4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_USER_SCHED
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity
**se
;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq
**cfs_rq
;
259 unsigned long shares
;
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity
**rt_se
;
264 struct rt_rq
**rt_rq
;
266 struct rt_bandwidth rt_bandwidth
;
270 struct list_head list
;
272 struct task_group
*parent
;
273 struct list_head siblings
;
274 struct list_head children
;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct
*user
)
282 user
->tg
->uid
= user
->uid
;
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group
;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq
, init_tg_cfs_rq
);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq
, init_rt_rq
);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock
);
313 static int root_task_group_empty(void)
315 return list_empty(&root_task_group
.children
);
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
335 #define MAX_SHARES (1UL << 18)
337 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
343 struct task_group init_task_group
;
345 /* return group to which a task belongs */
346 static inline struct task_group
*task_group(struct task_struct
*p
)
348 struct task_group
*tg
;
350 #ifdef CONFIG_USER_SCHED
352 tg
= __task_cred(p
)->user
->tg
;
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
356 struct task_group
, css
);
358 tg
= &init_task_group
;
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
368 p
->se
.parent
= task_group(p
)->se
[cpu
];
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
373 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
379 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
380 static inline struct task_group
*task_group(struct task_struct
*p
)
385 #endif /* CONFIG_GROUP_SCHED */
387 /* CFS-related fields in a runqueue */
389 struct load_weight load
;
390 unsigned long nr_running
;
395 struct rb_root tasks_timeline
;
396 struct rb_node
*rb_leftmost
;
398 struct list_head tasks
;
399 struct list_head
*balance_iterator
;
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
405 struct sched_entity
*curr
, *next
, *last
;
407 unsigned int nr_spread_over
;
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
420 struct list_head leaf_cfs_rq_list
;
421 struct task_group
*tg
; /* group that "owns" this runqueue */
425 * the part of load.weight contributed by tasks
427 unsigned long task_weight
;
430 * h_load = weight * f(tg)
432 * Where f(tg) is the recursive weight fraction assigned to
435 unsigned long h_load
;
438 * this cpu's part of tg->shares
440 unsigned long shares
;
443 * load.weight at the time we set shares
445 unsigned long rq_weight
;
450 /* Real-Time classes' related field in a runqueue: */
452 struct rt_prio_array active
;
453 unsigned long rt_nr_running
;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 int curr
; /* highest queued rt task prio */
458 int next
; /* next highest */
463 unsigned long rt_nr_migratory
;
464 unsigned long rt_nr_total
;
466 struct plist_head pushable_tasks
;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock
;
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted
;
478 struct list_head leaf_rt_rq_list
;
479 struct task_group
*tg
;
480 struct sched_rt_entity
*rt_se
;
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
497 cpumask_var_t online
;
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
503 cpumask_var_t rto_mask
;
506 struct cpupri cpupri
;
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
514 static struct root_domain def_root_domain
;
519 * This is the main, per-CPU runqueue data structure.
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
533 unsigned long nr_running
;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
537 unsigned long last_tick_seen
;
538 unsigned char in_nohz_recently
;
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load
;
542 unsigned long nr_load_updates
;
544 u64 nr_migrations_in
;
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list
;
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list
;
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
563 unsigned long nr_uninterruptible
;
565 struct task_struct
*curr
, *idle
;
566 unsigned long next_balance
;
567 struct mm_struct
*prev_mm
;
574 struct root_domain
*rd
;
575 struct sched_domain
*sd
;
577 unsigned char idle_at_tick
;
578 /* For active balancing */
582 /* cpu of this runqueue: */
586 unsigned long avg_load_per_task
;
588 struct task_struct
*migration_thread
;
589 struct list_head migration_queue
;
595 /* calc_load related fields */
596 unsigned long calc_load_update
;
597 long calc_load_active
;
599 #ifdef CONFIG_SCHED_HRTICK
601 int hrtick_csd_pending
;
602 struct call_single_data hrtick_csd
;
604 struct hrtimer hrtick_timer
;
607 #ifdef CONFIG_SCHEDSTATS
609 struct sched_info rq_sched_info
;
610 unsigned long long rq_cpu_time
;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613 /* sys_sched_yield() stats */
614 unsigned int yld_count
;
616 /* schedule() stats */
617 unsigned int sched_switch
;
618 unsigned int sched_count
;
619 unsigned int sched_goidle
;
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count
;
623 unsigned int ttwu_local
;
626 unsigned int bkl_count
;
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
633 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
635 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
638 static inline int cpu_of(struct rq
*rq
)
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663 inline void update_rq_clock(struct rq
