sched: Add a timer to handle CFS bandwidth refresh
[linux-2.6/x86.git] / kernel / sched_fair.c
blobaf73a8a85eef605dc284602b0145499640b33603
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency = 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
92 #ifdef CONFIG_CFS_BANDWIDTH
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
101 * default: 5 msec, units: microseconds
103 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104 #endif
106 static const struct sched_class fair_sched_class;
108 /**************************************************************
109 * CFS operations on generic schedulable entities:
112 #ifdef CONFIG_FAIR_GROUP_SCHED
114 /* cpu runqueue to which this cfs_rq is attached */
115 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
117 return cfs_rq->rq;
120 /* An entity is a task if it doesn't "own" a runqueue */
121 #define entity_is_task(se) (!se->my_q)
123 static inline struct task_struct *task_of(struct sched_entity *se)
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127 #endif
128 return container_of(se, struct task_struct, se);
131 /* Walk up scheduling entities hierarchy */
132 #define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
135 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
137 return p->se.cfs_rq;
140 /* runqueue on which this entity is (to be) queued */
141 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
143 return se->cfs_rq;
146 /* runqueue "owned" by this group */
147 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
149 return grp->my_q;
152 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154 if (!cfs_rq->on_list) {
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
170 cfs_rq->on_list = 1;
174 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
182 /* Iterate thr' all leaf cfs_rq's on a runqueue */
183 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186 /* Do the two (enqueued) entities belong to the same group ? */
187 static inline int
188 is_same_group(struct sched_entity *se, struct sched_entity *pse)
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
193 return 0;
196 static inline struct sched_entity *parent_entity(struct sched_entity *se)
198 return se->parent;
201 /* return depth at which a sched entity is present in the hierarchy */
202 static inline int depth_se(struct sched_entity *se)
204 int depth = 0;
206 for_each_sched_entity(se)
207 depth++;
209 return depth;
212 static void
213 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215 int se_depth, pse_depth;
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
244 #else /* !CONFIG_FAIR_GROUP_SCHED */
246 static inline struct task_struct *task_of(struct sched_entity *se)
248 return container_of(se, struct task_struct, se);
251 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253 return container_of(cfs_rq, struct rq, cfs);
256 #define entity_is_task(se) 1
258 #define for_each_sched_entity(se) \
259 for (; se; se = NULL)
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
263 return &task_rq(p)->cfs;
266 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
271 return &rq->cfs;
274 /* runqueue "owned" by this group */
275 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277 return NULL;
280 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
291 static inline int
292 is_same_group(struct sched_entity *se, struct sched_entity *pse)
294 return 1;
297 static inline struct sched_entity *parent_entity(struct sched_entity *se)
299 return NULL;
302 static inline void
303 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
307 #endif /* CONFIG_FAIR_GROUP_SCHED */
309 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
312 /**************************************************************
313 * Scheduling class tree data structure manipulation methods:
316 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
320 min_vruntime = vruntime;
322 return min_vruntime;
325 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
331 return min_vruntime;
334 static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
337 return (s64)(a->vruntime - b->vruntime) < 0;
340 static void update_min_vruntime(struct cfs_rq *cfs_rq)
342 u64 vruntime = cfs_rq->min_vruntime;
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
352 if (!cfs_rq->curr)
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
359 #ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362 #endif
366 * Enqueue an entity into the rb-tree:
368 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
373 int leftmost = 1;
376 * Find the right place in the rbtree:
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
385 if (entity_before(se, entry)) {
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
397 if (leftmost)
398 cfs_rq->rb_leftmost = &se->run_node;
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
404 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
416 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
418 struct rb_node *left = cfs_rq->rb_leftmost;
420 if (!left)
421 return NULL;
423 return rb_entry(left, struct sched_entity, run_node);
426 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
428 struct rb_node *next = rb_next(&se->run_node);
430 if (!next)
431 return NULL;
433 return rb_entry(next, struct sched_entity, run_node);
436 #ifdef CONFIG_SCHED_DEBUG
437 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
441 if (!last)
442 return NULL;
444 return rb_entry(last, struct sched_entity, run_node);
447 /**************************************************************
448 * Scheduling class statistics methods:
451 int sched_proc_update_handler(struct ctl_table *table, int write,
452 void __user *buffer, size_t *lenp,
453 loff_t *ppos)
455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
456 int factor = get_update_sysctl_factor();
458 if (ret || !write)
459 return ret;
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
464 #define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
469 #undef WRT_SYSCTL
471 return 0;
473 #endif
476 * delta /= w
478 static inline unsigned long
479 calc_delta_fair(unsigned long delta, struct sched_entity *se)
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
484 return delta;
488 * The idea is to set a period in which each task runs once.
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
493 * p = (nr <= nl) ? l : l*nr/nl
495 static u64 __sched_period(unsigned long nr_running)
497 u64 period = sysctl_sched_latency;
498 unsigned long nr_latency = sched_nr_latency;
500 if (unlikely(nr_running > nr_latency)) {
501 period = sysctl_sched_min_granularity;
502 period *= nr_running;
505 return period;
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
512 * s = p*P[w/rw]
514 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
518 for_each_sched_entity(se) {
519 struct load_weight *load;
520 struct load_weight lw;
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
525 if (unlikely(!se->on_rq)) {
526 lw = cfs_rq->load;
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
531 slice = calc_delta_mine(slice, se->load.weight, load);
533 return slice;
537 * We calculate the vruntime slice of a to be inserted task
539 * vs = s/w
541 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
546 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
547 static void update_cfs_shares(struct cfs_rq *cfs_rq);
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
553 static inline void
554 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
557 unsigned long delta_exec_weighted;
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
562 curr->sum_exec_runtime += delta_exec;
563 schedstat_add(cfs_rq, exec_clock, delta_exec);
564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
566 curr->vruntime += delta_exec_weighted;
567 update_min_vruntime(cfs_rq);
569 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
570 cfs_rq->load_unacc_exec_time += delta_exec;
571 #endif
574 static void update_curr(struct cfs_rq *cfs_rq)
576 struct sched_entity *curr = cfs_rq->curr;
577 u64 now = rq_of(cfs_rq)->clock_task;
578 unsigned long delta_exec;
580 if (unlikely(!curr))
581 return;
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
588 delta_exec = (unsigned long)(now - curr->exec_start);
589 if (!delta_exec)
590 return;
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
599 cpuacct_charge(curtask, delta_exec);
600 account_group_exec_runtime(curtask, delta_exec);
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
606 static inline void
607 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
613 * Task is being enqueued - update stats:
615 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
621 if (se != cfs_rq->curr)
622 update_stats_wait_start(cfs_rq, se);
625 static void
626 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
633 #ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
638 #endif
639 schedstat_set(se->statistics.wait_start, 0);
642 static inline void
643 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
649 if (se != cfs_rq->curr)
650 update_stats_wait_end(cfs_rq, se);
654 * We are picking a new current task - update its stats:
656 static inline void
657 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
660 * We are starting a new run period:
662 se->exec_start = rq_of(cfs_rq)->clock_task;
665 /**************************************************
666 * Scheduling class queueing methods:
669 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670 static void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
673 cfs_rq->task_weight += weight;
675 #else
676 static inline void
677 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
680 #endif
682 static void
683 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 update_load_add(&cfs_rq->load, se->load.weight);
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
688 if (entity_is_task(se)) {
689 add_cfs_task_weight(cfs_rq, se->load.weight);
690 list_add(&se->group_node, &cfs_rq->tasks);
692 cfs_rq->nr_running++;
695 static void
696 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
698 update_load_sub(&cfs_rq->load, se->load.weight);
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
701 if (entity_is_task(se)) {
702 add_cfs_task_weight(cfs_rq, -se->load.weight);
703 list_del_init(&se->group_node);
705 cfs_rq->nr_running--;
708 #ifdef CONFIG_FAIR_GROUP_SCHED
709 # ifdef CONFIG_SMP
710 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
711 int global_update)
713 struct task_group *tg = cfs_rq->tg;
714 long load_avg;
716 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
717 load_avg -= cfs_rq->load_contribution;
719 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
720 atomic_add(load_avg, &tg->load_weight);
721 cfs_rq->load_contribution += load_avg;
725 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
727 u64 period = sysctl_sched_shares_window;
728 u64 now, delta;
729 unsigned long load = cfs_rq->load.weight;
731 if (cfs_rq->tg == &root_task_group)
732 return;
734 now = rq_of(cfs_rq)->clock_task;
735 delta = now - cfs_rq->load_stamp;
737 /* truncate load history at 4 idle periods */
738 if (cfs_rq->load_stamp > cfs_rq->load_last &&
739 now - cfs_rq->load_last > 4 * period) {
740 cfs_rq->load_period = 0;
741 cfs_rq->load_avg = 0;
742 delta = period - 1;
745 cfs_rq->load_stamp = now;
746 cfs_rq->load_unacc_exec_time = 0;
747 cfs_rq->load_period += delta;
748 if (load) {
749 cfs_rq->load_last = now;
750 cfs_rq->load_avg += delta * load;
753 /* consider updating load contribution on each fold or truncate */
754 if (global_update || cfs_rq->load_period > period
755 || !cfs_rq->load_period)
756 update_cfs_rq_load_contribution(cfs_rq, global_update);
758 while (cfs_rq->load_period > period) {
760 * Inline assembly required to prevent the compiler
761 * optimising this loop into a divmod call.
762 * See __iter_div_u64_rem() for another example of this.
764 asm("" : "+rm" (cfs_rq->load_period));
765 cfs_rq->load_period /= 2;
766 cfs_rq->load_avg /= 2;
769 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
770 list_del_leaf_cfs_rq(cfs_rq);
773 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
775 long load_weight, load, shares;
777 load = cfs_rq->load.weight;
779 load_weight = atomic_read(&tg->load_weight);
780 load_weight += load;
781 load_weight -= cfs_rq->load_contribution;
783 shares = (tg->shares * load);
784 if (load_weight)
785 shares /= load_weight;
787 if (shares < MIN_SHARES)
788 shares = MIN_SHARES;
789 if (shares > tg->shares)
790 shares = tg->shares;
792 return shares;
795 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
797 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
798 update_cfs_load(cfs_rq, 0);
799 update_cfs_shares(cfs_rq);
802 # else /* CONFIG_SMP */
803 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
807 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
809 return tg->shares;
812 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
815 # endif /* CONFIG_SMP */
816 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
817 unsigned long weight)
819 if (se->on_rq) {
820 /* commit outstanding execution time */
821 if (cfs_rq->curr == se)
822 update_curr(cfs_rq);
823 account_entity_dequeue(cfs_rq, se);
826 update_load_set(&se->load, weight);
828 if (se->on_rq)
829 account_entity_enqueue(cfs_rq, se);
832 static void update_cfs_shares(struct cfs_rq *cfs_rq)
834 struct task_group *tg;
835 struct sched_entity *se;
836 long shares;
838 tg = cfs_rq->tg;
839 se = tg->se[cpu_of(rq_of(cfs_rq))];
840 if (!se)
841 return;
842 #ifndef CONFIG_SMP
843 if (likely(se->load.weight == tg->shares))
844 return;
845 #endif
846 shares = calc_cfs_shares(cfs_rq, tg);
848 reweight_entity(cfs_rq_of(se), se, shares);
850 #else /* CONFIG_FAIR_GROUP_SCHED */
851 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
855 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
859 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
862 #endif /* CONFIG_FAIR_GROUP_SCHED */
864 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
866 #ifdef CONFIG_SCHEDSTATS
867 struct task_struct *tsk = NULL;
869 if (entity_is_task(se))
870 tsk = task_of(se);
872 if (se->statistics.sleep_start) {
873 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
875 if ((s64)delta < 0)
876 delta = 0;
878 if (unlikely(delta > se->statistics.sleep_max))
879 se->statistics.sleep_max = delta;
881 se->statistics.sleep_start = 0;
882 se->statistics.sum_sleep_runtime += delta;
884 if (tsk) {
885 account_scheduler_latency(tsk, delta >> 10, 1);
886 trace_sched_stat_sleep(tsk, delta);
889 if (se->statistics.block_start) {
890 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
892 if ((s64)delta < 0)
893 delta = 0;
895 if (unlikely(delta > se->statistics.block_max))
896 se->statistics.block_max = delta;
898 se->statistics.block_start = 0;
899 se->statistics.sum_sleep_runtime += delta;
901 if (tsk) {
902 if (tsk->in_iowait) {
903 se->statistics.iowait_sum += delta;
904 se->statistics.iowait_count++;
905 trace_sched_stat_iowait(tsk, delta);
909 * Blocking time is in units of nanosecs, so shift by
910 * 20 to get a milliseconds-range estimation of the
911 * amount of time that the task spent sleeping:
913 if (unlikely(prof_on == SLEEP_PROFILING)) {
914 profile_hits(SLEEP_PROFILING,
915 (void *)get_wchan(tsk),
916 delta >> 20);
918 account_scheduler_latency(tsk, delta >> 10, 0);
921 #endif
924 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
926 #ifdef CONFIG_SCHED_DEBUG
927 s64 d = se->vruntime - cfs_rq->min_vruntime;
929 if (d < 0)
930 d = -d;
932 if (d > 3*sysctl_sched_latency)
933 schedstat_inc(cfs_rq, nr_spread_over);
934 #endif
937 static void
938 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
940 u64 vruntime = cfs_rq->min_vruntime;
943 * The 'current' period is already promised to the current tasks,
944 * however the extra weight of the new task will slow them down a
945 * little, place the new task so that it fits in the slot that
946 * stays open at the end.
