[PATCH] debug: add sysrq_always_enabled boot option
[linux-2.6/x86.git] / drivers / char / tty_io.c
bloba928f6af52f247cf4eb405df3894fd76d3e78ad5
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 extern void disable_early_printk(void);
146 static void initialize_tty_struct(struct tty_struct *tty);
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
151 static unsigned int tty_poll(struct file *, poll_table *);
152 static int tty_open(struct inode *, struct file *);
153 static int tty_release(struct inode *, struct file *);
154 int tty_ioctl(struct inode * inode, struct file * file,
155 unsigned int cmd, unsigned long arg);
156 static int tty_fasync(int fd, struct file * filp, int on);
157 static void release_mem(struct tty_struct *tty, int idx);
160 * alloc_tty_struct - allocate a tty object
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
165 * Locking: none
168 static struct tty_struct *alloc_tty_struct(void)
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 static void tty_buffer_free_all(struct tty_struct *);
176 * free_tty_struct - free a disused tty
177 * @tty: tty struct to free
179 * Free the write buffers, tty queue and tty memory itself.
181 * Locking: none. Must be called after tty is definitely unused
184 static inline void free_tty_struct(struct tty_struct *tty)
186 kfree(tty->write_buf);
187 tty_buffer_free_all(tty);
188 kfree(tty);
191 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
194 * tty_name - return tty naming
195 * @tty: tty structure
196 * @buf: buffer for output
198 * Convert a tty structure into a name. The name reflects the kernel
199 * naming policy and if udev is in use may not reflect user space
201 * Locking: none
204 char *tty_name(struct tty_struct *tty, char *buf)
206 if (!tty) /* Hmm. NULL pointer. That's fun. */
207 strcpy(buf, "NULL tty");
208 else
209 strcpy(buf, tty->name);
210 return buf;
213 EXPORT_SYMBOL(tty_name);
215 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
216 const char *routine)
218 #ifdef TTY_PARANOIA_CHECK
219 if (!tty) {
220 printk(KERN_WARNING
221 "null TTY for (%d:%d) in %s\n",
222 imajor(inode), iminor(inode), routine);
223 return 1;
225 if (tty->magic != TTY_MAGIC) {
226 printk(KERN_WARNING
227 "bad magic number for tty struct (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
231 #endif
232 return 0;
235 static int check_tty_count(struct tty_struct *tty, const char *routine)
237 #ifdef CHECK_TTY_COUNT
238 struct list_head *p;
239 int count = 0;
241 file_list_lock();
242 list_for_each(p, &tty->tty_files) {
243 count++;
245 file_list_unlock();
246 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
247 tty->driver->subtype == PTY_TYPE_SLAVE &&
248 tty->link && tty->link->count)
249 count++;
250 if (tty->count != count) {
251 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
252 "!= #fd's(%d) in %s\n",
253 tty->name, tty->count, count, routine);
254 return count;
256 #endif
257 return 0;
261 * Tty buffer allocation management
265 * tty_buffer_free_all - free buffers used by a tty
266 * @tty: tty to free from
268 * Remove all the buffers pending on a tty whether queued with data
269 * or in the free ring. Must be called when the tty is no longer in use
271 * Locking: none
274 static void tty_buffer_free_all(struct tty_struct *tty)
276 struct tty_buffer *thead;
277 while((thead = tty->buf.head) != NULL) {
278 tty->buf.head = thead->next;
279 kfree(thead);
281 while((thead = tty->buf.free) != NULL) {
282 tty->buf.free = thead->next;
283 kfree(thead);
285 tty->buf.tail = NULL;
286 tty->buf.memory_used = 0;
290 * tty_buffer_init - prepare a tty buffer structure
291 * @tty: tty to initialise
293 * Set up the initial state of the buffer management for a tty device.
294 * Must be called before the other tty buffer functions are used.
296 * Locking: none
299 static void tty_buffer_init(struct tty_struct *tty)
301 spin_lock_init(&tty->buf.lock);
302 tty->buf.head = NULL;
303 tty->buf.tail = NULL;
304 tty->buf.free = NULL;
305 tty->buf.memory_used = 0;
309 * tty_buffer_alloc - allocate a tty buffer
310 * @tty: tty device
311 * @size: desired size (characters)
313 * Allocate a new tty buffer to hold the desired number of characters.
314 * Return NULL if out of memory or the allocation would exceed the
315 * per device queue
317 * Locking: Caller must hold tty->buf.lock
320 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
322 struct tty_buffer *p;
324 if (tty->buf.memory_used + size > 65536)
325 return NULL;
326 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
327 if(p == NULL)
328 return NULL;
329 p->used = 0;
330 p->size = size;
331 p->next = NULL;
332 p->commit = 0;
333 p->read = 0;
334 p->char_buf_ptr = (char *)(p->data);
335 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
336 tty->buf.memory_used += size;
337 return p;
341 * tty_buffer_free - free a tty buffer
342 * @tty: tty owning the buffer
343 * @b: the buffer to free
345 * Free a tty buffer, or add it to the free list according to our
346 * internal strategy
348 * Locking: Caller must hold tty->buf.lock
351 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
353 /* Dumb strategy for now - should keep some stats */
354 tty->buf.memory_used -= b->size;
355 WARN_ON(tty->buf.memory_used < 0);
357 if(b->size >= 512)
358 kfree(b);
359 else {
360 b->next = tty->buf.free;
361 tty->buf.free = b;
366 * tty_buffer_find - find a free tty buffer
367 * @tty: tty owning the buffer
368 * @size: characters wanted
370 * Locate an existing suitable tty buffer or if we are lacking one then
371 * allocate a new one. We round our buffers off in 256 character chunks
372 * to get better allocation behaviour.
374 * Locking: Caller must hold tty->buf.lock
377 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
379 struct tty_buffer **tbh = &tty->buf.free;
380 while((*tbh) != NULL) {
381 struct tty_buffer *t = *tbh;
382 if(t->size >= size) {
383 *tbh = t->next;
384 t->next = NULL;
385 t->used = 0;
386 t->commit = 0;
387 t->read = 0;
388 tty->buf.memory_used += t->size;
389 return t;
391 tbh = &((*tbh)->next);
393 /* Round the buffer size out */
394 size = (size + 0xFF) & ~ 0xFF;
395 return tty_buffer_alloc(tty, size);
396 /* Should possibly check if this fails for the largest buffer we
397 have queued and recycle that ? */
401 * tty_buffer_request_room - grow tty buffer if needed
402 * @tty: tty structure
403 * @size: size desired
405 * Make at least size bytes of linear space available for the tty
406 * buffer. If we fail return the size we managed to find.
408 * Locking: Takes tty->buf.lock
410 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
412 struct tty_buffer *b, *n;
413 int left;
414 unsigned long flags;
416 spin_lock_irqsave(&tty->buf.lock, flags);
418 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
419 remove this conditional if its worth it. This would be invisible
420 to the callers */
421 if ((b = tty->buf.tail) != NULL)
422 left = b->size - b->used;
423 else
424 left = 0;
426 if (left < size) {
427 /* This is the slow path - looking for new buffers to use */
428 if ((n = tty_buffer_find(tty, size)) != NULL) {
429 if (b != NULL) {
430 b->next = n;
431 b->commit = b->used;
432 } else
433 tty->buf.head = n;
434 tty->buf.tail = n;
435 } else
436 size = left;
439 spin_unlock_irqrestore(&tty->buf.lock, flags);
440 return size;
442 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
445 * tty_insert_flip_string - Add characters to the tty buffer
446 * @tty: tty structure
447 * @chars: characters
448 * @size: size
450 * Queue a series of bytes to the tty buffering. All the characters
451 * passed are marked as without error. Returns the number added.
453 * Locking: Called functions may take tty->buf.lock
456 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
457 size_t size)
459 int copied = 0;
460 do {
461 int space = tty_buffer_request_room(tty, size - copied);
462 struct tty_buffer *tb = tty->buf.tail;
463 /* If there is no space then tb may be NULL */
464 if(unlikely(space == 0))
465 break;
466 memcpy(tb->char_buf_ptr + tb->used, chars, space);
467 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
468 tb->used += space;
469 copied += space;
470 chars += space;
471 /* There is a small chance that we need to split the data over
472 several buffers. If this is the case we must loop */
473 } while (unlikely(size > copied));
474 return copied;
476 EXPORT_SYMBOL(tty_insert_flip_string);
479 * tty_insert_flip_string_flags - Add characters to the tty buffer
480 * @tty: tty structure
481 * @chars: characters
482 * @flags: flag bytes
483 * @size: size
485 * Queue a series of bytes to the tty buffering. For each character
486 * the flags array indicates the status of the character. Returns the
487 * number added.
489 * Locking: Called functions may take tty->buf.lock
492 int tty_insert_flip_string_flags(struct tty_struct *tty,
493 const unsigned char *chars, const char *flags, size_t size)
495 int copied = 0;
496 do {
497 int space = tty_buffer_request_room(tty, size - copied);
498 struct tty_buffer *tb = tty->buf.tail;
499 /* If there is no space then tb may be NULL */
500 if(unlikely(space == 0))
501 break;
502 memcpy(tb->char_buf_ptr + tb->used, chars, space);
503 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
504 tb->used += space;
505 copied += space;
506 chars += space;
507 flags += space;
508 /* There is a small chance that we need to split the data over
509 several buffers. If this is the case we must loop */
510 } while (unlikely(size > copied));
511 return copied;
513 EXPORT_SYMBOL(tty_insert_flip_string_flags);
516 * tty_schedule_flip - push characters to ldisc
517 * @tty: tty to push from
519 * Takes any pending buffers and transfers their ownership to the
520 * ldisc side of the queue. It then schedules those characters for
521 * processing by the line discipline.
523 * Locking: Takes tty->buf.lock
526 void tty_schedule_flip(struct tty_struct *tty)
528 unsigned long flags;
529 spin_lock_irqsave(&tty->buf.lock, flags);
530 if (tty->buf.tail != NULL)
531 tty->buf.tail->commit = tty->buf.tail->used;
532 spin_unlock_irqrestore(&tty->buf.lock, flags);
533 schedule_delayed_work(&tty->buf.work, 1);
535 EXPORT_SYMBOL(tty_schedule_flip);
538 * tty_prepare_flip_string - make room for characters
539 * @tty: tty
540 * @chars: return pointer for character write area
541 * @size: desired size
543 * Prepare a block of space in the buffer for data. Returns the length
544 * available and buffer pointer to the space which is now allocated and
545 * accounted for as ready for normal characters. This is used for drivers
546 * that need their own block copy routines into the buffer. There is no
547 * guarantee the buffer is a DMA target!
549 * Locking: May call functions taking tty->buf.lock
552 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
554 int space = tty_buffer_request_room(tty, size);
555 if (likely(space)) {
556 struct tty_buffer *tb = tty->buf.tail;
557 *chars = tb->char_buf_ptr + tb->used;
558 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
559 tb->used += space;
561 return space;
564 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
567 * tty_prepare_flip_string_flags - make room for characters
568 * @tty: tty
569 * @chars: return pointer for character write area
570 * @flags: return pointer for status flag write area
571 * @size: desired size
573 * Prepare a block of space in the buffer for data. Returns the length
574 * available and buffer pointer to the space which is now allocated and
575 * accounted for as ready for characters. This is used for drivers
576 * that need their own block copy routines into the buffer. There is no
577 * guarantee the buffer is a DMA target!
579 * Locking: May call functions taking tty->buf.lock
582 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
584 int space = tty_buffer_request_room(tty, size);
585 if (likely(space)) {
586 struct tty_buffer *tb = tty->buf.tail;
587 *chars = tb->char_buf_ptr + tb->used;
588 *flags = tb->flag_buf_ptr + tb->used;
589 tb->used += space;
591 return space;
594 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
599 * tty_set_termios_ldisc - set ldisc field
600 * @tty: tty structure
601 * @num: line discipline number
603 * This is probably overkill for real world processors but
604 * they are not on hot paths so a little discipline won't do
605 * any harm.
607 * Locking: takes termios_mutex
610 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
612 mutex_lock(&tty->termios_mutex);
613 tty->termios->c_line = num;
614 mutex_unlock(&tty->termios_mutex);
618 * This guards the refcounted line discipline lists. The lock
619 * must be taken with irqs off because there are hangup path
620 * callers who will do ldisc lookups and cannot sleep.
623 static DEFINE_SPINLOCK(tty_ldisc_lock);
624 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
625 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
628 * tty_register_ldisc - install a line discipline
629 * @disc: ldisc number
630 * @new_ldisc: pointer to the ldisc object
632 * Installs a new line discipline into the kernel. The discipline
633 * is set up as unreferenced and then made available to the kernel
634 * from this point onwards.
