2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
40 #include <linux/irq.h>
41 #include <linux/clk.h>
42 #include <linux/platform_device.h>
43 #include <linux/phy.h>
44 #include <linux/fec.h>
46 #include <asm/cacheflush.h>
48 #ifndef CONFIG_ARCH_MXC
49 #include <asm/coldfire.h>
50 #include <asm/mcfsim.h>
55 #ifdef CONFIG_ARCH_MXC
56 #include <mach/hardware.h>
57 #define FEC_ALIGNMENT 0xf
59 #define FEC_ALIGNMENT 0x3
63 * Define the fixed address of the FEC hardware.
65 #if defined(CONFIG_M5272)
67 static unsigned char fec_mac_default
[] = {
68 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
72 * Some hardware gets it MAC address out of local flash memory.
73 * if this is non-zero then assume it is the address to get MAC from.
75 #if defined(CONFIG_NETtel)
76 #define FEC_FLASHMAC 0xf0006006
77 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
78 #define FEC_FLASHMAC 0xf0006000
79 #elif defined(CONFIG_CANCam)
80 #define FEC_FLASHMAC 0xf0020000
81 #elif defined (CONFIG_M5272C3)
82 #define FEC_FLASHMAC (0xffe04000 + 4)
83 #elif defined(CONFIG_MOD5272)
84 #define FEC_FLASHMAC 0xffc0406b
86 #define FEC_FLASHMAC 0
88 #endif /* CONFIG_M5272 */
90 /* The number of Tx and Rx buffers. These are allocated from the page
91 * pool. The code may assume these are power of two, so it it best
92 * to keep them that size.
93 * We don't need to allocate pages for the transmitter. We just use
94 * the skbuffer directly.
96 #define FEC_ENET_RX_PAGES 8
97 #define FEC_ENET_RX_FRSIZE 2048
98 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
99 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
100 #define FEC_ENET_TX_FRSIZE 2048
101 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
102 #define TX_RING_SIZE 16 /* Must be power of two */
103 #define TX_RING_MOD_MASK 15 /* for this to work */
105 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
106 #error "FEC: descriptor ring size constants too large"
109 /* Interrupt events/masks. */
110 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
111 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
112 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
113 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
114 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
115 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
116 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
117 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
118 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
119 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
121 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
123 /* The FEC stores dest/src/type, data, and checksum for receive packets.
125 #define PKT_MAXBUF_SIZE 1518
126 #define PKT_MINBUF_SIZE 64
127 #define PKT_MAXBLR_SIZE 1520
131 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
132 * size bits. Other FEC hardware does not, so we need to take that into
133 * account when setting it.
135 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
136 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
137 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
139 #define OPT_FRAME_SIZE 0
142 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
143 * tx_bd_base always point to the base of the buffer descriptors. The
144 * cur_rx and cur_tx point to the currently available buffer.
145 * The dirty_tx tracks the current buffer that is being sent by the
146 * controller. The cur_tx and dirty_tx are equal under both completely
147 * empty and completely full conditions. The empty/ready indicator in
148 * the buffer descriptor determines the actual condition.
150 struct fec_enet_private
{
151 /* Hardware registers of the FEC device */
154 struct net_device
*netdev
;
158 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
159 unsigned char *tx_bounce
[TX_RING_SIZE
];
160 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
161 struct sk_buff
* rx_skbuff
[RX_RING_SIZE
];
165 /* CPM dual port RAM relative addresses */
167 /* Address of Rx and Tx buffers */
168 struct bufdesc
*rx_bd_base
;
169 struct bufdesc
*tx_bd_base
;
170 /* The next free ring entry */
171 struct bufdesc
*cur_rx
, *cur_tx
;
172 /* The ring entries to be free()ed */
173 struct bufdesc
*dirty_tx
;
176 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
179 struct platform_device
*pdev
;
183 /* Phylib and MDIO interface */
184 struct mii_bus
*mii_bus
;
185 struct phy_device
*phy_dev
;
188 phy_interface_t phy_interface
;
192 struct completion mdio_done
;
195 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
196 static void fec_enet_tx(struct net_device
*dev
);
197 static void fec_enet_rx(struct net_device
*dev
);
198 static int fec_enet_close(struct net_device
*dev
);
199 static void fec_restart(struct net_device
*dev
, int duplex
);
200 static void fec_stop(struct net_device
*dev
);
202 /* FEC MII MMFR bits definition */
203 #define FEC_MMFR_ST (1 << 30)
204 #define FEC_MMFR_OP_READ (2 << 28)
205 #define FEC_MMFR_OP_WRITE (1 << 28)
206 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
207 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
208 #define FEC_MMFR_TA (2 << 16)
209 #define FEC_MMFR_DATA(v) (v & 0xffff)
211 #define FEC_MII_TIMEOUT 1000 /* us */
213 /* Transmitter timeout */
214 #define TX_TIMEOUT (2 * HZ)
217 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
219 struct fec_enet_private
*fep
= netdev_priv(dev
);
222 unsigned short status
;
226 /* Link is down or autonegotiation is in progress. */
227 return NETDEV_TX_BUSY
;
230 spin_lock_irqsave(&fep
->hw_lock
, flags
);
231 /* Fill in a Tx ring entry */
234 status
= bdp
->cbd_sc
;
236 if (status
& BD_ENET_TX_READY
) {
237 /* Ooops. All transmit buffers are full. Bail out.
