2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
43 static struct workqueue_struct
*ata_sff_wq
;
45 const struct ata_port_operations ata_sff_port_ops
= {
46 .inherits
= &ata_base_port_ops
,
48 .qc_prep
= ata_noop_qc_prep
,
49 .qc_issue
= ata_sff_qc_issue
,
50 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
52 .freeze
= ata_sff_freeze
,
54 .prereset
= ata_sff_prereset
,
55 .softreset
= ata_sff_softreset
,
56 .hardreset
= sata_sff_hardreset
,
57 .postreset
= ata_sff_postreset
,
58 .error_handler
= ata_sff_error_handler
,
60 .sff_dev_select
= ata_sff_dev_select
,
61 .sff_check_status
= ata_sff_check_status
,
62 .sff_tf_load
= ata_sff_tf_load
,
63 .sff_tf_read
= ata_sff_tf_read
,
64 .sff_exec_command
= ata_sff_exec_command
,
65 .sff_data_xfer
= ata_sff_data_xfer
,
66 .sff_drain_fifo
= ata_sff_drain_fifo
,
68 .lost_interrupt
= ata_sff_lost_interrupt
,
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
73 * ata_sff_check_status - Read device status reg & clear interrupt
74 * @ap: port where the device is
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
81 * Inherited from caller.
83 u8
ata_sff_check_status(struct ata_port
*ap
)
85 return ioread8(ap
->ioaddr
.status_addr
);
87 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
90 * ata_sff_altstatus - Read device alternate status reg
91 * @ap: port where the device is
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
100 * Inherited from caller.
102 static u8
ata_sff_altstatus(struct ata_port
*ap
)
104 if (ap
->ops
->sff_check_altstatus
)
105 return ap
->ops
->sff_check_altstatus(ap
);
107 return ioread8(ap
->ioaddr
.altstatus_addr
);
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
120 * Inherited from caller.
122 static u8
ata_sff_irq_status(struct ata_port
*ap
)
126 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
127 status
= ata_sff_altstatus(ap
);
128 /* Not us: We are busy */
129 if (status
& ATA_BUSY
)
132 /* Clear INTRQ latch */
133 status
= ap
->ops
->sff_check_status(ap
);
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
146 * Inherited from caller.
149 static void ata_sff_sync(struct ata_port
*ap
)
151 if (ap
->ops
->sff_check_altstatus
)
152 ap
->ops
->sff_check_altstatus(ap
);
153 else if (ap
->ioaddr
.altstatus_addr
)
154 ioread8(ap
->ioaddr
.altstatus_addr
);
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
166 * Inherited from caller.
169 void ata_sff_pause(struct ata_port
*ap
)
174 EXPORT_SYMBOL_GPL(ata_sff_pause
);
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
184 void ata_sff_dma_pause(struct ata_port
*ap
)
186 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap
);
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
201 * @ap: port containing status register to be polled
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
209 * Kernel thread context (may sleep).
212 * 0 on success, -errno otherwise.
214 int ata_sff_busy_sleep(struct ata_port
*ap
,
215 unsigned long tmout_pat
, unsigned long tmout
)
217 unsigned long timer_start
, timeout
;
220 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
221 timer_start
= jiffies
;
222 timeout
= ata_deadline(timer_start
, tmout_pat
);
223 while (status
!= 0xff && (status
& ATA_BUSY
) &&
224 time_before(jiffies
, timeout
)) {
226 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
229 if (status
!= 0xff && (status
& ATA_BUSY
))
230 ata_port_printk(ap
, KERN_WARNING
,
231 "port is slow to respond, please be patient "
232 "(Status 0x%x)\n", status
);
234 timeout
= ata_deadline(timer_start
, tmout
);
235 while (status
!= 0xff && (status
& ATA_BUSY
) &&
236 time_before(jiffies
, timeout
)) {
238 status
= ap
->ops
->sff_check_status(ap
);
244 if (status
& ATA_BUSY
) {
245 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
246 "(%lu secs, Status 0x%x)\n",
247 DIV_ROUND_UP(tmout
, 1000), status
);
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
255 static int ata_sff_check_ready(struct ata_link
*link
)
257 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
259 return ata_check_ready(status
);
263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
264 * @link: SFF link to wait ready status for
265 * @deadline: deadline jiffies for the operation
267 * Sleep until ATA Status register bit BSY clears, or timeout
271 * Kernel thread context (may sleep).
274 * 0 on success, -errno otherwise.
276 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
278 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
287 * Writes ATA taskfile device control register.
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
293 * Inherited from caller.
295 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
297 if (ap
->ops
->sff_set_devctl
)
298 ap
->ops
->sff_set_devctl(ap
, ctl
);
300 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
304 * ata_sff_dev_select - Select device 0/1 on ATA bus
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
312 * May be used as the dev_select() entry in ata_port_operations.
317 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
322 tmp
= ATA_DEVICE_OBS
;
324 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
326 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
327 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
349 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
350 unsigned int wait
, unsigned int can_sleep
)
352 if (ata_msg_probe(ap
))
353 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
354 "device %u, wait %u\n", device
, wait
);
359 ap
->ops
->sff_dev_select(ap
, device
);
362 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
369 * ata_sff_irq_on - Enable interrupts on a port.
370 * @ap: Port on which interrupts are enabled.
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
379 * Inherited from caller.
381 void ata_sff_irq_on(struct ata_port
*ap
)
383 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
385 if (ap
->ops
->sff_irq_on
) {
386 ap
->ops
->sff_irq_on(ap
);
390 ap
->ctl
&= ~ATA_NIEN
;
391 ap
->last_ctl
= ap
->ctl
;
393 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
394 ata_sff_set_devctl(ap
, ap
->ctl
);
397 if (ap
->ops
->sff_irq_clear
)
398 ap
->ops
->sff_irq_clear(ap
);
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
403 * ata_sff_tf_load - send taskfile registers to host controller
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
407 * Outputs ATA taskfile to standard ATA host controller.
410 * Inherited from caller.
412 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
414 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
415 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
417 if (tf
->ctl
!= ap
->last_ctl
) {
418 if (ioaddr
->ctl_addr
)
419 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
420 ap
->last_ctl
= tf
->ctl
;
424 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
425 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
426 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
427 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
428 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
429 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
430 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
431 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
440 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
441 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
442 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
443 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
444 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
445 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
453 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
454 iowrite8(tf
->device
, ioaddr
->device_addr
);
455 VPRINTK("device 0x%X\n", tf
->device
);
460 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
463 * ata_sff_tf_read - input device's ATA taskfile shadow registers
464 * @ap: Port from which input is read
465 * @tf: ATA taskfile register set for storing input
467 * Reads ATA taskfile registers for currently-selected device
468 * into @tf. Assumes the device has a fully SFF compliant task file
469 * layout and behaviour. If you device does not (eg has a different
470 * status method) then you will need to provide a replacement tf_read
473 * Inherited from caller.
475 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
477 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
479 tf
->command
= ata_sff_check_status(ap
);
480 tf
->feature
= ioread8(ioaddr
->error_addr
);
481 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
482 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
483 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
484 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
485 tf
->device
= ioread8(ioaddr
->device_addr
);
487 if (tf
->flags
& ATA_TFLAG_LBA48
) {
488 if (likely(ioaddr
->ctl_addr
)) {
489 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
490 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
491 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
492 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
493 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
494 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
495 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
496 ap
->last_ctl
= tf
->ctl
;
501 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
504 * ata_sff_exec_command - issue ATA command to host controller
505 * @ap: port to which command is being issued
506 * @tf: ATA taskfile register set
508 * Issues ATA command, with proper synchronization with interrupt
509 * handler / other threads.
512 * spin_lock_irqsave(host lock)
514 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
516 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
518 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
521 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
524 * ata_tf_to_host - issue ATA taskfile to host controller
525 * @ap: port to which command is being issued
526 * @tf: ATA taskfile register set
528 * Issues ATA taskfile register set to ATA host controller,
529 * with proper synchronization with interrupt handler and
533 * spin_lock_irqsave(host lock)
535 static inline void ata_tf_to_host(struct ata_port
*ap
,
536 const struct ata_taskfile
*tf
)
538 ap
->ops
->sff_tf_load(ap
, tf
);
539 ap
->ops
->sff_exec_command(ap
, tf
);
543 * ata_sff_data_xfer - Transfer data by PIO
544 * @dev: device to target
546 * @buflen: buffer length
549 * Transfer data from/to the device data register by PIO.
552 * Inherited from caller.
557 unsigned int ata_sff_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
558 unsigned int buflen
, int rw
)
560 struct ata_port
*ap
= dev
->link
->ap
;
561 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
562 unsigned int words
= buflen
>> 1;
564 /* Transfer multiple of 2 bytes */
566 ioread16_rep(data_addr
, buf
, words
);
568 iowrite16_rep(data_addr
, buf
, words
);
570 /* Transfer trailing byte, if any. */
571 if (unlikely(buflen
& 0x01)) {
572 unsigned char pad
[2];
574 /* Point buf to the tail of buffer */
578 * Use io*16_rep() accessors here as well to avoid pointlessly
579 * swapping bytes to and from on the big endian machines...