636 * Locking:
637 * takes tty_ldisc_lock to guard against ldisc races
640 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
642 unsigned long flags;
643 int ret = 0;
645 if (disc < N_TTY || disc >= NR_LDISCS)
646 return -EINVAL;
648 spin_lock_irqsave(&tty_ldisc_lock, flags);
649 tty_ldiscs[disc] = *new_ldisc;
650 tty_ldiscs[disc].num = disc;
651 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
652 tty_ldiscs[disc].refcount = 0;
653 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
655 return ret;
657 EXPORT_SYMBOL(tty_register_ldisc);
660 * tty_unregister_ldisc - unload a line discipline
661 * @disc: ldisc number
662 * @new_ldisc: pointer to the ldisc object
664 * Remove a line discipline from the kernel providing it is not
665 * currently in use.
667 * Locking:
668 * takes tty_ldisc_lock to guard against ldisc races
671 int tty_unregister_ldisc(int disc)
673 unsigned long flags;
674 int ret = 0;
676 if (disc < N_TTY || disc >= NR_LDISCS)
677 return -EINVAL;
679 spin_lock_irqsave(&tty_ldisc_lock, flags);
680 if (tty_ldiscs[disc].refcount)
681 ret = -EBUSY;
682 else
683 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
684 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
686 return ret;
688 EXPORT_SYMBOL(tty_unregister_ldisc);
691 * tty_ldisc_get - take a reference to an ldisc
692 * @disc: ldisc number
694 * Takes a reference to a line discipline. Deals with refcounts and
695 * module locking counts. Returns NULL if the discipline is not available.
696 * Returns a pointer to the discipline and bumps the ref count if it is
697 * available
699 * Locking:
700 * takes tty_ldisc_lock to guard against ldisc races
703 struct tty_ldisc *tty_ldisc_get(int disc)
705 unsigned long flags;
706 struct tty_ldisc *ld;
708 if (disc < N_TTY || disc >= NR_LDISCS)
709 return NULL;
711 spin_lock_irqsave(&tty_ldisc_lock, flags);
713 ld = &tty_ldiscs[disc];
714 /* Check the entry is defined */
715 if(ld->flags & LDISC_FLAG_DEFINED)
717 /* If the module is being unloaded we can't use it */
718 if (!try_module_get(ld->owner))
719 ld = NULL;
720 else /* lock it */
721 ld->refcount++;
723 else
724 ld = NULL;
725 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
726 return ld;
729 EXPORT_SYMBOL_GPL(tty_ldisc_get);
732 * tty_ldisc_put - drop ldisc reference
733 * @disc: ldisc number
735 * Drop a reference to a line discipline. Manage refcounts and
736 * module usage counts
738 * Locking:
739 * takes tty_ldisc_lock to guard against ldisc races
742 void tty_ldisc_put(int disc)
744 struct tty_ldisc *ld;
745 unsigned long flags;
747 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
749 spin_lock_irqsave(&tty_ldisc_lock, flags);
750 ld = &tty_ldiscs[disc];
751 BUG_ON(ld->refcount == 0);
752 ld->refcount--;
753 module_put(ld->owner);
754 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
757 EXPORT_SYMBOL_GPL(tty_ldisc_put);
760 * tty_ldisc_assign - set ldisc on a tty
761 * @tty: tty to assign
762 * @ld: line discipline
764 * Install an instance of a line discipline into a tty structure. The
765 * ldisc must have a reference count above zero to ensure it remains/
766 * The tty instance refcount starts at zero.
768 * Locking:
769 * Caller must hold references
772 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
774 tty->ldisc = *ld;
775 tty->ldisc.refcount = 0;
779 * tty_ldisc_try - internal helper
780 * @tty: the tty
782 * Make a single attempt to grab and bump the refcount on
783 * the tty ldisc. Return 0 on failure or 1 on success. This is
784 * used to implement both the waiting and non waiting versions
785 * of tty_ldisc_ref
787 * Locking: takes tty_ldisc_lock
790 static int tty_ldisc_try(struct tty_struct *tty)
792 unsigned long flags;
793 struct tty_ldisc *ld;
794 int ret = 0;
796 spin_lock_irqsave(&tty_ldisc_lock, flags);
797 ld = &tty->ldisc;
798 if(test_bit(TTY_LDISC, &tty->flags))
800 ld->refcount++;
801 ret = 1;
803 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
804 return ret;
808 * tty_ldisc_ref_wait - wait for the tty ldisc
809 * @tty: tty device
811 * Dereference the line discipline for the terminal and take a
812 * reference to it. If the line discipline is in flux then
813 * wait patiently until it changes.
815 * Note: Must not be called from an IRQ/timer context. The caller
816 * must also be careful not to hold other locks that will deadlock
817 * against a discipline change, such as an existing ldisc reference
818 * (which we check for)
820 * Locking: call functions take tty_ldisc_lock
823 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
825 /* wait_event is a macro */
826 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
827 if(tty->ldisc.refcount == 0)
828 printk(KERN_ERR "tty_ldisc_ref_wait\n");
829 return &tty->ldisc;
832 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
835 * tty_ldisc_ref - get the tty ldisc
836 * @tty: tty device
838 * Dereference the line discipline for the terminal and take a
839 * reference to it. If the line discipline is in flux then
840 * return NULL. Can be called from IRQ and timer functions.
842 * Locking: called functions take tty_ldisc_lock
845 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
847 if(tty_ldisc_try(tty))
848 return &tty->ldisc;
849 return NULL;
852 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
855 * tty_ldisc_deref - free a tty ldisc reference
856 * @ld: reference to free up
858 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
859 * be called in IRQ context.
861 * Locking: takes tty_ldisc_lock
864 void tty_ldisc_deref(struct tty_ldisc *ld)
866 unsigned long flags;
868 BUG_ON(ld == NULL);
870 spin_lock_irqsave(&tty_ldisc_lock, flags);
871 if(ld->refcount == 0)
872 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
873 else
874 ld->refcount--;
875 if(ld->refcount == 0)
876 wake_up(&tty_ldisc_wait);
877 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
880 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
883 * tty_ldisc_enable - allow ldisc use
884 * @tty: terminal to activate ldisc on
886 * Set the TTY_LDISC flag when the line discipline can be called
887 * again. Do neccessary wakeups for existing sleepers.
889 * Note: nobody should set this bit except via this function. Clearing
890 * directly is allowed.
893 static void tty_ldisc_enable(struct tty_struct *tty)
895 set_bit(TTY_LDISC, &tty->flags);
896 wake_up(&tty_ldisc_wait);
900 * tty_set_ldisc - set line discipline
901 * @tty: the terminal to set
902 * @ldisc: the line discipline
904 * Set the discipline of a tty line. Must be called from a process
905 * context.
907 * Locking: takes tty_ldisc_lock.
908 * called functions take termios_mutex
911 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
913 int retval = 0;
914 struct tty_ldisc o_ldisc;
915 char buf[64];
916 int work;
917 unsigned long flags;
918 struct tty_ldisc *ld;
919 struct tty_struct *o_tty;
921 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
922 return -EINVAL;
924 restart:
926 ld = tty_ldisc_get(ldisc);
927 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
928 /* Cyrus Durgin <cider@speakeasy.org> */
929 if (ld == NULL) {
930 request_module("tty-ldisc-%d", ldisc);
931 ld = tty_ldisc_get(ldisc);
933 if (ld == NULL)
934 return -EINVAL;
937 * No more input please, we are switching. The new ldisc
938 * will update this value in the ldisc open function
941 tty->receive_room = 0;
944 * Problem: What do we do if this blocks ?
947 tty_wait_until_sent(tty, 0);
949 if (tty->ldisc.num == ldisc) {
950 tty_ldisc_put(ldisc);
951 return 0;
954 o_ldisc = tty->ldisc;
955 o_tty = tty->link;
958 * Make sure we don't change while someone holds a
959 * reference to the line discipline. The TTY_LDISC bit
960 * prevents anyone taking a reference once it is clear.
961 * We need the lock to avoid racing reference takers.
964 spin_lock_irqsave(&tty_ldisc_lock, flags);
965 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
966 if(tty->ldisc.refcount) {
967 /* Free the new ldisc we grabbed. Must drop the lock
968 first. */
969 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
970 tty_ldisc_put(ldisc);
972 * There are several reasons we may be busy, including
973 * random momentary I/O traffic. We must therefore
974 * retry. We could distinguish between blocking ops
975 * and retries if we made tty_ldisc_wait() smarter. That
976 * is up for discussion.
978 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
979 return -ERESTARTSYS;
980 goto restart;
982 if(o_tty && o_tty->ldisc.refcount) {
983 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
984 tty_ldisc_put(ldisc);
985 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
986 return -ERESTARTSYS;
987 goto restart;
991 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
993 if (!test_bit(TTY_LDISC, &tty->flags)) {
994 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
995 tty_ldisc_put(ldisc);
996 ld = tty_ldisc_ref_wait(tty);
997 tty_ldisc_deref(ld);
998 goto restart;
1001 clear_bit(TTY_LDISC, &tty->flags);
1002 if (o_tty)
1003 clear_bit(TTY_LDISC, &o_tty->flags);
1004 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1007 * From this point on we know nobody has an ldisc
1008 * usage reference, nor can they obtain one until
1009 * we say so later on.
1012 work = cancel_delayed_work(&tty->buf.work);
1014 * Wait for ->hangup_work and ->buf.work handlers to terminate
1017 flush_scheduled_work();
1018 /* Shutdown the current discipline. */
1019 if (tty->ldisc.close)
1020 (tty->ldisc.close)(tty);
1022 /* Now set up the new line discipline. */
1023 tty_ldisc_assign(tty, ld);
1024 tty_set_termios_ldisc(tty, ldisc);
1025 if (tty->ldisc.open)
1026 retval = (tty->ldisc.open)(tty);
1027 if (retval < 0) {
1028 tty_ldisc_put(ldisc);
1029 /* There is an outstanding reference here so this is safe */
1030 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1031 tty_set_termios_ldisc(tty, tty->ldisc.num);
1032 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1033 tty_ldisc_put(o_ldisc.num);
1034 /* This driver is always present */
1035 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1036 tty_set_termios_ldisc(tty, N_TTY);
1037 if (tty->ldisc.open) {
1038 int r = tty->ldisc.open(tty);
1040 if (r < 0)
1041 panic("Couldn't open N_TTY ldisc for "
1042 "%s --- error %d.",
1043 tty_name(tty, buf), r);
1047 /* At this point we hold a reference to the new ldisc and a
1048 a reference to the old ldisc. If we ended up flipping back
1049 to the existing ldisc we have two references to it */
1051 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1052 tty->driver->set_ldisc(tty);
1054 tty_ldisc_put(o_ldisc.num);
1057 * Allow ldisc referencing to occur as soon as the driver
1058 * ldisc callback completes.
1061 tty_ldisc_enable(tty);
1062 if (o_tty)
1063 tty_ldisc_enable(o_tty);
1065 /* Restart it in case no characters kick it off. Safe if
1066 already running */
1067 if (work)
1068 schedule_delayed_work(&tty->buf.work, 1);
1069 return retval;
1073 * get_tty_driver - find device of a tty
1074 * @dev_t: device identifier
1075 * @index: returns the index of the tty
1077 * This routine returns a tty driver structure, given a device number
1078 * and also passes back the index number.
1080 * Locking: caller must hold tty_mutex
1083 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1085 struct tty_driver *p;
1087 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1088 dev_t base = MKDEV(p->major, p->minor_start);
1089 if (device < base || device >= base + p->num)
1090 continue;
1091 *index = device - base;
1092 return p;
1094 return NULL;
1098 * tty_check_change - check for POSIX terminal changes
1099 * @tty: tty to check
1101 * If we try to write to, or set the state of, a terminal and we're
1102 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1103 * ignored, go ahead and perform the operation. (POSIX 7.2)
1105 * Locking: none
1108 int tty_check_change(struct tty_struct * tty)
1110 if (current->signal->tty != tty)
1111 return 0;
1112 if (tty->pgrp <= 0) {
1113 printk(KERN_WARNING "tty_check_change: tty->pgrp <= 0!\n");
1114 return 0;
1116 if (process_group(current) == tty->pgrp)
1117 return 0;
1118 if (is_ignored(SIGTTOU))
1119 return 0;
1120 if (is_orphaned_pgrp(process_group(current)))
1121 return -EIO;
1122 (void) kill_pg(process_group(current), SIGTTOU, 1);
1123 return -ERESTARTSYS;
1126 EXPORT_SYMBOL(tty_check_change);
1128 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1129 size_t count, loff_t *ppos)
1131 return 0;
1134 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1135 size_t count, loff_t *ppos)
1137 return -EIO;
1140 /* No kernel lock held - none needed ;) */
1141 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1143 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1146 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1147 unsigned int cmd, unsigned long arg)
1149 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1152 static const struct file_operations tty_fops = {
1153 .llseek = no_llseek,
1154 .read = tty_read,
1155 .write = tty_write,
1156 .poll = tty_poll,
1157 .ioctl = tty_ioctl,
1158 .open = tty_open,
1159 .release = tty_release,
1160 .fasync = tty_fasync,
1163 #ifdef CONFIG_UNIX98_PTYS
1164 static const struct file_operations ptmx_fops = {
1165 .llseek = no_llseek,
1166 .read = tty_read,
1167 .write = tty_write,
1168 .poll = tty_poll,
1169 .ioctl = tty_ioctl,
1170 .open = ptmx_open,
1171 .release = tty_release,
1172 .fasync = tty_fasync,
1174 #endif
1176 static const struct file_operations console_fops = {
1177 .llseek = no_llseek,
1178 .read = tty_read,
1179 .write = redirected_tty_write,
1180 .poll = tty_poll,
1181 .ioctl = tty_ioctl,
1182 .open = tty_open,
1183 .release = tty_release,
1184 .fasync = tty_fasync,
1187 static const struct file_operations hung_up_tty_fops = {
1188 .llseek = no_llseek,
1189 .read = hung_up_tty_read,
1190 .write = hung_up_tty_write,
1191 .poll = hung_up_tty_poll,
1192 .ioctl = hung_up_tty_ioctl,
1193 .release = tty_release,
1196 static DEFINE_SPINLOCK(redirect_lock);
1197 static struct file *redirect;
1200 * tty_wakeup - request more data
1201 * @tty: terminal
1203 * Internal and external helper for wakeups of tty. This function
1204 * informs the line discipline if present that the driver is ready
1205 * to receive more output data.