948 if (initial && sched_feat(START_DEBIT))
949 vruntime += sched_vslice(cfs_rq, se);
951 /* sleeps up to a single latency don't count. */
952 if (!initial) {
953 unsigned long thresh = sysctl_sched_latency;
956 * Halve their sleep time's effect, to allow
957 * for a gentler effect of sleepers:
959 if (sched_feat(GENTLE_FAIR_SLEEPERS))
960 thresh >>= 1;
962 vruntime -= thresh;
965 /* ensure we never gain time by being placed backwards. */
966 vruntime = max_vruntime(se->vruntime, vruntime);
968 se->vruntime = vruntime;
971 static void
972 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
975 * Update the normalized vruntime before updating min_vruntime
976 * through callig update_curr().
978 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
979 se->vruntime += cfs_rq->min_vruntime;
982 * Update run-time statistics of the 'current'.
984 update_curr(cfs_rq);
985 update_cfs_load(cfs_rq, 0);
986 account_entity_enqueue(cfs_rq, se);
987 update_cfs_shares(cfs_rq);
989 if (flags & ENQUEUE_WAKEUP) {
990 place_entity(cfs_rq, se, 0);
991 enqueue_sleeper(cfs_rq, se);
994 update_stats_enqueue(cfs_rq, se);
995 check_spread(cfs_rq, se);
996 if (se != cfs_rq->curr)
997 __enqueue_entity(cfs_rq, se);
998 se->on_rq = 1;
1000 if (cfs_rq->nr_running == 1)
1001 list_add_leaf_cfs_rq(cfs_rq);
1004 static void __clear_buddies_last(struct sched_entity *se)
1006 for_each_sched_entity(se) {
1007 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1008 if (cfs_rq->last == se)
1009 cfs_rq->last = NULL;
1010 else
1011 break;
1015 static void __clear_buddies_next(struct sched_entity *se)
1017 for_each_sched_entity(se) {
1018 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1019 if (cfs_rq->next == se)
1020 cfs_rq->next = NULL;
1021 else
1022 break;
1026 static void __clear_buddies_skip(struct sched_entity *se)
1028 for_each_sched_entity(se) {
1029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1030 if (cfs_rq->skip == se)
1031 cfs_rq->skip = NULL;
1032 else
1033 break;
1037 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1039 if (cfs_rq->last == se)
1040 __clear_buddies_last(se);
1042 if (cfs_rq->next == se)
1043 __clear_buddies_next(se);
1045 if (cfs_rq->skip == se)
1046 __clear_buddies_skip(se);
1049 static void
1050 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1053 * Update run-time statistics of the 'current'.
1055 update_curr(cfs_rq);
1057 update_stats_dequeue(cfs_rq, se);
1058 if (flags & DEQUEUE_SLEEP) {
1059 #ifdef CONFIG_SCHEDSTATS
1060 if (entity_is_task(se)) {
1061 struct task_struct *tsk = task_of(se);
1063 if (tsk->state & TASK_INTERRUPTIBLE)
1064 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1065 if (tsk->state & TASK_UNINTERRUPTIBLE)
1066 se->statistics.block_start = rq_of(cfs_rq)->clock;
1068 #endif
1071 clear_buddies(cfs_rq, se);
1073 if (se != cfs_rq->curr)
1074 __dequeue_entity(cfs_rq, se);
1075 se->on_rq = 0;
1076 update_cfs_load(cfs_rq, 0);
1077 account_entity_dequeue(cfs_rq, se);
1080 * Normalize the entity after updating the min_vruntime because the
1081 * update can refer to the ->curr item and we need to reflect this
1082 * movement in our normalized position.
1084 if (!(flags & DEQUEUE_SLEEP))
1085 se->vruntime -= cfs_rq->min_vruntime;
1087 update_min_vruntime(cfs_rq);
1088 update_cfs_shares(cfs_rq);
1092 * Preempt the current task with a newly woken task if needed:
1094 static void
1095 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1097 unsigned long ideal_runtime, delta_exec;
1099 ideal_runtime = sched_slice(cfs_rq, curr);
1100 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1101 if (delta_exec > ideal_runtime) {
1102 resched_task(rq_of(cfs_rq)->curr);
1104 * The current task ran long enough, ensure it doesn't get
1105 * re-elected due to buddy favours.
1107 clear_buddies(cfs_rq, curr);
1108 return;
1112 * Ensure that a task that missed wakeup preemption by a
1113 * narrow margin doesn't have to wait for a full slice.
1114 * This also mitigates buddy induced latencies under load.
1116 if (delta_exec < sysctl_sched_min_granularity)
1117 return;
1119 if (cfs_rq->nr_running > 1) {
1120 struct sched_entity *se = __pick_first_entity(cfs_rq);
1121 s64 delta = curr->vruntime - se->vruntime;
1123 if (delta < 0)
1124 return;
1126 if (delta > ideal_runtime)
1127 resched_task(rq_of(cfs_rq)->curr);
1131 static void
1132 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1134 /* 'current' is not kept within the tree. */
1135 if (se->on_rq) {
1137 * Any task has to be enqueued before it get to execute on
1138 * a CPU. So account for the time it spent waiting on the
1139 * runqueue.
1141 update_stats_wait_end(cfs_rq, se);
1142 __dequeue_entity(cfs_rq, se);
1145 update_stats_curr_start(cfs_rq, se);
1146 cfs_rq->curr = se;
1147 #ifdef CONFIG_SCHEDSTATS
1149 * Track our maximum slice length, if the CPU's load is at
1150 * least twice that of our own weight (i.e. dont track it
1151 * when there are only lesser-weight tasks around):
1153 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1154 se->statistics.slice_max = max(se->statistics.slice_max,
1155 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1157 #endif
1158 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1161 static int
1162 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1165 * Pick the next process, keeping these things in mind, in this order:
1166 * 1) keep things fair between processes/task groups
1167 * 2) pick the "next" process, since someone really wants that to run
1168 * 3) pick the "last" process, for cache locality
1169 * 4) do not run the "skip" process, if something else is available
1171 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1173 struct sched_entity *se = __pick_first_entity(cfs_rq);
1174 struct sched_entity *left = se;
1177 * Avoid running the skip buddy, if running something else can
1178 * be done without getting too unfair.
1180 if (cfs_rq->skip == se) {
1181 struct sched_entity *second = __pick_next_entity(se);
1182 if (second && wakeup_preempt_entity(second, left) < 1)
1183 se = second;
1187 * Prefer last buddy, try to return the CPU to a preempted task.
1189 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1190 se = cfs_rq->last;
1193 * Someone really wants this to run. If it's not unfair, run it.
1195 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1196 se = cfs_rq->next;
1198 clear_buddies(cfs_rq, se);
1200 return se;
1203 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1206 * If still on the runqueue then deactivate_task()
1207 * was not called and update_curr() has to be done:
1209 if (prev->on_rq)
1210 update_curr(cfs_rq);
1212 check_spread(cfs_rq, prev);
1213 if (prev->on_rq) {
1214 update_stats_wait_start(cfs_rq, prev);
1215 /* Put 'current' back into the tree. */
1216 __enqueue_entity(cfs_rq, prev);
1218 cfs_rq->curr = NULL;
1221 static void
1222 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1225 * Update run-time statistics of the 'current'.
1227 update_curr(cfs_rq);
1230 * Update share accounting for long-running entities.
1232 update_entity_shares_tick(cfs_rq);
1234 #ifdef CONFIG_SCHED_HRTICK
1236 * queued ticks are scheduled to match the slice, so don't bother
1237 * validating it and just reschedule.
1239 if (queued) {
1240 resched_task(rq_of(cfs_rq)->curr);
1241 return;
1244 * don't let the period tick interfere with the hrtick preemption
1246 if (!sched_feat(DOUBLE_TICK) &&
1247 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1248 return;
1249 #endif
1251 if (cfs_rq->nr_running > 1)
1252 check_preempt_tick(cfs_rq, curr);
1256 /**************************************************
1257 * CFS bandwidth control machinery
1260 #ifdef CONFIG_CFS_BANDWIDTH
1262 * default period for cfs group bandwidth.
1263 * default: 0.1s, units: nanoseconds
1265 static inline u64 default_cfs_period(void)
1267 return 100000000ULL;
1270 static inline u64 sched_cfs_bandwidth_slice(void)
1272 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1275 static void assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1277 struct task_group *tg = cfs_rq->tg;
1278 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1279 u64 amount = 0, min_amount;
1281 /* note: this is a positive sum as runtime_remaining <= 0 */
1282 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1284 raw_spin_lock(&cfs_b->lock);
1285 if (cfs_b->quota == RUNTIME_INF)
1286 amount = min_amount;
1287 else {
1288 /* ensure bandwidth timer remains active under consumption */
1289 if (!cfs_b->timer_active)
1290 __start_cfs_bandwidth(cfs_b);
1292 if (cfs_b->runtime > 0) {
1293 amount = min(cfs_b->runtime, min_amount);
1294 cfs_b->runtime -= amount;
1295 cfs_b->idle = 0;
1298 raw_spin_unlock(&cfs_b->lock);
1300 cfs_rq->runtime_remaining += amount;
1303 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1304 unsigned long delta_exec)
1306 if (!cfs_rq->runtime_enabled)
1307 return;
1309 cfs_rq->runtime_remaining -= delta_exec;
1310 if (cfs_rq->runtime_remaining > 0)
1311 return;
1313 assign_cfs_rq_runtime(cfs_rq);
1316 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1317 unsigned long delta_exec)
1319 if (!cfs_rq->runtime_enabled)
1320 return;
1322 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1326 * Responsible for refilling a task_group's bandwidth and unthrottling its
1327 * cfs_rqs as appropriate. If there has been no activity within the last
1328 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1329 * used to track this state.
1331 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1333 int idle = 1;
1335 raw_spin_lock(&cfs_b->lock);
1336 /* no need to continue the timer with no bandwidth constraint */
1337 if (cfs_b->quota == RUNTIME_INF)
1338 goto out_unlock;
1340 idle = cfs_b->idle;
1341 cfs_b->runtime = cfs_b->quota;
1343 /* mark as potentially idle for the upcoming period */
1344 cfs_b->idle = 1;
1345 out_unlock:
1346 if (idle)
1347 cfs_b->timer_active = 0;
1348 raw_spin_unlock(&cfs_b->lock);
1350 return idle;
1352 #else
1353 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1354 unsigned long delta_exec) {}
1355 #endif
1357 /**************************************************
1358 * CFS operations on tasks:
1361 #ifdef CONFIG_SCHED_HRTICK
1362 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1364 struct sched_entity *se = &p->se;
1365 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1367 WARN_ON(task_rq(p) != rq);
1369 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1370 u64 slice = sched_slice(cfs_rq, se);
1371 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1372 s64 delta = slice - ran;
1374 if (delta < 0) {
1375 if (rq->curr == p)
1376 resched_task(p);
1377 return;
1381 * Don't schedule slices shorter than 10000ns, that just
1382 * doesn't make sense. Rely on vruntime for fairness.
1384 if (rq->curr != p)
1385 delta = max_t(s64, 10000LL, delta);
1387 hrtick_start(rq, delta);
1392 * called from enqueue/dequeue and updates the hrtick when the
1393 * current task is from our class and nr_running is low enough
1394 * to matter.
1396 static void hrtick_update(struct rq *rq)
1398 struct task_struct *curr = rq->curr;
1400 if (curr->sched_class != &fair_sched_class)
1401 return;
1403 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1404 hrtick_start_fair(rq, curr);
1406 #else /* !CONFIG_SCHED_HRTICK */
1407 static inline void
1408 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1412 static inline void hrtick_update(struct rq *rq)
1415 #endif
1418 * The enqueue_task method is called before nr_running is
1419 * increased. Here we update the fair scheduling stats and
1420 * then put the task into the rbtree:
1422 static void
1423 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1425 struct cfs_rq *cfs_rq;
1426 struct sched_entity *se = &p->se;
1428 for_each_sched_entity(se) {
1429 if (se->on_rq)
1430 break;
1431 cfs_rq = cfs_rq_of(se);
1432 enqueue_entity(cfs_rq, se, flags);
1433 cfs_rq->h_nr_running++;
1434 flags = ENQUEUE_WAKEUP;
1437 for_each_sched_entity(se) {
1438 cfs_rq = cfs_rq_of(se);
1439 cfs_rq->h_nr_running++;
1441 update_cfs_load(cfs_rq, 0);
1442 update_cfs_shares(cfs_rq);
1445 inc_nr_running(rq);
1446 hrtick_update(rq);
1449 static void set_next_buddy(struct sched_entity *se);
1452 * The dequeue_task method is called before nr_running is
1453 * decreased. We remove the task from the rbtree and
1454 * update the fair scheduling stats:
1456 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1458 struct cfs_rq *cfs_rq;
1459 struct sched_entity *se = &p->se;
1460 int task_sleep = flags & DEQUEUE_SLEEP;
1462 for_each_sched_entity(se) {
1463 cfs_rq = cfs_rq_of(se);
1464 dequeue_entity(cfs_rq, se, flags);
1465 cfs_rq->h_nr_running--;
1467 /* Don't dequeue parent if it has other entities besides us */
1468 if (cfs_rq->load.weight) {
1470 * Bias pick_next to pick a task from this cfs_rq, as
1471 * p is sleeping when it is within its sched_slice.