582 ioread16_rep(data_addr
, pad
, 1);
586 iowrite16_rep(data_addr
, pad
, 1);
593 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
596 * ata_sff_data_xfer32 - Transfer data by PIO
597 * @dev: device to target
599 * @buflen: buffer length
602 * Transfer data from/to the device data register by PIO using 32bit
606 * Inherited from caller.
612 unsigned int ata_sff_data_xfer32(struct ata_device
*dev
, unsigned char *buf
,
613 unsigned int buflen
, int rw
)
615 struct ata_port
*ap
= dev
->link
->ap
;
616 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
617 unsigned int words
= buflen
>> 2;
618 int slop
= buflen
& 3;
620 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
621 return ata_sff_data_xfer(dev
, buf
, buflen
, rw
);
623 /* Transfer multiple of 4 bytes */
625 ioread32_rep(data_addr
, buf
, words
);
627 iowrite32_rep(data_addr
, buf
, words
);
629 /* Transfer trailing bytes, if any */
630 if (unlikely(slop
)) {
631 unsigned char pad
[4];
633 /* Point buf to the tail of buffer */
634 buf
+= buflen
- slop
;
637 * Use io*_rep() accessors here as well to avoid pointlessly
638 * swapping bytes to and from on the big endian machines...
642 ioread16_rep(data_addr
, pad
, 1);
644 ioread32_rep(data_addr
, pad
, 1);
645 memcpy(buf
, pad
, slop
);
647 memcpy(pad
, buf
, slop
);
649 iowrite16_rep(data_addr
, pad
, 1);
651 iowrite32_rep(data_addr
, pad
, 1);
654 return (buflen
+ 1) & ~1;
656 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
659 * ata_sff_data_xfer_noirq - Transfer data by PIO
660 * @dev: device to target
662 * @buflen: buffer length
665 * Transfer data from/to the device data register by PIO. Do the
666 * transfer with interrupts disabled.
669 * Inherited from caller.
674 unsigned int ata_sff_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
675 unsigned int buflen
, int rw
)
678 unsigned int consumed
;
680 local_irq_save(flags
);
681 consumed
= ata_sff_data_xfer(dev
, buf
, buflen
, rw
);
682 local_irq_restore(flags
);
686 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq
);
689 * ata_pio_sector - Transfer a sector of data.
690 * @qc: Command on going
692 * Transfer qc->sect_size bytes of data from/to the ATA device.
695 * Inherited from caller.
697 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
699 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
700 struct ata_port
*ap
= qc
->ap
;
705 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
706 ap
->hsm_task_state
= HSM_ST_LAST
;
708 page
= sg_page(qc
->cursg
);
709 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
711 /* get the current page and offset */
712 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
715 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
717 if (PageHighMem(page
)) {
720 /* FIXME: use a bounce buffer */
721 local_irq_save(flags
);
722 buf
= kmap_atomic(page
, KM_IRQ0
);
724 /* do the actual data transfer */
725 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
728 kunmap_atomic(buf
, KM_IRQ0
);
729 local_irq_restore(flags
);
731 buf
= page_address(page
);
732 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
736 if (!do_write
&& !PageSlab(page
))
737 flush_dcache_page(page
);
739 qc
->curbytes
+= qc
->sect_size
;
740 qc
->cursg_ofs
+= qc
->sect_size
;
742 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
743 qc
->cursg
= sg_next(qc
->cursg
);
749 * ata_pio_sectors - Transfer one or many sectors.
750 * @qc: Command on going
752 * Transfer one or many sectors of data from/to the
753 * ATA device for the DRQ request.
756 * Inherited from caller.
758 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
760 if (is_multi_taskfile(&qc
->tf
)) {
761 /* READ/WRITE MULTIPLE */
764 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
766 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
767 qc
->dev
->multi_count
);
773 ata_sff_sync(qc
->ap
); /* flush */
777 * atapi_send_cdb - Write CDB bytes to hardware
778 * @ap: Port to which ATAPI device is attached.
779 * @qc: Taskfile currently active
781 * When device has indicated its readiness to accept
782 * a CDB, this function is called. Send the CDB.
787 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
790 DPRINTK("send cdb\n");
791 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
793 ap
->ops
->sff_data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
795 /* FIXME: If the CDB is for DMA do we need to do the transition delay
796 or is bmdma_start guaranteed to do it ? */
797 switch (qc
->tf
.protocol
) {
799 ap
->hsm_task_state
= HSM_ST
;
801 case ATAPI_PROT_NODATA
:
802 ap
->hsm_task_state
= HSM_ST_LAST
;
804 #ifdef CONFIG_ATA_BMDMA
806 ap
->hsm_task_state
= HSM_ST_LAST
;
808 ap
->ops
->bmdma_start(qc
);
810 #endif /* CONFIG_ATA_BMDMA */
817 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
818 * @qc: Command on going
819 * @bytes: number of bytes
821 * Transfer Transfer data from/to the ATAPI device.
824 * Inherited from caller.
827 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
829 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
830 struct ata_port
*ap
= qc
->ap
;
831 struct ata_device
*dev
= qc
->dev
;
832 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
833 struct scatterlist
*sg
;
836 unsigned int offset
, count
, consumed
;
841 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
842 "buf=%u cur=%u bytes=%u",
843 qc
->nbytes
, qc
->curbytes
, bytes
);
848 offset
= sg
->offset
+ qc
->cursg_ofs
;
850 /* get the current page and offset */
851 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
854 /* don't overrun current sg */
855 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
857 /* don't cross page boundaries */
858 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
860 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
862 if (PageHighMem(page
)) {
865 /* FIXME: use bounce buffer */
866 local_irq_save(flags
);
867 buf
= kmap_atomic(page
, KM_IRQ0
);
869 /* do the actual data transfer */
870 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
873 kunmap_atomic(buf
, KM_IRQ0
);
874 local_irq_restore(flags
);
876 buf
= page_address(page
);
877 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
881 bytes
-= min(bytes
, consumed
);
882 qc
->curbytes
+= count
;
883 qc
->cursg_ofs
+= count
;
885 if (qc
->cursg_ofs
== sg
->length
) {
886 qc
->cursg
= sg_next(qc
->cursg
);
891 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
892 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
893 * check correctly as it doesn't know if it is the last request being
894 * made. Somebody should implement a proper sanity check.
902 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
903 * @qc: Command on going
905 * Transfer Transfer data from/to the ATAPI device.
908 * Inherited from caller.
910 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
912 struct ata_port
*ap
= qc
->ap
;
913 struct ata_device
*dev
= qc
->dev
;
914 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
915 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
916 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
918 /* Abuse qc->result_tf for temp storage of intermediate TF
919 * here to save some kernel stack usage.
920 * For normal completion, qc->result_tf is not relevant. For
921 * error, qc->result_tf is later overwritten by ata_qc_complete().
922 * So, the correctness of qc->result_tf is not affected.
924 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
925 ireason
= qc
->result_tf
.nsect
;
926 bc_lo
= qc
->result_tf
.lbam
;
927 bc_hi
= qc
->result_tf
.lbah
;
928 bytes
= (bc_hi
<< 8) | bc_lo
;
930 /* shall be cleared to zero, indicating xfer of data */
931 if (unlikely(ireason
& (1 << 0)))
934 /* make sure transfer direction matches expected */
935 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
936 if (unlikely(do_write
!= i_write
))
939 if (unlikely(!bytes
))
942 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
944 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
946 ata_sff_sync(ap
); /* flush */
951 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
954 qc
->err_mask
|= AC_ERR_HSM
;
955 ap
->hsm_task_state
= HSM_ST_ERR
;
959 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
960 * @ap: the target ata_port
964 * 1 if ok in workqueue, 0 otherwise.
966 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
967 struct ata_queued_cmd
*qc
)
969 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
972 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
973 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
974 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
977 if (ata_is_atapi(qc
->tf
.protocol
) &&
978 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
986 * ata_hsm_qc_complete - finish a qc running on standard HSM
987 * @qc: Command to complete
988 * @in_wq: 1 if called from workqueue, 0 otherwise
990 * Finish @qc which is running on standard HSM.
993 * If @in_wq is zero, spin_lock_irqsave(host lock).
994 * Otherwise, none on entry and grabs host lock.