1208 void tty_wakeup(struct tty_struct *tty)
1210 struct tty_ldisc *ld;
1212 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1213 ld = tty_ldisc_ref(tty);
1214 if(ld) {
1215 if(ld->write_wakeup)
1216 ld->write_wakeup(tty);
1217 tty_ldisc_deref(ld);
1220 wake_up_interruptible(&tty->write_wait);
1223 EXPORT_SYMBOL_GPL(tty_wakeup);
1226 * tty_ldisc_flush - flush line discipline queue
1227 * @tty: tty
1229 * Flush the line discipline queue (if any) for this tty. If there
1230 * is no line discipline active this is a no-op.
1233 void tty_ldisc_flush(struct tty_struct *tty)
1235 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1236 if(ld) {
1237 if(ld->flush_buffer)
1238 ld->flush_buffer(tty);
1239 tty_ldisc_deref(ld);
1243 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1246 * tty_reset_termios - reset terminal state
1247 * @tty: tty to reset
1249 * Restore a terminal to the driver default state
1252 static void tty_reset_termios(struct tty_struct *tty)
1254 mutex_lock(&tty->termios_mutex);
1255 *tty->termios = tty->driver->init_termios;
1256 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1257 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1258 mutex_unlock(&tty->termios_mutex);
1262 * do_tty_hangup - actual handler for hangup events
1263 * @work: tty device
1265 * This can be called by the "eventd" kernel thread. That is process
1266 * synchronous but doesn't hold any locks, so we need to make sure we
1267 * have the appropriate locks for what we're doing.
1269 * The hangup event clears any pending redirections onto the hung up
1270 * device. It ensures future writes will error and it does the needed
1271 * line discipline hangup and signal delivery. The tty object itself
1272 * remains intact.
1274 * Locking:
1275 * BKL
1276 * redirect lock for undoing redirection
1277 * file list lock for manipulating list of ttys
1278 * tty_ldisc_lock from called functions
1279 * termios_mutex resetting termios data
1280 * tasklist_lock to walk task list for hangup event
1281 * ->siglock to protect ->signal/->sighand
1283 static void do_tty_hangup(struct work_struct *work)
1285 struct tty_struct *tty =
1286 container_of(work, struct tty_struct, hangup_work);
1287 struct file * cons_filp = NULL;
1288 struct file *filp, *f = NULL;
1289 struct task_struct *p;
1290 struct tty_ldisc *ld;
1291 int closecount = 0, n;
1293 if (!tty)
1294 return;
1296 /* inuse_filps is protected by the single kernel lock */
1297 lock_kernel();
1299 spin_lock(&redirect_lock);
1300 if (redirect && redirect->private_data == tty) {
1301 f = redirect;
1302 redirect = NULL;
1304 spin_unlock(&redirect_lock);
1306 check_tty_count(tty, "do_tty_hangup");
1307 file_list_lock();
1308 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1309 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1310 if (filp->f_op->write == redirected_tty_write)
1311 cons_filp = filp;
1312 if (filp->f_op->write != tty_write)
1313 continue;
1314 closecount++;
1315 tty_fasync(-1, filp, 0); /* can't block */
1316 filp->f_op = &hung_up_tty_fops;
1318 file_list_unlock();
1320 /* FIXME! What are the locking issues here? This may me overdoing things..
1321 * this question is especially important now that we've removed the irqlock. */
1323 ld = tty_ldisc_ref(tty);
1324 if(ld != NULL) /* We may have no line discipline at this point */
1326 if (ld->flush_buffer)
1327 ld->flush_buffer(tty);
1328 if (tty->driver->flush_buffer)
1329 tty->driver->flush_buffer(tty);
1330 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1331 ld->write_wakeup)
1332 ld->write_wakeup(tty);
1333 if (ld->hangup)
1334 ld->hangup(tty);
1337 /* FIXME: Once we trust the LDISC code better we can wait here for
1338 ldisc completion and fix the driver call race */
1340 wake_up_interruptible(&tty->write_wait);
1341 wake_up_interruptible(&tty->read_wait);
1344 * Shutdown the current line discipline, and reset it to
1345 * N_TTY.
1347 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1348 tty_reset_termios(tty);
1350 /* Defer ldisc switch */
1351 /* tty_deferred_ldisc_switch(N_TTY);
1353 This should get done automatically when the port closes and
1354 tty_release is called */
1356 read_lock(&tasklist_lock);
1357 if (tty->session > 0) {
1358 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
1359 spin_lock_irq(&p->sighand->siglock);
1360 if (p->signal->tty == tty)
1361 p->signal->tty = NULL;
1362 if (!p->signal->leader) {
1363 spin_unlock_irq(&p->sighand->siglock);
1364 continue;
1366 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1367 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1368 if (tty->pgrp > 0)
1369 p->signal->tty_old_pgrp = tty->pgrp;
1370 spin_unlock_irq(&p->sighand->siglock);
1371 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
1373 read_unlock(&tasklist_lock);
1375 tty->flags = 0;
1376 tty->session = 0;
1377 tty->pgrp = -1;
1378 tty->ctrl_status = 0;
1380 * If one of the devices matches a console pointer, we
1381 * cannot just call hangup() because that will cause
1382 * tty->count and state->count to go out of sync.
1383 * So we just call close() the right number of times.
1385 if (cons_filp) {
1386 if (tty->driver->close)
1387 for (n = 0; n < closecount; n++)
1388 tty->driver->close(tty, cons_filp);
1389 } else if (tty->driver->hangup)
1390 (tty->driver->hangup)(tty);
1392 /* We don't want to have driver/ldisc interactions beyond
1393 the ones we did here. The driver layer expects no
1394 calls after ->hangup() from the ldisc side. However we
1395 can't yet guarantee all that */
1397 set_bit(TTY_HUPPED, &tty->flags);
1398 if (ld) {
1399 tty_ldisc_enable(tty);
1400 tty_ldisc_deref(ld);
1402 unlock_kernel();
1403 if (f)
1404 fput(f);
1408 * tty_hangup - trigger a hangup event
1409 * @tty: tty to hangup
1411 * A carrier loss (virtual or otherwise) has occurred on this like
1412 * schedule a hangup sequence to run after this event.
1415 void tty_hangup(struct tty_struct * tty)
1417 #ifdef TTY_DEBUG_HANGUP
1418 char buf[64];
1420 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1421 #endif
1422 schedule_work(&tty->hangup_work);
1425 EXPORT_SYMBOL(tty_hangup);
1428 * tty_vhangup - process vhangup
1429 * @tty: tty to hangup
1431 * The user has asked via system call for the terminal to be hung up.
1432 * We do this synchronously so that when the syscall returns the process
1433 * is complete. That guarantee is neccessary for security reasons.
1436 void tty_vhangup(struct tty_struct * tty)
1438 #ifdef TTY_DEBUG_HANGUP
1439 char buf[64];
1441 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1442 #endif
1443 do_tty_hangup(&tty->hangup_work);
1445 EXPORT_SYMBOL(tty_vhangup);
1448 * tty_hung_up_p - was tty hung up
1449 * @filp: file pointer of tty
1451 * Return true if the tty has been subject to a vhangup or a carrier
1452 * loss
1455 int tty_hung_up_p(struct file * filp)
1457 return (filp->f_op == &hung_up_tty_fops);
1460 EXPORT_SYMBOL(tty_hung_up_p);
1462 static void session_clear_tty(pid_t session)
1464 struct task_struct *p;
1465 do_each_task_pid(session, PIDTYPE_SID, p) {
1466 proc_clear_tty(p);
1467 } while_each_task_pid(session, PIDTYPE_SID, p);
1471 * disassociate_ctty - disconnect controlling tty
1472 * @on_exit: true if exiting so need to "hang up" the session
1474 * This function is typically called only by the session leader, when
1475 * it wants to disassociate itself from its controlling tty.
1477 * It performs the following functions:
1478 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1479 * (2) Clears the tty from being controlling the session
1480 * (3) Clears the controlling tty for all processes in the
1481 * session group.
1483 * The argument on_exit is set to 1 if called when a process is
1484 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1486 * Locking:
1487 * BKL is taken for hysterical raisins
1488 * tty_mutex is taken to protect tty
1489 * ->siglock is taken to protect ->signal/->sighand
1490 * tasklist_lock is taken to walk process list for sessions
1491 * ->siglock is taken to protect ->signal/->sighand
1494 void disassociate_ctty(int on_exit)
1496 struct tty_struct *tty;
1497 int tty_pgrp = -1;
1498 int session;
1500 lock_kernel();
1502 mutex_lock(&tty_mutex);
1503 tty = get_current_tty();
1504 if (tty) {
1505 tty_pgrp = tty->pgrp;
1506 mutex_unlock(&tty_mutex);
1507 /* XXX: here we race, there is nothing protecting tty */
1508 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1509 tty_vhangup(tty);
1510 } else {
1511 pid_t old_pgrp = current->signal->tty_old_pgrp;
1512 if (old_pgrp) {
1513 kill_pg(old_pgrp, SIGHUP, on_exit);
1514 kill_pg(old_pgrp, SIGCONT, on_exit);
1516 mutex_unlock(&tty_mutex);
1517 unlock_kernel();
1518 return;
1520 if (tty_pgrp > 0) {
1521 kill_pg(tty_pgrp, SIGHUP, on_exit);
1522 if (!on_exit)
1523 kill_pg(tty_pgrp, SIGCONT, on_exit);
1526 spin_lock_irq(&current->sighand->siglock);
1527 current->signal->tty_old_pgrp = 0;
1528 session = process_session(current);
1529 spin_unlock_irq(&current->sighand->siglock);
1531 mutex_lock(&tty_mutex);
1532 /* It is possible that do_tty_hangup has free'd this tty */
1533 tty = get_current_tty();
1534 if (tty) {
1535 tty->session = 0;
1536 tty->pgrp = 0;
1537 } else {
1538 #ifdef TTY_DEBUG_HANGUP
1539 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1540 " = NULL", tty);
1541 #endif
1543 mutex_unlock(&tty_mutex);
1545 /* Now clear signal->tty under the lock */
1546 read_lock(&tasklist_lock);
1547 session_clear_tty(session);
1548 read_unlock(&tasklist_lock);
1549 unlock_kernel();
1554 * stop_tty - propogate flow control
1555 * @tty: tty to stop
1557 * Perform flow control to the driver. For PTY/TTY pairs we
1558 * must also propogate the TIOCKPKT status. May be called
1559 * on an already stopped device and will not re-call the driver
1560 * method.
1562 * This functionality is used by both the line disciplines for
1563 * halting incoming flow and by the driver. It may therefore be
1564 * called from any context, may be under the tty atomic_write_lock
1565 * but not always.
1567 * Locking:
1568 * Broken. Relies on BKL which is unsafe here.
1571 void stop_tty(struct tty_struct *tty)
1573 if (tty->stopped)
1574 return;
1575 tty->stopped = 1;
1576 if (tty->link && tty->link->packet) {
1577 tty->ctrl_status &= ~TIOCPKT_START;
1578 tty->ctrl_status |= TIOCPKT_STOP;
1579 wake_up_interruptible(&tty->link->read_wait);
1581 if (tty->driver->stop)
1582 (tty->driver->stop)(tty);
1585 EXPORT_SYMBOL(stop_tty);
1588 * start_tty - propogate flow control
1589 * @tty: tty to start
1591 * Start a tty that has been stopped if at all possible. Perform
1592 * any neccessary wakeups and propogate the TIOCPKT status. If this
1593 * is the tty was previous stopped and is being started then the
1594 * driver start method is invoked and the line discipline woken.
1596 * Locking:
1597 * Broken. Relies on BKL which is unsafe here.