1473 if (task_sleep && parent_entity(se))
1474 set_next_buddy(parent_entity(se));
1476 /* avoid re-evaluating load for this entity */
1477 se = parent_entity(se);
1478 break;
1480 flags |= DEQUEUE_SLEEP;
1483 for_each_sched_entity(se) {
1484 cfs_rq = cfs_rq_of(se);
1485 cfs_rq->h_nr_running--;
1487 update_cfs_load(cfs_rq, 0);
1488 update_cfs_shares(cfs_rq);
1491 dec_nr_running(rq);
1492 hrtick_update(rq);
1495 #ifdef CONFIG_SMP
1497 static void task_waking_fair(struct task_struct *p)
1499 struct sched_entity *se = &p->se;
1500 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1501 u64 min_vruntime;
1503 #ifndef CONFIG_64BIT
1504 u64 min_vruntime_copy;
1506 do {
1507 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1508 smp_rmb();
1509 min_vruntime = cfs_rq->min_vruntime;
1510 } while (min_vruntime != min_vruntime_copy);
1511 #else
1512 min_vruntime = cfs_rq->min_vruntime;
1513 #endif
1515 se->vruntime -= min_vruntime;
1518 #ifdef CONFIG_FAIR_GROUP_SCHED
1520 * effective_load() calculates the load change as seen from the root_task_group
1522 * Adding load to a group doesn't make a group heavier, but can cause movement
1523 * of group shares between cpus. Assuming the shares were perfectly aligned one
1524 * can calculate the shift in shares.
1526 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1528 struct sched_entity *se = tg->se[cpu];
1530 if (!tg->parent)
1531 return wl;
1533 for_each_sched_entity(se) {
1534 long lw, w;
1536 tg = se->my_q->tg;
1537 w = se->my_q->load.weight;
1539 /* use this cpu's instantaneous contribution */
1540 lw = atomic_read(&tg->load_weight);
1541 lw -= se->my_q->load_contribution;
1542 lw += w + wg;
1544 wl += w;
1546 if (lw > 0 && wl < lw)
1547 wl = (wl * tg->shares) / lw;
1548 else
1549 wl = tg->shares;
1551 /* zero point is MIN_SHARES */
1552 if (wl < MIN_SHARES)
1553 wl = MIN_SHARES;
1554 wl -= se->load.weight;
1555 wg = 0;
1558 return wl;
1561 #else
1563 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1564 unsigned long wl, unsigned long wg)
1566 return wl;
1569 #endif
1571 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1573 s64 this_load, load;
1574 int idx, this_cpu, prev_cpu;
1575 unsigned long tl_per_task;
1576 struct task_group *tg;
1577 unsigned long weight;
1578 int balanced;
1580 idx = sd->wake_idx;
1581 this_cpu = smp_processor_id();
1582 prev_cpu = task_cpu(p);
1583 load = source_load(prev_cpu, idx);
1584 this_load = target_load(this_cpu, idx);
1587 * If sync wakeup then subtract the (maximum possible)
1588 * effect of the currently running task from the load
1589 * of the current CPU:
1591 if (sync) {
1592 tg = task_group(current);
1593 weight = current->se.load.weight;
1595 this_load += effective_load(tg, this_cpu, -weight, -weight);
1596 load += effective_load(tg, prev_cpu, 0, -weight);
1599 tg = task_group(p);
1600 weight = p->se.load.weight;
1603 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1604 * due to the sync cause above having dropped this_load to 0, we'll
1605 * always have an imbalance, but there's really nothing you can do
1606 * about that, so that's good too.
1608 * Otherwise check if either cpus are near enough in load to allow this
1609 * task to be woken on this_cpu.
1611 if (this_load > 0) {
1612 s64 this_eff_load, prev_eff_load;
1614 this_eff_load = 100;
1615 this_eff_load *= power_of(prev_cpu);
1616 this_eff_load *= this_load +
1617 effective_load(tg, this_cpu, weight, weight);
1619 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1620 prev_eff_load *= power_of(this_cpu);
1621 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1623 balanced = this_eff_load <= prev_eff_load;
1624 } else
1625 balanced = true;
1628 * If the currently running task will sleep within
1629 * a reasonable amount of time then attract this newly
1630 * woken task:
1632 if (sync && balanced)
1633 return 1;
1635 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1636 tl_per_task = cpu_avg_load_per_task(this_cpu);
1638 if (balanced ||
1639 (this_load <= load &&
1640 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1642 * This domain has SD_WAKE_AFFINE and
1643 * p is cache cold in this domain, and
1644 * there is no bad imbalance.
1646 schedstat_inc(sd, ttwu_move_affine);
1647 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1649 return 1;
1651 return 0;
1655 * find_idlest_group finds and returns the least busy CPU group within the
1656 * domain.
1658 static struct sched_group *
1659 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1660 int this_cpu, int load_idx)
1662 struct sched_group *idlest = NULL, *group = sd->groups;
1663 unsigned long min_load = ULONG_MAX, this_load = 0;
1664 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1666 do {
1667 unsigned long load, avg_load;
1668 int local_group;
1669 int i;
1671 /* Skip over this group if it has no CPUs allowed */
1672 if (!cpumask_intersects(sched_group_cpus(group),
1673 &p->cpus_allowed))
1674 continue;
1676 local_group = cpumask_test_cpu(this_cpu,
1677 sched_group_cpus(group));
1679 /* Tally up the load of all CPUs in the group */
1680 avg_load = 0;
1682 for_each_cpu(i, sched_group_cpus(group)) {
1683 /* Bias balancing toward cpus of our domain */
1684 if (local_group)
1685 load = source_load(i, load_idx);
1686 else
1687 load = target_load(i, load_idx);
1689 avg_load += load;
1692 /* Adjust by relative CPU power of the group */
1693 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
1695 if (local_group) {
1696 this_load = avg_load;
1697 } else if (avg_load < min_load) {
1698 min_load = avg_load;
1699 idlest = group;
1701 } while (group = group->next, group != sd->groups);
1703 if (!idlest || 100*this_load < imbalance*min_load)
1704 return NULL;
1705 return idlest;
1709 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1711 static int
1712 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1714 unsigned long load, min_load = ULONG_MAX;
1715 int idlest = -1;
1716 int i;
1718 /* Traverse only the allowed CPUs */
1719 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1720 load = weighted_cpuload(i);
1722 if (load < min_load || (load == min_load && i == this_cpu)) {
1723 min_load = load;
1724 idlest = i;
1728 return idlest;
1732 * Try and locate an idle CPU in the sched_domain.
1734 static int select_idle_sibling(struct task_struct *p, int target)
1736 int cpu = smp_processor_id();
1737 int prev_cpu = task_cpu(p);
1738 struct sched_domain *sd;
1739 int i;
1742 * If the task is going to be woken-up on this cpu and if it is
1743 * already idle, then it is the right target.
1745 if (target == cpu && idle_cpu(cpu))
1746 return cpu;
1749 * If the task is going to be woken-up on the cpu where it previously
1750 * ran and if it is currently idle, then it the right target.
1752 if (target == prev_cpu && idle_cpu(prev_cpu))
1753 return prev_cpu;
1756 * Otherwise, iterate the domains and find an elegible idle cpu.
1758 rcu_read_lock();
1759 for_each_domain(target, sd) {
1760 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1761 break;
1763 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1764 if (idle_cpu(i)) {
1765 target = i;
1766 break;
1771 * Lets stop looking for an idle sibling when we reached
1772 * the domain that spans the current cpu and prev_cpu.
1774 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1775 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1776 break;
1778 rcu_read_unlock();
1780 return target;
1784 * sched_balance_self: balance the current task (running on cpu) in domains
1785 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1786 * SD_BALANCE_EXEC.
1788 * Balance, ie. select the least loaded group.
1790 * Returns the target CPU number, or the same CPU if no balancing is needed.
1792 * preempt must be disabled.
1794 static int
1795 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1797 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1798 int cpu = smp_processor_id();
1799 int prev_cpu = task_cpu(p);
1800 int new_cpu = cpu;
1801 int want_affine = 0;
1802 int want_sd = 1;
1803 int sync = wake_flags & WF_SYNC;
1805 if (sd_flag & SD_BALANCE_WAKE) {
1806 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1807 want_affine = 1;
1808 new_cpu = prev_cpu;
1811 rcu_read_lock();
1812 for_each_domain(cpu, tmp) {
1813 if (!(tmp->flags & SD_LOAD_BALANCE))
1814 continue;
1817 * If power savings logic is enabled for a domain, see if we
1818 * are not overloaded, if so, don't balance wider.
1820 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1821 unsigned long power = 0;
1822 unsigned long nr_running = 0;
1823 unsigned long capacity;
1824 int i;
1826 for_each_cpu(i, sched_domain_span(tmp)) {
1827 power += power_of(i);
1828 nr_running += cpu_rq(i)->cfs.nr_running;
1831 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
1833 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1834 nr_running /= 2;
1836 if (nr_running < capacity)
1837 want_sd = 0;
1841 * If both cpu and prev_cpu are part of this domain,
1842 * cpu is a valid SD_WAKE_AFFINE target.
1844 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1845 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1846 affine_sd = tmp;
1847 want_affine = 0;
1850 if (!want_sd && !want_affine)
1851 break;
1853 if (!(tmp->flags & sd_flag))
1854 continue;
1856 if (want_sd)
1857 sd = tmp;
1860 if (affine_sd) {
1861 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1862 prev_cpu = cpu;
1864 new_cpu = select_idle_sibling(p, prev_cpu);
1865 goto unlock;
1868 while (sd) {
1869 int load_idx = sd->forkexec_idx;
1870 struct sched_group *group;
1871 int weight;
1873 if (!(sd->flags & sd_flag)) {
1874 sd = sd->child;
1875 continue;
1878 if (sd_flag & SD_BALANCE_WAKE)
1879 load_idx = sd->wake_idx;
1881 group = find_idlest_group(sd, p, cpu, load_idx);
1882 if (!group) {
1883 sd = sd->child;
1884 continue;
1887 new_cpu = find_idlest_cpu(group, p, cpu);
1888 if (new_cpu == -1 || new_cpu == cpu) {
1889 /* Now try balancing at a lower domain level of cpu */
1890 sd = sd->child;
1891 continue;
1894 /* Now try balancing at a lower domain level of new_cpu */
1895 cpu = new_cpu;
1896 weight = sd->span_weight;
1897 sd = NULL;
1898 for_each_domain(cpu, tmp) {
1899 if (weight <= tmp->span_weight)
1900 break;
1901 if (tmp->flags & sd_flag)
1902 sd = tmp;
1904 /* while loop will break here if sd == NULL */
1906 unlock:
1907 rcu_read_unlock();
1909 return new_cpu;
1911 #endif /* CONFIG_SMP */
1913 static unsigned long
1914 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1916 unsigned long gran = sysctl_sched_wakeup_granularity;
1919 * Since its curr running now, convert the gran from real-time
1920 * to virtual-time in his units.
1922 * By using 'se' instead of 'curr' we penalize light tasks, so
1923 * they get preempted easier. That is, if 'se' < 'curr' then
1924 * the resulting gran will be larger, therefore penalizing the
1925 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1926 * be smaller, again penalizing the lighter task.
1928 * This is especially important for buddies when the leftmost
1929 * task is higher priority than the buddy.
1931 return calc_delta_fair(gran, se);
1935 * Should 'se' preempt 'curr'.
1937 * |s1
1938 * |s2
1939 * |s3
1941 * |<--->|c
1943 * w(c, s1) = -1
1944 * w(c, s2) = 0
1945 * w(c, s3) = 1
1948 static int
1949 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1951 s64 gran, vdiff = curr->vruntime - se->vruntime;
1953 if (vdiff <= 0)
1954 return -1;
1956 gran = wakeup_gran(curr, se);
1957 if (vdiff > gran)
1958 return 1;
1960 return 0;
1963 static void set_last_buddy(struct sched_entity *se)
1965 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1966 return;
1968 for_each_sched_entity(se)
1969 cfs_rq_of(se)->last = se;
1972 static void set_next_buddy(struct sched_entity *se)
1974 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1975 return;
1977 for_each_sched_entity(se)
1978 cfs_rq_of(se)->next = se;
1981 static void set_skip_buddy(struct sched_entity *se)
1983 for_each_sched_entity(se)
1984 cfs_rq_of(se)->skip = se;
1988 * Preempt the current task with a newly woken task if needed:
1990 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1992 struct task_struct *curr = rq->curr;
1993 struct sched_entity *se = &curr->se, *pse = &p->se;
1994 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1995 int scale = cfs_rq->nr_running >= sched_nr_latency;
1996 int next_buddy_marked = 0;
1998 if (unlikely(se == pse))
1999 return;
2001 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2002 set_next_buddy(pse);
2003 next_buddy_marked = 1;
2007 * We can come here with TIF_NEED_RESCHED already set from new task
2008 * wake up path.