*rq
)
665 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
674 # define const_debug static const
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
684 int runqueue_is_locked(int cpu
)
686 return spin_is_locked(&cpu_rq(cpu
)->lock
);
690 * Debugging: various feature bits
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
697 #include "sched_features.h"
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
705 const_debug
unsigned int sysctl_sched_features
=
706 #include "sched_features.h"
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
715 static __read_mostly
char *sched_feat_names
[] = {
716 #include "sched_features.h"
722 static int sched_feat_show(struct seq_file
*m
, void *v
)
726 for (i
= 0; sched_feat_names
[i
]; i
++) {
727 if (!(sysctl_sched_features
& (1UL << i
)))
729 seq_printf(m
, "%s ", sched_feat_names
[i
]);
737 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
738 size_t cnt
, loff_t
*ppos
)
748 if (copy_from_user(&buf
, ubuf
, cnt
))
753 if (strncmp(buf
, "NO_", 3) == 0) {
758 for (i
= 0; sched_feat_names
[i
]; i
++) {
759 int len
= strlen(sched_feat_names
[i
]);
761 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
763 sysctl_sched_features
&= ~(1UL << i
);
765 sysctl_sched_features
|= (1UL << i
);
770 if (!sched_feat_names
[i
])
778 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
780 return single_open(filp
, sched_feat_show
, NULL
);
783 static struct file_operations sched_feat_fops
= {
784 .open
= sched_feat_open
,
785 .write
= sched_feat_write
,
788 .release
= single_release
,
791 static __init
int sched_init_debug(void)
793 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
798 late_initcall(sched_init_debug
);
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
808 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
811 * ratelimit for updating the group shares.
814 unsigned int sysctl_sched_shares_ratelimit
= 250000;
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
821 unsigned int sysctl_sched_shares_thresh
= 4;
824 * period over which we average the RT time consumption, measured
829 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
832 * period over which we measure -rt task cpu usage in us.
835 unsigned int sysctl_sched_rt_period
= 1000000;
837 static __read_mostly
int scheduler_running
;
840 * part of the period that we allow rt tasks to run in us.
843 int sysctl_sched_rt_runtime
= 950000;
845 static inline u64
global_rt_period(void)
847 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
850 static inline u64
global_rt_runtime(void)
852 if (sysctl_sched_rt_runtime
< 0)
855 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
865 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
867 return rq
->curr
== p
;
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
873 return task_current(rq
, p
);
876 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
880 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq
->lock
.owner
= current
;
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
891 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
893 spin_unlock_irq(&rq
->lock
);
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
902 return task_current(rq
, p
);
906 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq
->lock
);
919 spin_unlock(&rq
->lock
);
923 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
944 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
948 struct rq
*rq
= task_rq(p
);
949 spin_lock(&rq
->lock
);
950 if (likely(rq
== task_rq(p
)))
952 spin_unlock(&rq
->lock
);
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
961 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
967 local_irq_save(*flags
);
969 spin_lock(&rq
->lock
);
970 if (likely(rq
== task_rq(p
)))
972 spin_unlock_irqrestore(&rq
->lock
, *flags
);
976 void task_rq_unlock_wait(struct task_struct
*p
)
978 struct rq
*rq
= task_rq(p
);
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq
->lock
);
984 static void __task_rq_unlock(struct rq
*rq
)
987 spin_unlock(&rq
->lock
);
990 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
993 spin_unlock_irqrestore(&rq
->lock
, *flags
);
997 * this_rq_lock - lock this runqueue and disable interrupts.
999 static struct rq
*this_rq_lock(void)
1000 __acquires(rq
->lock
)
1004 local_irq_disable();
1006 spin_lock(&rq
->lock
);
1011 #ifdef CONFIG_SCHED_HRTICK
1013 * Use HR-timers to deliver accurate preemption points.
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * - enabled by features
1026 * - hrtimer is actually high res
1028 static inline int hrtick_enabled(struct rq
*rq
)
1030 if (!sched_feat(HRTICK
))
1032 if (!cpu_active(cpu_of(rq
)))
1034 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1037 static void hrtick_clear(struct rq
*rq
)
1039 if (hrtimer_active(&rq
->hrtick_timer
))
1040 hrtimer_cancel(&rq
->hrtick_timer
);
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1047 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1049 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1051 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1053 spin_lock(&rq
->lock
);
1054 update_rq_clock(rq
);
1055 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1056 spin_unlock(&rq
->lock
);
1058 return HRTIMER_NORESTART
;
1063 * called from hardirq (IPI) context
1065 static void __hrtick_start(void *arg
)
1067 struct rq
*rq
= arg
;
1069 spin_lock(&rq
->lock
);
1070 hrtimer_restart(&rq
->hrtick_timer
);
1071 rq
->hrtick_csd_pending
= 0;
1072 spin_unlock(&rq
->lock
);
1076 * Called to set the hrtick timer state.