1600 void start_tty(struct tty_struct *tty)
1602 if (!tty->stopped || tty->flow_stopped)
1603 return;
1604 tty->stopped = 0;
1605 if (tty->link && tty->link->packet) {
1606 tty->ctrl_status &= ~TIOCPKT_STOP;
1607 tty->ctrl_status |= TIOCPKT_START;
1608 wake_up_interruptible(&tty->link->read_wait);
1610 if (tty->driver->start)
1611 (tty->driver->start)(tty);
1613 /* If we have a running line discipline it may need kicking */
1614 tty_wakeup(tty);
1615 wake_up_interruptible(&tty->write_wait);
1618 EXPORT_SYMBOL(start_tty);
1621 * tty_read - read method for tty device files
1622 * @file: pointer to tty file
1623 * @buf: user buffer
1624 * @count: size of user buffer
1625 * @ppos: unused
1627 * Perform the read system call function on this terminal device. Checks
1628 * for hung up devices before calling the line discipline method.
1630 * Locking:
1631 * Locks the line discipline internally while needed
1632 * For historical reasons the line discipline read method is
1633 * invoked under the BKL. This will go away in time so do not rely on it
1634 * in new code. Multiple read calls may be outstanding in parallel.
1637 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1638 loff_t *ppos)
1640 int i;
1641 struct tty_struct * tty;
1642 struct inode *inode;
1643 struct tty_ldisc *ld;
1645 tty = (struct tty_struct *)file->private_data;
1646 inode = file->f_path.dentry->d_inode;
1647 if (tty_paranoia_check(tty, inode, "tty_read"))
1648 return -EIO;
1649 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1650 return -EIO;
1652 /* We want to wait for the line discipline to sort out in this
1653 situation */
1654 ld = tty_ldisc_ref_wait(tty);
1655 lock_kernel();
1656 if (ld->read)
1657 i = (ld->read)(tty,file,buf,count);
1658 else
1659 i = -EIO;
1660 tty_ldisc_deref(ld);
1661 unlock_kernel();
1662 if (i > 0)
1663 inode->i_atime = current_fs_time(inode->i_sb);
1664 return i;
1668 * Split writes up in sane blocksizes to avoid
1669 * denial-of-service type attacks
1671 static inline ssize_t do_tty_write(
1672 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1673 struct tty_struct *tty,
1674 struct file *file,
1675 const char __user *buf,
1676 size_t count)
1678 ssize_t ret = 0, written = 0;
1679 unsigned int chunk;
1681 /* FIXME: O_NDELAY ... */
1682 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1683 return -ERESTARTSYS;
1687 * We chunk up writes into a temporary buffer. This
1688 * simplifies low-level drivers immensely, since they
1689 * don't have locking issues and user mode accesses.
1691 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1692 * big chunk-size..
1694 * The default chunk-size is 2kB, because the NTTY
1695 * layer has problems with bigger chunks. It will
1696 * claim to be able to handle more characters than
1697 * it actually does.
1699 * FIXME: This can probably go away now except that 64K chunks
1700 * are too likely to fail unless switched to vmalloc...
1702 chunk = 2048;
1703 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1704 chunk = 65536;
1705 if (count < chunk)
1706 chunk = count;
1708 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1709 if (tty->write_cnt < chunk) {
1710 unsigned char *buf;
1712 if (chunk < 1024)
1713 chunk = 1024;
1715 buf = kmalloc(chunk, GFP_KERNEL);
1716 if (!buf) {
1717 mutex_unlock(&tty->atomic_write_lock);
1718 return -ENOMEM;
1720 kfree(tty->write_buf);
1721 tty->write_cnt = chunk;
1722 tty->write_buf = buf;
1725 /* Do the write .. */
1726 for (;;) {
1727 size_t size = count;
1728 if (size > chunk)
1729 size = chunk;
1730 ret = -EFAULT;
1731 if (copy_from_user(tty->write_buf, buf, size))
1732 break;
1733 lock_kernel();
1734 ret = write(tty, file, tty->write_buf, size);
1735 unlock_kernel();
1736 if (ret <= 0)
1737 break;
1738 written += ret;
1739 buf += ret;
1740 count -= ret;
1741 if (!count)
1742 break;
1743 ret = -ERESTARTSYS;
1744 if (signal_pending(current))
1745 break;
1746 cond_resched();
1748 if (written) {
1749 struct inode *inode = file->f_path.dentry->d_inode;
1750 inode->i_mtime = current_fs_time(inode->i_sb);
1751 ret = written;
1753 mutex_unlock(&tty->atomic_write_lock);
1754 return ret;
1759 * tty_write - write method for tty device file
1760 * @file: tty file pointer
1761 * @buf: user data to write
1762 * @count: bytes to write
1763 * @ppos: unused
1765 * Write data to a tty device via the line discipline.
1767 * Locking:
1768 * Locks the line discipline as required
1769 * Writes to the tty driver are serialized by the atomic_write_lock
1770 * and are then processed in chunks to the device. The line discipline
1771 * write method will not be involked in parallel for each device
1772 * The line discipline write method is called under the big
1773 * kernel lock for historical reasons. New code should not rely on this.
1776 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1777 loff_t *ppos)
1779 struct tty_struct * tty;
1780 struct inode *inode = file->f_path.dentry->d_inode;
1781 ssize_t ret;
1782 struct tty_ldisc *ld;
1784 tty = (struct tty_struct *)file->private_data;
1785 if (tty_paranoia_check(tty, inode, "tty_write"))
1786 return -EIO;
1787 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1788 return -EIO;
1790 ld = tty_ldisc_ref_wait(tty);
1791 if (!ld->write)
1792 ret = -EIO;
1793 else
1794 ret = do_tty_write(ld->write, tty, file, buf, count);
1795 tty_ldisc_deref(ld);
1796 return ret;
1799 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1800 loff_t *ppos)
1802 struct file *p = NULL;
1804 spin_lock(&redirect_lock);
1805 if (redirect) {
1806 get_file(redirect);
1807 p = redirect;
1809 spin_unlock(&redirect_lock);
1811 if (p) {
1812 ssize_t res;
1813 res = vfs_write(p, buf, count, &p->f_pos);
1814 fput(p);
1815 return res;
1818 return tty_write(file, buf, count, ppos);
1821 static char ptychar[] = "pqrstuvwxyzabcde";
1824 * pty_line_name - generate name for a pty
1825 * @driver: the tty driver in use
1826 * @index: the minor number
1827 * @p: output buffer of at least 6 bytes
1829 * Generate a name from a driver reference and write it to the output
1830 * buffer.
1832 * Locking: None
1834 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1836 int i = index + driver->name_base;
1837 /* ->name is initialized to "ttyp", but "tty" is expected */
1838 sprintf(p, "%s%c%x",
1839 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1840 ptychar[i >> 4 & 0xf], i & 0xf);
1844 * pty_line_name - generate name for a tty
1845 * @driver: the tty driver in use
1846 * @index: the minor number
1847 * @p: output buffer of at least 7 bytes
1849 * Generate a name from a driver reference and write it to the output
1850 * buffer.
1852 * Locking: None
1854 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1856 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1860 * init_dev - initialise a tty device
1861 * @driver: tty driver we are opening a device on
1862 * @idx: device index
1863 * @tty: returned tty structure
1865 * Prepare a tty device. This may not be a "new" clean device but
1866 * could also be an active device. The pty drivers require special
1867 * handling because of this.
1869 * Locking:
1870 * The function is called under the tty_mutex, which
1871 * protects us from the tty struct or driver itself going away.
1873 * On exit the tty device has the line discipline attached and
1874 * a reference count of 1. If a pair was created for pty/tty use
1875 * and the other was a pty master then it too has a reference count of 1.
1877 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1878 * failed open. The new code protects the open with a mutex, so it's
1879 * really quite straightforward. The mutex locking can probably be
1880 * relaxed for the (most common) case of reopening a tty.
1883 static int init_dev(struct tty_driver *driver, int idx,
1884 struct tty_struct **ret_tty)
1886 struct tty_struct *tty, *o_tty;
1887 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1888 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1889 int retval = 0;
1891 /* check whether we're reopening an existing tty */
1892 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1893 tty = devpts_get_tty(idx);
1894 if (tty && driver->subtype == PTY_TYPE_MASTER)
1895 tty = tty->link;
1896 } else {
1897 tty = driver->ttys[idx];
1899 if (tty) goto fast_track;
1902 * First time open is complex, especially for PTY devices.
1903 * This code guarantees that either everything succeeds and the
1904 * TTY is ready for operation, or else the table slots are vacated
1905 * and the allocated memory released. (Except that the termios
1906 * and locked termios may be retained.)
1909 if (!try_module_get(driver->owner)) {
1910 retval = -ENODEV;
1911 goto end_init;
1914 o_tty = NULL;
1915 tp = o_tp = NULL;
1916 ltp = o_ltp = NULL;
1918 tty = alloc_tty_struct();
1919 if(!tty)
1920 goto fail_no_mem;
1921 initialize_tty_struct(tty);
1922 tty->driver = driver;
1923 tty->index = idx;
1924 tty_line_name(driver, idx, tty->name);
1926 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1927 tp_loc = &tty->termios;
1928 ltp_loc = &tty->termios_locked;
1929 } else {
1930 tp_loc = &driver->termios[idx];
1931 ltp_loc = &driver->termios_locked[idx];
1934 if (!*tp_loc) {
1935 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1936 GFP_KERNEL);
1937 if (!tp)
1938 goto free_mem_out;
1939 *tp = driver->init_termios;
1942 if (!*ltp_loc) {
1943 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1944 GFP_KERNEL);
1945 if (!ltp)
1946 goto free_mem_out;
1947 memset(ltp, 0, sizeof(struct ktermios));
1950 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1951 o_tty = alloc_tty_struct();
1952 if (!o_tty)
1953 goto free_mem_out;
1954 initialize_tty_struct(o_tty);
1955 o_tty->driver = driver->other;
1956 o_tty->index = idx;
1957 tty_line_name(driver->other, idx, o_tty->name);
1959 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1960 o_tp_loc = &o_tty->termios;
1961 o_ltp_loc = &o_tty->termios_locked;
1962 } else {
1963 o_tp_loc = &driver->other->termios[idx];
1964 o_ltp_loc = &driver->other->termios_locked[idx];
1967 if (!*o_tp_loc) {
1968 o_tp = (struct ktermios *)
1969 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1970 if (!o_tp)
1971 goto free_mem_out;
1972 *o_tp = driver->other->init_termios;
1975 if (!*o_ltp_loc) {
1976 o_ltp = (struct ktermios *)
1977 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1978 if (!o_ltp)
1979 goto free_mem_out;
1980 memset(o_ltp, 0, sizeof(struct ktermios));
1984 * Everything allocated ... set up the o_tty structure.
1986 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
1987 driver->other->ttys[idx] = o_tty;
1989 if (!*o_tp_loc)
1990 *o_tp_loc = o_tp;
1991 if (!*o_ltp_loc)
1992 *o_ltp_loc = o_ltp;
1993 o_tty->termios = *o_tp_loc;
1994 o_tty->termios_locked = *o_ltp_loc;
1995 driver->other->refcount++;
1996 if (driver->subtype == PTY_TYPE_MASTER)
1997 o_tty->count++;
1999 /* Establish the links in both directions */
2000 tty->link = o_tty;
2001 o_tty->link = tty;
2005 * All structures have been allocated, so now we install them.
2006 * Failures after this point use release_mem to clean up, so
2007 * there's no need to null out the local pointers.
2009 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2010 driver->ttys[idx] = tty;
2013 if (!*tp_loc)
2014 *tp_loc = tp;
2015 if (!*ltp_loc)
2016 *ltp_loc = ltp;
2017 tty->termios = *tp_loc;
2018 tty->termios_locked = *ltp_loc;
2019 /* Compatibility until drivers always set this */
2020 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2021 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2022 driver->refcount++;
2023 tty->count++;
2026 * Structures all installed ... call the ldisc open routines.
2027 * If we fail here just call release_mem to clean up. No need
2028 * to decrement the use counts, as release_mem doesn't care.
2031 if (tty->ldisc.open) {
2032 retval = (tty->ldisc.open)(tty);
2033 if (retval)
2034 goto release_mem_out;
2036 if (o_tty && o_tty->ldisc.open) {
2037 retval = (o_tty->ldisc.open)(o_tty);
2038 if (retval) {
2039 if (tty->ldisc.close)
2040 (tty->ldisc.close)(tty);
2041 goto release_mem_out;
2043 tty_ldisc_enable(o_tty);
2045 tty_ldisc_enable(tty);
2046 goto success;
2049 * This fast open can be used if the tty is already open.
2050 * No memory is allocated, and the only failures are from
2051 * attempting to open a closing tty or attempting multiple
2052 * opens on a pty master.
2054 fast_track:
2055 if (test_bit(TTY_CLOSING, &tty->flags)) {
2056 retval = -EIO;
2057 goto end_init;
2059 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2060 driver->subtype == PTY_TYPE_MASTER) {
2062 * special case for PTY masters: only one open permitted,
2063 * and the slave side open count is incremented as well.