996 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
998 struct ata_port
*ap
= qc
->ap
;
1001 if (ap
->ops
->error_handler
) {
1003 spin_lock_irqsave(ap
->lock
, flags
);
1005 /* EH might have kicked in while host lock is
1008 qc
= ata_qc_from_tag(ap
, qc
->tag
);
1010 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
1012 ata_qc_complete(qc
);
1014 ata_port_freeze(ap
);
1017 spin_unlock_irqrestore(ap
->lock
, flags
);
1019 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
1020 ata_qc_complete(qc
);
1022 ata_port_freeze(ap
);
1026 spin_lock_irqsave(ap
->lock
, flags
);
1028 ata_qc_complete(qc
);
1029 spin_unlock_irqrestore(ap
->lock
, flags
);
1031 ata_qc_complete(qc
);
1036 * ata_sff_hsm_move - move the HSM to the next state.
1037 * @ap: the target ata_port
1039 * @status: current device status
1040 * @in_wq: 1 if called from workqueue, 0 otherwise
1043 * 1 when poll next status needed, 0 otherwise.
1045 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1046 u8 status
, int in_wq
)
1048 struct ata_link
*link
= qc
->dev
->link
;
1049 struct ata_eh_info
*ehi
= &link
->eh_info
;
1050 unsigned long flags
= 0;
1053 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
1055 /* Make sure ata_sff_qc_issue() does not throw things
1056 * like DMA polling into the workqueue. Notice that
1057 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1059 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
1062 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1063 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
1065 switch (ap
->hsm_task_state
) {
1067 /* Send first data block or PACKET CDB */
1069 /* If polling, we will stay in the work queue after
1070 * sending the data. Otherwise, interrupt handler
1071 * takes over after sending the data.
1073 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
1075 /* check device status */
1076 if (unlikely((status
& ATA_DRQ
) == 0)) {
1077 /* handle BSY=0, DRQ=0 as error */
1078 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1079 /* device stops HSM for abort/error */
1080 qc
->err_mask
|= AC_ERR_DEV
;
1082 /* HSM violation. Let EH handle this */
1083 ata_ehi_push_desc(ehi
,
1084 "ST_FIRST: !(DRQ|ERR|DF)");
1085 qc
->err_mask
|= AC_ERR_HSM
;
1088 ap
->hsm_task_state
= HSM_ST_ERR
;
1092 /* Device should not ask for data transfer (DRQ=1)
1093 * when it finds something wrong.
1094 * We ignore DRQ here and stop the HSM by
1095 * changing hsm_task_state to HSM_ST_ERR and
1096 * let the EH abort the command or reset the device.
1098 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1099 /* Some ATAPI tape drives forget to clear the ERR bit
1100 * when doing the next command (mostly request sense).
1101 * We ignore ERR here to workaround and proceed sending
1104 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1105 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1106 "DRQ=1 with device error, "
1107 "dev_stat 0x%X", status
);
1108 qc
->err_mask
|= AC_ERR_HSM
;
1109 ap
->hsm_task_state
= HSM_ST_ERR
;
1114 /* Send the CDB (atapi) or the first data block (ata pio out).
1115 * During the state transition, interrupt handler shouldn't
1116 * be invoked before the data transfer is complete and
1117 * hsm_task_state is changed. Hence, the following locking.
1120 spin_lock_irqsave(ap
->lock
, flags
);
1122 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1123 /* PIO data out protocol.
1124 * send first data block.
1127 /* ata_pio_sectors() might change the state
1128 * to HSM_ST_LAST. so, the state is changed here
1129 * before ata_pio_sectors().
1131 ap
->hsm_task_state
= HSM_ST
;
1132 ata_pio_sectors(qc
);
1135 atapi_send_cdb(ap
, qc
);
1138 spin_unlock_irqrestore(ap
->lock
, flags
);
1140 /* if polling, ata_sff_pio_task() handles the rest.
1141 * otherwise, interrupt handler takes over from here.
1146 /* complete command or read/write the data register */
1147 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1148 /* ATAPI PIO protocol */
1149 if ((status
& ATA_DRQ
) == 0) {
1150 /* No more data to transfer or device error.
1151 * Device error will be tagged in HSM_ST_LAST.
1153 ap
->hsm_task_state
= HSM_ST_LAST
;
1157 /* Device should not ask for data transfer (DRQ=1)
1158 * when it finds something wrong.
1159 * We ignore DRQ here and stop the HSM by
1160 * changing hsm_task_state to HSM_ST_ERR and
1161 * let the EH abort the command or reset the device.
1163 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1164 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1165 "DRQ=1 with device error, "
1166 "dev_stat 0x%X", status
);
1167 qc
->err_mask
|= AC_ERR_HSM
;
1168 ap
->hsm_task_state
= HSM_ST_ERR
;
1172 atapi_pio_bytes(qc
);
1174 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1175 /* bad ireason reported by device */
1179 /* ATA PIO protocol */
1180 if (unlikely((status
& ATA_DRQ
) == 0)) {
1181 /* handle BSY=0, DRQ=0 as error */
1182 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1183 /* device stops HSM for abort/error */
1184 qc
->err_mask
|= AC_ERR_DEV
;
1186 /* If diagnostic failed and this is
1187 * IDENTIFY, it's likely a phantom
1188 * device. Mark hint.
1190 if (qc
->dev
->horkage
&
1191 ATA_HORKAGE_DIAGNOSTIC
)
1195 /* HSM violation. Let EH handle this.
1196 * Phantom devices also trigger this
1197 * condition. Mark hint.
1199 ata_ehi_push_desc(ehi
, "ST-ATA: "
1200 "DRQ=0 without device error, "
1201 "dev_stat 0x%X", status
);
1202 qc
->err_mask
|= AC_ERR_HSM
|
1206 ap
->hsm_task_state
= HSM_ST_ERR
;
1210 /* For PIO reads, some devices may ask for
1211 * data transfer (DRQ=1) alone with ERR=1.
1212 * We respect DRQ here and transfer one
1213 * block of junk data before changing the
1214 * hsm_task_state to HSM_ST_ERR.
1216 * For PIO writes, ERR=1 DRQ=1 doesn't make
1217 * sense since the data block has been
1218 * transferred to the device.
1220 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1221 /* data might be corrputed */
1222 qc
->err_mask
|= AC_ERR_DEV
;
1224 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1225 ata_pio_sectors(qc
);
1226 status
= ata_wait_idle(ap
);
1229 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1230 ata_ehi_push_desc(ehi
, "ST-ATA: "
1231 "BUSY|DRQ persists on ERR|DF, "
1232 "dev_stat 0x%X", status
);
1233 qc
->err_mask
|= AC_ERR_HSM
;
1236 /* There are oddball controllers with
1237 * status register stuck at 0x7f and
1238 * lbal/m/h at zero which makes it
1239 * pass all other presence detection
1240 * mechanisms we have. Set NODEV_HINT
1241 * for it. Kernel bz#7241.
1244 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1246 /* ata_pio_sectors() might change the
1247 * state to HSM_ST_LAST. so, the state
1248 * is changed after ata_pio_sectors().
1250 ap
->hsm_task_state
= HSM_ST_ERR
;
1254 ata_pio_sectors(qc
);
1256 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1257 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1259 status
= ata_wait_idle(ap
);
1268 if (unlikely(!ata_ok(status
))) {
1269 qc
->err_mask
|= __ac_err_mask(status
);
1270 ap
->hsm_task_state
= HSM_ST_ERR
;
1274 /* no more data to transfer */
1275 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1276 ap
->print_id
, qc
->dev
->devno
, status
);
1278 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1280 ap
->hsm_task_state
= HSM_ST_IDLE
;
1282 /* complete taskfile transaction */
1283 ata_hsm_qc_complete(qc
, in_wq
);
1289 ap
->hsm_task_state
= HSM_ST_IDLE
;
1291 /* complete taskfile transaction */
1292 ata_hsm_qc_complete(qc
, in_wq
);
1303 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1305 void ata_sff_queue_pio_task(struct ata_link
*link
, unsigned long delay
)
1307 struct ata_port
*ap
= link
->ap
;
1309 WARN_ON((ap
->sff_pio_task_link
!= NULL
) &&
1310 (ap
->sff_pio_task_link
!= link
));
1311 ap
->sff_pio_task_link
= link
;
1313 /* may fail if ata_sff_flush_pio_task() in progress */
1314 queue_delayed_work(ata_sff_wq
, &ap
->sff_pio_task
,
1315 msecs_to_jiffies(delay
));
1317 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1319 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1323 cancel_rearming_delayed_work(&ap
->sff_pio_task
);
1324 ap
->hsm_task_state
= HSM_ST_IDLE
;
1326 if (ata_msg_ctl(ap
))
1327 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1330 static void ata_sff_pio_task(struct work_struct
*work
)
1332 struct ata_port
*ap
=
1333 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1334 struct ata_link
*link
= ap
->sff_pio_task_link
;
1335 struct ata_queued_cmd
*qc
;
1339 BUG_ON(ap
->sff_pio_task_link
== NULL
);
1340 /* qc can be NULL if timeout occurred */
1341 qc
= ata_qc_from_tag(ap
, link
->active_tag
);
1343 ap
->sff_pio_task_link
= NULL
;
1348 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1351 * This is purely heuristic. This is a fast path.