238 * This should not happen, since dev->tbusy should be set.
240 printk("%s: tx queue full!.\n", dev
->name
);
241 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
242 return NETDEV_TX_BUSY
;
245 /* Clear all of the status flags */
246 status
&= ~BD_ENET_TX_STATS
;
248 /* Set buffer length and buffer pointer */
250 bdp
->cbd_datlen
= skb
->len
;
253 * On some FEC implementations data must be aligned on
254 * 4-byte boundaries. Use bounce buffers to copy data
255 * and get it aligned. Ugh.
257 if (((unsigned long) bufaddr
) & FEC_ALIGNMENT
) {
259 index
= bdp
- fep
->tx_bd_base
;
260 memcpy(fep
->tx_bounce
[index
], (void *)skb
->data
, skb
->len
);
261 bufaddr
= fep
->tx_bounce
[index
];
264 /* Save skb pointer */
265 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
267 dev
->stats
.tx_bytes
+= skb
->len
;
268 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
270 /* Push the data cache so the CPM does not get stale memory
273 bdp
->cbd_bufaddr
= dma_map_single(&dev
->dev
, bufaddr
,
274 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
276 /* Send it on its way. Tell FEC it's ready, interrupt when done,
277 * it's the last BD of the frame, and to put the CRC on the end.
279 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
280 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
281 bdp
->cbd_sc
= status
;
283 /* Trigger transmission start */
284 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE
);
286 /* If this was the last BD in the ring, start at the beginning again. */
287 if (status
& BD_ENET_TX_WRAP
)
288 bdp
= fep
->tx_bd_base
;
292 if (bdp
== fep
->dirty_tx
) {
294 netif_stop_queue(dev
);
299 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
305 fec_timeout(struct net_device
*dev
)
307 struct fec_enet_private
*fep
= netdev_priv(dev
);
309 dev
->stats
.tx_errors
++;
311 fec_restart(dev
, fep
->full_duplex
);
312 netif_wake_queue(dev
);
316 fec_enet_interrupt(int irq
, void * dev_id
)
318 struct net_device
*dev
= dev_id
;
319 struct fec_enet_private
*fep
= netdev_priv(dev
);
321 irqreturn_t ret
= IRQ_NONE
;
324 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
325 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
327 if (int_events
& FEC_ENET_RXF
) {
332 /* Transmit OK, or non-fatal error. Update the buffer
333 * descriptors. FEC handles all errors, we just discover
334 * them as part of the transmit process.
336 if (int_events
& FEC_ENET_TXF
) {
341 if (int_events
& FEC_ENET_MII
) {
343 complete(&fep
->mdio_done
);
345 } while (int_events
);
352 fec_enet_tx(struct net_device
*dev
)
354 struct fec_enet_private
*fep
;
356 unsigned short status
;
359 fep
= netdev_priv(dev
);
360 spin_lock(&fep
->hw_lock
);
363 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
364 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0)
367 dma_unmap_single(&dev
->dev
, bdp
->cbd_bufaddr
, FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
368 bdp
->cbd_bufaddr
= 0;
370 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
371 /* Check for errors. */
372 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
373 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
375 dev
->stats
.tx_errors
++;
376 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
377 dev
->stats
.tx_heartbeat_errors
++;
378 if (status
& BD_ENET_TX_LC
) /* Late collision */
379 dev
->stats
.tx_window_errors
++;
380 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
381 dev
->stats
.tx_aborted_errors
++;
382 if (status
& BD_ENET_TX_UN
) /* Underrun */
383 dev
->stats
.tx_fifo_errors
++;
384 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
385 dev
->stats
.tx_carrier_errors
++;
387 dev
->stats
.tx_packets
++;
390 if (status
& BD_ENET_TX_READY
)
391 printk("HEY! Enet xmit interrupt and TX_READY.\n");
393 /* Deferred means some collisions occurred during transmit,
394 * but we eventually sent the packet OK.