2065 if (tty->count) {
2066 retval = -EIO;
2067 goto end_init;
2069 tty->link->count++;
2071 tty->count++;
2072 tty->driver = driver; /* N.B. why do this every time?? */
2074 /* FIXME */
2075 if(!test_bit(TTY_LDISC, &tty->flags))
2076 printk(KERN_ERR "init_dev but no ldisc\n");
2077 success:
2078 *ret_tty = tty;
2080 /* All paths come through here to release the mutex */
2081 end_init:
2082 return retval;
2084 /* Release locally allocated memory ... nothing placed in slots */
2085 free_mem_out:
2086 kfree(o_tp);
2087 if (o_tty)
2088 free_tty_struct(o_tty);
2089 kfree(ltp);
2090 kfree(tp);
2091 free_tty_struct(tty);
2093 fail_no_mem:
2094 module_put(driver->owner);
2095 retval = -ENOMEM;
2096 goto end_init;
2098 /* call the tty release_mem routine to clean out this slot */
2099 release_mem_out:
2100 if (printk_ratelimit())
2101 printk(KERN_INFO "init_dev: ldisc open failed, "
2102 "clearing slot %d\n", idx);
2103 release_mem(tty, idx);
2104 goto end_init;
2108 * release_mem - release tty structure memory
2110 * Releases memory associated with a tty structure, and clears out the
2111 * driver table slots. This function is called when a device is no longer
2112 * in use. It also gets called when setup of a device fails.
2114 * Locking:
2115 * tty_mutex - sometimes only
2116 * takes the file list lock internally when working on the list
2117 * of ttys that the driver keeps.
2118 * FIXME: should we require tty_mutex is held here ??
2121 static void release_mem(struct tty_struct *tty, int idx)
2123 struct tty_struct *o_tty;
2124 struct ktermios *tp;
2125 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2127 if ((o_tty = tty->link) != NULL) {
2128 if (!devpts)
2129 o_tty->driver->ttys[idx] = NULL;
2130 if (o_tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2131 tp = o_tty->termios;
2132 if (!devpts)
2133 o_tty->driver->termios[idx] = NULL;
2134 kfree(tp);
2136 tp = o_tty->termios_locked;
2137 if (!devpts)
2138 o_tty->driver->termios_locked[idx] = NULL;
2139 kfree(tp);
2141 o_tty->magic = 0;
2142 o_tty->driver->refcount--;
2143 file_list_lock();
2144 list_del_init(&o_tty->tty_files);
2145 file_list_unlock();
2146 free_tty_struct(o_tty);
2149 if (!devpts)
2150 tty->driver->ttys[idx] = NULL;
2151 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2152 tp = tty->termios;
2153 if (!devpts)
2154 tty->driver->termios[idx] = NULL;
2155 kfree(tp);
2157 tp = tty->termios_locked;
2158 if (!devpts)
2159 tty->driver->termios_locked[idx] = NULL;
2160 kfree(tp);
2163 tty->magic = 0;
2164 tty->driver->refcount--;
2165 file_list_lock();
2166 list_del_init(&tty->tty_files);
2167 file_list_unlock();
2168 module_put(tty->driver->owner);
2169 free_tty_struct(tty);
2173 * Even releasing the tty structures is a tricky business.. We have
2174 * to be very careful that the structures are all released at the
2175 * same time, as interrupts might otherwise get the wrong pointers.
2177 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2178 * lead to double frees or releasing memory still in use.
2180 static void release_dev(struct file * filp)
2182 struct tty_struct *tty, *o_tty;
2183 int pty_master, tty_closing, o_tty_closing, do_sleep;
2184 int devpts;
2185 int idx;
2186 char buf[64];
2187 unsigned long flags;
2189 tty = (struct tty_struct *)filp->private_data;
2190 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2191 return;
2193 check_tty_count(tty, "release_dev");
2195 tty_fasync(-1, filp, 0);
2197 idx = tty->index;
2198 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2199 tty->driver->subtype == PTY_TYPE_MASTER);
2200 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2201 o_tty = tty->link;
2203 #ifdef TTY_PARANOIA_CHECK
2204 if (idx < 0 || idx >= tty->driver->num) {
2205 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2206 "free (%s)\n", tty->name);
2207 return;
2209 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2210 if (tty != tty->driver->ttys[idx]) {
2211 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2212 "for (%s)\n", idx, tty->name);
2213 return;
2215 if (tty->termios != tty->driver->termios[idx]) {
2216 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2217 "for (%s)\n",
2218 idx, tty->name);
2219 return;
2221 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2222 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2223 "termios_locked for (%s)\n",
2224 idx, tty->name);
2225 return;
2228 #endif
2230 #ifdef TTY_DEBUG_HANGUP
2231 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2232 tty_name(tty, buf), tty->count);
2233 #endif
2235 #ifdef TTY_PARANOIA_CHECK
2236 if (tty->driver->other &&
2237 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2238 if (o_tty != tty->driver->other->ttys[idx]) {
2239 printk(KERN_DEBUG "release_dev: other->table[%d] "
2240 "not o_tty for (%s)\n",
2241 idx, tty->name);
2242 return;
2244 if (o_tty->termios != tty->driver->other->termios[idx]) {
2245 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2246 "not o_termios for (%s)\n",
2247 idx, tty->name);
2248 return;
2250 if (o_tty->termios_locked !=
2251 tty->driver->other->termios_locked[idx]) {
2252 printk(KERN_DEBUG "release_dev: other->termios_locked["
2253 "%d] not o_termios_locked for (%s)\n",
2254 idx, tty->name);
2255 return;
2257 if (o_tty->link != tty) {
2258 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2259 return;
2262 #endif
2263 if (tty->driver->close)
2264 tty->driver->close(tty, filp);
2267 * Sanity check: if tty->count is going to zero, there shouldn't be
2268 * any waiters on tty->read_wait or tty->write_wait. We test the
2269 * wait queues and kick everyone out _before_ actually starting to
2270 * close. This ensures that we won't block while releasing the tty
2271 * structure.
2273 * The test for the o_tty closing is necessary, since the master and
2274 * slave sides may close in any order. If the slave side closes out
2275 * first, its count will be one, since the master side holds an open.
2276 * Thus this test wouldn't be triggered at the time the slave closes,
2277 * so we do it now.
2279 * Note that it's possible for the tty to be opened again while we're
2280 * flushing out waiters. By recalculating the closing flags before
2281 * each iteration we avoid any problems.
2283 while (1) {
2284 /* Guard against races with tty->count changes elsewhere and
2285 opens on /dev/tty */
2287 mutex_lock(&tty_mutex);
2288 tty_closing = tty->count <= 1;
2289 o_tty_closing = o_tty &&
2290 (o_tty->count <= (pty_master ? 1 : 0));
2291 do_sleep = 0;
2293 if (tty_closing) {
2294 if (waitqueue_active(&tty->read_wait)) {
2295 wake_up(&tty->read_wait);
2296 do_sleep++;
2298 if (waitqueue_active(&tty->write_wait)) {
2299 wake_up(&tty->write_wait);
2300 do_sleep++;
2303 if (o_tty_closing) {
2304 if (waitqueue_active(&o_tty->read_wait)) {
2305 wake_up(&o_tty->read_wait);
2306 do_sleep++;
2308 if (waitqueue_active(&o_tty->write_wait)) {
2309 wake_up(&o_tty->write_wait);
2310 do_sleep++;
2313 if (!do_sleep)
2314 break;
2316 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2317 "active!\n", tty_name(tty, buf));
2318 mutex_unlock(&tty_mutex);
2319 schedule();
2323 * The closing flags are now consistent with the open counts on
2324 * both sides, and we've completed the last operation that could
2325 * block, so it's safe to proceed with closing.
2327 if (pty_master) {
2328 if (--o_tty->count < 0) {
2329 printk(KERN_WARNING "release_dev: bad pty slave count "
2330 "(%d) for %s\n",
2331 o_tty->count, tty_name(o_tty, buf));
2332 o_tty->count = 0;
2335 if (--tty->count < 0) {
2336 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2337 tty->count, tty_name(tty, buf));
2338 tty->count = 0;
2342 * We've decremented tty->count, so we need to remove this file
2343 * descriptor off the tty->tty_files list; this serves two
2344 * purposes:
2345 * - check_tty_count sees the correct number of file descriptors
2346 * associated with this tty.
2347 * - do_tty_hangup no longer sees this file descriptor as
2348 * something that needs to be handled for hangups.
2350 file_kill(filp);
2351 filp->private_data = NULL;
2354 * Perform some housekeeping before deciding whether to return.
2356 * Set the TTY_CLOSING flag if this was the last open. In the
2357 * case of a pty we may have to wait around for the other side
2358 * to close, and TTY_CLOSING makes sure we can't be reopened.
2360 if(tty_closing)
2361 set_bit(TTY_CLOSING, &tty->flags);
2362 if(o_tty_closing)
2363 set_bit(TTY_CLOSING, &o_tty->flags);
2366 * If _either_ side is closing, make sure there aren't any
2367 * processes that still think tty or o_tty is their controlling
2368 * tty.
2370 if (tty_closing || o_tty_closing) {
2371 read_lock(&tasklist_lock);
2372 session_clear_tty(tty->session);
2373 if (o_tty)
2374 session_clear_tty(o_tty->session);
2375 read_unlock(&tasklist_lock);
2378 mutex_unlock(&tty_mutex);
2380 /* check whether both sides are closing ... */
2381 if (!tty_closing || (o_tty && !o_tty_closing))
2382 return;
2384 #ifdef TTY_DEBUG_HANGUP
2385 printk(KERN_DEBUG "freeing tty structure...");
2386 #endif
2388 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2389 * kill any delayed work. As this is the final close it does not
2390 * race with the set_ldisc code path.
2392 clear_bit(TTY_LDISC, &tty->flags);
2393 cancel_delayed_work(&tty->buf.work);
2396 * Wait for ->hangup_work and ->buf.work handlers to terminate
2399 flush_scheduled_work();
2402 * Wait for any short term users (we know they are just driver
2403 * side waiters as the file is closing so user count on the file
2404 * side is zero.
2406 spin_lock_irqsave(&tty_ldisc_lock, flags);
2407 while(tty->ldisc.refcount)
2409 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2410 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2411 spin_lock_irqsave(&tty_ldisc_lock, flags);
2413 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2415 * Shutdown the current line discipline, and reset it to N_TTY.
2416 * N.B. why reset ldisc when we're releasing the memory??
2418 * FIXME: this MUST get fixed for the new reflocking
2420 if (tty->ldisc.close)
2421 (tty->ldisc.close)(tty);
2422 tty_ldisc_put(tty->ldisc.num);
2425 * Switch the line discipline back
2427 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2428 tty_set_termios_ldisc(tty,N_TTY);
2429 if (o_tty) {
2430 /* FIXME: could o_tty be in setldisc here ? */
2431 clear_bit(TTY_LDISC, &o_tty->flags);
2432 if (o_tty->ldisc.close)
2433 (o_tty->ldisc.close)(o_tty);
2434 tty_ldisc_put(o_tty->ldisc.num);
2435 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2436 tty_set_termios_ldisc(o_tty,N_TTY);
2439 * The release_mem function takes care of the details of clearing
2440 * the slots and preserving the termios structure.
2442 release_mem(tty, idx);
2444 #ifdef CONFIG_UNIX98_PTYS
2445 /* Make this pty number available for reallocation */
2446 if (devpts) {
2447 down(&allocated_ptys_lock);
2448 idr_remove(&allocated_ptys, idx);
2449 up(&allocated_ptys_lock);
2451 #endif
2456 * tty_open - open a tty device
2457 * @inode: inode of device file
2458 * @filp: file pointer to tty
2460 * tty_open and tty_release keep up the tty count that contains the
2461 * number of opens done on a tty. We cannot use the inode-count, as
2462 * different inodes might point to the same tty.
2464 * Open-counting is needed for pty masters, as well as for keeping
2465 * track of serial lines: DTR is dropped when the last close happens.
2466 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2468 * The termios state of a pty is reset on first open so that
2469 * settings don't persist across reuse.
2471 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2472 * tty->count should protect the rest.