2010 if (test_tsk_need_resched(curr))
2011 return;
2013 /* Idle tasks are by definition preempted by non-idle tasks. */
2014 if (unlikely(curr->policy == SCHED_IDLE) &&
2015 likely(p->policy != SCHED_IDLE))
2016 goto preempt;
2019 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2020 * is driven by the tick):
2022 if (unlikely(p->policy != SCHED_NORMAL))
2023 return;
2025 find_matching_se(&se, &pse);
2026 update_curr(cfs_rq_of(se));
2027 BUG_ON(!pse);
2028 if (wakeup_preempt_entity(se, pse) == 1) {
2030 * Bias pick_next to pick the sched entity that is
2031 * triggering this preemption.
2033 if (!next_buddy_marked)
2034 set_next_buddy(pse);
2035 goto preempt;
2038 return;
2040 preempt:
2041 resched_task(curr);
2043 * Only set the backward buddy when the current task is still
2044 * on the rq. This can happen when a wakeup gets interleaved
2045 * with schedule on the ->pre_schedule() or idle_balance()
2046 * point, either of which can * drop the rq lock.
2048 * Also, during early boot the idle thread is in the fair class,
2049 * for obvious reasons its a bad idea to schedule back to it.
2051 if (unlikely(!se->on_rq || curr == rq->idle))
2052 return;
2054 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2055 set_last_buddy(se);
2058 static struct task_struct *pick_next_task_fair(struct rq *rq)
2060 struct task_struct *p;
2061 struct cfs_rq *cfs_rq = &rq->cfs;
2062 struct sched_entity *se;
2064 if (!cfs_rq->nr_running)
2065 return NULL;
2067 do {
2068 se = pick_next_entity(cfs_rq);
2069 set_next_entity(cfs_rq, se);
2070 cfs_rq = group_cfs_rq(se);
2071 } while (cfs_rq);
2073 p = task_of(se);
2074 hrtick_start_fair(rq, p);
2076 return p;
2080 * Account for a descheduled task:
2082 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
2084 struct sched_entity *se = &prev->se;
2085 struct cfs_rq *cfs_rq;
2087 for_each_sched_entity(se) {
2088 cfs_rq = cfs_rq_of(se);
2089 put_prev_entity(cfs_rq, se);
2094 * sched_yield() is very simple
2096 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2098 static void yield_task_fair(struct rq *rq)
2100 struct task_struct *curr = rq->curr;
2101 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2102 struct sched_entity *se = &curr->se;
2105 * Are we the only task in the tree?
2107 if (unlikely(rq->nr_running == 1))
2108 return;
2110 clear_buddies(cfs_rq, se);
2112 if (curr->policy != SCHED_BATCH) {
2113 update_rq_clock(rq);
2115 * Update run-time statistics of the 'current'.
2117 update_curr(cfs_rq);
2120 set_skip_buddy(se);
2123 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2125 struct sched_entity *se = &p->se;
2127 if (!se->on_rq)
2128 return false;
2130 /* Tell the scheduler that we'd really like pse to run next. */
2131 set_next_buddy(se);
2133 yield_task_fair(rq);
2135 return true;
2138 #ifdef CONFIG_SMP
2139 /**************************************************
2140 * Fair scheduling class load-balancing methods:
2144 * pull_task - move a task from a remote runqueue to the local runqueue.
2145 * Both runqueues must be locked.
2147 static void pull_task(struct rq *src_rq, struct task_struct *p,
2148 struct rq *this_rq, int this_cpu)
2150 deactivate_task(src_rq, p, 0);
2151 set_task_cpu(p, this_cpu);
2152 activate_task(this_rq, p, 0);
2153 check_preempt_curr(this_rq, p, 0);
2157 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2159 static
2160 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2161 struct sched_domain *sd, enum cpu_idle_type idle,
2162 int *all_pinned)
2164 int tsk_cache_hot = 0;
2166 * We do not migrate tasks that are:
2167 * 1) running (obviously), or
2168 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2169 * 3) are cache-hot on their current CPU.
2171 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2172 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2173 return 0;
2175 *all_pinned = 0;
2177 if (task_running(rq, p)) {
2178 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2179 return 0;
2183 * Aggressive migration if:
2184 * 1) task is cache cold, or
2185 * 2) too many balance attempts have failed.
2188 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2189 if (!tsk_cache_hot ||
2190 sd->nr_balance_failed > sd->cache_nice_tries) {
2191 #ifdef CONFIG_SCHEDSTATS
2192 if (tsk_cache_hot) {
2193 schedstat_inc(sd, lb_hot_gained[idle]);
2194 schedstat_inc(p, se.statistics.nr_forced_migrations);
2196 #endif
2197 return 1;
2200 if (tsk_cache_hot) {
2201 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2202 return 0;
2204 return 1;
2208 * move_one_task tries to move exactly one task from busiest to this_rq, as
2209 * part of active balancing operations within "domain".
2210 * Returns 1 if successful and 0 otherwise.
2212 * Called with both runqueues locked.
2214 static int
2215 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2216 struct sched_domain *sd, enum cpu_idle_type idle)
2218 struct task_struct *p, *n;
2219 struct cfs_rq *cfs_rq;
2220 int pinned = 0;
2222 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2223 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2225 if (!can_migrate_task(p, busiest, this_cpu,
2226 sd, idle, &pinned))
2227 continue;
2229 pull_task(busiest, p, this_rq, this_cpu);
2231 * Right now, this is only the second place pull_task()
2232 * is called, so we can safely collect pull_task()
2233 * stats here rather than inside pull_task().
2235 schedstat_inc(sd, lb_gained[idle]);
2236 return 1;
2240 return 0;
2243 static unsigned long
2244 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2245 unsigned long max_load_move, struct sched_domain *sd,
2246 enum cpu_idle_type idle, int *all_pinned,
2247 struct cfs_rq *busiest_cfs_rq)
2249 int loops = 0, pulled = 0;
2250 long rem_load_move = max_load_move;
2251 struct task_struct *p, *n;
2253 if (max_load_move == 0)
2254 goto out;
2256 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2257 if (loops++ > sysctl_sched_nr_migrate)
2258 break;
2260 if ((p->se.load.weight >> 1) > rem_load_move ||
2261 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2262 all_pinned))
2263 continue;
2265 pull_task(busiest, p, this_rq, this_cpu);
2266 pulled++;
2267 rem_load_move -= p->se.load.weight;
2269 #ifdef CONFIG_PREEMPT
2271 * NEWIDLE balancing is a source of latency, so preemptible
2272 * kernels will stop after the first task is pulled to minimize
2273 * the critical section.
2275 if (idle == CPU_NEWLY_IDLE)
2276 break;
2277 #endif
2280 * We only want to steal up to the prescribed amount of
2281 * weighted load.
2283 if (rem_load_move <= 0)
2284 break;
2286 out:
2288 * Right now, this is one of only two places pull_task() is called,
2289 * so we can safely collect pull_task() stats here rather than
2290 * inside pull_task().
2292 schedstat_add(sd, lb_gained[idle], pulled);
2294 return max_load_move - rem_load_move;
2297 #ifdef CONFIG_FAIR_GROUP_SCHED
2299 * update tg->load_weight by folding this cpu's load_avg
2301 static int update_shares_cpu(struct task_group *tg, int cpu)
2303 struct cfs_rq *cfs_rq;
2304 unsigned long flags;
2305 struct rq *rq;
2307 if (!tg->se[cpu])
2308 return 0;
2310 rq = cpu_rq(cpu);
2311 cfs_rq = tg->cfs_rq[cpu];
2313 raw_spin_lock_irqsave(&rq->lock, flags);
2315 update_rq_clock(rq);
2316 update_cfs_load(cfs_rq, 1);
2319 * We need to update shares after updating tg->load_weight in
2320 * order to adjust the weight of groups with long running tasks.
2322 update_cfs_shares(cfs_rq);
2324 raw_spin_unlock_irqrestore(&rq->lock, flags);
2326 return 0;
2329 static void update_shares(int cpu)
2331 struct cfs_rq *cfs_rq;
2332 struct rq *rq = cpu_rq(cpu);
2334 rcu_read_lock();
2336 * Iterates the task_group tree in a bottom up fashion, see
2337 * list_add_leaf_cfs_rq() for details.
2339 for_each_leaf_cfs_rq(rq, cfs_rq)
2340 update_shares_cpu(cfs_rq->tg, cpu);
2341 rcu_read_unlock();
2345 * Compute the cpu's hierarchical load factor for each task group.
2346 * This needs to be done in a top-down fashion because the load of a child
2347 * group is a fraction of its parents load.
2349 static int tg_load_down(struct task_group *tg, void *data)
2351 unsigned long load;
2352 long cpu = (long)data;
2354 if (!tg->parent) {
2355 load = cpu_rq(cpu)->load.weight;
2356 } else {
2357 load = tg->parent->cfs_rq[cpu]->h_load;
2358 load *= tg->se[cpu]->load.weight;
2359 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2362 tg->cfs_rq[cpu]->h_load = load;
2364 return 0;
2367 static void update_h_load(long cpu)
2369 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2372 static unsigned long
2373 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2374 unsigned long max_load_move,
2375 struct sched_domain *sd, enum cpu_idle_type idle,
2376 int *all_pinned)
2378 long rem_load_move = max_load_move;
2379 struct cfs_rq *busiest_cfs_rq;
2381 rcu_read_lock();
2382 update_h_load(cpu_of(busiest));
2384 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
2385 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2386 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2387 u64 rem_load, moved_load;
2390 * empty group
2392 if (!busiest_cfs_rq->task_weight)
2393 continue;
2395 rem_load = (u64)rem_load_move * busiest_weight;
2396 rem_load = div_u64(rem_load, busiest_h_load + 1);
2398 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2399 rem_load, sd, idle, all_pinned,
2400 busiest_cfs_rq);
2402 if (!moved_load)
2403 continue;
2405 moved_load *= busiest_h_load;
2406 moved_load = div_u64(moved_load, busiest_weight + 1);
2408 rem_load_move -= moved_load;
2409 if (rem_load_move < 0)
2410 break;
2412 rcu_read_unlock();
2414 return max_load_move - rem_load_move;
2416 #else
2417 static inline void update_shares(int cpu)
2421 static unsigned long
2422 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2423 unsigned long max_load_move,
2424 struct sched_domain *sd, enum cpu_idle_type idle,
2425 int *all_pinned)
2427 return balance_tasks(this_rq, this_cpu, busiest,
2428 max_load_move, sd, idle, all_pinned,
2429 &busiest->cfs);
2431 #endif
2434 * move_tasks tries to move up to max_load_move weighted load from busiest to
2435 * this_rq, as part of a balancing operation within domain "sd".
2436 * Returns 1 if successful and 0 otherwise.
2438 * Called with both runqueues locked.
2440 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2441 unsigned long max_load_move,
2442 struct sched_domain *sd, enum cpu_idle_type idle,
2443 int *all_pinned)
2445 unsigned long total_load_moved = 0, load_moved;
2447 do {
2448 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2449 max_load_move - total_load_moved,
2450 sd, idle, all_pinned);
2452 total_load_moved += load_moved;
2454 #ifdef CONFIG_PREEMPT
2456 * NEWIDLE balancing is a source of latency, so preemptible
2457 * kernels will stop after the first task is pulled to minimize
2458 * the critical section.
2460 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2461 break;
2463 if (raw_spin_is_contended(&this_rq->lock) ||
2464 raw_spin_is_contended(&busiest->lock))
2465 break;
2466 #endif
2467 } while (load_moved && max_load_move > total_load_moved);
2469 return total_load_moved > 0;
2472 /********** Helpers for find_busiest_group ************************/
2474 * sd_lb_stats - Structure to store the statistics of a sched_domain
2475 * during load balancing.
2477 struct sd_lb_stats {
2478 struct sched_group *busiest; /* Busiest group in this sd */
2479 struct sched_group *this; /* Local group in this sd */
2480 unsigned long total_load; /* Total load of all groups in sd */
2481 unsigned long total_pwr; /* Total power of all groups in sd */
2482 unsigned long avg_load; /* Average load across all groups in sd */
2484 /** Statistics of this group */
2485 unsigned long this_load;
2486 unsigned long this_load_per_task;
2487 unsigned long this_nr_running;
2488 unsigned long this_has_capacity;
2489 unsigned int this_idle_cpus;
2491 /* Statistics of the busiest group */
2492 unsigned int busiest_idle_cpus;
2493 unsigned long max_load;
2494 unsigned long busiest_load_per_task;
2495 unsigned long busiest_nr_running;
2496 unsigned long busiest_group_capacity;
2497 unsigned long busiest_has_capacity;
2498 unsigned int busiest_group_weight;
2500 int group_imb; /* Is there imbalance in this sd */
2501 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2502 int power_savings_balance; /* Is powersave balance needed for this sd */
2503 struct sched_group *group_min; /* Least loaded group in sd */
2504 struct sched_group *group_leader; /* Group which relieves group_min */
2505 unsigned long min_load_per_task; /* load_per_task in group_min */
2506 unsigned long leader_nr_running; /* Nr running of group_leader */
2507 unsigned long min_nr_running; /* Nr running of group_min */
2508 #endif
2512 * sg_lb_stats - stats of a sched_group required for load_balancing
2514 struct sg_lb_stats {
2515 unsigned long avg_load; /*Avg load across the CPUs of the group */
2516 unsigned long group_load; /* Total load over the CPUs of the group */
2517 unsigned long sum_nr_running; /* Nr tasks running in the group */
2518 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2519 unsigned long group_capacity;
2520 unsigned long idle_cpus;
2521 unsigned long group_weight;
2522 int group_imb; /* Is there an imbalance in the group ? */
2523 int group_has_capacity; /* Is there extra capacity in the group? */
2527 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2528 * @group: The group whose first cpu is to be returned.