1352 * Sometimes when we enter, BSY will be cleared in
1353 * a chk-status or two. If not, the drive is probably seeking
1354 * or something. Snooze for a couple msecs, then
1355 * chk-status again. If still busy, queue delayed work.
1357 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1358 if (status
& ATA_BUSY
) {
1360 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1361 if (status
& ATA_BUSY
) {
1362 ata_sff_queue_pio_task(link
, ATA_SHORT_PAUSE
);
1368 * hsm_move() may trigger another command to be processed.
1369 * clean the link beforehand.
1371 ap
->sff_pio_task_link
= NULL
;
1373 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1375 /* another command or interrupt handler
1376 * may be running at this point.
1383 * ata_sff_qc_issue - issue taskfile to a SFF controller
1384 * @qc: command to issue to device
1386 * This function issues a PIO or NODATA command to a SFF
1390 * spin_lock_irqsave(host lock)
1393 * Zero on success, AC_ERR_* mask on failure
1395 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1397 struct ata_port
*ap
= qc
->ap
;
1398 struct ata_link
*link
= qc
->dev
->link
;
1400 /* Use polling pio if the LLD doesn't handle
1401 * interrupt driven pio and atapi CDB interrupt.
1403 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1404 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1406 /* select the device */
1407 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1409 /* start the command */
1410 switch (qc
->tf
.protocol
) {
1411 case ATA_PROT_NODATA
:
1412 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1413 ata_qc_set_polling(qc
);
1415 ata_tf_to_host(ap
, &qc
->tf
);
1416 ap
->hsm_task_state
= HSM_ST_LAST
;
1418 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1419 ata_sff_queue_pio_task(link
, 0);
1424 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1425 ata_qc_set_polling(qc
);
1427 ata_tf_to_host(ap
, &qc
->tf
);
1429 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1430 /* PIO data out protocol */
1431 ap
->hsm_task_state
= HSM_ST_FIRST
;
1432 ata_sff_queue_pio_task(link
, 0);
1434 /* always send first data block using the
1435 * ata_sff_pio_task() codepath.
1438 /* PIO data in protocol */
1439 ap
->hsm_task_state
= HSM_ST
;
1441 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1442 ata_sff_queue_pio_task(link
, 0);
1444 /* if polling, ata_sff_pio_task() handles the
1445 * rest. otherwise, interrupt handler takes
1452 case ATAPI_PROT_PIO
:
1453 case ATAPI_PROT_NODATA
:
1454 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1455 ata_qc_set_polling(qc
);
1457 ata_tf_to_host(ap
, &qc
->tf
);
1459 ap
->hsm_task_state
= HSM_ST_FIRST
;
1461 /* send cdb by polling if no cdb interrupt */
1462 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1463 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1464 ata_sff_queue_pio_task(link
, 0);
1469 return AC_ERR_SYSTEM
;
1474 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1477 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1478 * @qc: qc to fill result TF for
1480 * @qc is finished and result TF needs to be filled. Fill it
1481 * using ->sff_tf_read.
1484 * spin_lock_irqsave(host lock)
1487 * true indicating that result TF is successfully filled.
1489 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1491 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1494 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1496 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1498 ap
->stats
.idle_irq
++;
1501 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1502 ap
->ops
->sff_check_status(ap
);
1503 if (ap
->ops
->sff_irq_clear
)
1504 ap
->ops
->sff_irq_clear(ap
);
1505 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
1509 return 0; /* irq not handled */
1512 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1513 struct ata_queued_cmd
*qc
,
1518 VPRINTK("ata%u: protocol %d task_state %d\n",
1519 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1521 /* Check whether we are expecting interrupt in this state */
1522 switch (ap
->hsm_task_state
) {
1524 /* Some pre-ATAPI-4 devices assert INTRQ
1525 * at this state when ready to receive CDB.
1528 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1529 * The flag was turned on only for atapi devices. No
1530 * need to check ata_is_atapi(qc->tf.protocol) again.
1532 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1533 return ata_sff_idle_irq(ap
);
1539 return ata_sff_idle_irq(ap
);
1542 /* check main status, clearing INTRQ if needed */
1543 status
= ata_sff_irq_status(ap
);
1544 if (status
& ATA_BUSY
) {
1546 /* BMDMA engine is already stopped, we're screwed */
1547 qc
->err_mask
|= AC_ERR_HSM
;
1548 ap
->hsm_task_state
= HSM_ST_ERR
;
1550 return ata_sff_idle_irq(ap
);
1553 /* clear irq events */
1554 if (ap
->ops
->sff_irq_clear
)
1555 ap
->ops
->sff_irq_clear(ap
);
1557 ata_sff_hsm_move(ap
, qc
, status
, 0);
1559 return 1; /* irq handled */
1563 * ata_sff_port_intr - Handle SFF port interrupt
1564 * @ap: Port on which interrupt arrived (possibly...)
1565 * @qc: Taskfile currently active in engine
1567 * Handle port interrupt for given queued command.
1570 * spin_lock_irqsave(host lock)
1573 * One if interrupt was handled, zero if not (shared irq).
1575 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1577 return __ata_sff_port_intr(ap
, qc
, false);
1579 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1581 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1582 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1584 struct ata_host
*host
= dev_instance
;
1585 bool retried
= false;
1587 unsigned int handled
, idle
, polling
;
1588 unsigned long flags
;
1590 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1591 spin_lock_irqsave(&host
->lock
, flags
);
1594 handled
= idle
= polling
= 0;
1595 for (i
= 0; i
< host
->n_ports
; i
++) {
1596 struct ata_port
*ap
= host
->ports
[i
];
1597 struct ata_queued_cmd
*qc
;
1599 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1601 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1602 handled
|= port_intr(ap
, qc
);
1610 * If no port was expecting IRQ but the controller is actually
1611 * asserting IRQ line, nobody cared will ensue. Check IRQ
1612 * pending status if available and clear spurious IRQ.
1614 if (!handled
&& !retried
) {
1617 for (i
= 0; i
< host
->n_ports
; i
++) {
1618 struct ata_port
*ap
= host
->ports
[i
];
1620 if (polling
& (1 << i
))
1623 if (!ap
->ops
->sff_irq_check
||
1624 !ap
->ops
->sff_irq_check(ap
))
1627 if (idle
& (1 << i
)) {
1628 ap
->ops
->sff_check_status(ap
);
1629 if (ap
->ops
->sff_irq_clear
)
1630 ap
->ops
->sff_irq_clear(ap
);
1632 /* clear INTRQ and check if BUSY cleared */
1633 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1636 * With command in flight, we can't do
1637 * sff_irq_clear() w/o racing with completion.
1648 spin_unlock_irqrestore(&host
->lock
, flags
);
1650 return IRQ_RETVAL(handled
);
1654 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1655 * @irq: irq line (unused)
1656 * @dev_instance: pointer to our ata_host information structure
1658 * Default interrupt handler for PCI IDE devices. Calls
1659 * ata_sff_port_intr() for each port that is not disabled.
1662 * Obtains host lock during operation.
1665 * IRQ_NONE or IRQ_HANDLED.
1667 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1669 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1671 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1674 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1675 * @ap: port that appears to have timed out
1677 * Called from the libata error handlers when the core code suspects
1678 * an interrupt has been lost. If it has complete anything we can and
1679 * then return. Interface must support altstatus for this faster
1680 * recovery to occur.
1683 * Caller holds host lock
1686 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1689 struct ata_queued_cmd
*qc
;
1691 /* Only one outstanding command per SFF channel */
1692 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1693 /* We cannot lose an interrupt on a non-existent or polled command */
1694 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1696 /* See if the controller thinks it is still busy - if so the command
1697 isn't a lost IRQ but is still in progress */
1698 status
= ata_sff_altstatus(ap
);
1699 if (status
& ATA_BUSY
)
1702 /* There was a command running, we are no longer busy and we have
1704 ata_port_printk(ap
, KERN_WARNING
, "lost interrupt (Status 0x%x)\n",
1706 /* Run the host interrupt logic as if the interrupt had not been
1708 ata_sff_port_intr(ap
, qc
);
1710 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1713 * ata_sff_freeze - Freeze SFF controller port
1714 * @ap: port to freeze
1716 * Freeze SFF controller port.
1719 * Inherited from caller.
1721 void ata_sff_freeze(struct ata_port
*ap
)
1723 ap
->ctl
|= ATA_NIEN
;
1724 ap
->last_ctl
= ap
->ctl
;
1726 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1727 ata_sff_set_devctl(ap
, ap
->ctl
);
1729 /* Under certain circumstances, some controllers raise IRQ on
1730 * ATA_NIEN manipulation. Also, many controllers fail to mask
1731 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1733 ap
->ops
->sff_check_status(ap
);
1735 if (ap
->ops
->sff_irq_clear
)
1736 ap
->ops
->sff_irq_clear(ap
);
1738 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1741 * ata_sff_thaw - Thaw SFF controller port
1744 * Thaw SFF controller port.