396 if (status
& BD_ENET_TX_DEF
)
397 dev
->stats
.collisions
++;
399 /* Free the sk buffer associated with this last transmit */
400 dev_kfree_skb_any(skb
);
401 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
402 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
404 /* Update pointer to next buffer descriptor to be transmitted */
405 if (status
& BD_ENET_TX_WRAP
)
406 bdp
= fep
->tx_bd_base
;
410 /* Since we have freed up a buffer, the ring is no longer full
414 if (netif_queue_stopped(dev
))
415 netif_wake_queue(dev
);
419 spin_unlock(&fep
->hw_lock
);
423 /* During a receive, the cur_rx points to the current incoming buffer.
424 * When we update through the ring, if the next incoming buffer has
425 * not been given to the system, we just set the empty indicator,
426 * effectively tossing the packet.
429 fec_enet_rx(struct net_device
*dev
)
431 struct fec_enet_private
*fep
= netdev_priv(dev
);
433 unsigned short status
;
442 spin_lock(&fep
->hw_lock
);
444 /* First, grab all of the stats for the incoming packet.
445 * These get messed up if we get called due to a busy condition.
449 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
451 /* Since we have allocated space to hold a complete frame,
452 * the last indicator should be set.
454 if ((status
& BD_ENET_RX_LAST
) == 0)
455 printk("FEC ENET: rcv is not +last\n");
458 goto rx_processing_done
;
460 /* Check for errors. */
461 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
462 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
463 dev
->stats
.rx_errors
++;
464 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
465 /* Frame too long or too short. */
466 dev
->stats
.rx_length_errors
++;
468 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
469 dev
->stats
.rx_frame_errors
++;
470 if (status
& BD_ENET_RX_CR
) /* CRC Error */
471 dev
->stats
.rx_crc_errors
++;
472 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
473 dev
->stats
.rx_fifo_errors
++;
476 /* Report late collisions as a frame error.
477 * On this error, the BD is closed, but we don't know what we
478 * have in the buffer. So, just drop this frame on the floor.
480 if (status
& BD_ENET_RX_CL
) {
481 dev
->stats
.rx_errors
++;
482 dev
->stats
.rx_frame_errors
++;
483 goto rx_processing_done
;
486 /* Process the incoming frame. */
487 dev
->stats
.rx_packets
++;
488 pkt_len
= bdp
->cbd_datlen
;
489 dev
->stats
.rx_bytes
+= pkt_len
;
490 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
492 dma_unmap_single(NULL
, bdp
->cbd_bufaddr
, bdp
->cbd_datlen
,
495 /* This does 16 byte alignment, exactly what we need.
496 * The packet length includes FCS, but we don't want to
497 * include that when passing upstream as it messes up
498 * bridging applications.
500 skb
= dev_alloc_skb(pkt_len
- 4 + NET_IP_ALIGN
);
502 if (unlikely(!skb
)) {
503 printk("%s: Memory squeeze, dropping packet.\n",
505 dev
->stats
.rx_dropped
++;
507 skb_reserve(skb
, NET_IP_ALIGN
);
508 skb_put(skb
, pkt_len
- 4); /* Make room */
509 skb_copy_to_linear_data(skb
, data
, pkt_len
- 4);
510 skb
->protocol
= eth_type_trans(skb
, dev
);
514 bdp
->cbd_bufaddr
= dma_map_single(NULL
, data
, bdp
->cbd_datlen
,
517 /* Clear the status flags for this buffer */
518 status
&= ~BD_ENET_RX_STATS
;
520 /* Mark the buffer empty */
521 status
|= BD_ENET_RX_EMPTY
;
522 bdp
->cbd_sc
= status
;
524 /* Update BD pointer to next entry */
525 if (status
& BD_ENET_RX_WRAP
)
526 bdp
= fep
->rx_bd_base
;
529 /* Doing this here will keep the FEC running while we process
530 * incoming frames. On a heavily loaded network, we should be
531 * able to keep up at the expense of system resources.