2530 static inline unsigned int group_first_cpu(struct sched_group *group)
2532 return cpumask_first(sched_group_cpus(group));
2536 * get_sd_load_idx - Obtain the load index for a given sched domain.
2537 * @sd: The sched_domain whose load_idx is to be obtained.
2538 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2540 static inline int get_sd_load_idx(struct sched_domain *sd,
2541 enum cpu_idle_type idle)
2543 int load_idx;
2545 switch (idle) {
2546 case CPU_NOT_IDLE:
2547 load_idx = sd->busy_idx;
2548 break;
2550 case CPU_NEWLY_IDLE:
2551 load_idx = sd->newidle_idx;
2552 break;
2553 default:
2554 load_idx = sd->idle_idx;
2555 break;
2558 return load_idx;
2562 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2564 * init_sd_power_savings_stats - Initialize power savings statistics for
2565 * the given sched_domain, during load balancing.
2567 * @sd: Sched domain whose power-savings statistics are to be initialized.
2568 * @sds: Variable containing the statistics for sd.
2569 * @idle: Idle status of the CPU at which we're performing load-balancing.
2571 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2572 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2575 * Busy processors will not participate in power savings
2576 * balance.
2578 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2579 sds->power_savings_balance = 0;
2580 else {
2581 sds->power_savings_balance = 1;
2582 sds->min_nr_running = ULONG_MAX;
2583 sds->leader_nr_running = 0;
2588 * update_sd_power_savings_stats - Update the power saving stats for a
2589 * sched_domain while performing load balancing.
2591 * @group: sched_group belonging to the sched_domain under consideration.
2592 * @sds: Variable containing the statistics of the sched_domain
2593 * @local_group: Does group contain the CPU for which we're performing
2594 * load balancing ?
2595 * @sgs: Variable containing the statistics of the group.
2597 static inline void update_sd_power_savings_stats(struct sched_group *group,
2598 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2601 if (!sds->power_savings_balance)
2602 return;
2605 * If the local group is idle or completely loaded
2606 * no need to do power savings balance at this domain
2608 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2609 !sds->this_nr_running))
2610 sds->power_savings_balance = 0;
2613 * If a group is already running at full capacity or idle,
2614 * don't include that group in power savings calculations
2616 if (!sds->power_savings_balance ||
2617 sgs->sum_nr_running >= sgs->group_capacity ||
2618 !sgs->sum_nr_running)
2619 return;
2622 * Calculate the group which has the least non-idle load.
2623 * This is the group from where we need to pick up the load
2624 * for saving power
2626 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2627 (sgs->sum_nr_running == sds->min_nr_running &&
2628 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2629 sds->group_min = group;
2630 sds->min_nr_running = sgs->sum_nr_running;
2631 sds->min_load_per_task = sgs->sum_weighted_load /
2632 sgs->sum_nr_running;
2636 * Calculate the group which is almost near its
2637 * capacity but still has some space to pick up some load
2638 * from other group and save more power
2640 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2641 return;
2643 if (sgs->sum_nr_running > sds->leader_nr_running ||
2644 (sgs->sum_nr_running == sds->leader_nr_running &&
2645 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2646 sds->group_leader = group;
2647 sds->leader_nr_running = sgs->sum_nr_running;
2652 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2653 * @sds: Variable containing the statistics of the sched_domain
2654 * under consideration.
2655 * @this_cpu: Cpu at which we're currently performing load-balancing.
2656 * @imbalance: Variable to store the imbalance.
2658 * Description:
2659 * Check if we have potential to perform some power-savings balance.
2660 * If yes, set the busiest group to be the least loaded group in the
2661 * sched_domain, so that it's CPUs can be put to idle.
2663 * Returns 1 if there is potential to perform power-savings balance.
2664 * Else returns 0.
2666 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2667 int this_cpu, unsigned long *imbalance)
2669 if (!sds->power_savings_balance)
2670 return 0;
2672 if (sds->this != sds->group_leader ||
2673 sds->group_leader == sds->group_min)
2674 return 0;
2676 *imbalance = sds->min_load_per_task;
2677 sds->busiest = sds->group_min;
2679 return 1;
2682 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2683 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2684 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2686 return;
2689 static inline void update_sd_power_savings_stats(struct sched_group *group,
2690 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2692 return;
2695 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2696 int this_cpu, unsigned long *imbalance)
2698 return 0;
2700 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2703 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2705 return SCHED_POWER_SCALE;
2708 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2710 return default_scale_freq_power(sd, cpu);
2713 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2715 unsigned long weight = sd->span_weight;
2716 unsigned long smt_gain = sd->smt_gain;
2718 smt_gain /= weight;
2720 return smt_gain;
2723 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2725 return default_scale_smt_power(sd, cpu);
2728 unsigned long scale_rt_power(int cpu)
2730 struct rq *rq = cpu_rq(cpu);
2731 u64 total, available;
2733 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2735 if (unlikely(total < rq->rt_avg)) {
2736 /* Ensures that power won't end up being negative */
2737 available = 0;
2738 } else {
2739 available = total - rq->rt_avg;
2742 if (unlikely((s64)total < SCHED_POWER_SCALE))
2743 total = SCHED_POWER_SCALE;
2745 total >>= SCHED_POWER_SHIFT;
2747 return div_u64(available, total);
2750 static void update_cpu_power(struct sched_domain *sd, int cpu)
2752 unsigned long weight = sd->span_weight;
2753 unsigned long power = SCHED_POWER_SCALE;
2754 struct sched_group *sdg = sd->groups;
2756 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2757 if (sched_feat(ARCH_POWER))
2758 power *= arch_scale_smt_power(sd, cpu);
2759 else
2760 power *= default_scale_smt_power(sd, cpu);
2762 power >>= SCHED_POWER_SHIFT;
2765 sdg->sgp->power_orig = power;
2767 if (sched_feat(ARCH_POWER))
2768 power *= arch_scale_freq_power(sd, cpu);
2769 else
2770 power *= default_scale_freq_power(sd, cpu);
2772 power >>= SCHED_POWER_SHIFT;
2774 power *= scale_rt_power(cpu);
2775 power >>= SCHED_POWER_SHIFT;
2777 if (!power)
2778 power = 1;
2780 cpu_rq(cpu)->cpu_power = power;
2781 sdg->sgp->power = power;
2784 static void update_group_power(struct sched_domain *sd, int cpu)
2786 struct sched_domain *child = sd->child;
2787 struct sched_group *group, *sdg = sd->groups;
2788 unsigned long power;
2790 if (!child) {
2791 update_cpu_power(sd, cpu);
2792 return;
2795 power = 0;
2797 group = child->groups;
2798 do {
2799 power += group->sgp->power;
2800 group = group->next;
2801 } while (group != child->groups);
2803 sdg->sgp->power = power;
2807 * Try and fix up capacity for tiny siblings, this is needed when
2808 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2809 * which on its own isn't powerful enough.
2811 * See update_sd_pick_busiest() and check_asym_packing().
2813 static inline int
2814 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2817 * Only siblings can have significantly less than SCHED_POWER_SCALE
2819 if (!(sd->flags & SD_SHARE_CPUPOWER))
2820 return 0;
2823 * If ~90% of the cpu_power is still there, we're good.
2825 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
2826 return 1;
2828 return 0;
2832 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2833 * @sd: The sched_domain whose statistics are to be updated.
2834 * @group: sched_group whose statistics are to be updated.
2835 * @this_cpu: Cpu for which load balance is currently performed.
2836 * @idle: Idle status of this_cpu
2837 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2838 * @local_group: Does group contain this_cpu.
2839 * @cpus: Set of cpus considered for load balancing.
2840 * @balance: Should we balance.
2841 * @sgs: variable to hold the statistics for this group.
2843 static inline void update_sg_lb_stats(struct sched_domain *sd,
2844 struct sched_group *group, int this_cpu,
2845 enum cpu_idle_type idle, int load_idx,
2846 int local_group, const struct cpumask *cpus,
2847 int *balance, struct sg_lb_stats *sgs)
2849 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2850 int i;
2851 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2852 unsigned long avg_load_per_task = 0;
2854 if (local_group)
2855 balance_cpu = group_first_cpu(group);
2857 /* Tally up the load of all CPUs in the group */
2858 max_cpu_load = 0;
2859 min_cpu_load = ~0UL;
2860 max_nr_running = 0;
2862 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2863 struct rq *rq = cpu_rq(i);
2865 /* Bias balancing toward cpus of our domain */
2866 if (local_group) {
2867 if (idle_cpu(i) && !first_idle_cpu) {
2868 first_idle_cpu = 1;
2869 balance_cpu = i;
2872 load = target_load(i, load_idx);
2873 } else {
2874 load = source_load(i, load_idx);
2875 if (load > max_cpu_load) {
2876 max_cpu_load = load;
2877 max_nr_running = rq->nr_running;
2879 if (min_cpu_load > load)
2880 min_cpu_load = load;
2883 sgs->group_load += load;
2884 sgs->sum_nr_running += rq->nr_running;
2885 sgs->sum_weighted_load += weighted_cpuload(i);
2886 if (idle_cpu(i))
2887 sgs->idle_cpus++;
2891 * First idle cpu or the first cpu(busiest) in this sched group
2892 * is eligible for doing load balancing at this and above
2893 * domains. In the newly idle case, we will allow all the cpu's
2894 * to do the newly idle load balance.
2896 if (idle != CPU_NEWLY_IDLE && local_group) {
2897 if (balance_cpu != this_cpu) {
2898 *balance = 0;
2899 return;
2901 update_group_power(sd, this_cpu);
2904 /* Adjust by relative CPU power of the group */
2905 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
2908 * Consider the group unbalanced when the imbalance is larger
2909 * than the average weight of a task.
2911 * APZ: with cgroup the avg task weight can vary wildly and
2912 * might not be a suitable number - should we keep a
2913 * normalized nr_running number somewhere that negates
2914 * the hierarchy?
2916 if (sgs->sum_nr_running)
2917 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2919 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2920 sgs->group_imb = 1;
2922 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
2923 SCHED_POWER_SCALE);
2924 if (!sgs->group_capacity)
2925 sgs->group_capacity = fix_small_capacity(sd, group);
2926 sgs->group_weight = group->group_weight;
2928 if (sgs->group_capacity > sgs->sum_nr_running)
2929 sgs->group_has_capacity = 1;
2933 * update_sd_pick_busiest - return 1 on busiest group
2934 * @sd: sched_domain whose statistics are to be checked
2935 * @sds: sched_domain statistics
2936 * @sg: sched_group candidate to be checked for being the busiest
2937 * @sgs: sched_group statistics
2938 * @this_cpu: the current cpu
2940 * Determine if @sg is a busier group than the previously selected
2941 * busiest group.
2943 static bool update_sd_pick_busiest(struct sched_domain *sd,
2944 struct sd_lb_stats *sds,
2945 struct sched_group *sg,
2946 struct sg_lb_stats *sgs,
2947 int this_cpu)
2949 if (sgs->avg_load <= sds->max_load)
2950 return false;
2952 if (sgs->sum_nr_running > sgs->group_capacity)
2953 return true;
2955 if (sgs->group_imb)
2956 return true;
2959 * ASYM_PACKING needs to move all the work to the lowest
2960 * numbered CPUs in the group, therefore mark all groups
2961 * higher than ourself as busy.
2963 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2964 this_cpu < group_first_cpu(sg)) {
2965 if (!sds->busiest)
2966 return true;
2968 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2969 return true;
2972 return false;
2976 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2977 * @sd: sched_domain whose statistics are to be updated.
2978 * @this_cpu: Cpu for which load balance is currently performed.
2979 * @idle: Idle status of this_cpu
2980 * @cpus: Set of cpus considered for load balancing.
2981 * @balance: Should we balance.
2982 * @sds: variable to hold the statistics for this sched_domain.
2984 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2985 enum cpu_idle_type idle, const struct cpumask *cpus,
2986 int *balance, struct sd_lb_stats *sds)
2988 struct sched_domain *child = sd->child;
2989 struct sched_group *sg = sd->groups;
2990 struct sg_lb_stats sgs;
2991 int load_idx, prefer_sibling = 0;
2993 if (child && child->flags & SD_PREFER_SIBLING)
2994 prefer_sibling = 1;
2996 init_sd_power_savings_stats(sd, sds, idle);
2997 load_idx = get_sd_load_idx(sd, idle);
2999 do {
3000 int local_group;
3002 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3003 memset(&sgs, 0, sizeof(sgs));
3004 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3005 local_group, cpus, balance, &sgs);
3007 if (local_group && !(*balance))
3008 return;
3010 sds->total_load += sgs.group_load;
3011 sds->total_pwr += sg->sgp->power;
3014 * In case the child domain prefers tasks go to siblings
3015 * first, lower the sg capacity to one so that we'll try
3016 * and move all the excess tasks away. We lower the capacity
3017 * of a group only if the local group has the capacity to fit
3018 * these excess tasks, i.e. nr_running < group_capacity. The
3019 * extra check prevents the case where you always pull from the
3020 * heaviest group when it is already under-utilized (possible
3021 * with a large weight task outweighs the tasks on the system).