1747 * Inherited from caller.
1749 void ata_sff_thaw(struct ata_port
*ap
)
1751 /* clear & re-enable interrupts */
1752 ap
->ops
->sff_check_status(ap
);
1753 if (ap
->ops
->sff_irq_clear
)
1754 ap
->ops
->sff_irq_clear(ap
);
1757 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1760 * ata_sff_prereset - prepare SFF link for reset
1761 * @link: SFF link to be reset
1762 * @deadline: deadline jiffies for the operation
1764 * SFF link @link is about to be reset. Initialize it. It first
1765 * calls ata_std_prereset() and wait for !BSY if the port is
1769 * Kernel thread context (may sleep)
1772 * 0 on success, -errno otherwise.
1774 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1776 struct ata_eh_context
*ehc
= &link
->eh_context
;
1779 rc
= ata_std_prereset(link
, deadline
);
1783 /* if we're about to do hardreset, nothing more to do */
1784 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1787 /* wait for !BSY if we don't know that no device is attached */
1788 if (!ata_link_offline(link
)) {
1789 rc
= ata_sff_wait_ready(link
, deadline
);
1790 if (rc
&& rc
!= -ENODEV
) {
1791 ata_link_printk(link
, KERN_WARNING
, "device not ready "
1792 "(errno=%d), forcing hardreset\n", rc
);
1793 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1799 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1802 * ata_devchk - PATA device presence detection
1803 * @ap: ATA channel to examine
1804 * @device: Device to examine (starting at zero)
1806 * This technique was originally described in
1807 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1808 * later found its way into the ATA/ATAPI spec.
1810 * Write a pattern to the ATA shadow registers,
1811 * and if a device is present, it will respond by
1812 * correctly storing and echoing back the
1813 * ATA shadow register contents.
1818 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1820 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1823 ap
->ops
->sff_dev_select(ap
, device
);
1825 iowrite8(0x55, ioaddr
->nsect_addr
);
1826 iowrite8(0xaa, ioaddr
->lbal_addr
);
1828 iowrite8(0xaa, ioaddr
->nsect_addr
);
1829 iowrite8(0x55, ioaddr
->lbal_addr
);
1831 iowrite8(0x55, ioaddr
->nsect_addr
);
1832 iowrite8(0xaa, ioaddr
->lbal_addr
);
1834 nsect
= ioread8(ioaddr
->nsect_addr
);
1835 lbal
= ioread8(ioaddr
->lbal_addr
);
1837 if ((nsect
== 0x55) && (lbal
== 0xaa))
1838 return 1; /* we found a device */
1840 return 0; /* nothing found */
1844 * ata_sff_dev_classify - Parse returned ATA device signature
1845 * @dev: ATA device to classify (starting at zero)
1846 * @present: device seems present
1847 * @r_err: Value of error register on completion
1849 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1850 * an ATA/ATAPI-defined set of values is placed in the ATA
1851 * shadow registers, indicating the results of device detection
1854 * Select the ATA device, and read the values from the ATA shadow
1855 * registers. Then parse according to the Error register value,
1856 * and the spec-defined values examined by ata_dev_classify().
1862 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1864 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1867 struct ata_port
*ap
= dev
->link
->ap
;
1868 struct ata_taskfile tf
;
1872 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1874 memset(&tf
, 0, sizeof(tf
));
1876 ap
->ops
->sff_tf_read(ap
, &tf
);
1881 /* see if device passed diags: continue and warn later */
1883 /* diagnostic fail : do nothing _YET_ */
1884 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1887 else if ((dev
->devno
== 0) && (err
== 0x81))
1890 return ATA_DEV_NONE
;
1892 /* determine if device is ATA or ATAPI */
1893 class = ata_dev_classify(&tf
);
1895 if (class == ATA_DEV_UNKNOWN
) {
1896 /* If the device failed diagnostic, it's likely to
1897 * have reported incorrect device signature too.
1898 * Assume ATA device if the device seems present but
1899 * device signature is invalid with diagnostic
1902 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1903 class = ATA_DEV_ATA
;
1905 class = ATA_DEV_NONE
;
1906 } else if ((class == ATA_DEV_ATA
) &&
1907 (ap
->ops
->sff_check_status(ap
) == 0))
1908 class = ATA_DEV_NONE
;
1912 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1915 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1916 * @link: SFF link which is just reset
1917 * @devmask: mask of present devices
1918 * @deadline: deadline jiffies for the operation
1920 * Wait devices attached to SFF @link to become ready after
1921 * reset. It contains preceding 150ms wait to avoid accessing TF
1922 * status register too early.
1925 * Kernel thread context (may sleep).
1928 * 0 on success, -ENODEV if some or all of devices in @devmask
1929 * don't seem to exist. -errno on other errors.
1931 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1932 unsigned long deadline
)
1934 struct ata_port
*ap
= link
->ap
;
1935 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1936 unsigned int dev0
= devmask
& (1 << 0);
1937 unsigned int dev1
= devmask
& (1 << 1);
1940 msleep(ATA_WAIT_AFTER_RESET
);
1942 /* always check readiness of the master device */
1943 rc
= ata_sff_wait_ready(link
, deadline
);
1944 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1945 * and TF status is 0xff, bail out on it too.
1950 /* if device 1 was found in ata_devchk, wait for register
1951 * access briefly, then wait for BSY to clear.
1956 ap
->ops
->sff_dev_select(ap
, 1);
1958 /* Wait for register access. Some ATAPI devices fail
1959 * to set nsect/lbal after reset, so don't waste too
1960 * much time on it. We're gonna wait for !BSY anyway.
1962 for (i
= 0; i
< 2; i
++) {
1965 nsect
= ioread8(ioaddr
->nsect_addr
);
1966 lbal
= ioread8(ioaddr
->lbal_addr
);
1967 if ((nsect
== 1) && (lbal
== 1))
1969 msleep(50); /* give drive a breather */
1972 rc
= ata_sff_wait_ready(link
, deadline
);
1980 /* is all this really necessary? */
1981 ap
->ops
->sff_dev_select(ap
, 0);
1983 ap
->ops
->sff_dev_select(ap
, 1);
1985 ap
->ops
->sff_dev_select(ap
, 0);
1989 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
1991 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
1992 unsigned long deadline
)
1994 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1996 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
1998 /* software reset. causes dev0 to be selected */
1999 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2000 udelay(20); /* FIXME: flush */
2001 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2002 udelay(20); /* FIXME: flush */
2003 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2004 ap
->last_ctl
= ap
->ctl
;
2006 /* wait the port to become ready */
2007 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
2011 * ata_sff_softreset - reset host port via ATA SRST
2012 * @link: ATA link to reset
2013 * @classes: resulting classes of attached devices
2014 * @deadline: deadline jiffies for the operation
2016 * Reset host port using ATA SRST.
2019 * Kernel thread context (may sleep)
2022 * 0 on success, -errno otherwise.
2024 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
2025 unsigned long deadline
)
2027 struct ata_port
*ap
= link
->ap
;
2028 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2029 unsigned int devmask
= 0;
2035 /* determine if device 0/1 are present */
2036 if (ata_devchk(ap
, 0))
2037 devmask
|= (1 << 0);
2038 if (slave_possible
&& ata_devchk(ap
, 1))
2039 devmask
|= (1 << 1);
2041 /* select device 0 again */
2042 ap
->ops
->sff_dev_select(ap
, 0);
2044 /* issue bus reset */
2045 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2046 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
2047 /* if link is occupied, -ENODEV too is an error */
2048 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
2049 ata_link_printk(link
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
2053 /* determine by signature whether we have ATA or ATAPI devices */
2054 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2055 devmask
& (1 << 0), &err
);
2056 if (slave_possible
&& err
!= 0x81)
2057 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2058 devmask
& (1 << 1), &err
);
2060 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2063 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2066 * sata_sff_hardreset - reset host port via SATA phy reset
2067 * @link: link to reset
2068 * @class: resulting class of attached device
2069 * @deadline: deadline jiffies for the operation
2071 * SATA phy-reset host port using DET bits of SControl register,
2072 * wait for !BSY and classify the attached device.
2075 * Kernel thread context (may sleep)
2078 * 0 on success, -errno otherwise.