1078 * called with rq->lock held and irqs disabled
1080 static void hrtick_start(struct rq
*rq
, u64 delay
)
1082 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1083 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1085 hrtimer_set_expires(timer
, time
);
1087 if (rq
== this_rq()) {
1088 hrtimer_restart(timer
);
1089 } else if (!rq
->hrtick_csd_pending
) {
1090 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1091 rq
->hrtick_csd_pending
= 1;
1096 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1098 int cpu
= (int)(long)hcpu
;
1101 case CPU_UP_CANCELED
:
1102 case CPU_UP_CANCELED_FROZEN
:
1103 case CPU_DOWN_PREPARE
:
1104 case CPU_DOWN_PREPARE_FROZEN
:
1106 case CPU_DEAD_FROZEN
:
1107 hrtick_clear(cpu_rq(cpu
));
1114 static __init
void init_hrtick(void)
1116 hotcpu_notifier(hotplug_hrtick
, 0);
1120 * Called to set the hrtick timer state.
1122 * called with rq->lock held and irqs disabled
1124 static void hrtick_start(struct rq
*rq
, u64 delay
)
1126 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1127 HRTIMER_MODE_REL_PINNED
, 0);
1130 static inline void init_hrtick(void)
1133 #endif /* CONFIG_SMP */
1135 static void init_rq_hrtick(struct rq
*rq
)
1138 rq
->hrtick_csd_pending
= 0;
1140 rq
->hrtick_csd
.flags
= 0;
1141 rq
->hrtick_csd
.func
= __hrtick_start
;
1142 rq
->hrtick_csd
.info
= rq
;
1145 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1146 rq
->hrtick_timer
.function
= hrtick
;
1148 #else /* CONFIG_SCHED_HRTICK */
1149 static inline void hrtick_clear(struct rq
*rq
)
1153 static inline void init_rq_hrtick(struct rq
*rq
)
1157 static inline void init_hrtick(void)
1160 #endif /* CONFIG_SCHED_HRTICK */
1163 * resched_task - mark a task 'to be rescheduled now'.
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1171 #ifndef tsk_is_polling
1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175 static void resched_task(struct task_struct
*p
)
1179 assert_spin_locked(&task_rq(p
)->lock
);
1181 if (test_tsk_need_resched(p
))
1184 set_tsk_need_resched(p
);
1187 if (cpu
== smp_processor_id())
1190 /* NEED_RESCHED must be visible before we test polling */
1192 if (!tsk_is_polling(p
))
1193 smp_send_reschedule(cpu
);
1196 static void resched_cpu(int cpu
)
1198 struct rq
*rq
= cpu_rq(cpu
);
1199 unsigned long flags
;
1201 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1203 resched_task(cpu_curr(cpu
));
1204 spin_unlock_irqrestore(&rq
->lock
, flags
);
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1218 void wake_up_idle_cpu(int cpu
)
1220 struct rq
*rq
= cpu_rq(cpu
);
1222 if (cpu
== smp_processor_id())
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1232 if (rq
->curr
!= rq
->idle
)
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1240 set_tsk_need_resched(rq
->idle
);
1242 /* NEED_RESCHED must be visible before we test polling */
1244 if (!tsk_is_polling(rq
->idle
))
1245 smp_send_reschedule(cpu
);
1247 #endif /* CONFIG_NO_HZ */
1249 static u64
sched_avg_period(void)
1251 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1254 static void sched_avg_update(struct rq
*rq
)
1256 s64 period
= sched_avg_period();
1258 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1259 rq
->age_stamp
+= period
;
1264 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1266 rq
->rt_avg
+= rt_delta
;
1267 sched_avg_update(rq
);
1270 #else /* !CONFIG_SMP */
1271 static void resched_task(struct task_struct
*p
)
1273 assert_spin_locked(&task_rq(p
)->lock
);
1274 set_tsk_need_resched(p
);
1277 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1280 #endif /* CONFIG_SMP */
1282 #if BITS_PER_LONG == 32
1283 # define WMULT_CONST (~0UL)
1285 # define WMULT_CONST (1UL << 32)
1288 #define WMULT_SHIFT 32
1291 * Shift right and round:
1293 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1296 * delta *= weight / lw
1298 static unsigned long
1299 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1300 struct load_weight
*lw
)
1304 if (!lw
->inv_weight
) {
1305 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1308 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1312 tmp
= (u64
)delta_exec
* weight
;
1314 * Check whether we'd overflow the 64-bit multiplication:
1316 if (unlikely(tmp
> WMULT_CONST
))
1317 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1320 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1322 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1325 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1331 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1342 * scaled version of the new time slice allocation that they receive on time
1346 #define WEIGHT_IDLEPRIO 3
1347 #define WMULT_IDLEPRIO 1431655765
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
1361 static const int prio_to_weight
[40] = {