533 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
537 spin_unlock(&fep
->hw_lock
);
540 /* ------------------------------------------------------------------------- */
542 static void __inline__
fec_get_mac(struct net_device
*dev
)
544 struct fec_enet_private
*fep
= netdev_priv(dev
);
545 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
549 * Get MAC address from FLASH.
550 * If it is all 1's or 0's, use the default.
552 iap
= (unsigned char *)FEC_FLASHMAC
;
553 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
554 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
555 iap
= fec_mac_default
;
556 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
557 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
558 iap
= fec_mac_default
;
560 *((unsigned long *) &tmpaddr
[0]) = readl(fep
->hwp
+ FEC_ADDR_LOW
);
561 *((unsigned short *) &tmpaddr
[4]) = (readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
565 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
567 /* Adjust MAC if using default MAC address */
568 if (iap
== fec_mac_default
)
569 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
573 /* ------------------------------------------------------------------------- */
578 static void fec_enet_adjust_link(struct net_device
*dev
)
580 struct fec_enet_private
*fep
= netdev_priv(dev
);
581 struct phy_device
*phy_dev
= fep
->phy_dev
;
584 int status_change
= 0;
586 spin_lock_irqsave(&fep
->hw_lock
, flags
);
588 /* Prevent a state halted on mii error */
589 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
590 phy_dev
->state
= PHY_RESUMING
;
594 /* Duplex link change */
596 if (fep
->full_duplex
!= phy_dev
->duplex
) {
597 fec_restart(dev
, phy_dev
->duplex
);
602 /* Link on or off change */
603 if (phy_dev
->link
!= fep
->link
) {
604 fep
->link
= phy_dev
->link
;
606 fec_restart(dev
, phy_dev
->duplex
);
613 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
616 phy_print_status(phy_dev
);
619 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
621 struct fec_enet_private
*fep
= bus
->priv
;
622 unsigned long time_left
;
624 fep
->mii_timeout
= 0;
625 init_completion(&fep
->mdio_done
);
627 /* start a read op */
628 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
629 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
630 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
632 /* wait for end of transfer */
633 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
634 usecs_to_jiffies(FEC_MII_TIMEOUT
));
635 if (time_left
== 0) {
636 fep
->mii_timeout
= 1;
637 printk(KERN_ERR
"FEC: MDIO read timeout\n");
642 return FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
645 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
648 struct fec_enet_private
*fep
= bus
->priv
;
649 unsigned long time_left
;
651 fep
->mii_timeout
= 0;
652 init_completion(&fep
->mdio_done
);
654 /* start a read op */
655 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
656 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
657 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
658 fep
->hwp
+ FEC_MII_DATA
);
660 /* wait for end of transfer */
661 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
662 usecs_to_jiffies(FEC_MII_TIMEOUT
));
663 if (time_left
== 0) {
664 fep
->mii_timeout
= 1;
665 printk(KERN_ERR
"FEC: MDIO write timeout\n");
672 static int fec_enet_mdio_reset(struct mii_bus
*bus
)
677 static int fec_enet_mii_probe(struct net_device
*dev
)
679 struct fec_enet_private
*fep
= netdev_priv(dev
);
680 struct phy_device
*phy_dev
= NULL
;
685 /* find the first phy */
686 phy_dev
= phy_find_first(fep
->mii_bus
);
688 printk(KERN_ERR
"%s: no PHY found\n", dev
->name
);
692 /* attach the mac to the phy */
693 ret
= phy_connect_direct(dev
, phy_dev
,
694 &fec_enet_adjust_link
, 0,
695 PHY_INTERFACE_MODE_MII
);
697 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
701 /* mask with MAC supported features */
702 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
703 phy_dev
->advertising
= phy_dev
->supported
;
705 fep
->phy_dev
= phy_dev
;
707 fep
->full_duplex
= 0;
709 printk(KERN_INFO
"%s: Freescale FEC PHY driver [%s] "
710 "(mii_bus:phy_addr=%s, irq=%d)\n", dev
->name
,
711 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