2080 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2081 unsigned long deadline
)
2083 struct ata_eh_context
*ehc
= &link
->eh_context
;
2084 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2088 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2089 ata_sff_check_ready
);
2091 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2093 DPRINTK("EXIT, class=%u\n", *class);
2096 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2099 * ata_sff_postreset - SFF postreset callback
2100 * @link: the target SFF ata_link
2101 * @classes: classes of attached devices
2103 * This function is invoked after a successful reset. It first
2104 * calls ata_std_postreset() and performs SFF specific postreset
2108 * Kernel thread context (may sleep)
2110 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2112 struct ata_port
*ap
= link
->ap
;
2114 ata_std_postreset(link
, classes
);
2116 /* is double-select really necessary? */
2117 if (classes
[0] != ATA_DEV_NONE
)
2118 ap
->ops
->sff_dev_select(ap
, 1);
2119 if (classes
[1] != ATA_DEV_NONE
)
2120 ap
->ops
->sff_dev_select(ap
, 0);
2122 /* bail out if no device is present */
2123 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2124 DPRINTK("EXIT, no device\n");
2128 /* set up device control */
2129 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2130 ata_sff_set_devctl(ap
, ap
->ctl
);
2131 ap
->last_ctl
= ap
->ctl
;
2134 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2137 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2140 * Drain the FIFO and device of any stuck data following a command
2141 * failing to complete. In some cases this is necessary before a
2142 * reset will recover the device.
2146 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2149 struct ata_port
*ap
;
2151 /* We only need to flush incoming data when a command was running */
2152 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2156 /* Drain up to 64K of data before we give up this recovery method */
2157 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2158 && count
< 65536; count
+= 2)
2159 ioread16(ap
->ioaddr
.data_addr
);
2161 /* Can become DEBUG later */
2163 ata_port_printk(ap
, KERN_DEBUG
,
2164 "drained %d bytes to clear DRQ.\n", count
);
2167 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2170 * ata_sff_error_handler - Stock error handler for SFF controller
2171 * @ap: port to handle error for
2173 * Stock error handler for SFF controller. It can handle both
2174 * PATA and SATA controllers. Many controllers should be able to
2175 * use this EH as-is or with some added handling before and
2179 * Kernel thread context (may sleep)
2181 void ata_sff_error_handler(struct ata_port
*ap
)
2183 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2184 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2185 struct ata_queued_cmd
*qc
;
2186 unsigned long flags
;
2188 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2189 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2192 spin_lock_irqsave(ap
->lock
, flags
);
2195 * We *MUST* do FIFO draining before we issue a reset as
2196 * several devices helpfully clear their internal state and
2197 * will lock solid if we touch the data port post reset. Pass
2198 * qc in case anyone wants to do different PIO/DMA recovery or
2199 * has per command fixups
2201 if (ap
->ops
->sff_drain_fifo
)
2202 ap
->ops
->sff_drain_fifo(qc
);
2204 spin_unlock_irqrestore(ap
->lock
, flags
);
2206 /* ignore ata_sff_softreset if ctl isn't accessible */
2207 if (softreset
== ata_sff_softreset
&& !ap
->ioaddr
.ctl_addr
)
2210 /* ignore built-in hardresets if SCR access is not available */
2211 if ((hardreset
== sata_std_hardreset
||
2212 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2215 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2216 ap
->ops
->postreset
);
2218 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2221 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2222 * @ioaddr: IO address structure to be initialized
2224 * Utility function which initializes data_addr, error_addr,
2225 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2226 * device_addr, status_addr, and command_addr to standard offsets
2227 * relative to cmd_addr.
2229 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2231 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2233 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2234 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2235 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2236 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2237 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2238 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2239 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2240 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2241 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2242 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2244 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2248 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2252 /* Check the PCI resources for this channel are enabled */
2254 for (i
= 0; i
< 2; i
++) {
2255 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2256 pci_resource_len(pdev
, port
+ i
) == 0)
2263 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2264 * @host: target ATA host
2266 * Acquire native PCI ATA resources for @host and initialize the
2267 * first two ports of @host accordingly. Ports marked dummy are
2268 * skipped and allocation failure makes the port dummy.
2270 * Note that native PCI resources are valid even for legacy hosts
2271 * as we fix up pdev resources array early in boot, so this
2272 * function can be used for both native and legacy SFF hosts.
2275 * Inherited from calling layer (may sleep).
2278 * 0 if at least one port is initialized, -ENODEV if no port is
2281 int ata_pci_sff_init_host(struct ata_host
*host
)
2283 struct device
*gdev
= host
->dev
;
2284 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2285 unsigned int mask
= 0;
2288 /* request, iomap BARs and init port addresses accordingly */
2289 for (i
= 0; i
< 2; i
++) {
2290 struct ata_port
*ap
= host
->ports
[i
];
2292 void __iomem
* const *iomap
;
2294 if (ata_port_is_dummy(ap
))
2297 /* Discard disabled ports. Some controllers show
2298 * their unused channels this way. Disabled ports are
2301 if (!ata_resources_present(pdev
, i
)) {
2302 ap
->ops
= &ata_dummy_port_ops
;
2306 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2307 dev_driver_string(gdev
));
2309 dev_printk(KERN_WARNING
, gdev
,
2310 "failed to request/iomap BARs for port %d "
2311 "(errno=%d)\n", i
, rc
);
2313 pcim_pin_device(pdev
);
2314 ap
->ops
= &ata_dummy_port_ops
;
2317 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2319 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2320 ap
->ioaddr
.altstatus_addr
=
2321 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2322 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2323 ata_sff_std_ports(&ap
->ioaddr
);
2325 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2326 (unsigned long long)pci_resource_start(pdev
, base
),
2327 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2333 dev_printk(KERN_ERR
, gdev
, "no available native port\n");
2339 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2342 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2343 * @pdev: target PCI device
2344 * @ppi: array of port_info, must be enough for two ports
2345 * @r_host: out argument for the initialized ATA host
2347 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2348 * all PCI resources and initialize it accordingly in one go.
2351 * Inherited from calling layer (may sleep).
2354 * 0 on success, -errno otherwise.
2356 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2357 const struct ata_port_info
* const *ppi
,
2358 struct ata_host
**r_host
)
2360 struct ata_host
*host
;
2363 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2366 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2368 dev_printk(KERN_ERR
, &pdev
->dev
,
2369 "failed to allocate ATA host\n");
2374 rc
= ata_pci_sff_init_host(host
);
2378 devres_remove_group(&pdev
->dev
, NULL
);
2383 devres_release_group(&pdev
->dev
, NULL
);
2386 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2389 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2390 * @host: target SFF ATA host
2391 * @irq_handler: irq_handler used when requesting IRQ(s)
2392 * @sht: scsi_host_template to use when registering the host
2394 * This is the counterpart of ata_host_activate() for SFF ATA
2395 * hosts. This separate helper is necessary because SFF hosts
2396 * use two separate interrupts in legacy mode.
2399 * Inherited from calling layer (may sleep).
2402 * 0 on success, -errno otherwise.
2404 int ata_pci_sff_activate_host(struct ata_host
*host
,
2405 irq_handler_t irq_handler
,
2406 struct scsi_host_template
*sht
)
2408 struct device
*dev
= host
->dev
;
2409 struct pci_dev
*pdev
= to_pci_dev(dev
);
2410 const char *drv_name
= dev_driver_string(host
->dev
);
2411 int legacy_mode
= 0, rc
;
2413 rc
= ata_host_start(host
);
2417 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2420 /* TODO: What if one channel is in native mode ... */
2421 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2422 mask
= (1 << 2) | (1 << 0);
2423 if ((tmp8
& mask
) != mask
)
2425 #if defined(CONFIG_NO_ATA_LEGACY)
2426 /* Some platforms with PCI limits cannot address compat
2427 port space. In that case we punt if their firmware has
2428 left a device in compatibility mode */
2430 printk(KERN_ERR
"ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2436 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2439 if (!legacy_mode
&& pdev
->irq
) {
2440 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2441 IRQF_SHARED
, drv_name
, host
);
2445 ata_port_desc(host
->ports
[0], "irq %d", pdev
->irq
);
2446 ata_port_desc(host
->ports
[1], "irq %d", pdev
->irq
);
2447 } else if (legacy_mode
) {
2448 if (!ata_port_is_dummy(host
->ports
[0])) {
2449 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2450 irq_handler
, IRQF_SHARED
,
2455 ata_port_desc(host
->ports
[0], "irq %d",
2456 ATA_PRIMARY_IRQ(pdev
));
2459 if (!ata_port_is_dummy(host
->ports
[1])) {
2460 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2461 irq_handler
, IRQF_SHARED
,
2466 ata_port_desc(host
->ports
[1], "irq %d",
2467 ATA_SECONDARY_IRQ(pdev
));
2471 rc
= ata_host_register(host
, sht
);
2474 devres_remove_group(dev
, NULL
);
2476 devres_release_group(dev
, NULL
);
2480 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2482 static const struct ata_port_info
*ata_sff_find_valid_pi(
2483 const struct ata_port_info
* const *ppi
)
2487 /* look up the first valid port_info */
2488 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2489 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2496 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2497 * @pdev: Controller to be initialized
2498 * @ppi: array of port_info, must be enough for two ports
2499 * @sht: scsi_host_template to use when registering the host
2500 * @host_priv: host private_data
2501 * @hflag: host flags
2503 * This is a helper function which can be called from a driver's
2504 * xxx_init_one() probe function if the hardware uses traditional
2505 * IDE taskfile registers and is PIO only.