3023 if (prefer_sibling && !local_group && sds->this_has_capacity)
3024 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3026 if (local_group) {
3027 sds->this_load = sgs.avg_load;
3028 sds->this = sg;
3029 sds->this_nr_running = sgs.sum_nr_running;
3030 sds->this_load_per_task = sgs.sum_weighted_load;
3031 sds->this_has_capacity = sgs.group_has_capacity;
3032 sds->this_idle_cpus = sgs.idle_cpus;
3033 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
3034 sds->max_load = sgs.avg_load;
3035 sds->busiest = sg;
3036 sds->busiest_nr_running = sgs.sum_nr_running;
3037 sds->busiest_idle_cpus = sgs.idle_cpus;
3038 sds->busiest_group_capacity = sgs.group_capacity;
3039 sds->busiest_load_per_task = sgs.sum_weighted_load;
3040 sds->busiest_has_capacity = sgs.group_has_capacity;
3041 sds->busiest_group_weight = sgs.group_weight;
3042 sds->group_imb = sgs.group_imb;
3045 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3046 sg = sg->next;
3047 } while (sg != sd->groups);
3050 int __weak arch_sd_sibling_asym_packing(void)
3052 return 0*SD_ASYM_PACKING;
3056 * check_asym_packing - Check to see if the group is packed into the
3057 * sched doman.
3059 * This is primarily intended to used at the sibling level. Some
3060 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3061 * case of POWER7, it can move to lower SMT modes only when higher
3062 * threads are idle. When in lower SMT modes, the threads will
3063 * perform better since they share less core resources. Hence when we
3064 * have idle threads, we want them to be the higher ones.
3066 * This packing function is run on idle threads. It checks to see if
3067 * the busiest CPU in this domain (core in the P7 case) has a higher
3068 * CPU number than the packing function is being run on. Here we are
3069 * assuming lower CPU number will be equivalent to lower a SMT thread
3070 * number.
3072 * Returns 1 when packing is required and a task should be moved to
3073 * this CPU. The amount of the imbalance is returned in *imbalance.
3075 * @sd: The sched_domain whose packing is to be checked.
3076 * @sds: Statistics of the sched_domain which is to be packed
3077 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3078 * @imbalance: returns amount of imbalanced due to packing.
3080 static int check_asym_packing(struct sched_domain *sd,
3081 struct sd_lb_stats *sds,
3082 int this_cpu, unsigned long *imbalance)
3084 int busiest_cpu;
3086 if (!(sd->flags & SD_ASYM_PACKING))
3087 return 0;
3089 if (!sds->busiest)
3090 return 0;
3092 busiest_cpu = group_first_cpu(sds->busiest);
3093 if (this_cpu > busiest_cpu)
3094 return 0;
3096 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
3097 SCHED_POWER_SCALE);
3098 return 1;
3102 * fix_small_imbalance - Calculate the minor imbalance that exists
3103 * amongst the groups of a sched_domain, during
3104 * load balancing.
3105 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3106 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3107 * @imbalance: Variable to store the imbalance.
3109 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3110 int this_cpu, unsigned long *imbalance)
3112 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3113 unsigned int imbn = 2;
3114 unsigned long scaled_busy_load_per_task;
3116 if (sds->this_nr_running) {
3117 sds->this_load_per_task /= sds->this_nr_running;
3118 if (sds->busiest_load_per_task >
3119 sds->this_load_per_task)
3120 imbn = 1;
3121 } else
3122 sds->this_load_per_task =
3123 cpu_avg_load_per_task(this_cpu);
3125 scaled_busy_load_per_task = sds->busiest_load_per_task
3126 * SCHED_POWER_SCALE;
3127 scaled_busy_load_per_task /= sds->busiest->sgp->power;
3129 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3130 (scaled_busy_load_per_task * imbn)) {
3131 *imbalance = sds->busiest_load_per_task;
3132 return;
3136 * OK, we don't have enough imbalance to justify moving tasks,
3137 * however we may be able to increase total CPU power used by
3138 * moving them.
3141 pwr_now += sds->busiest->sgp->power *
3142 min(sds->busiest_load_per_task, sds->max_load);
3143 pwr_now += sds->this->sgp->power *
3144 min(sds->this_load_per_task, sds->this_load);
3145 pwr_now /= SCHED_POWER_SCALE;
3147 /* Amount of load we'd subtract */
3148 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3149 sds->busiest->sgp->power;
3150 if (sds->max_load > tmp)
3151 pwr_move += sds->busiest->sgp->power *
3152 min(sds->busiest_load_per_task, sds->max_load - tmp);
3154 /* Amount of load we'd add */
3155 if (sds->max_load * sds->busiest->sgp->power <
3156 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3157 tmp = (sds->max_load * sds->busiest->sgp->power) /
3158 sds->this->sgp->power;
3159 else
3160 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3161 sds->this->sgp->power;
3162 pwr_move += sds->this->sgp->power *
3163 min(sds->this_load_per_task, sds->this_load + tmp);
3164 pwr_move /= SCHED_POWER_SCALE;
3166 /* Move if we gain throughput */
3167 if (pwr_move > pwr_now)
3168 *imbalance = sds->busiest_load_per_task;
3172 * calculate_imbalance - Calculate the amount of imbalance present within the
3173 * groups of a given sched_domain during load balance.
3174 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3175 * @this_cpu: Cpu for which currently load balance is being performed.
3176 * @imbalance: The variable to store the imbalance.
3178 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3179 unsigned long *imbalance)
3181 unsigned long max_pull, load_above_capacity = ~0UL;
3183 sds->busiest_load_per_task /= sds->busiest_nr_running;
3184 if (sds->group_imb) {
3185 sds->busiest_load_per_task =
3186 min(sds->busiest_load_per_task, sds->avg_load);
3190 * In the presence of smp nice balancing, certain scenarios can have
3191 * max load less than avg load(as we skip the groups at or below
3192 * its cpu_power, while calculating max_load..)
3194 if (sds->max_load < sds->avg_load) {
3195 *imbalance = 0;
3196 return fix_small_imbalance(sds, this_cpu, imbalance);
3199 if (!sds->group_imb) {
3201 * Don't want to pull so many tasks that a group would go idle.
3203 load_above_capacity = (sds->busiest_nr_running -
3204 sds->busiest_group_capacity);
3206 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3208 load_above_capacity /= sds->busiest->sgp->power;
3212 * We're trying to get all the cpus to the average_load, so we don't
3213 * want to push ourselves above the average load, nor do we wish to
3214 * reduce the max loaded cpu below the average load. At the same time,
3215 * we also don't want to reduce the group load below the group capacity
3216 * (so that we can implement power-savings policies etc). Thus we look
3217 * for the minimum possible imbalance.
3218 * Be careful of negative numbers as they'll appear as very large values
3219 * with unsigned longs.
3221 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3223 /* How much load to actually move to equalise the imbalance */
3224 *imbalance = min(max_pull * sds->busiest->sgp->power,
3225 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
3226 / SCHED_POWER_SCALE;
3229 * if *imbalance is less than the average load per runnable task
3230 * there is no guarantee that any tasks will be moved so we'll have
3231 * a think about bumping its value to force at least one task to be
3232 * moved
3234 if (*imbalance < sds->busiest_load_per_task)
3235 return fix_small_imbalance(sds, this_cpu, imbalance);
3239 /******* find_busiest_group() helpers end here *********************/
3242 * find_busiest_group - Returns the busiest group within the sched_domain
3243 * if there is an imbalance. If there isn't an imbalance, and
3244 * the user has opted for power-savings, it returns a group whose
3245 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3246 * such a group exists.
3248 * Also calculates the amount of weighted load which should be moved
3249 * to restore balance.
3251 * @sd: The sched_domain whose busiest group is to be returned.
3252 * @this_cpu: The cpu for which load balancing is currently being performed.
3253 * @imbalance: Variable which stores amount of weighted load which should
3254 * be moved to restore balance/put a group to idle.
3255 * @idle: The idle status of this_cpu.
3256 * @cpus: The set of CPUs under consideration for load-balancing.
3257 * @balance: Pointer to a variable indicating if this_cpu
3258 * is the appropriate cpu to perform load balancing at this_level.
3260 * Returns: - the busiest group if imbalance exists.
3261 * - If no imbalance and user has opted for power-savings balance,
3262 * return the least loaded group whose CPUs can be
3263 * put to idle by rebalancing its tasks onto our group.
3265 static struct sched_group *
3266 find_busiest_group(struct sched_domain *sd, int this_cpu,
3267 unsigned long *imbalance, enum cpu_idle_type idle,
3268 const struct cpumask *cpus, int *balance)
3270 struct sd_lb_stats sds;
3272 memset(&sds, 0, sizeof(sds));
3275 * Compute the various statistics relavent for load balancing at
3276 * this level.
3278 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3281 * this_cpu is not the appropriate cpu to perform load balancing at
3282 * this level.
3284 if (!(*balance))
3285 goto ret;
3287 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3288 check_asym_packing(sd, &sds, this_cpu, imbalance))
3289 return sds.busiest;
3291 /* There is no busy sibling group to pull tasks from */
3292 if (!sds.busiest || sds.busiest_nr_running == 0)
3293 goto out_balanced;
3295 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
3298 * If the busiest group is imbalanced the below checks don't
3299 * work because they assumes all things are equal, which typically
3300 * isn't true due to cpus_allowed constraints and the like.
3302 if (sds.group_imb)
3303 goto force_balance;
3305 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3306 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3307 !sds.busiest_has_capacity)
3308 goto force_balance;
3311 * If the local group is more busy than the selected busiest group
3312 * don't try and pull any tasks.
3314 if (sds.this_load >= sds.max_load)
3315 goto out_balanced;
3318 * Don't pull any tasks if this group is already above the domain
3319 * average load.
3321 if (sds.this_load >= sds.avg_load)
3322 goto out_balanced;
3324 if (idle == CPU_IDLE) {
3326 * This cpu is idle. If the busiest group load doesn't
3327 * have more tasks than the number of available cpu's and
3328 * there is no imbalance between this and busiest group
3329 * wrt to idle cpu's, it is balanced.
3331 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3332 sds.busiest_nr_running <= sds.busiest_group_weight)
3333 goto out_balanced;
3334 } else {
3336 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3337 * imbalance_pct to be conservative.
3339 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3340 goto out_balanced;
3343 force_balance:
3344 /* Looks like there is an imbalance. Compute it */
3345 calculate_imbalance(&sds, this_cpu, imbalance);
3346 return sds.busiest;
3348 out_balanced:
3350 * There is no obvious imbalance. But check if we can do some balancing
3351 * to save power.
3353 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3354 return sds.busiest;
3355 ret:
3356 *imbalance = 0;
3357 return NULL;
3361 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3363 static struct rq *
3364 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3365 enum cpu_idle_type idle, unsigned long imbalance,
3366 const struct cpumask *cpus)
3368 struct rq *busiest = NULL, *rq;
3369 unsigned long max_load = 0;
3370 int i;
3372 for_each_cpu(i, sched_group_cpus(group)) {
3373 unsigned long power = power_of(i);
3374 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3375 SCHED_POWER_SCALE);
3376 unsigned long wl;
3378 if (!capacity)
3379 capacity = fix_small_capacity(sd, group);
3381 if (!cpumask_test_cpu(i, cpus))
3382 continue;
3384 rq = cpu_rq(i);
3385 wl = weighted_cpuload(i);
3388 * When comparing with imbalance, use weighted_cpuload()
3389 * which is not scaled with the cpu power.
3391 if (capacity && rq->nr_running == 1 && wl > imbalance)
3392 continue;
3395 * For the load comparisons with the other cpu's, consider
3396 * the weighted_cpuload() scaled with the cpu power, so that
3397 * the load can be moved away from the cpu that is potentially
3398 * running at a lower capacity.
3400 wl = (wl * SCHED_POWER_SCALE) / power;
3402 if (wl > max_load) {
3403 max_load = wl;
3404 busiest = rq;
3408 return busiest;
3412 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3413 * so long as it is large enough.
3415 #define MAX_PINNED_INTERVAL 512
3417 /* Working cpumask for load_balance and load_balance_newidle. */
3418 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3420 static int need_active_balance(struct sched_domain *sd, int idle,
3421 int busiest_cpu, int this_cpu)
3423 if (idle == CPU_NEWLY_IDLE) {
3426 * ASYM_PACKING needs to force migrate tasks from busy but
3427 * higher numbered CPUs in order to pack all tasks in the
3428 * lowest numbered CPUs.
3430 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3431 return 1;
3434 * The only task running in a non-idle cpu can be moved to this
3435 * cpu in an attempt to completely freeup the other CPU
3436 * package.
3438 * The package power saving logic comes from
3439 * find_busiest_group(). If there are no imbalance, then
3440 * f_b_g() will return NULL. However when sched_mc={1,2} then
3441 * f_b_g() will select a group from which a running task may be
3442 * pulled to this cpu in order to make the other package idle.
3443 * If there is no opportunity to make a package idle and if
3444 * there are no imbalance, then f_b_g() will return NULL and no
3445 * action will be taken in load_balance_newidle().
3447 * Under normal task pull operation due to imbalance, there
3448 * will be more than one task in the source run queue and
3449 * move_tasks() will succeed. ld_moved will be true and this
3450 * active balance code will not be triggered.