2473 * ->siglock protects ->signal/->sighand
2476 static int tty_open(struct inode * inode, struct file * filp)
2478 struct tty_struct *tty;
2479 int noctty, retval;
2480 struct tty_driver *driver;
2481 int index;
2482 dev_t device = inode->i_rdev;
2483 unsigned short saved_flags = filp->f_flags;
2485 nonseekable_open(inode, filp);
2487 retry_open:
2488 noctty = filp->f_flags & O_NOCTTY;
2489 index = -1;
2490 retval = 0;
2492 mutex_lock(&tty_mutex);
2494 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2495 tty = get_current_tty();
2496 if (!tty) {
2497 mutex_unlock(&tty_mutex);
2498 return -ENXIO;
2500 driver = tty->driver;
2501 index = tty->index;
2502 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2503 /* noctty = 1; */
2504 goto got_driver;
2506 #ifdef CONFIG_VT
2507 if (device == MKDEV(TTY_MAJOR,0)) {
2508 extern struct tty_driver *console_driver;
2509 driver = console_driver;
2510 index = fg_console;
2511 noctty = 1;
2512 goto got_driver;
2514 #endif
2515 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2516 driver = console_device(&index);
2517 if (driver) {
2518 /* Don't let /dev/console block */
2519 filp->f_flags |= O_NONBLOCK;
2520 noctty = 1;
2521 goto got_driver;
2523 mutex_unlock(&tty_mutex);
2524 return -ENODEV;
2527 driver = get_tty_driver(device, &index);
2528 if (!driver) {
2529 mutex_unlock(&tty_mutex);
2530 return -ENODEV;
2532 got_driver:
2533 retval = init_dev(driver, index, &tty);
2534 mutex_unlock(&tty_mutex);
2535 if (retval)
2536 return retval;
2538 filp->private_data = tty;
2539 file_move(filp, &tty->tty_files);
2540 check_tty_count(tty, "tty_open");
2541 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2542 tty->driver->subtype == PTY_TYPE_MASTER)
2543 noctty = 1;
2544 #ifdef TTY_DEBUG_HANGUP
2545 printk(KERN_DEBUG "opening %s...", tty->name);
2546 #endif
2547 if (!retval) {
2548 if (tty->driver->open)
2549 retval = tty->driver->open(tty, filp);
2550 else
2551 retval = -ENODEV;
2553 filp->f_flags = saved_flags;
2555 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2556 retval = -EBUSY;
2558 if (retval) {
2559 #ifdef TTY_DEBUG_HANGUP
2560 printk(KERN_DEBUG "error %d in opening %s...", retval,
2561 tty->name);
2562 #endif
2563 release_dev(filp);
2564 if (retval != -ERESTARTSYS)
2565 return retval;
2566 if (signal_pending(current))
2567 return retval;
2568 schedule();
2570 * Need to reset f_op in case a hangup happened.
2572 if (filp->f_op == &hung_up_tty_fops)
2573 filp->f_op = &tty_fops;
2574 goto retry_open;
2577 mutex_lock(&tty_mutex);
2578 spin_lock_irq(&current->sighand->siglock);
2579 if (!noctty &&
2580 current->signal->leader &&
2581 !current->signal->tty &&
2582 tty->session == 0)
2583 __proc_set_tty(current, tty);
2584 spin_unlock_irq(&current->sighand->siglock);
2585 mutex_unlock(&tty_mutex);
2586 return 0;
2589 #ifdef CONFIG_UNIX98_PTYS
2591 * ptmx_open - open a unix 98 pty master
2592 * @inode: inode of device file
2593 * @filp: file pointer to tty
2595 * Allocate a unix98 pty master device from the ptmx driver.
2597 * Locking: tty_mutex protects theinit_dev work. tty->count should
2598 protect the rest.
2599 * allocated_ptys_lock handles the list of free pty numbers
2602 static int ptmx_open(struct inode * inode, struct file * filp)
2604 struct tty_struct *tty;
2605 int retval;
2606 int index;
2607 int idr_ret;
2609 nonseekable_open(inode, filp);
2611 /* find a device that is not in use. */
2612 down(&allocated_ptys_lock);
2613 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2614 up(&allocated_ptys_lock);
2615 return -ENOMEM;
2617 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2618 if (idr_ret < 0) {
2619 up(&allocated_ptys_lock);
2620 if (idr_ret == -EAGAIN)
2621 return -ENOMEM;
2622 return -EIO;
2624 if (index >= pty_limit) {
2625 idr_remove(&allocated_ptys, index);
2626 up(&allocated_ptys_lock);
2627 return -EIO;
2629 up(&allocated_ptys_lock);
2631 mutex_lock(&tty_mutex);
2632 retval = init_dev(ptm_driver, index, &tty);
2633 mutex_unlock(&tty_mutex);
2635 if (retval)
2636 goto out;
2638 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2639 filp->private_data = tty;
2640 file_move(filp, &tty->tty_files);
2642 retval = -ENOMEM;
2643 if (devpts_pty_new(tty->link))
2644 goto out1;
2646 check_tty_count(tty, "tty_open");
2647 retval = ptm_driver->open(tty, filp);
2648 if (!retval)
2649 return 0;
2650 out1:
2651 release_dev(filp);
2652 return retval;
2653 out:
2654 down(&allocated_ptys_lock);
2655 idr_remove(&allocated_ptys, index);
2656 up(&allocated_ptys_lock);
2657 return retval;
2659 #endif
2662 * tty_release - vfs callback for close
2663 * @inode: inode of tty
2664 * @filp: file pointer for handle to tty
2666 * Called the last time each file handle is closed that references
2667 * this tty. There may however be several such references.
2669 * Locking:
2670 * Takes bkl. See release_dev
2673 static int tty_release(struct inode * inode, struct file * filp)
2675 lock_kernel();
2676 release_dev(filp);
2677 unlock_kernel();
2678 return 0;
2682 * tty_poll - check tty status
2683 * @filp: file being polled
2684 * @wait: poll wait structures to update
2686 * Call the line discipline polling method to obtain the poll
2687 * status of the device.
2689 * Locking: locks called line discipline but ldisc poll method
2690 * may be re-entered freely by other callers.
2693 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2695 struct tty_struct * tty;
2696 struct tty_ldisc *ld;
2697 int ret = 0;
2699 tty = (struct tty_struct *)filp->private_data;
2700 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2701 return 0;
2703 ld = tty_ldisc_ref_wait(tty);
2704 if (ld->poll)
2705 ret = (ld->poll)(tty, filp, wait);
2706 tty_ldisc_deref(ld);
2707 return ret;
2710 static int tty_fasync(int fd, struct file * filp, int on)
2712 struct tty_struct * tty;
2713 int retval;
2715 tty = (struct tty_struct *)filp->private_data;
2716 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2717 return 0;
2719 retval = fasync_helper(fd, filp, on, &tty->fasync);
2720 if (retval <= 0)
2721 return retval;
2723 if (on) {
2724 if (!waitqueue_active(&tty->read_wait))
2725 tty->minimum_to_wake = 1;
2726 retval = f_setown(filp, (-tty->pgrp) ? : current->pid, 0);
2727 if (retval)
2728 return retval;
2729 } else {
2730 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2731 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2733 return 0;
2737 * tiocsti - fake input character
2738 * @tty: tty to fake input into
2739 * @p: pointer to character
2741 * Fake input to a tty device. Does the neccessary locking and
2742 * input management.
2744 * FIXME: does not honour flow control ??
2746 * Locking:
2747 * Called functions take tty_ldisc_lock
2748 * current->signal->tty check is safe without locks
2750 * FIXME: may race normal receive processing
2753 static int tiocsti(struct tty_struct *tty, char __user *p)
2755 char ch, mbz = 0;
2756 struct tty_ldisc *ld;
2758 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2759 return -EPERM;
2760 if (get_user(ch, p))
2761 return -EFAULT;
2762 ld = tty_ldisc_ref_wait(tty);
2763 ld->receive_buf(tty, &ch, &mbz, 1);
2764 tty_ldisc_deref(ld);
2765 return 0;
2769 * tiocgwinsz - implement window query ioctl
2770 * @tty; tty
2771 * @arg: user buffer for result
2773 * Copies the kernel idea of the window size into the user buffer.
2775 * Locking: tty->termios_mutex is taken to ensure the winsize data
2776 * is consistent.
2779 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2781 int err;
2783 mutex_lock(&tty->termios_mutex);
2784 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2785 mutex_unlock(&tty->termios_mutex);
2787 return err ? -EFAULT: 0;
2791 * tiocswinsz - implement window size set ioctl
2792 * @tty; tty
2793 * @arg: user buffer for result
2795 * Copies the user idea of the window size to the kernel. Traditionally
2796 * this is just advisory information but for the Linux console it
2797 * actually has driver level meaning and triggers a VC resize.
2799 * Locking:
2800 * Called function use the console_sem is used to ensure we do
2801 * not try and resize the console twice at once.
2802 * The tty->termios_mutex is used to ensure we don't double
2803 * resize and get confused. Lock order - tty->termios_mutex before
2804 * console sem
2807 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2808 struct winsize __user * arg)
2810 struct winsize tmp_ws;
2812 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2813 return -EFAULT;
2815 mutex_lock(&tty->termios_mutex);
2816 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2817 goto done;
2819 #ifdef CONFIG_VT
2820 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2821 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2822 tmp_ws.ws_row)) {
2823 mutex_unlock(&tty->termios_mutex);
2824 return -ENXIO;
2827 #endif
2828 if (tty->pgrp > 0)
2829 kill_pg(tty->pgrp, SIGWINCH, 1);
2830 if ((real_tty->pgrp != tty->pgrp) && (real_tty->pgrp > 0))
2831 kill_pg(real_tty->pgrp, SIGWINCH, 1);
2832 tty->winsize = tmp_ws;
2833 real_tty->winsize = tmp_ws;
2834 done:
2835 mutex_unlock(&tty->termios_mutex);
2836 return 0;
2840 * tioccons - allow admin to move logical console
2841 * @file: the file to become console
2843 * Allow the adminstrator to move the redirected console device
2845 * Locking: uses redirect_lock to guard the redirect information
2848 static int tioccons(struct file *file)
2850 if (!capable(CAP_SYS_ADMIN))
2851 return -EPERM;
2852 if (file->f_op->write == redirected_tty_write) {
2853 struct file *f;
2854 spin_lock(&redirect_lock);
2855 f = redirect;
2856 redirect = NULL;
2857 spin_unlock(&redirect_lock);
2858 if (f)
2859 fput(f);
2860 return 0;
2862 spin_lock(&redirect_lock);
2863 if (redirect) {
2864 spin_unlock(&redirect_lock);
2865 return -EBUSY;
2867 get_file(file);
2868 redirect = file;
2869 spin_unlock(&redirect_lock);
2870 return 0;
2874 * fionbio - non blocking ioctl
2875 * @file: file to set blocking value
2876 * @p: user parameter
2878 * Historical tty interfaces had a blocking control ioctl before
2879 * the generic functionality existed. This piece of history is preserved
2880 * in the expected tty API of posix OS's.
2882 * Locking: none, the open fle handle ensures it won't go away.
2885 static int fionbio(struct file *file, int __user *p)
2887 int nonblock;
2889 if (get_user(nonblock, p))
2890 return -EFAULT;
2892 if (nonblock)
2893 file->f_flags |= O_NONBLOCK;
2894 else
2895 file->f_flags &= ~O_NONBLOCK;
2896 return 0;
2900 * tiocsctty - set controlling tty
2901 * @tty: tty structure
2902 * @arg: user argument
2904 * This ioctl is used to manage job control. It permits a session
2905 * leader to set this tty as the controlling tty for the session.
2907 * Locking:
2908 * Takes tty_mutex() to protect tty instance
2909 * Takes tasklist_lock internally to walk sessions
2910 * Takes ->siglock() when updating signal->tty
2913 static int tiocsctty(struct tty_struct *tty, int arg)
2915 int ret = 0;
2916 if (current->signal->leader &&
2917 (process_session(current) == tty->session))
2918 return ret;
2920 mutex_lock(&tty_mutex);
2922 * The process must be a session leader and
2923 * not have a controlling tty already.
2925 if (!current->signal->leader || current->signal->tty) {
2926 ret = -EPERM;
2927 goto unlock;
2930 if (tty->session > 0) {
2932 * This tty is already the controlling
2933 * tty for another session group!
2935 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2937 * Steal it away
2939 read_lock(&tasklist_lock);
2940 session_clear_tty(tty->session);
2941 read_unlock(&tasklist_lock);
2942 } else {
2943 ret = -EPERM;
2944 goto unlock;
2947 proc_set_tty(current, tty);
2948 unlock:
2949 mutex_unlock(&tty_mutex);
2950 return ret;
2954 * tiocgpgrp - get process group
2955 * @tty: tty passed by user
2956 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2957 * @p: returned pid
2959 * Obtain the process group of the tty. If there is no process group
2960 * return an error.
2962 * Locking: none. Reference to current->signal->tty is safe.
2965 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2968 * (tty == real_tty) is a cheap way of
2969 * testing if the tty is NOT a master pty.
2971 if (tty == real_tty && current->signal->tty != real_tty)
2972 return -ENOTTY;
2973 return put_user(real_tty->pgrp, p);
2977 * tiocspgrp - attempt to set process group
2978 * @tty: tty passed by user
2979 * @real_tty: tty side device matching tty passed by user
2980 * @p: pid pointer
2982 * Set the process group of the tty to the session passed. Only
2983 * permitted where the tty session is our session.
2985 * Locking: None
2988 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2990 pid_t pgrp;
2991 int retval = tty_check_change(real_tty);
2993 if (retval == -EIO)
2994 return -ENOTTY;
2995 if (retval)
2996 return retval;
2997 if (!current->signal->tty ||
2998 (current->signal->tty != real_tty) ||
2999 (real_tty->session != process_session(current)))
3000 return -ENOTTY;
3001 if (get_user(pgrp, p))
3002 return -EFAULT;
3003 if (pgrp < 0)
3004 return -EINVAL;
3005 if (session_of_pgrp(pgrp) != process_session(current))
3006 return -EPERM;
3007 real_tty->pgrp = pgrp;
3008 return 0;
3012 * tiocgsid - get session id
3013 * @tty: tty passed by user
3014 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3015 * @p: pointer to returned session id
3017 * Obtain the session id of the tty. If there is no session
3018 * return an error.