2508 * Nobody makes a single channel controller that appears solely as
2509 * the secondary legacy port on PCI.
2512 * Inherited from PCI layer (may sleep).
2515 * Zero on success, negative on errno-based value on error.
2517 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2518 const struct ata_port_info
* const *ppi
,
2519 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2521 struct device
*dev
= &pdev
->dev
;
2522 const struct ata_port_info
*pi
;
2523 struct ata_host
*host
= NULL
;
2528 pi
= ata_sff_find_valid_pi(ppi
);
2530 dev_printk(KERN_ERR
, &pdev
->dev
,
2531 "no valid port_info specified\n");
2535 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2538 rc
= pcim_enable_device(pdev
);
2542 /* prepare and activate SFF host */
2543 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2546 host
->private_data
= host_priv
;
2547 host
->flags
|= hflag
;
2549 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2552 devres_remove_group(&pdev
->dev
, NULL
);
2554 devres_release_group(&pdev
->dev
, NULL
);
2558 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2560 #endif /* CONFIG_PCI */
2566 #ifdef CONFIG_ATA_BMDMA
2568 const struct ata_port_operations ata_bmdma_port_ops
= {
2569 .inherits
= &ata_sff_port_ops
,
2571 .error_handler
= ata_bmdma_error_handler
,
2572 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2574 .qc_prep
= ata_bmdma_qc_prep
,
2575 .qc_issue
= ata_bmdma_qc_issue
,
2577 .sff_irq_clear
= ata_bmdma_irq_clear
,
2578 .bmdma_setup
= ata_bmdma_setup
,
2579 .bmdma_start
= ata_bmdma_start
,
2580 .bmdma_stop
= ata_bmdma_stop
,
2581 .bmdma_status
= ata_bmdma_status
,
2583 .port_start
= ata_bmdma_port_start
,
2585 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2587 const struct ata_port_operations ata_bmdma32_port_ops
= {
2588 .inherits
= &ata_bmdma_port_ops
,
2590 .sff_data_xfer
= ata_sff_data_xfer32
,
2591 .port_start
= ata_bmdma_port_start32
,
2593 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2596 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2597 * @qc: Metadata associated with taskfile to be transferred
2599 * Fill PCI IDE PRD (scatter-gather) table with segments
2600 * associated with the current disk command.
2603 * spin_lock_irqsave(host lock)
2606 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2608 struct ata_port
*ap
= qc
->ap
;
2609 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2610 struct scatterlist
*sg
;
2611 unsigned int si
, pi
;
2614 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2618 /* determine if physical DMA addr spans 64K boundary.
2619 * Note h/w doesn't support 64-bit, so we unconditionally
2620 * truncate dma_addr_t to u32.
2622 addr
= (u32
) sg_dma_address(sg
);
2623 sg_len
= sg_dma_len(sg
);
2626 offset
= addr
& 0xffff;
2628 if ((offset
+ sg_len
) > 0x10000)
2629 len
= 0x10000 - offset
;
2631 prd
[pi
].addr
= cpu_to_le32(addr
);
2632 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2633 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2641 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2645 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2646 * @qc: Metadata associated with taskfile to be transferred
2648 * Fill PCI IDE PRD (scatter-gather) table with segments
2649 * associated with the current disk command. Perform the fill
2650 * so that we avoid writing any length 64K records for
2651 * controllers that don't follow the spec.
2654 * spin_lock_irqsave(host lock)
2657 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2659 struct ata_port
*ap
= qc
->ap
;
2660 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2661 struct scatterlist
*sg
;
2662 unsigned int si
, pi
;
2665 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2667 u32 sg_len
, len
, blen
;
2669 /* determine if physical DMA addr spans 64K boundary.
2670 * Note h/w doesn't support 64-bit, so we unconditionally
2671 * truncate dma_addr_t to u32.
2673 addr
= (u32
) sg_dma_address(sg
);
2674 sg_len
= sg_dma_len(sg
);
2677 offset
= addr
& 0xffff;
2679 if ((offset
+ sg_len
) > 0x10000)
2680 len
= 0x10000 - offset
;
2682 blen
= len
& 0xffff;
2683 prd
[pi
].addr
= cpu_to_le32(addr
);
2685 /* Some PATA chipsets like the CS5530 can't
2686 cope with 0x0000 meaning 64K as the spec
2688 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2690 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2692 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2693 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2701 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2705 * ata_bmdma_qc_prep - Prepare taskfile for submission
2706 * @qc: Metadata associated with taskfile to be prepared
2708 * Prepare ATA taskfile for submission.
2711 * spin_lock_irqsave(host lock)
2713 void ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2715 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2718 ata_bmdma_fill_sg(qc
);
2720 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2723 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2724 * @qc: Metadata associated with taskfile to be prepared
2726 * Prepare ATA taskfile for submission.
2729 * spin_lock_irqsave(host lock)
2731 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2733 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2736 ata_bmdma_fill_sg_dumb(qc
);
2738 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2741 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2742 * @qc: command to issue to device
2744 * This function issues a PIO, NODATA or DMA command to a
2745 * SFF/BMDMA controller. PIO and NODATA are handled by
2746 * ata_sff_qc_issue().
2749 * spin_lock_irqsave(host lock)
2752 * Zero on success, AC_ERR_* mask on failure
2754 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2756 struct ata_port
*ap
= qc
->ap
;
2757 struct ata_link
*link
= qc
->dev
->link
;
2759 /* defer PIO handling to sff_qc_issue */
2760 if (!ata_is_dma(qc
->tf
.protocol
))
2761 return ata_sff_qc_issue(qc
);
2763 /* select the device */
2764 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2766 /* start the command */
2767 switch (qc
->tf
.protocol
) {
2769 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2771 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2772 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2773 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2774 ap
->hsm_task_state
= HSM_ST_LAST
;
2777 case ATAPI_PROT_DMA
:
2778 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2780 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2781 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2782 ap
->hsm_task_state
= HSM_ST_FIRST
;
2784 /* send cdb by polling if no cdb interrupt */
2785 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2786 ata_sff_queue_pio_task(link
, 0);
2791 return AC_ERR_SYSTEM
;
2796 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2799 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2800 * @ap: Port on which interrupt arrived (possibly...)
2801 * @qc: Taskfile currently active in engine
2803 * Handle port interrupt for given queued command.
2806 * spin_lock_irqsave(host lock)
2809 * One if interrupt was handled, zero if not (shared irq).
2811 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2813 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2815 bool bmdma_stopped
= false;
2816 unsigned int handled
;
2818 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2819 /* check status of DMA engine */
2820 host_stat
= ap
->ops
->bmdma_status(ap
);
2821 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2823 /* if it's not our irq... */
2824 if (!(host_stat
& ATA_DMA_INTR
))
2825 return ata_sff_idle_irq(ap
);
2827 /* before we do anything else, clear DMA-Start bit */
2828 ap
->ops
->bmdma_stop(qc
);
2829 bmdma_stopped
= true;
2831 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2832 /* error when transfering data to/from memory */
2833 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2834 ap
->hsm_task_state
= HSM_ST_ERR
;
2838 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2840 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2841 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2845 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2848 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2849 * @irq: irq line (unused)
2850 * @dev_instance: pointer to our ata_host information structure
2852 * Default interrupt handler for PCI IDE devices. Calls
2853 * ata_bmdma_port_intr() for each port that is not disabled.
2856 * Obtains host lock during operation.
2859 * IRQ_NONE or IRQ_HANDLED.
2861 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2863 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2865 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2868 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2869 * @ap: port to handle error for
2871 * Stock error handler for BMDMA controller. It can handle both
2872 * PATA and SATA controllers. Most BMDMA controllers should be
2873 * able to use this EH as-is or with some added handling before
2877 * Kernel thread context (may sleep)
2879 void ata_bmdma_error_handler(struct ata_port
*ap
)
2881 struct ata_queued_cmd
*qc
;
2882 unsigned long flags
;
2885 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2886 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2889 /* reset PIO HSM and stop DMA engine */
2890 spin_lock_irqsave(ap
->lock
, flags
);
2892 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2895 host_stat
= ap
->ops
->bmdma_status(ap
);
2897 /* BMDMA controllers indicate host bus error by
2898 * setting DMA_ERR bit and timing out. As it wasn't
2899 * really a timeout event, adjust error mask and
2900 * cancel frozen state.
