kprobes arch_remove_kprobe(struct kprobe *p)
228 mutex_lock(&kprobe_mutex);
229 free_insn_slot(p->ainsn.insn, 0);
230 mutex_unlock(&kprobe_mutex);
233 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
235 kcb->prev_kprobe.kp = kprobe_running();
236 kcb->prev_kprobe.status = kcb->kprobe_status;
237 kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
238 kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
241 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
243 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
244 kcb->kprobe_status = kcb->prev_kprobe.status;
245 kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
246 kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
249 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
250 struct kprobe_ctlblk *kcb)
252 __get_cpu_var(current_kprobe) = p;
253 kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
254 = (regs->flags & (TF_MASK | IF_MASK));
255 if (is_IF_modifier(p->ainsn.insn))
256 kcb->kprobe_saved_rflags &= ~IF_MASK;
259 static __always_inline void clear_btf(void)
261 if (test_thread_flag(TIF_DEBUGCTLMSR))
262 wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
265 static __always_inline void restore_btf(void)
267 if (test_thread_flag(TIF_DEBUGCTLMSR))
268 wrmsrl(MSR_IA32_DEBUGCTLMSR, current->thread.debugctlmsr);
271 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
273 clear_btf();
274 regs->flags |= TF_MASK;
275 regs->flags &= ~IF_MASK;
276 /*single step inline if the instruction is an int3*/
277 if (p->opcode == BREAKPOINT_INSTRUCTION)
278 regs->ip = (unsigned long)p->addr;
279 else
280 regs->ip = (unsigned long)p->ainsn.insn;
283 /* Called with kretprobe_lock held */
284 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
285 struct pt_regs *regs)
287 unsigned long *sara = (unsigned long *)regs->sp;
289 ri->ret_addr = (kprobe_opcode_t *) *sara;
290 /* Replace the return addr with trampoline addr */
291 *sara = (unsigned long) &kretprobe_trampoline;
294 int __kprobes kprobe_handler(struct pt_regs *regs)
296 struct kprobe *p;
297 int ret = 0;
298 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
299 struct kprobe_ctlblk *kcb;
302 * We don't want to be preempted for the entire
303 * duration of kprobe processing
305 preempt_disable();
306 kcb = get_kprobe_ctlblk();
308 /* Check we're not actually recursing */
309 if (kprobe_running()) {
310 p = get_kprobe(addr);
311 if (p) {
312 if (kcb->kprobe_status == KPROBE_HIT_SS &&
313 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
314 regs->flags &= ~TF_MASK;
315 regs->flags |= kcb->kprobe_saved_rflags;
316 goto no_kprobe;
317 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
318 /* TODO: Provide re-entrancy from
319 * post_kprobes_handler() and avoid exception
320 * stack corruption while single-stepping on
321 * the instruction of the new probe.
323 arch_disarm_kprobe(p);
324 regs->ip = (unsigned long)p->addr;
325 reset_current_kprobe();
326 ret = 1;
327 } else {
328 /* We have reentered the kprobe_handler(), since
329 * another probe was hit while within the
330 * handler. We here save the original kprobe
331 * variables and just single step on instruction
332 * of the new probe without calling any user
333 * handlers.
335 save_previous_kprobe(kcb);
336 set_current_kprobe(p, regs, kcb);
337 kprobes_inc_nmissed_count(p);
338 prepare_singlestep(p, regs);
339 kcb->kprobe_status = KPROBE_REENTER;
340 return 1;
342 } else {
343 if (*addr != BREAKPOINT_INSTRUCTION) {
344 /* The breakpoint instruction was removed by
345 * another cpu right after we hit, no further
346 * handling of this interrupt is appropriate
348 regs->ip = (unsigned long)addr;
349 ret = 1;
350 goto no_kprobe;
352 p = __get_cpu_var(current_kprobe);
353 if (p->break_handler && p->break_handler(p, regs)) {
354 goto ss_probe;
357 goto no_kprobe;
360 p = get_kprobe(addr);
361 if (!p) {
362 if (*addr != BREAKPOINT_INSTRUCTION) {
364 * The breakpoint instruction was removed right
365 * after we hit it. Another cpu has removed
366 * either a probepoint or a debugger breakpoint
367 * at this address. In either case, no further
368 * handling of this interrupt is appropriate.
369 * Back up over the (now missing) int3 and run
370 * the original instruction.
372 regs->ip = (unsigned long)addr;
373 ret = 1;
375 /* Not one of ours: let kernel handle it */
376 goto no_kprobe;
379 set_current_kprobe(p, regs, kcb);
380 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
382 if (p->pre_handler && p->pre_handler(p, regs))
383 /* handler has already set things up, so skip ss setup */
384 return 1;
386 ss_probe:
387 prepare_singlestep(p, regs);
388 kcb->kprobe_status = KPROBE_HIT_SS;
389 return 1;
391 no_kprobe:
392 preempt_enable_no_resched();
393 return ret;
397 * For function-return probes, init_kprobes() establishes a probepoint
398 * here. When a retprobed function returns, this probe is hit and
399 * trampoline_probe_handler() runs, calling the kretprobe's handler.