3020 * Locking: none. Reference to current->signal->tty is safe.
3023 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3026 * (tty == real_tty) is a cheap way of
3027 * testing if the tty is NOT a master pty.
3029 if (tty == real_tty && current->signal->tty != real_tty)
3030 return -ENOTTY;
3031 if (real_tty->session <= 0)
3032 return -ENOTTY;
3033 return put_user(real_tty->session, p);
3037 * tiocsetd - set line discipline
3038 * @tty: tty device
3039 * @p: pointer to user data
3041 * Set the line discipline according to user request.
3043 * Locking: see tty_set_ldisc, this function is just a helper
3046 static int tiocsetd(struct tty_struct *tty, int __user *p)
3048 int ldisc;
3050 if (get_user(ldisc, p))
3051 return -EFAULT;
3052 return tty_set_ldisc(tty, ldisc);
3056 * send_break - performed time break
3057 * @tty: device to break on
3058 * @duration: timeout in mS
3060 * Perform a timed break on hardware that lacks its own driver level
3061 * timed break functionality.
3063 * Locking:
3064 * atomic_write_lock serializes
3068 static int send_break(struct tty_struct *tty, unsigned int duration)
3070 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3071 return -EINTR;
3072 tty->driver->break_ctl(tty, -1);
3073 if (!signal_pending(current)) {
3074 msleep_interruptible(duration);
3076 tty->driver->break_ctl(tty, 0);
3077 mutex_unlock(&tty->atomic_write_lock);
3078 if (signal_pending(current))
3079 return -EINTR;
3080 return 0;
3084 * tiocmget - get modem status
3085 * @tty: tty device
3086 * @file: user file pointer
3087 * @p: pointer to result
3089 * Obtain the modem status bits from the tty driver if the feature
3090 * is supported. Return -EINVAL if it is not available.
3092 * Locking: none (up to the driver)
3095 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3097 int retval = -EINVAL;
3099 if (tty->driver->tiocmget) {
3100 retval = tty->driver->tiocmget(tty, file);
3102 if (retval >= 0)
3103 retval = put_user(retval, p);
3105 return retval;
3109 * tiocmset - set modem status
3110 * @tty: tty device
3111 * @file: user file pointer
3112 * @cmd: command - clear bits, set bits or set all
3113 * @p: pointer to desired bits
3115 * Set the modem status bits from the tty driver if the feature
3116 * is supported. Return -EINVAL if it is not available.
3118 * Locking: none (up to the driver)
3121 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3122 unsigned __user *p)
3124 int retval = -EINVAL;
3126 if (tty->driver->tiocmset) {
3127 unsigned int set, clear, val;
3129 retval = get_user(val, p);
3130 if (retval)
3131 return retval;
3133 set = clear = 0;
3134 switch (cmd) {
3135 case TIOCMBIS:
3136 set = val;
3137 break;
3138 case TIOCMBIC:
3139 clear = val;
3140 break;
3141 case TIOCMSET:
3142 set = val;
3143 clear = ~val;
3144 break;
3147 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3148 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3150 retval = tty->driver->tiocmset(tty, file, set, clear);
3152 return retval;
3156 * Split this up, as gcc can choke on it otherwise..
3158 int tty_ioctl(struct inode * inode, struct file * file,
3159 unsigned int cmd, unsigned long arg)
3161 struct tty_struct *tty, *real_tty;
3162 void __user *p = (void __user *)arg;
3163 int retval;
3164 struct tty_ldisc *ld;
3166 tty = (struct tty_struct *)file->private_data;
3167 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3168 return -EINVAL;
3170 /* CHECKME: is this safe as one end closes ? */
3172 real_tty = tty;
3173 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3174 tty->driver->subtype == PTY_TYPE_MASTER)
3175 real_tty = tty->link;
3178 * Break handling by driver
3180 if (!tty->driver->break_ctl) {
3181 switch(cmd) {
3182 case TIOCSBRK:
3183 case TIOCCBRK:
3184 if (tty->driver->ioctl)
3185 return tty->driver->ioctl(tty, file, cmd, arg);
3186 return -EINVAL;
3188 /* These two ioctl's always return success; even if */
3189 /* the driver doesn't support them. */
3190 case TCSBRK:
3191 case TCSBRKP:
3192 if (!tty->driver->ioctl)
3193 return 0;
3194 retval = tty->driver->ioctl(tty, file, cmd, arg);
3195 if (retval == -ENOIOCTLCMD)
3196 retval = 0;
3197 return retval;
3202 * Factor out some common prep work
3204 switch (cmd) {
3205 case TIOCSETD:
3206 case TIOCSBRK:
3207 case TIOCCBRK:
3208 case TCSBRK:
3209 case TCSBRKP:
3210 retval = tty_check_change(tty);
3211 if (retval)
3212 return retval;
3213 if (cmd != TIOCCBRK) {
3214 tty_wait_until_sent(tty, 0);
3215 if (signal_pending(current))
3216 return -EINTR;
3218 break;
3221 switch (cmd) {
3222 case TIOCSTI:
3223 return tiocsti(tty, p);
3224 case TIOCGWINSZ:
3225 return tiocgwinsz(tty, p);
3226 case TIOCSWINSZ:
3227 return tiocswinsz(tty, real_tty, p);
3228 case TIOCCONS:
3229 return real_tty!=tty ? -EINVAL : tioccons(file);
3230 case FIONBIO:
3231 return fionbio(file, p);
3232 case TIOCEXCL:
3233 set_bit(TTY_EXCLUSIVE, &tty->flags);
3234 return 0;
3235 case TIOCNXCL:
3236 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3237 return 0;
3238 case TIOCNOTTY:
3239 if (current->signal->tty != tty)
3240 return -ENOTTY;
3241 if (current->signal->leader)
3242 disassociate_ctty(0);
3243 proc_clear_tty(current);
3244 return 0;
3245 case TIOCSCTTY:
3246 return tiocsctty(tty, arg);
3247 case TIOCGPGRP:
3248 return tiocgpgrp(tty, real_tty, p);
3249 case TIOCSPGRP:
3250 return tiocspgrp(tty, real_tty, p);
3251 case TIOCGSID:
3252 return tiocgsid(tty, real_tty, p);
3253 case TIOCGETD:
3254 /* FIXME: check this is ok */
3255 return put_user(tty->ldisc.num, (int __user *)p);
3256 case TIOCSETD:
3257 return tiocsetd(tty, p);
3258 #ifdef CONFIG_VT
3259 case TIOCLINUX:
3260 return tioclinux(tty, arg);
3261 #endif
3263 * Break handling
3265 case TIOCSBRK: /* Turn break on, unconditionally */
3266 tty->driver->break_ctl(tty, -1);
3267 return 0;
3269 case TIOCCBRK: /* Turn break off, unconditionally */
3270 tty->driver->break_ctl(tty, 0);
3271 return 0;
3272 case TCSBRK: /* SVID version: non-zero arg --> no break */
3273 /* non-zero arg means wait for all output data
3274 * to be sent (performed above) but don't send break.
3275 * This is used by the tcdrain() termios function.
3277 if (!arg)
3278 return send_break(tty, 250);
3279 return 0;
3280 case TCSBRKP: /* support for POSIX tcsendbreak() */
3281 return send_break(tty, arg ? arg*100 : 250);
3283 case TIOCMGET:
3284 return tty_tiocmget(tty, file, p);
3286 case TIOCMSET:
3287 case TIOCMBIC:
3288 case TIOCMBIS:
3289 return tty_tiocmset(tty, file, cmd, p);
3291 if (tty->driver->ioctl) {
3292 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3293 if (retval != -ENOIOCTLCMD)
3294 return retval;
3296 ld = tty_ldisc_ref_wait(tty);
3297 retval = -EINVAL;
3298 if (ld->ioctl) {
3299 retval = ld->ioctl(tty, file, cmd, arg);
3300 if (retval == -ENOIOCTLCMD)
3301 retval = -EINVAL;
3303 tty_ldisc_deref(ld);
3304 return retval;
3309 * This implements the "Secure Attention Key" --- the idea is to
3310 * prevent trojan horses by killing all processes associated with this
3311 * tty when the user hits the "Secure Attention Key". Required for
3312 * super-paranoid applications --- see the Orange Book for more details.
3314 * This code could be nicer; ideally it should send a HUP, wait a few
3315 * seconds, then send a INT, and then a KILL signal. But you then
3316 * have to coordinate with the init process, since all processes associated
3317 * with the current tty must be dead before the new getty is allowed
3318 * to spawn.
3320 * Now, if it would be correct ;-/ The current code has a nasty hole -
3321 * it doesn't catch files in flight. We may send the descriptor to ourselves
3322 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3324 * Nasty bug: do_SAK is being called in interrupt context. This can
3325 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3327 static void __do_SAK(struct work_struct *work)
3329 struct tty_struct *tty =
3330 container_of(work, struct tty_struct, SAK_work);
3331 #ifdef TTY_SOFT_SAK
3332 tty_hangup(tty);
3333 #else
3334 struct task_struct *g, *p;
3335 int session;
3336 int i;
3337 struct file *filp;
3338 struct tty_ldisc *disc;
3339 struct fdtable *fdt;
3341 if (!tty)
3342 return;
3343 session = tty->session;
3345 /* We don't want an ldisc switch during this */
3346 disc = tty_ldisc_ref(tty);
3347 if (disc && disc->flush_buffer)
3348 disc->flush_buffer(tty);
3349 tty_ldisc_deref(disc);
3351 if (tty->driver->flush_buffer)
3352 tty->driver->flush_buffer(tty);
3354 read_lock(&tasklist_lock);
3355 /* Kill the entire session */
3356 do_each_task_pid(session, PIDTYPE_SID, p) {
3357 printk(KERN_NOTICE "SAK: killed process %d"
3358 " (%s): process_session(p)==tty->session\n",
3359 p->pid, p->comm);
3360 send_sig(SIGKILL, p, 1);
3361 } while_each_task_pid(session, PIDTYPE_SID, p);
3362 /* Now kill any processes that happen to have the
3363 * tty open.
3365 do_each_thread(g, p) {
3366 if (p->signal->tty == tty) {
3367 printk(KERN_NOTICE "SAK: killed process %d"
3368 " (%s): process_session(p)==tty->session\n",
3369 p->pid, p->comm);
3370 send_sig(SIGKILL, p, 1);
3371 continue;
3373 task_lock(p);
3374 if (p->files) {
3376 * We don't take a ref to the file, so we must
3377 * hold ->file_lock instead.
3379 spin_lock(&p->files->file_lock);
3380 fdt = files_fdtable(p->files);
3381 for (i=0; i < fdt->max_fds; i++) {
3382 filp = fcheck_files(p->files, i);
3383 if (!filp)
3384 continue;
3385 if (filp->f_op->read == tty_read &&
3386 filp->private_data == tty) {
3387 printk(KERN_NOTICE "SAK: killed process %d"
3388 " (%s): fd#%d opened to the tty\n",
3389 p->pid, p->comm, i);
3390 force_sig(SIGKILL, p);
3391 break;
3394 spin_unlock(&p->files->file_lock);
3396 task_unlock(p);
3397 } while_each_thread(g, p);
3398 read_unlock(&tasklist_lock);
3399 #endif
3403 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3404 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3405 * the values which we write to it will be identical to the values which it
3406 * already has. --akpm
3408 void do_SAK(struct tty_struct *tty)
3410 if (!tty)
3411 return;
3412 PREPARE_WORK(&tty->SAK_work, __do_SAK);
3413 schedule_work(&tty->SAK_work);
3416 EXPORT_SYMBOL(do_SAK);
3419 * flush_to_ldisc
3420 * @work: tty structure passed from work queue.
3422 * This routine is called out of the software interrupt to flush data
3423 * from the buffer chain to the line discipline.
3425 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3426 * while invoking the line discipline receive_buf method. The
3427 * receive_buf method is single threaded for each tty instance.