717 static int fec_enet_mii_init(struct platform_device
*pdev
)
719 struct net_device
*dev
= platform_get_drvdata(pdev
);
720 struct fec_enet_private
*fep
= netdev_priv(dev
);
723 fep
->mii_timeout
= 0;
726 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
728 fep
->phy_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk
), 5000000) << 1;
729 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
731 fep
->mii_bus
= mdiobus_alloc();
732 if (fep
->mii_bus
== NULL
) {
737 fep
->mii_bus
->name
= "fec_enet_mii_bus";
738 fep
->mii_bus
->read
= fec_enet_mdio_read
;
739 fep
->mii_bus
->write
= fec_enet_mdio_write
;
740 fep
->mii_bus
->reset
= fec_enet_mdio_reset
;
741 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", pdev
->id
);
742 fep
->mii_bus
->priv
= fep
;
743 fep
->mii_bus
->parent
= &pdev
->dev
;
745 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
746 if (!fep
->mii_bus
->irq
) {
748 goto err_out_free_mdiobus
;
751 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
752 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
754 platform_set_drvdata(dev
, fep
->mii_bus
);
756 if (mdiobus_register(fep
->mii_bus
))
757 goto err_out_free_mdio_irq
;
761 err_out_free_mdio_irq
:
762 kfree(fep
->mii_bus
->irq
);
763 err_out_free_mdiobus
:
764 mdiobus_free(fep
->mii_bus
);
769 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
772 phy_disconnect(fep
->phy_dev
);
773 mdiobus_unregister(fep
->mii_bus
);
774 kfree(fep
->mii_bus
->irq
);
775 mdiobus_free(fep
->mii_bus
);
778 static int fec_enet_get_settings(struct net_device
*dev
,
779 struct ethtool_cmd
*cmd
)
781 struct fec_enet_private
*fep
= netdev_priv(dev
);
782 struct phy_device
*phydev
= fep
->phy_dev
;
787 return phy_ethtool_gset(phydev
, cmd
);
790 static int fec_enet_set_settings(struct net_device
*dev
,
791 struct ethtool_cmd
*cmd
)
793 struct fec_enet_private
*fep
= netdev_priv(dev
);
794 struct phy_device
*phydev
= fep
->phy_dev
;
799 return phy_ethtool_sset(phydev
, cmd
);
802 static void fec_enet_get_drvinfo(struct net_device
*dev
,
803 struct ethtool_drvinfo
*info
)
805 struct fec_enet_private
*fep
= netdev_priv(dev
);
807 strcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
);
808 strcpy(info
->version
, "Revision: 1.0");
809 strcpy(info
->bus_info
, dev_name(&dev
->dev
));
812 static struct ethtool_ops fec_enet_ethtool_ops
= {
813 .get_settings
= fec_enet_get_settings
,
814 .set_settings
= fec_enet_set_settings
,
815 .get_drvinfo
= fec_enet_get_drvinfo
,
816 .get_link
= ethtool_op_get_link
,
819 static int fec_enet_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
821 struct fec_enet_private
*fep
= netdev_priv(dev
);
822 struct phy_device
*phydev
= fep
->phy_dev
;
824 if (!netif_running(dev
))
830 return phy_mii_ioctl(phydev
, rq
, cmd
);
833 static void fec_enet_free_buffers(struct net_device
*dev
)
835 struct fec_enet_private
*fep
= netdev_priv(dev
);
840 bdp
= fep
->rx_bd_base
;
841 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
842 skb
= fep
->rx_skbuff
[i
];
844 if (bdp
->cbd_bufaddr
)
845 dma_unmap_single(&dev
->dev
, bdp
->cbd_bufaddr
,
846 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
852 bdp
= fep
->tx_bd_base
;
853 for (i
= 0; i
< TX_RING_SIZE
; i
++)
854 kfree(fep
->tx_bounce
[i
]);
857 static int fec_enet_alloc_buffers(struct net_device
*dev
)
859 struct fec_enet_private
*fep
= netdev_priv(dev
);
864 bdp
= fep
->rx_bd_base
;
865 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
866 skb
= dev_alloc_skb(FEC_ENET_RX_FRSIZE
);
868 fec_enet_free_buffers(dev
);
871 fep
->rx_skbuff
[i
] = skb
;
873 bdp
->cbd_bufaddr
= dma_map_single(&dev
->dev
, skb
->data
,
874 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
875 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
879 /* Set the last buffer to wrap. */
881 bdp
->cbd_sc
|= BD_SC_WRAP
;
883 bdp
= fep
->tx_bd_base
;
884 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
885 fep
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
888 bdp
->cbd_bufaddr
= 0;
892 /* Set the last buffer to wrap. */
894 bdp
->cbd_sc
|= BD_SC_WRAP
;
900 fec_enet_open(struct net_device
*dev
)
902 struct fec_enet_private
*fep
= netdev_priv(dev
);
905 /* I should reset the ring buffers here, but I don't yet know
906 * a simple way to do that.