3452 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3453 return 0;
3456 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3459 static int active_load_balance_cpu_stop(void *data);
3462 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3463 * tasks if there is an imbalance.
3465 static int load_balance(int this_cpu, struct rq *this_rq,
3466 struct sched_domain *sd, enum cpu_idle_type idle,
3467 int *balance)
3469 int ld_moved, all_pinned = 0, active_balance = 0;
3470 struct sched_group *group;
3471 unsigned long imbalance;
3472 struct rq *busiest;
3473 unsigned long flags;
3474 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3476 cpumask_copy(cpus, cpu_active_mask);
3478 schedstat_inc(sd, lb_count[idle]);
3480 redo:
3481 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3482 cpus, balance);
3484 if (*balance == 0)
3485 goto out_balanced;
3487 if (!group) {
3488 schedstat_inc(sd, lb_nobusyg[idle]);
3489 goto out_balanced;
3492 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3493 if (!busiest) {
3494 schedstat_inc(sd, lb_nobusyq[idle]);
3495 goto out_balanced;
3498 BUG_ON(busiest == this_rq);
3500 schedstat_add(sd, lb_imbalance[idle], imbalance);
3502 ld_moved = 0;
3503 if (busiest->nr_running > 1) {
3505 * Attempt to move tasks. If find_busiest_group has found
3506 * an imbalance but busiest->nr_running <= 1, the group is
3507 * still unbalanced. ld_moved simply stays zero, so it is
3508 * correctly treated as an imbalance.
3510 all_pinned = 1;
3511 local_irq_save(flags);
3512 double_rq_lock(this_rq, busiest);
3513 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3514 imbalance, sd, idle, &all_pinned);
3515 double_rq_unlock(this_rq, busiest);
3516 local_irq_restore(flags);
3519 * some other cpu did the load balance for us.
3521 if (ld_moved && this_cpu != smp_processor_id())
3522 resched_cpu(this_cpu);
3524 /* All tasks on this runqueue were pinned by CPU affinity */
3525 if (unlikely(all_pinned)) {
3526 cpumask_clear_cpu(cpu_of(busiest), cpus);
3527 if (!cpumask_empty(cpus))
3528 goto redo;
3529 goto out_balanced;
3533 if (!ld_moved) {
3534 schedstat_inc(sd, lb_failed[idle]);
3536 * Increment the failure counter only on periodic balance.
3537 * We do not want newidle balance, which can be very
3538 * frequent, pollute the failure counter causing
3539 * excessive cache_hot migrations and active balances.
3541 if (idle != CPU_NEWLY_IDLE)
3542 sd->nr_balance_failed++;
3544 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3545 raw_spin_lock_irqsave(&busiest->lock, flags);
3547 /* don't kick the active_load_balance_cpu_stop,
3548 * if the curr task on busiest cpu can't be
3549 * moved to this_cpu
3551 if (!cpumask_test_cpu(this_cpu,
3552 &busiest->curr->cpus_allowed)) {
3553 raw_spin_unlock_irqrestore(&busiest->lock,
3554 flags);
3555 all_pinned = 1;
3556 goto out_one_pinned;
3560 * ->active_balance synchronizes accesses to
3561 * ->active_balance_work. Once set, it's cleared
3562 * only after active load balance is finished.
3564 if (!busiest->active_balance) {
3565 busiest->active_balance = 1;
3566 busiest->push_cpu = this_cpu;
3567 active_balance = 1;
3569 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3571 if (active_balance)
3572 stop_one_cpu_nowait(cpu_of(busiest),
3573 active_load_balance_cpu_stop, busiest,
3574 &busiest->active_balance_work);
3577 * We've kicked active balancing, reset the failure
3578 * counter.
3580 sd->nr_balance_failed = sd->cache_nice_tries+1;
3582 } else
3583 sd->nr_balance_failed = 0;
3585 if (likely(!active_balance)) {
3586 /* We were unbalanced, so reset the balancing interval */
3587 sd->balance_interval = sd->min_interval;
3588 } else {
3590 * If we've begun active balancing, start to back off. This
3591 * case may not be covered by the all_pinned logic if there
3592 * is only 1 task on the busy runqueue (because we don't call
3593 * move_tasks).
3595 if (sd->balance_interval < sd->max_interval)
3596 sd->balance_interval *= 2;
3599 goto out;
3601 out_balanced:
3602 schedstat_inc(sd, lb_balanced[idle]);
3604 sd->nr_balance_failed = 0;
3606 out_one_pinned:
3607 /* tune up the balancing interval */
3608 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3609 (sd->balance_interval < sd->max_interval))
3610 sd->balance_interval *= 2;
3612 ld_moved = 0;
3613 out:
3614 return ld_moved;
3618 * idle_balance is called by schedule() if this_cpu is about to become
3619 * idle. Attempts to pull tasks from other CPUs.
3621 static void idle_balance(int this_cpu, struct rq *this_rq)
3623 struct sched_domain *sd;
3624 int pulled_task = 0;
3625 unsigned long next_balance = jiffies + HZ;
3627 this_rq->idle_stamp = this_rq->clock;
3629 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3630 return;
3633 * Drop the rq->lock, but keep IRQ/preempt disabled.
3635 raw_spin_unlock(&this_rq->lock);
3637 update_shares(this_cpu);
3638 rcu_read_lock();
3639 for_each_domain(this_cpu, sd) {
3640 unsigned long interval;
3641 int balance = 1;
3643 if (!(sd->flags & SD_LOAD_BALANCE))
3644 continue;
3646 if (sd->flags & SD_BALANCE_NEWIDLE) {
3647 /* If we've pulled tasks over stop searching: */
3648 pulled_task = load_balance(this_cpu, this_rq,
3649 sd, CPU_NEWLY_IDLE, &balance);
3652 interval = msecs_to_jiffies(sd->balance_interval);
3653 if (time_after(next_balance, sd->last_balance + interval))
3654 next_balance = sd->last_balance + interval;
3655 if (pulled_task) {
3656 this_rq->idle_stamp = 0;
3657 break;
3660 rcu_read_unlock();
3662 raw_spin_lock(&this_rq->lock);
3664 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3666 * We are going idle. next_balance may be set based on
3667 * a busy processor. So reset next_balance.
3669 this_rq->next_balance = next_balance;
3674 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3675 * running tasks off the busiest CPU onto idle CPUs. It requires at
3676 * least 1 task to be running on each physical CPU where possible, and
3677 * avoids physical / logical imbalances.
3679 static int active_load_balance_cpu_stop(void *data)
3681 struct rq *busiest_rq = data;
3682 int busiest_cpu = cpu_of(busiest_rq);
3683 int target_cpu = busiest_rq->push_cpu;
3684 struct rq *target_rq = cpu_rq(target_cpu);
3685 struct sched_domain *sd;
3687 raw_spin_lock_irq(&busiest_rq->lock);
3689 /* make sure the requested cpu hasn't gone down in the meantime */
3690 if (unlikely(busiest_cpu != smp_processor_id() ||
3691 !busiest_rq->active_balance))
3692 goto out_unlock;
3694 /* Is there any task to move? */
3695 if (busiest_rq->nr_running <= 1)
3696 goto out_unlock;
3699 * This condition is "impossible", if it occurs
3700 * we need to fix it. Originally reported by
3701 * Bjorn Helgaas on a 128-cpu setup.
3703 BUG_ON(busiest_rq == target_rq);
3705 /* move a task from busiest_rq to target_rq */
3706 double_lock_balance(busiest_rq, target_rq);
3708 /* Search for an sd spanning us and the target CPU. */
3709 rcu_read_lock();
3710 for_each_domain(target_cpu, sd) {
3711 if ((sd->flags & SD_LOAD_BALANCE) &&
3712 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3713 break;
3716 if (likely(sd)) {
3717 schedstat_inc(sd, alb_count);
3719 if (move_one_task(target_rq, target_cpu, busiest_rq,
3720 sd, CPU_IDLE))
3721 schedstat_inc(sd, alb_pushed);
3722 else
3723 schedstat_inc(sd, alb_failed);
3725 rcu_read_unlock();
3726 double_unlock_balance(busiest_rq, target_rq);
3727 out_unlock:
3728 busiest_rq->active_balance = 0;
3729 raw_spin_unlock_irq(&busiest_rq->lock);
3730 return 0;
3733 #ifdef CONFIG_NO_HZ
3735 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3737 static void trigger_sched_softirq(void *data)
3739 raise_softirq_irqoff(SCHED_SOFTIRQ);
3742 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3744 csd->func = trigger_sched_softirq;
3745 csd->info = NULL;
3746 csd->flags = 0;
3747 csd->priv = 0;
3751 * idle load balancing details
3752 * - One of the idle CPUs nominates itself as idle load_balancer, while
3753 * entering idle.
3754 * - This idle load balancer CPU will also go into tickless mode when
3755 * it is idle, just like all other idle CPUs
3756 * - When one of the busy CPUs notice that there may be an idle rebalancing
3757 * needed, they will kick the idle load balancer, which then does idle
3758 * load balancing for all the idle CPUs.
3760 static struct {
3761 atomic_t load_balancer;
3762 atomic_t first_pick_cpu;
3763 atomic_t second_pick_cpu;
3764 cpumask_var_t idle_cpus_mask;
3765 cpumask_var_t grp_idle_mask;
3766 unsigned long next_balance; /* in jiffy units */
3767 } nohz ____cacheline_aligned;
3769 int get_nohz_load_balancer(void)
3771 return atomic_read(&nohz.load_balancer);
3774 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3776 * lowest_flag_domain - Return lowest sched_domain containing flag.
3777 * @cpu: The cpu whose lowest level of sched domain is to
3778 * be returned.
3779 * @flag: The flag to check for the lowest sched_domain
3780 * for the given cpu.
3782 * Returns the lowest sched_domain of a cpu which contains the given flag.
3784 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3786 struct sched_domain *sd;
3788 for_each_domain(cpu, sd)
3789 if (sd->flags & flag)
3790 break;
3792 return sd;
3796 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3797 * @cpu: The cpu whose domains we're iterating over.
3798 * @sd: variable holding the value of the power_savings_sd
3799 * for cpu.
3800 * @flag: The flag to filter the sched_domains to be iterated.
3802 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3803 * set, starting from the lowest sched_domain to the highest.
3805 #define for_each_flag_domain(cpu, sd, flag) \
3806 for (sd = lowest_flag_domain(cpu, flag); \
3807 (sd && (sd->flags & flag)); sd = sd->parent)
3810 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3811 * @ilb_group: group to be checked for semi-idleness
3813 * Returns: 1 if the group is semi-idle. 0 otherwise.
3815 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3816 * and atleast one non-idle CPU. This helper function checks if the given
3817 * sched_group is semi-idle or not.
3819 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3821 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3822 sched_group_cpus(ilb_group));
3825 * A sched_group is semi-idle when it has atleast one busy cpu
3826 * and atleast one idle cpu.
3828 if (cpumask_empty(nohz.grp_idle_mask))
3829 return 0;
3831 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3832 return 0;
3834 return 1;
3837 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3838 * @cpu: The cpu which is nominating a new idle_load_balancer.
3840 * Returns: Returns the id of the idle load balancer if it exists,
3841 * Else, returns >= nr_cpu_ids.
3843 * This algorithm picks the idle load balancer such that it belongs to a
3844 * semi-idle powersavings sched_domain. The idea is to try and avoid
3845 * completely idle packages/cores just for the purpose of idle load balancing
3846 * when there are other idle cpu's which are better suited for that job.
3848 static int find_new_ilb(int cpu)
3850 struct sched_domain *sd;
3851 struct sched_group *ilb_group;
3852 int ilb = nr_cpu_ids;
3855 * Have idle load balancer selection from semi-idle packages only
3856 * when power-aware load balancing is enabled
3858 if (!(sched_smt_power_savings || sched_mc_power_savings))
3859 goto out_done;
3862 * Optimize for the case when we have no idle CPUs or only one
3863 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3865 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3866 goto out_done;
3868 rcu_read_lock();
3869 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3870 ilb_group = sd->groups;
3872 do {
3873 if (is_semi_idle_group(ilb_group)) {
3874 ilb = cpumask_first(nohz.grp_idle_mask);
3875 goto unlock;
3878 ilb_group = ilb_group->next;
3880 } while (ilb_group != sd->groups);
3882 unlock:
3883 rcu_read_unlock();
3885 out_done:
3886 return ilb;
3888 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3889 static inline int find_new_ilb(int call_cpu)
3891 return nr_cpu_ids;
3893 #endif
3896 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3897 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3898 * CPU (if there is one).
3900 static void nohz_balancer_kick(int cpu)
3902 int ilb_cpu;
3904 nohz.next_balance++;
3906 ilb_cpu = get_nohz_load_balancer();
3908 if (ilb_cpu >= nr_cpu_ids) {
3909 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3910 if (ilb_cpu >= nr_cpu_ids)
3911 return;
3914 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3915 struct call_single_data *cp;
3917 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3918 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3919 __smp_call_function_single(ilb_cpu, cp, 0);
3921 return;
3925 * This routine will try to nominate the ilb (idle load balancing)
3926 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3927 * load balancing on behalf of all those cpus.
3929 * When the ilb owner becomes busy, we will not have new ilb owner until some
3930 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3931 * idle load balancing by kicking one of the idle CPUs.
3933 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3934 * ilb owner CPU in future (when there is a need for idle load balancing on
3935 * behalf of all idle CPUs).