401 void kretprobe_trampoline_holder(void)
403 asm volatile ( ".global kretprobe_trampoline\n"
404 "kretprobe_trampoline: \n"
405 "nop\n");
409 * Called when we hit the probe point at kretprobe_trampoline
411 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
413 struct kretprobe_instance *ri = NULL;
414 struct hlist_head *head, empty_rp;
415 struct hlist_node *node, *tmp;
416 unsigned long flags, orig_ret_address = 0;
417 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
419 INIT_HLIST_HEAD(&empty_rp);
420 spin_lock_irqsave(&kretprobe_lock, flags);
421 head = kretprobe_inst_table_head(current);
424 * It is possible to have multiple instances associated with a given
425 * task either because an multiple functions in the call path
426 * have a return probe installed on them, and/or more then one return
427 * return probe was registered for a target function.
429 * We can handle this because:
430 * - instances are always inserted at the head of the list
431 * - when multiple return probes are registered for the same
432 * function, the first instance's ret_addr will point to the
433 * real return address, and all the rest will point to
434 * kretprobe_trampoline
436 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
437 if (ri->task != current)
438 /* another task is sharing our hash bucket */
439 continue;
441 if (ri->rp && ri->rp->handler)
442 ri->rp->handler(ri, regs);
444 orig_ret_address = (unsigned long)ri->ret_addr;
445 recycle_rp_inst(ri, &empty_rp);
447 if (orig_ret_address != trampoline_address)
449 * This is the real return address. Any other
450 * instances associated with this task are for
451 * other calls deeper on the call stack
453 break;
456 kretprobe_assert(ri, orig_ret_address, trampoline_address);
457 regs->ip = orig_ret_address;
459 reset_current_kprobe();
460 spin_unlock_irqrestore(&kretprobe_lock, flags);
461 preempt_enable_no_resched();
463 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
464 hlist_del(&ri->hlist);
465 kfree(ri);
468 * By returning a non-zero value, we are telling
469 * kprobe_handler() that we don't want the post_handler
470 * to run (and have re-enabled preemption)
472 return 1;
476 * Called after single-stepping. p->addr is the address of the
477 * instruction whose first byte has been replaced by the "int 3"
478 * instruction. To avoid the SMP problems that can occur when we
479 * temporarily put back the original opcode to single-step, we
480 * single-stepped a copy of the instruction. The address of this
481 * copy is p->ainsn.insn.
483 * This function prepares to return from the post-single-step
484 * interrupt. We have to fix up the stack as follows:
486 * 0) Except in the case of absolute or indirect jump or call instructions,
487 * the new ip is relative to the copied instruction. We need to make
488 * it relative to the original instruction.
490 * 1) If the single-stepped instruction was pushfl, then the TF and IF
491 * flags are set in the just-pushed flags, and may need to be cleared.
493 * 2) If the single-stepped instruction was a call, the return address
494 * that is atop the stack is the address following the copied instruction.
495 * We need to make it the address following the original instruction.
497 static void __kprobes resume_execution(struct kprobe *p,
498 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
500 unsigned long *tos = (unsigned long *)regs->sp;
501 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
502 unsigned long orig_rip = (unsigned long)p->addr;
503 kprobe_opcode_t *insn = p->ainsn.insn;
505 /*skip the REX prefix*/
506 if (*insn >= 0x40 && *insn <= 0x4f)
507 insn++;
509 regs->flags &= ~TF_MASK;
510 switch (*insn) {
511 case 0x9c: /* pushfl */
512 *tos &= ~(TF_MASK | IF_MASK);
513 *tos |= kcb->kprobe_old_rflags;
514 break;
515 case 0xc2: /* iret/ret/lret */
516 case 0xc3:
517 case 0xca:
518 case 0xcb:
519 case 0xcf:
520 case 0xea: /* jmp absolute -- ip is correct */
521 /* ip is already adjusted, no more changes required */
522 goto no_change;
523 case 0xe8: /* call relative - Fix return addr */
524 *tos = orig_rip + (*tos - copy_rip);
525 break;
526 case 0xff:
527 if ((insn[1] & 0x30) == 0x10) {
528 /* call absolute, indirect */
529 /* Fix return addr; ip is correct. */
530 *tos = orig_rip + (*tos - copy_rip);
531 goto no_change;
532 } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
533 ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
534 /* ip is correct. */
535 goto no_change;
537 default:
538 break;
541 regs->ip = orig_rip + (regs->ip - copy_rip);
543 no_change:
544 restore_btf();
546 return;
549 int __kprobes post_kprobe_handler(struct pt_regs *regs)
551 struct kprobe *cur = kprobe_running();
552 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
554 if (!cur)
555 return 0;
557 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
558 kcb->kprobe_status = KPROBE_HIT_SSDONE;
559 cur->post_handler(cur, regs, 0);
562 resume_execution(cur, regs, kcb);
563 regs->flags |= kcb->kprobe_saved_rflags;
564 trace_hardirqs_fixup_flags(regs->flags);
566 /* Restore the original saved kprobes variables and continue. */
567 if (kcb->kprobe_status == KPROBE_REENTER) {
568 restore_previous_kprobe(kcb);
569 goto out;
571 reset_current_kprobe();
572 out:
573 preempt_enable_no_resched();
576 * if somebody else is singlestepping across a probe point, flags
577 * will have TF set, in which case, continue the remaining processing
578 * of do_debug, as if this is not a probe hit.