3430 static void flush_to_ldisc(struct work_struct *work)
3432 struct tty_struct *tty =
3433 container_of(work, struct tty_struct, buf.work.work);
3434 unsigned long flags;
3435 struct tty_ldisc *disc;
3436 struct tty_buffer *tbuf, *head;
3437 char *char_buf;
3438 unsigned char *flag_buf;
3440 disc = tty_ldisc_ref(tty);
3441 if (disc == NULL) /* !TTY_LDISC */
3442 return;
3444 spin_lock_irqsave(&tty->buf.lock, flags);
3445 head = tty->buf.head;
3446 if (head != NULL) {
3447 tty->buf.head = NULL;
3448 for (;;) {
3449 int count = head->commit - head->read;
3450 if (!count) {
3451 if (head->next == NULL)
3452 break;
3453 tbuf = head;
3454 head = head->next;
3455 tty_buffer_free(tty, tbuf);
3456 continue;
3458 if (!tty->receive_room) {
3459 schedule_delayed_work(&tty->buf.work, 1);
3460 break;
3462 if (count > tty->receive_room)
3463 count = tty->receive_room;
3464 char_buf = head->char_buf_ptr + head->read;
3465 flag_buf = head->flag_buf_ptr + head->read;
3466 head->read += count;
3467 spin_unlock_irqrestore(&tty->buf.lock, flags);
3468 disc->receive_buf(tty, char_buf, flag_buf, count);
3469 spin_lock_irqsave(&tty->buf.lock, flags);
3471 tty->buf.head = head;
3473 spin_unlock_irqrestore(&tty->buf.lock, flags);
3475 tty_ldisc_deref(disc);
3479 * tty_flip_buffer_push - terminal
3480 * @tty: tty to push
3482 * Queue a push of the terminal flip buffers to the line discipline. This
3483 * function must not be called from IRQ context if tty->low_latency is set.
3485 * In the event of the queue being busy for flipping the work will be
3486 * held off and retried later.
3488 * Locking: tty buffer lock. Driver locks in low latency mode.
3491 void tty_flip_buffer_push(struct tty_struct *tty)
3493 unsigned long flags;
3494 spin_lock_irqsave(&tty->buf.lock, flags);
3495 if (tty->buf.tail != NULL)
3496 tty->buf.tail->commit = tty->buf.tail->used;
3497 spin_unlock_irqrestore(&tty->buf.lock, flags);
3499 if (tty->low_latency)
3500 flush_to_ldisc(&tty->buf.work.work);
3501 else
3502 schedule_delayed_work(&tty->buf.work, 1);
3505 EXPORT_SYMBOL(tty_flip_buffer_push);
3509 * initialize_tty_struct
3510 * @tty: tty to initialize
3512 * This subroutine initializes a tty structure that has been newly
3513 * allocated.
3515 * Locking: none - tty in question must not be exposed at this point
3518 static void initialize_tty_struct(struct tty_struct *tty)
3520 memset(tty, 0, sizeof(struct tty_struct));
3521 tty->magic = TTY_MAGIC;
3522 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3523 tty->pgrp = -1;
3524 tty->overrun_time = jiffies;
3525 tty->buf.head = tty->buf.tail = NULL;
3526 tty_buffer_init(tty);
3527 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3528 init_MUTEX(&tty->buf.pty_sem);
3529 mutex_init(&tty->termios_mutex);
3530 init_waitqueue_head(&tty->write_wait);
3531 init_waitqueue_head(&tty->read_wait);
3532 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3533 mutex_init(&tty->atomic_read_lock);
3534 mutex_init(&tty->atomic_write_lock);
3535 spin_lock_init(&tty->read_lock);
3536 INIT_LIST_HEAD(&tty->tty_files);
3537 INIT_WORK(&tty->SAK_work, NULL);
3541 * The default put_char routine if the driver did not define one.
3544 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3546 tty->driver->write(tty, &ch, 1);
3549 static struct class *tty_class;
3552 * tty_register_device - register a tty device
3553 * @driver: the tty driver that describes the tty device
3554 * @index: the index in the tty driver for this tty device
3555 * @device: a struct device that is associated with this tty device.
3556 * This field is optional, if there is no known struct device
3557 * for this tty device it can be set to NULL safely.
3559 * Returns a pointer to the struct device for this tty device
3560 * (or ERR_PTR(-EFOO) on error).
3562 * This call is required to be made to register an individual tty device
3563 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3564 * that bit is not set, this function should not be called by a tty
3565 * driver.
3567 * Locking: ??
3570 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3571 struct device *device)
3573 char name[64];
3574 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3576 if (index >= driver->num) {
3577 printk(KERN_ERR "Attempt to register invalid tty line number "
3578 " (%d).\n", index);
3579 return ERR_PTR(-EINVAL);
3582 if (driver->type == TTY_DRIVER_TYPE_PTY)
3583 pty_line_name(driver, index, name);
3584 else
3585 tty_line_name(driver, index, name);
3587 return device_create(tty_class, device, dev, name);
3591 * tty_unregister_device - unregister a tty device
3592 * @driver: the tty driver that describes the tty device
3593 * @index: the index in the tty driver for this tty device
3595 * If a tty device is registered with a call to tty_register_device() then
3596 * this function must be called when the tty device is gone.
3598 * Locking: ??
3601 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3603 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3606 EXPORT_SYMBOL(tty_register_device);
3607 EXPORT_SYMBOL(tty_unregister_device);
3609 struct tty_driver *alloc_tty_driver(int lines)
3611 struct tty_driver *driver;
3613 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3614 if (driver) {
3615 memset(driver, 0, sizeof(struct tty_driver));
3616 driver->magic = TTY_DRIVER_MAGIC;
3617 driver->num = lines;
3618 /* later we'll move allocation of tables here */
3620 return driver;
3623 void put_tty_driver(struct tty_driver *driver)
3625 kfree(driver);
3628 void tty_set_operations(struct tty_driver *driver,
3629 const struct tty_operations *op)
3631 driver->open = op->open;
3632 driver->close = op->close;
3633 driver->write = op->write;
3634 driver->put_char = op->put_char;
3635 driver->flush_chars = op->flush_chars;
3636 driver->write_room = op->write_room;
3637 driver->chars_in_buffer = op->chars_in_buffer;
3638 driver->ioctl = op->ioctl;
3639 driver->set_termios = op->set_termios;
3640 driver->throttle = op->throttle;
3641 driver->unthrottle = op->unthrottle;
3642 driver->stop = op->stop;
3643 driver->start = op->start;
3644 driver->hangup = op->hangup;
3645 driver->break_ctl = op->break_ctl;
3646 driver->flush_buffer = op->flush_buffer;
3647 driver->set_ldisc = op->set_ldisc;
3648 driver->wait_until_sent = op->wait_until_sent;
3649 driver->send_xchar = op->send_xchar;
3650 driver->read_proc = op->read_proc;
3651 driver->write_proc = op->write_proc;
3652 driver->tiocmget = op->tiocmget;
3653 driver->tiocmset = op->tiocmset;
3657 EXPORT_SYMBOL(alloc_tty_driver);
3658 EXPORT_SYMBOL(put_tty_driver);
3659 EXPORT_SYMBOL(tty_set_operations);
3662 * Called by a tty driver to register itself.
3664 int tty_register_driver(struct tty_driver *driver)
3666 int error;
3667 int i;
3668 dev_t dev;
3669 void **p = NULL;
3671 if (driver->flags & TTY_DRIVER_INSTALLED)
3672 return 0;
3674 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
3675 p = kmalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3676 if (!p)
3677 return -ENOMEM;
3678 memset(p, 0, driver->num * 3 * sizeof(void *));
3681 if (!driver->major) {
3682 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3683 (char*)driver->name);
3684 if (!error) {
3685 driver->major = MAJOR(dev);
3686 driver->minor_start = MINOR(dev);
3688 } else {
3689 dev = MKDEV(driver->major, driver->minor_start);
3690 error = register_chrdev_region(dev, driver->num,
3691 (char*)driver->name);
3693 if (error < 0) {
3694 kfree(p);
3695 return error;
3698 if (p) {
3699 driver->ttys = (struct tty_struct **)p;
3700 driver->termios = (struct ktermios **)(p + driver->num);
3701 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3702 } else {
3703 driver->ttys = NULL;
3704 driver->termios = NULL;
3705 driver->termios_locked = NULL;
3708 cdev_init(&driver->cdev, &tty_fops);
3709 driver->cdev.owner = driver->owner;
3710 error = cdev_add(&driver->cdev, dev, driver->num);
3711 if (error) {
3712 unregister_chrdev_region(dev, driver->num);
3713 driver->ttys = NULL;
3714 driver->termios = driver->termios_locked = NULL;
3715 kfree(p);
3716 return error;
3719 if (!driver->put_char)
3720 driver->put_char = tty_default_put_char;
3722 list_add(&driver->tty_drivers, &tty_drivers);
3724 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3725 for(i = 0; i < driver->num; i++)
3726 tty_register_device(driver, i, NULL);
3728 proc_tty_register_driver(driver);
3729 return 0;
3732 EXPORT_SYMBOL(tty_register_driver);
3735 * Called by a tty driver to unregister itself.
3737 int tty_unregister_driver(struct tty_driver *driver)
3739 int i;
3740 struct ktermios *tp;
3741 void *p;
3743 if (driver->refcount)
3744 return -EBUSY;
3746 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3747 driver->num);
3749 list_del(&driver->tty_drivers);
3752 * Free the termios and termios_locked structures because
3753 * we don't want to get memory leaks when modular tty
3754 * drivers are removed from the kernel.
3756 for (i = 0; i < driver->num; i++) {
3757 tp = driver->termios[i];
3758 if (tp) {
3759 driver->termios[i] = NULL;
3760 kfree(tp);
3762 tp = driver->termios_locked[i];
3763 if (tp) {
3764 driver->termios_locked[i] = NULL;
3765 kfree(tp);
3767 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3768 tty_unregister_device(driver, i);
3770 p = driver->ttys;
3771 proc_tty_unregister_driver(driver);
3772 driver->ttys = NULL;
3773 driver->termios = driver->termios_locked = NULL;
3774 kfree(p);
3775 cdev_del(&driver->cdev);
3776 return 0;
3778 EXPORT_SYMBOL(tty_unregister_driver);
3780 dev_t tty_devnum(struct tty_struct *tty)
3782 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3784 EXPORT_SYMBOL(tty_devnum);
3786 void proc_clear_tty(struct task_struct *p)
3788 spin_lock_irq(&p->sighand->siglock);
3789 p->signal->tty = NULL;
3790 spin_unlock_irq(&p->sighand->siglock);
3792 EXPORT_SYMBOL(proc_clear_tty);
3794 void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3796 if (tty) {
3797 tty->session = process_session(tsk);
3798 tty->pgrp = process_group(tsk);
3800 tsk->signal->tty = tty;
3801 tsk->signal->tty_old_pgrp = 0;
3804 void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3806 spin_lock_irq(&tsk->sighand->siglock);
3807 __proc_set_tty(tsk, tty);
3808 spin_unlock_irq(&tsk->sighand->siglock);
3811 struct tty_struct *get_current_tty(void)
3813 struct tty_struct *tty;
3814 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3815 tty = current->signal->tty;
3817 * session->tty can be changed/cleared from under us, make sure we
3818 * issue the load. The obtained pointer, when not NULL, is valid as
3819 * long as we hold tty_mutex.
3821 barrier();
3822 return tty;
3824 EXPORT_SYMBOL_GPL(get_current_tty);
3827 * Initialize the console device. This is called *early*, so
3828 * we can't necessarily depend on lots of kernel help here.
3829 * Just do some early initializations, and do the complex setup
3830 * later.
3832 void __init console_init(void)
3834 initcall_t *call;
3836 /* Setup the default TTY line discipline. */
3837 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3840 * set up the console device so that later boot sequences can
3841 * inform about problems etc..
3843 #ifdef CONFIG_EARLY_PRINTK
3844 disable_early_printk();
3845 #endif
3846 call = __con_initcall_start;
3847 while (call < __con_initcall_end) {
3848 (*call)();
3849 call++;
3853 #ifdef CONFIG_VT
3854 extern int vty_init(void);
3855 #endif
3857 static int __init tty_class_init(void)
3859 tty_class = class_create(THIS_MODULE, "tty");
3860 if (IS_ERR(tty_class))
3861 return PTR_ERR(tty_class);
3862 return 0;
3865 postcore_initcall(tty_class_init);
3867 /* 3/2004 jmc: why do these devices exist? */
3869 static struct cdev tty_cdev, console_cdev;
3870 #ifdef CONFIG_UNIX98_PTYS
3871 static struct cdev ptmx_cdev;
3872 #endif
3873 #ifdef CONFIG_VT
3874 static struct cdev vc0_cdev;
3875 #endif
3878 * Ok, now we can initialize the rest of the tty devices and can count
3879 * on memory allocations, interrupts etc..
3881 static int __init tty_init(void)
3883 cdev_init(&tty_cdev, &tty_fops);
3884 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3885 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3886 panic("Couldn't register /dev/tty driver\n");
3887 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3889 cdev_init(&console_cdev, &console_fops);
3890 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3891 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3892 panic("Couldn't register /dev/console driver\n");
3893 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3895 #ifdef CONFIG_UNIX98_PTYS
3896 cdev_init(&ptmx_cdev, &ptmx_fops);
3897 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3898 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3899 panic("Couldn't register /dev/ptmx driver\n");
3900 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3901 #endif
3903 #ifdef CONFIG_VT
3904 cdev_init(&vc0_cdev, &console_fops);
3905 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3906 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3907 panic("Couldn't register /dev/tty0 driver\n");
3908 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3910 vty_init();
3911 #endif
3912 return 0;
3914 module_init(tty_init);