2902 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2903 qc
->err_mask
= AC_ERR_HOST_BUS
;
2907 ap
->ops
->bmdma_stop(qc
);
2909 /* if we're gonna thaw, make sure IRQ is clear */
2911 ap
->ops
->sff_check_status(ap
);
2912 if (ap
->ops
->sff_irq_clear
)
2913 ap
->ops
->sff_irq_clear(ap
);
2917 spin_unlock_irqrestore(ap
->lock
, flags
);
2920 ata_eh_thaw_port(ap
);
2922 ata_sff_error_handler(ap
);
2924 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2927 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2928 * @qc: internal command to clean up
2931 * Kernel thread context (may sleep)
2933 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2935 struct ata_port
*ap
= qc
->ap
;
2936 unsigned long flags
;
2938 if (ata_is_dma(qc
->tf
.protocol
)) {
2939 spin_lock_irqsave(ap
->lock
, flags
);
2940 ap
->ops
->bmdma_stop(qc
);
2941 spin_unlock_irqrestore(ap
->lock
, flags
);
2944 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2947 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2948 * @ap: Port associated with this ATA transaction.
2950 * Clear interrupt and error flags in DMA status register.
2952 * May be used as the irq_clear() entry in ata_port_operations.
2955 * spin_lock_irqsave(host lock)
2957 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2959 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2964 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2966 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
2969 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2970 * @qc: Info associated with this ATA transaction.
2973 * spin_lock_irqsave(host lock)
2975 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
2977 struct ata_port
*ap
= qc
->ap
;
2978 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
2981 /* load PRD table addr. */
2982 mb(); /* make sure PRD table writes are visible to controller */
2983 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
2985 /* specify data direction, triple-check start bit is clear */
2986 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2987 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
2989 dmactl
|= ATA_DMA_WR
;
2990 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2992 /* issue r/w command */
2993 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
2995 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
2998 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2999 * @qc: Info associated with this ATA transaction.
3002 * spin_lock_irqsave(host lock)
3004 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
3006 struct ata_port
*ap
= qc
->ap
;
3009 /* start host DMA transaction */
3010 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3011 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3013 /* Strictly, one may wish to issue an ioread8() here, to
3014 * flush the mmio write. However, control also passes
3015 * to the hardware at this point, and it will interrupt
3016 * us when we are to resume control. So, in effect,
3017 * we don't care when the mmio write flushes.
3018 * Further, a read of the DMA status register _immediately_
3019 * following the write may not be what certain flaky hardware
3020 * is expected, so I think it is best to not add a readb()
3021 * without first all the MMIO ATA cards/mobos.
3022 * Or maybe I'm just being paranoid.
3024 * FIXME: The posting of this write means I/O starts are
3025 * unneccessarily delayed for MMIO
3028 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3031 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3032 * @qc: Command we are ending DMA for
3034 * Clears the ATA_DMA_START flag in the dma control register
3036 * May be used as the bmdma_stop() entry in ata_port_operations.
3039 * spin_lock_irqsave(host lock)
3041 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3043 struct ata_port
*ap
= qc
->ap
;
3044 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3046 /* clear start/stop bit */
3047 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3048 mmio
+ ATA_DMA_CMD
);
3050 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3051 ata_sff_dma_pause(ap
);
3053 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3056 * ata_bmdma_status - Read PCI IDE BMDMA status
3057 * @ap: Port associated with this ATA transaction.
3059 * Read and return BMDMA status register.
3061 * May be used as the bmdma_status() entry in ata_port_operations.
3064 * spin_lock_irqsave(host lock)
3066 u8
ata_bmdma_status(struct ata_port
*ap
)
3068 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3070 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3074 * ata_bmdma_port_start - Set port up for bmdma.
3075 * @ap: Port to initialize
3077 * Called just after data structures for each port are
3078 * initialized. Allocates space for PRD table.
3080 * May be used as the port_start() entry in ata_port_operations.
3083 * Inherited from caller.
3085 int ata_bmdma_port_start(struct ata_port
*ap
)
3087 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3089 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3090 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3097 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3100 * ata_bmdma_port_start32 - Set port up for dma.
3101 * @ap: Port to initialize
3103 * Called just after data structures for each port are
3104 * initialized. Enables 32bit PIO and allocates space for PRD
3107 * May be used as the port_start() entry in ata_port_operations for
3108 * devices that are capable of 32bit PIO.
3111 * Inherited from caller.
3113 int ata_bmdma_port_start32(struct ata_port
*ap
)
3115 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3116 return ata_bmdma_port_start(ap
);
3118 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3123 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3126 * Some PCI ATA devices report simplex mode but in fact can be told to
3127 * enter non simplex mode. This implements the necessary logic to
3128 * perform the task on such devices. Calling it on other devices will
3129 * have -undefined- behaviour.
3131 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3133 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3139 simplex
= inb(bmdma
+ 0x02);
3140 outb(simplex
& 0x60, bmdma
+ 0x02);
3141 simplex
= inb(bmdma
+ 0x02);
3146 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3148 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3152 dev_printk(KERN_ERR
, host
->dev
, "BMDMA: %s, falling back to PIO\n",
3155 for (i
= 0; i
< 2; i
++) {
3156 host
->ports
[i
]->mwdma_mask
= 0;
3157 host
->ports
[i
]->udma_mask
= 0;
3162 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3163 * @host: target ATA host
3165 * Acquire PCI BMDMA resources and initialize @host accordingly.
3168 * Inherited from calling layer (may sleep).
3170 void ata_pci_bmdma_init(struct ata_host
*host
)
3172 struct device
*gdev
= host
->dev
;
3173 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3176 /* No BAR4 allocation: No DMA */
3177 if (pci_resource_start(pdev
, 4) == 0) {
3178 ata_bmdma_nodma(host
, "BAR4 is zero");
3183 * Some controllers require BMDMA region to be initialized
3184 * even if DMA is not in use to clear IRQ status via
3185 * ->sff_irq_clear method. Try to initialize bmdma_addr
3186 * regardless of dma masks.
3188 rc
= pci_set_dma_mask(pdev
, ATA_DMA_MASK
);
3190 ata_bmdma_nodma(host
, "failed to set dma mask");
3192 rc
= pci_set_consistent_dma_mask(pdev
, ATA_DMA_MASK
);
3194 ata_bmdma_nodma(host
,
3195 "failed to set consistent dma mask");
3198 /* request and iomap DMA region */
3199 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3201 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3204 host
->iomap
= pcim_iomap_table(pdev
);
3206 for (i
= 0; i
< 2; i
++) {
3207 struct ata_port
*ap
= host
->ports
[i
];
3208 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3210 if (ata_port_is_dummy(ap
))
3213 ap
->ioaddr
.bmdma_addr
= bmdma
;
3214 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3215 (ioread8(bmdma
+ 2) & 0x80))
3216 host
->flags
|= ATA_HOST_SIMPLEX
;
3218 ata_port_desc(ap
, "bmdma 0x%llx",
3219 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3222 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3225 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3226 * @pdev: target PCI device
3227 * @ppi: array of port_info, must be enough for two ports
3228 * @r_host: out argument for the initialized ATA host
3230 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3231 * resources and initialize it accordingly in one go.
3234 * Inherited from calling layer (may sleep).
3237 * 0 on success, -errno otherwise.
3239 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3240 const struct ata_port_info
* const * ppi
,
3241 struct ata_host
**r_host
)
3245 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3249 ata_pci_bmdma_init(*r_host
);
3252 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3255 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3256 * @pdev: Controller to be initialized
3257 * @ppi: array of port_info, must be enough for two ports
3258 * @sht: scsi_host_template to use when registering the host
3259 * @host_priv: host private_data
3260 * @hflags: host flags
3262 * This function is similar to ata_pci_sff_init_one() but also
3263 * takes care of BMDMA initialization.
3266 * Inherited from PCI layer (may sleep).
3269 * Zero on success, negative on errno-based value on error.
3271 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3272 const struct ata_port_info
* const * ppi
,
3273 struct scsi_host_template
*sht
, void *host_priv
,
3276 struct device
*dev
= &pdev
->dev
;
3277 const struct ata_port_info
*pi
;
3278 struct ata_host
*host
= NULL
;
3283 pi
= ata_sff_find_valid_pi(ppi
);
3285 dev_printk(KERN_ERR
, &pdev
->dev
,
3286 "no valid port_info specified\n");
3290 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
3293 rc
= pcim_enable_device(pdev
);
3297 /* prepare and activate BMDMA host */
3298 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
3301 host
->private_data
= host_priv
;
3302 host
->flags
|= hflags
;
3304 pci_set_master(pdev
);
3305 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
3308 devres_remove_group(&pdev
->dev
, NULL
);
3310 devres_release_group(&pdev
->dev
, NULL
);
3314 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3316 #endif /* CONFIG_PCI */
3317 #endif /* CONFIG_ATA_BMDMA */
3320 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3321 * @ap: Port to initialize
3323 * Called on port allocation to initialize SFF/BMDMA specific
3329 void ata_sff_port_init(struct ata_port
*ap
)
3331 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3332 ap
->ctl
= ATA_DEVCTL_OBS
;
3333 ap
->last_ctl
= 0xFF;
3336 int __init
ata_sff_init(void)
3338 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_RESCUER
, WQ_MAX_ACTIVE
);
3345 void __exit
ata_sff_exit(void)
3347 destroy_workqueue(ata_sff_wq
);