3937 void select_nohz_load_balancer(int stop_tick)
3939 int cpu = smp_processor_id();
3941 if (stop_tick) {
3942 if (!cpu_active(cpu)) {
3943 if (atomic_read(&nohz.load_balancer) != cpu)
3944 return;
3947 * If we are going offline and still the leader,
3948 * give up!
3950 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3951 nr_cpu_ids) != cpu)
3952 BUG();
3954 return;
3957 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3959 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3960 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3961 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3962 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3964 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3965 int new_ilb;
3967 /* make me the ilb owner */
3968 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3969 cpu) != nr_cpu_ids)
3970 return;
3973 * Check to see if there is a more power-efficient
3974 * ilb.
3976 new_ilb = find_new_ilb(cpu);
3977 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3978 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3979 resched_cpu(new_ilb);
3980 return;
3982 return;
3984 } else {
3985 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3986 return;
3988 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3990 if (atomic_read(&nohz.load_balancer) == cpu)
3991 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3992 nr_cpu_ids) != cpu)
3993 BUG();
3995 return;
3997 #endif
3999 static DEFINE_SPINLOCK(balancing);
4001 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4004 * Scale the max load_balance interval with the number of CPUs in the system.
4005 * This trades load-balance latency on larger machines for less cross talk.
4007 static void update_max_interval(void)
4009 max_load_balance_interval = HZ*num_online_cpus()/10;
4013 * It checks each scheduling domain to see if it is due to be balanced,
4014 * and initiates a balancing operation if so.
4016 * Balancing parameters are set up in arch_init_sched_domains.
4018 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4020 int balance = 1;
4021 struct rq *rq = cpu_rq(cpu);
4022 unsigned long interval;
4023 struct sched_domain *sd;
4024 /* Earliest time when we have to do rebalance again */
4025 unsigned long next_balance = jiffies + 60*HZ;
4026 int update_next_balance = 0;
4027 int need_serialize;
4029 update_shares(cpu);
4031 rcu_read_lock();
4032 for_each_domain(cpu, sd) {
4033 if (!(sd->flags & SD_LOAD_BALANCE))
4034 continue;
4036 interval = sd->balance_interval;
4037 if (idle != CPU_IDLE)
4038 interval *= sd->busy_factor;
4040 /* scale ms to jiffies */
4041 interval = msecs_to_jiffies(interval);
4042 interval = clamp(interval, 1UL, max_load_balance_interval);
4044 need_serialize = sd->flags & SD_SERIALIZE;
4046 if (need_serialize) {
4047 if (!spin_trylock(&balancing))
4048 goto out;
4051 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4052 if (load_balance(cpu, rq, sd, idle, &balance)) {
4054 * We've pulled tasks over so either we're no
4055 * longer idle.
4057 idle = CPU_NOT_IDLE;
4059 sd->last_balance = jiffies;
4061 if (need_serialize)
4062 spin_unlock(&balancing);
4063 out:
4064 if (time_after(next_balance, sd->last_balance + interval)) {
4065 next_balance = sd->last_balance + interval;
4066 update_next_balance = 1;
4070 * Stop the load balance at this level. There is another
4071 * CPU in our sched group which is doing load balancing more
4072 * actively.
4074 if (!balance)
4075 break;
4077 rcu_read_unlock();
4080 * next_balance will be updated only when there is a need.
4081 * When the cpu is attached to null domain for ex, it will not be
4082 * updated.
4084 if (likely(update_next_balance))
4085 rq->next_balance = next_balance;
4088 #ifdef CONFIG_NO_HZ
4090 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4091 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4093 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4095 struct rq *this_rq = cpu_rq(this_cpu);
4096 struct rq *rq;
4097 int balance_cpu;
4099 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4100 return;
4102 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4103 if (balance_cpu == this_cpu)
4104 continue;
4107 * If this cpu gets work to do, stop the load balancing
4108 * work being done for other cpus. Next load
4109 * balancing owner will pick it up.
4111 if (need_resched()) {
4112 this_rq->nohz_balance_kick = 0;
4113 break;
4116 raw_spin_lock_irq(&this_rq->lock);
4117 update_rq_clock(this_rq);
4118 update_cpu_load(this_rq);
4119 raw_spin_unlock_irq(&this_rq->lock);
4121 rebalance_domains(balance_cpu, CPU_IDLE);
4123 rq = cpu_rq(balance_cpu);
4124 if (time_after(this_rq->next_balance, rq->next_balance))
4125 this_rq->next_balance = rq->next_balance;
4127 nohz.next_balance = this_rq->next_balance;
4128 this_rq->nohz_balance_kick = 0;
4132 * Current heuristic for kicking the idle load balancer
4133 * - first_pick_cpu is the one of the busy CPUs. It will kick
4134 * idle load balancer when it has more than one process active. This
4135 * eliminates the need for idle load balancing altogether when we have
4136 * only one running process in the system (common case).
4137 * - If there are more than one busy CPU, idle load balancer may have
4138 * to run for active_load_balance to happen (i.e., two busy CPUs are
4139 * SMT or core siblings and can run better if they move to different
4140 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4141 * which will kick idle load balancer as soon as it has any load.
4143 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4145 unsigned long now = jiffies;
4146 int ret;
4147 int first_pick_cpu, second_pick_cpu;
4149 if (time_before(now, nohz.next_balance))
4150 return 0;
4152 if (rq->idle_at_tick)
4153 return 0;
4155 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4156 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4158 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4159 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4160 return 0;
4162 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4163 if (ret == nr_cpu_ids || ret == cpu) {
4164 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4165 if (rq->nr_running > 1)
4166 return 1;
4167 } else {
4168 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4169 if (ret == nr_cpu_ids || ret == cpu) {
4170 if (rq->nr_running)
4171 return 1;
4174 return 0;
4176 #else
4177 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4178 #endif
4181 * run_rebalance_domains is triggered when needed from the scheduler tick.
4182 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4184 static void run_rebalance_domains(struct softirq_action *h)
4186 int this_cpu = smp_processor_id();
4187 struct rq *this_rq = cpu_rq(this_cpu);
4188 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4189 CPU_IDLE : CPU_NOT_IDLE;
4191 rebalance_domains(this_cpu, idle);
4194 * If this cpu has a pending nohz_balance_kick, then do the
4195 * balancing on behalf of the other idle cpus whose ticks are
4196 * stopped.
4198 nohz_idle_balance(this_cpu, idle);
4201 static inline int on_null_domain(int cpu)
4203 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4207 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4209 static inline void trigger_load_balance(struct rq *rq, int cpu)
4211 /* Don't need to rebalance while attached to NULL domain */
4212 if (time_after_eq(jiffies, rq->next_balance) &&
4213 likely(!on_null_domain(cpu)))
4214 raise_softirq(SCHED_SOFTIRQ);
4215 #ifdef CONFIG_NO_HZ
4216 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4217 nohz_balancer_kick(cpu);
4218 #endif
4221 static void rq_online_fair(struct rq *rq)
4223 update_sysctl();
4226 static void rq_offline_fair(struct rq *rq)
4228 update_sysctl();
4231 #else /* CONFIG_SMP */
4234 * on UP we do not need to balance between CPUs:
4236 static inline void idle_balance(int cpu, struct rq *rq)
4240 #endif /* CONFIG_SMP */
4243 * scheduler tick hitting a task of our scheduling class:
4245 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4247 struct cfs_rq *cfs_rq;
4248 struct sched_entity *se = &curr->se;
4250 for_each_sched_entity(se) {
4251 cfs_rq = cfs_rq_of(se);
4252 entity_tick(cfs_rq, se, queued);
4257 * called on fork with the child task as argument from the parent's context
4258 * - child not yet on the tasklist
4259 * - preemption disabled
4261 static void task_fork_fair(struct task_struct *p)
4263 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4264 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4265 int this_cpu = smp_processor_id();
4266 struct rq *rq = this_rq();
4267 unsigned long flags;
4269 raw_spin_lock_irqsave(&rq->lock, flags);
4271 update_rq_clock(rq);
4273 if (unlikely(task_cpu(p) != this_cpu)) {
4274 rcu_read_lock();
4275 __set_task_cpu(p, this_cpu);
4276 rcu_read_unlock();
4279 update_curr(cfs_rq);
4281 if (curr)
4282 se->vruntime = curr->vruntime;
4283 place_entity(cfs_rq, se, 1);
4285 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4287 * Upon rescheduling, sched_class::put_prev_task() will place
4288 * 'current' within the tree based on its new key value.
4290 swap(curr->vruntime, se->vruntime);
4291 resched_task(rq->curr);
4294 se->vruntime -= cfs_rq->min_vruntime;
4296 raw_spin_unlock_irqrestore(&rq->lock, flags);
4300 * Priority of the task has changed. Check to see if we preempt
4301 * the current task.
4303 static void
4304 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4306 if (!p->se.on_rq)
4307 return;
4310 * Reschedule if we are currently running on this runqueue and
4311 * our priority decreased, or if we are not currently running on
4312 * this runqueue and our priority is higher than the current's
4314 if (rq->curr == p) {
4315 if (p->prio > oldprio)
4316 resched_task(rq->curr);
4317 } else
4318 check_preempt_curr(rq, p, 0);
4321 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4323 struct sched_entity *se = &p->se;
4324 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4327 * Ensure the task's vruntime is normalized, so that when its
4328 * switched back to the fair class the enqueue_entity(.flags=0) will
4329 * do the right thing.
4331 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4332 * have normalized the vruntime, if it was !on_rq, then only when
4333 * the task is sleeping will it still have non-normalized vruntime.
4335 if (!se->on_rq && p->state != TASK_RUNNING) {
4337 * Fix up our vruntime so that the current sleep doesn't
4338 * cause 'unlimited' sleep bonus.
4340 place_entity(cfs_rq, se, 0);
4341 se->vruntime -= cfs_rq->min_vruntime;
4346 * We switched to the sched_fair class.
4348 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4350 if (!p->se.on_rq)
4351 return;
4354 * We were most likely switched from sched_rt, so
4355 * kick off the schedule if running, otherwise just see
4356 * if we can still preempt the current task.
4358 if (rq->curr == p)
4359 resched_task(rq->curr);
4360 else
4361 check_preempt_curr(rq, p, 0);
4364 /* Account for a task changing its policy or group.
4366 * This routine is mostly called to set cfs_rq->curr field when a task
4367 * migrates between groups/classes.
4369 static void set_curr_task_fair(struct rq *rq)
4371 struct sched_entity *se = &rq->curr->se;
4373 for_each_sched_entity(se) {
4374 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4376 set_next_entity(cfs_rq, se);
4377 /* ensure bandwidth has been allocated on our new cfs_rq */
4378 account_cfs_rq_runtime(cfs_rq, 0);
4382 #ifdef CONFIG_FAIR_GROUP_SCHED
4383 static void task_move_group_fair(struct task_struct *p, int on_rq)
4386 * If the task was not on the rq at the time of this cgroup movement
4387 * it must have been asleep, sleeping tasks keep their ->vruntime
4388 * absolute on their old rq until wakeup (needed for the fair sleeper
4389 * bonus in place_entity()).
4391 * If it was on the rq, we've just 'preempted' it, which does convert
4392 * ->vruntime to a relative base.
4394 * Make sure both cases convert their relative position when migrating
4395 * to another cgroup's rq. This does somewhat interfere with the
4396 * fair sleeper stuff for the first placement, but who cares.
4398 if (!on_rq)
4399 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4400 set_task_rq(p, task_cpu(p));
4401 if (!on_rq)
4402 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4404 #endif
4406 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4408 struct sched_entity *se = &task->se;
4409 unsigned int rr_interval = 0;
4412 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4413 * idle runqueue:
4415 if (rq->cfs.load.weight)
4416 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4418 return rr_interval;
4422 * All the scheduling class methods:
4424 static const struct sched_class fair_sched_class = {
4425 .next = &idle_sched_class,
4426 .enqueue_task = enqueue_task_fair,
4427 .dequeue_task = dequeue_task_fair,
4428 .yield_task = yield_task_fair,
4429 .yield_to_task = yield_to_task_fair,
4431 .check_preempt_curr = check_preempt_wakeup,
4433 .pick_next_task = pick_next_task_fair,
4434 .put_prev_task = put_prev_task_fair,
4436 #ifdef CONFIG_SMP
4437 .select_task_rq = select_task_rq_fair,
4439 .rq_online = rq_online_fair,
4440 .rq_offline = rq_offline_fair,
4442 .task_waking = task_waking_fair,
4443 #endif
4445 .set_curr_task = set_curr_task_fair,
4446 .task_tick = task_tick_fair,
4447 .task_fork = task_fork_fair,
4449 .prio_changed = prio_changed_fair,
4450 .switched_from = switched_from_fair,
4451 .switched_to = switched_to_fair,
4453 .get_rr_interval = get_rr_interval_fair,
4455 #ifdef CONFIG_FAIR_GROUP_SCHED
4456 .task_move_group = task_move_group_fair,
4457 #endif
4460 #ifdef CONFIG_SCHED_DEBUG
4461 static void print_cfs_stats(struct seq_file *m, int cpu)
4463 struct cfs_rq *cfs_rq;
4465 rcu_read_lock();
4466 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4467 print_cfs_rq(m, cpu, cfs_rq);
4468 rcu_read_unlock();
4470 #endif