909 ret
= fec_enet_alloc_buffers(dev
);
913 /* Probe and connect to PHY when open the interface */
914 ret
= fec_enet_mii_probe(dev
);
916 fec_enet_free_buffers(dev
);
919 phy_start(fep
->phy_dev
);
920 netif_start_queue(dev
);
926 fec_enet_close(struct net_device
*dev
)
928 struct fec_enet_private
*fep
= netdev_priv(dev
);
930 /* Don't know what to do yet. */
932 netif_stop_queue(dev
);
936 phy_disconnect(fep
->phy_dev
);
938 fec_enet_free_buffers(dev
);
943 /* Set or clear the multicast filter for this adaptor.
944 * Skeleton taken from sunlance driver.
945 * The CPM Ethernet implementation allows Multicast as well as individual
946 * MAC address filtering. Some of the drivers check to make sure it is
947 * a group multicast address, and discard those that are not. I guess I
948 * will do the same for now, but just remove the test if you want
949 * individual filtering as well (do the upper net layers want or support
950 * this kind of feature?).
953 #define HASH_BITS 6 /* #bits in hash */
954 #define CRC32_POLY 0xEDB88320
956 static void set_multicast_list(struct net_device
*dev
)
958 struct fec_enet_private
*fep
= netdev_priv(dev
);
959 struct netdev_hw_addr
*ha
;
960 unsigned int i
, bit
, data
, crc
, tmp
;
963 if (dev
->flags
& IFF_PROMISC
) {
964 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
966 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
970 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
972 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
974 if (dev
->flags
& IFF_ALLMULTI
) {
975 /* Catch all multicast addresses, so set the
978 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
979 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
984 /* Clear filter and add the addresses in hash register
986 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
987 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
989 netdev_for_each_mc_addr(ha
, dev
) {
990 /* Only support group multicast for now */
991 if (!(ha
->addr
[0] & 1))
994 /* calculate crc32 value of mac address */
997 for (i
= 0; i
< dev
->addr_len
; i
++) {
999 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
1001 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1005 /* only upper 6 bits (HASH_BITS) are used
1006 * which point to specific bit in he hash registers
1008 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1011 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1012 tmp
|= 1 << (hash
- 32);
1013 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1015 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1017 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1022 /* Set a MAC change in hardware. */
1024 fec_set_mac_address(struct net_device
*dev
, void *p
)
1026 struct fec_enet_private
*fep
= netdev_priv(dev
);
1027 struct sockaddr
*addr
= p
;
1029 if (!is_valid_ether_addr(addr
->sa_data
))
1030 return -EADDRNOTAVAIL
;
1032 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1034 writel(dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
1035 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24),
1036 fep
->hwp
+ FEC_ADDR_LOW
);
1037 writel((dev
->dev_addr
[5] << 16) | (dev
->dev_addr
[4] << 24),
1038 fep
->hwp
+ FEC_ADDR_HIGH
);
1042 static const struct net_device_ops fec_netdev_ops
= {
1043 .ndo_open
= fec_enet_open
,
1044 .ndo_stop
= fec_enet_close
,
1045 .ndo_start_xmit
= fec_enet_start_xmit
,
1046 .ndo_set_multicast_list
= set_multicast_list
,
1047 .ndo_change_mtu
= eth_change_mtu
,
1048 .ndo_validate_addr
= eth_validate_addr
,
1049 .ndo_tx_timeout
= fec_timeout
,
1050 .ndo_set_mac_address
= fec_set_mac_address
,
1051 .ndo_do_ioctl
= fec_enet_ioctl
,
1055 * XXX: We need to clean up on failure exits here.