580 if (regs->flags & TF_MASK)
581 return 0;
583 return 1;
586 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
588 struct kprobe *cur = kprobe_running();
589 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
590 const struct exception_table_entry *fixup;
592 switch(kcb->kprobe_status) {
593 case KPROBE_HIT_SS:
594 case KPROBE_REENTER:
596 * We are here because the instruction being single
597 * stepped caused a page fault. We reset the current
598 * kprobe and the ip points back to the probe address
599 * and allow the page fault handler to continue as a
600 * normal page fault.
602 regs->ip = (unsigned long)cur->addr;
603 regs->flags |= kcb->kprobe_old_rflags;
604 if (kcb->kprobe_status == KPROBE_REENTER)
605 restore_previous_kprobe(kcb);
606 else
607 reset_current_kprobe();
608 preempt_enable_no_resched();
609 break;
610 case KPROBE_HIT_ACTIVE:
611 case KPROBE_HIT_SSDONE:
613 * We increment the nmissed count for accounting,
614 * we can also use npre/npostfault count for accouting
615 * these specific fault cases.
617 kprobes_inc_nmissed_count(cur);
620 * We come here because instructions in the pre/post
621 * handler caused the page_fault, this could happen
622 * if handler tries to access user space by
623 * copy_from_user(), get_user() etc. Let the
624 * user-specified handler try to fix it first.
626 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
627 return 1;
630 * In case the user-specified fault handler returned
631 * zero, try to fix up.
633 fixup = search_exception_tables(regs->ip);
634 if (fixup) {
635 regs->ip = fixup->fixup;
636 return 1;
640 * fixup() could not handle it,
641 * Let do_page_fault() fix it.
643 break;
644 default:
645 break;
647 return 0;
651 * Wrapper routine for handling exceptions.
653 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
654 unsigned long val, void *data)
656 struct die_args *args = (struct die_args *)data;
657 int ret = NOTIFY_DONE;
659 if (args->regs && user_mode(args->regs))
660 return ret;
662 switch (val) {
663 case DIE_INT3:
664 if (kprobe_handler(args->regs))
665 ret = NOTIFY_STOP;
666 break;
667 case DIE_DEBUG:
668 if (post_kprobe_handler(args->regs))
669 ret = NOTIFY_STOP;
670 break;
671 case DIE_GPF:
672 /* kprobe_running() needs smp_processor_id() */
673 preempt_disable();
674 if (kprobe_running() &&
675 kprobe_fault_handler(args->regs, args->trapnr))
676 ret = NOTIFY_STOP;
677 preempt_enable();
678 break;
679 default:
680 break;
682 return ret;
685 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
687 struct jprobe *jp = container_of(p, struct jprobe, kp);
688 unsigned long addr;
689 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
691 kcb->jprobe_saved_regs = *regs;
692 kcb->jprobe_saved_rsp = (long *) regs->sp;
693 addr = (unsigned long)(kcb->jprobe_saved_rsp);
695 * As Linus pointed out, gcc assumes that the callee
696 * owns the argument space and could overwrite it, e.g.
697 * tailcall optimization. So, to be absolutely safe
698 * we also save and restore enough stack bytes to cover
699 * the argument area.
701 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
702 MIN_STACK_SIZE(addr));
703 regs->flags &= ~IF_MASK;
704 trace_hardirqs_off();
705 regs->ip = (unsigned long)(jp->entry);
706 return 1;
709 void __kprobes jprobe_return(void)
711 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
713 asm volatile (" xchg %%rbx,%%rsp \n"
714 " int3 \n"
715 " .globl jprobe_return_end \n"
716 " jprobe_return_end: \n"
717 " nop \n"::"b"
718 (kcb->jprobe_saved_rsp):"memory");
721 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
723 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
724 u8 *addr = (u8 *) (regs->ip - 1);
725 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
726 struct jprobe *jp = container_of(p, struct jprobe, kp);
728 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
729 if ((unsigned long *)regs->sp != kcb->jprobe_saved_rsp) {
730 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
731 printk("current sp %p does not match saved sp %p\n",
732 (long *)regs->sp, kcb->jprobe_saved_rsp);
733 printk("Saved registers for jprobe %p\n", jp);
734 show_registers(saved_regs);
735 printk("Current registers\n");
736 show_registers(regs);
737 BUG();
739 *regs = kcb->jprobe_saved_regs;
740 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
741 MIN_STACK_SIZE(stack_addr));
742 preempt_enable_no_resched();
743 return 1;
745 return 0;
748 static struct kprobe trampoline_p = {
749 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
750 .pre_handler = trampoline_probe_handler
753 int __init arch_init_kprobes(void)
755 return register_kprobe(&trampoline_p);
758 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
760 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
761 return 1;
763 return 0;