1057 * index is only used in legacy code
1059 static int fec_enet_init(struct net_device
*dev
, int index
)
1061 struct fec_enet_private
*fep
= netdev_priv(dev
);
1062 struct bufdesc
*cbd_base
;
1063 struct bufdesc
*bdp
;
1066 /* Allocate memory for buffer descriptors. */
1067 cbd_base
= dma_alloc_coherent(NULL
, PAGE_SIZE
, &fep
->bd_dma
,
1070 printk("FEC: allocate descriptor memory failed?\n");
1074 spin_lock_init(&fep
->hw_lock
);
1077 fep
->hwp
= (void __iomem
*)dev
->base_addr
;
1080 /* Set the Ethernet address */
1086 l
= readl(fep
->hwp
+ FEC_ADDR_LOW
);
1087 dev
->dev_addr
[0] = (unsigned char)((l
& 0xFF000000) >> 24);
1088 dev
->dev_addr
[1] = (unsigned char)((l
& 0x00FF0000) >> 16);
1089 dev
->dev_addr
[2] = (unsigned char)((l
& 0x0000FF00) >> 8);
1090 dev
->dev_addr
[3] = (unsigned char)((l
& 0x000000FF) >> 0);
1091 l
= readl(fep
->hwp
+ FEC_ADDR_HIGH
);
1092 dev
->dev_addr
[4] = (unsigned char)((l
& 0xFF000000) >> 24);
1093 dev
->dev_addr
[5] = (unsigned char)((l
& 0x00FF0000) >> 16);
1097 /* Set receive and transmit descriptor base. */
1098 fep
->rx_bd_base
= cbd_base
;
1099 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1101 /* The FEC Ethernet specific entries in the device structure */
1102 dev
->watchdog_timeo
= TX_TIMEOUT
;
1103 dev
->netdev_ops
= &fec_netdev_ops
;
1104 dev
->ethtool_ops
= &fec_enet_ethtool_ops
;
1106 /* Initialize the receive buffer descriptors. */
1107 bdp
= fep
->rx_bd_base
;
1108 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1110 /* Initialize the BD for every fragment in the page. */
1115 /* Set the last buffer to wrap */
1117 bdp
->cbd_sc
|= BD_SC_WRAP
;
1119 /* ...and the same for transmit */
1120 bdp
= fep
->tx_bd_base
;
1121 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1123 /* Initialize the BD for every fragment in the page. */
1125 bdp
->cbd_bufaddr
= 0;
1129 /* Set the last buffer to wrap */
1131 bdp
->cbd_sc
|= BD_SC_WRAP
;
1133 fec_restart(dev
, 0);
1138 /* This function is called to start or restart the FEC during a link
1139 * change. This only happens when switching between half and full
1143 fec_restart(struct net_device
*dev
, int duplex
)
1145 struct fec_enet_private
*fep
= netdev_priv(dev
);
1148 /* Whack a reset. We should wait for this. */
1149 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1152 /* Clear any outstanding interrupt. */
1153 writel(0xffc00000, fep
->hwp
+ FEC_IEVENT
);
1155 /* Reset all multicast. */
1156 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1157 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1158 #ifndef CONFIG_M5272
1159 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
1160 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
1163 /* Set maximum receive buffer size. */
1164 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE
);
1166 /* Set receive and transmit descriptor base. */
1167 writel(fep
->bd_dma
, fep
->hwp
+ FEC_R_DES_START
);
1168 writel((unsigned long)fep
->bd_dma
+ sizeof(struct bufdesc
) * RX_RING_SIZE
,
1169 fep
->hwp
+ FEC_X_DES_START
);
1171 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
1172 fep
->cur_rx
= fep
->rx_bd_base
;
1174 /* Reset SKB transmit buffers. */
1175 fep
->skb_cur
= fep
->skb_dirty
= 0;
1176 for (i
= 0; i
<= TX_RING_MOD_MASK
; i
++) {
1177 if (fep
->tx_skbuff
[i
]) {
1178 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
1179 fep
->tx_skbuff
[i
] = NULL
;
1183 /* Enable MII mode */
1185 /* MII enable / FD enable */
1186 writel(OPT_FRAME_SIZE
| 0x04, fep
->hwp
+ FEC_R_CNTRL
);
1187 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
1189 /* MII enable / No Rcv on Xmit */
1190 writel(OPT_FRAME_SIZE
| 0x06, fep
->hwp
+ FEC_R_CNTRL
);
1191 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
1193 fep
->full_duplex
= duplex
;
1196 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1198 #ifdef FEC_MIIGSK_ENR
1199 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
) {
1200 /* disable the gasket and wait */
1201 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
1202 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
1205 /* configure the gasket: RMII, 50 MHz, no loopback, no echo */
1206 writel(1, fep
->hwp
+ FEC_MIIGSK_CFGR
);
1208 /* re-enable the gasket */
1209 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
1213 /* And last, enable the transmit and receive processing */
1214 writel(2, fep
->hwp
+ FEC_ECNTRL
);
1215 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
1217 /* Enable interrupts we wish to service */
1218 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1222 fec_stop(struct net_device
*dev
)
1224 struct fec_enet_private
*fep
= netdev_priv(dev
);
1226 /* We cannot expect a graceful transmit stop without link !!! */
1228 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
1230 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
1231 printk("fec_stop : Graceful transmit stop did not complete !\n");
1234 /* Whack a reset. We should wait for this. */
1235 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1237 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1238 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1241 static int __devinit
1242 fec_probe(struct platform_device
*pdev
)
1244 struct fec_enet_private
*fep
;
1245 struct fec_platform_data
*pdata
;
1246 struct net_device
*ndev
;
1247 int i
, irq
, ret
= 0;
1250 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1254 r
= request_mem_region(r
->start
, resource_size(r
), pdev
->name
);
1258 /* Init network device */
1259 ndev
= alloc_etherdev(sizeof(struct fec_enet_private
));
1263 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1265 /* setup board info structure */
1266 fep
= netdev_priv(ndev
);
1267 memset(fep
, 0, sizeof(*fep
));
1269 ndev
->base_addr
= (unsigned long)ioremap(r
->start
, resource_size(r
));
1272 if (!ndev
->base_addr
) {
1274 goto failed_ioremap
;
1277 platform_set_drvdata(pdev
, ndev
);
1279 pdata
= pdev
->dev
.platform_data
;
1281 fep
->phy_interface
= pdata
->phy
;
1283 /* This device has up to three irqs on some platforms */
1284 for (i
= 0; i
< 3; i
++) {
1285 irq
= platform_get_irq(pdev
, i
);
1288 ret
= request_irq(irq
, fec_enet_interrupt
, IRQF_DISABLED
, pdev
->name
, ndev
);
1291 irq
= platform_get_irq(pdev
, i
);
1292 free_irq(irq
, ndev
);
1299 fep
->clk
= clk_get(&pdev
->dev
, "fec_clk");
1300 if (IS_ERR(fep
->clk
)) {
1301 ret
= PTR_ERR(fep
->clk
);
1304 clk_enable(fep
->clk
);
1306 ret
= fec_enet_init(ndev
, 0);
1310 ret
= fec_enet_mii_init(pdev
);
1312 goto failed_mii_init
;
1314 ret
= register_netdev(ndev
);
1316 goto failed_register
;
1321 fec_enet_mii_remove(fep
);
1324 clk_disable(fep
->clk
);
1327 for (i
= 0; i
< 3; i
++) {
1328 irq
= platform_get_irq(pdev
, i
);
1330 free_irq(irq
, ndev
);
1333 iounmap((void __iomem
*)ndev
->base_addr
);
1340 static int __devexit
1341 fec_drv_remove(struct platform_device
*pdev
)
1343 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1344 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1346 platform_set_drvdata(pdev
, NULL
);
1349 fec_enet_mii_remove(fep
);
1350 clk_disable(fep
->clk
);
1352 iounmap((void __iomem
*)ndev
->base_addr
);
1353 unregister_netdev(ndev
);
1360 fec_suspend(struct device
*dev
)
1362 struct net_device
*ndev
= dev_get_drvdata(dev
);
1363 struct fec_enet_private
*fep
;
1366 fep
= netdev_priv(ndev
);
1367 if (netif_running(ndev
))
1368 fec_enet_close(ndev
);
1369 clk_disable(fep
->clk
);
1375 fec_resume(struct device
*dev
)
1377 struct net_device
*ndev
= dev_get_drvdata(dev
);
1378 struct fec_enet_private
*fep
;
1381 fep
= netdev_priv(ndev
);
1382 clk_enable(fep
->clk
);
1383 if (netif_running(ndev
))
1384 fec_enet_open(ndev
);
1389 static const struct dev_pm_ops fec_pm_ops
= {
1390 .suspend
= fec_suspend
,
1391 .resume
= fec_resume
,
1392 .freeze
= fec_suspend
,
1394 .poweroff
= fec_suspend
,
1395 .restore
= fec_resume
,
1399 static struct platform_driver fec_driver
= {
1402 .owner
= THIS_MODULE
,
1408 .remove
= __devexit_p(fec_drv_remove
),
1412 fec_enet_module_init(void)
1414 printk(KERN_INFO
"FEC Ethernet Driver\n");
1416 return platform_driver_register(&fec_driver
);
1420 fec_enet_cleanup(void)
1422 platform_driver_unregister(&fec_driver
);
1425 module_exit(fec_enet_cleanup
);
1426 module_init(fec_enet_module_init
);
1428 MODULE_LICENSE("GPL");