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1379 static const u32 prio_to_wmult
[40] = {
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1390 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1397 struct rq_iterator
{
1399 struct task_struct
*(*start
)(void *);
1400 struct task_struct
*(*next
)(void *);
1404 static unsigned long
1405 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1406 unsigned long max_load_move
, struct sched_domain
*sd
,
1407 enum cpu_idle_type idle
, int *all_pinned
,
1408 int *this_best_prio
, struct rq_iterator
*iterator
);
1411 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1412 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1413 struct rq_iterator
*iterator
);
1416 /* Time spent by the tasks of the cpu accounting group executing in ... */
1417 enum cpuacct_stat_index
{
1418 CPUACCT_STAT_USER
, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1421 CPUACCT_STAT_NSTATS
,
1424 #ifdef CONFIG_CGROUP_CPUACCT
1425 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1426 static void cpuacct_update_stats(struct task_struct
*tsk
,
1427 enum cpuacct_stat_index idx
, cputime_t val
);
1429 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1430 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1431 enum cpuacct_stat_index idx
, cputime_t val
) {}
1434 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1436 update_load_add(&rq
->load
, load
);
1439 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1441 update_load_sub(&rq
->load
, load
);
1444 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1445 typedef int (*tg_visitor
)(struct task_group
*, void *);
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1451 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1453 struct task_group
*parent
, *child
;
1457 parent
= &root_task_group
;
1459 ret
= (*down
)(parent
, data
);
1462 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1469 ret
= (*up
)(parent
, data
);
1474 parent
= parent
->parent
;
1483 static int tg_nop(struct task_group
*tg
, void *data
)
1490 /* Used instead of source_load when we know the type == 0 */
1491 static unsigned long weighted_cpuload(const int cpu
)
1493 return cpu_rq(cpu
)->load
.weight
;
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1503 static unsigned long source_load(int cpu
, int type
)
1505 struct rq
*rq
= cpu_rq(cpu
);
1506 unsigned long total
= weighted_cpuload(cpu
);
1508 if (type
== 0 || !sched_feat(LB_BIAS
))
1511 return min(rq
->cpu_load
[type
-1], total
);
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1518 static unsigned long target_load(int cpu
, int type
)
1520 struct rq
*rq
= cpu_rq(cpu
);
1521 unsigned long total
= weighted_cpuload(cpu
);
1523 if (type
== 0 || !sched_feat(LB_BIAS
))
1526 return max(rq
->cpu_load
[type
-1], total
);
1529 static struct sched_group
*group_of(int cpu
)
1531 struct sched_domain
*sd
= rcu_dereference(cpu_rq(cpu
)->sd
);
1539 static unsigned long power_of(int cpu
)
1541 struct sched_group
*group
= group_of(cpu
);
1544 return SCHED_LOAD_SCALE
;
1546 return group
->cpu_power
;
1549 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1551 static unsigned long cpu_avg_load_per_task(int cpu
)
1553 struct rq
*rq
= cpu_rq(cpu
);
1554 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1557 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1559 rq
->avg_load_per_task
= 0;
1561 return rq
->avg_load_per_task
;
1564 #ifdef CONFIG_FAIR_GROUP_SCHED
1566 struct update_shares_data
{
1567 unsigned long rq_weight
[NR_CPUS
];
1570 static DEFINE_PER_CPU(struct update_shares_data
, update_shares_data
);
1572 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1575 * Calculate and set the cpu's group shares.
1577 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1578 unsigned long sd_shares
,
1579 unsigned long sd_rq_weight
,
1580 struct update_shares_data
*usd
)
1582 unsigned long shares
, rq_weight
;
1585 rq_weight
= usd
->rq_weight
[cpu
];
1588 rq_weight
= NICE_0_LOAD
;
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
1596 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1597 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1599 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1600 sysctl_sched_shares_thresh
) {
1601 struct rq
*rq
= cpu_rq(cpu
);
1602 unsigned long flags
;
1604 spin_lock_irqsave(&rq
->lock
, flags
);
1605 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1606 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1607 __set_se_shares(tg
->se
[cpu
], shares
);
1608 spin_unlock_irqrestore(&rq
->lock
, flags
);
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
1617 static int tg_shares_up(struct task_group
*tg
, void *data
)
1619 unsigned long weight
, rq_weight
= 0, shares
= 0;
1620 struct update_shares_data
*usd
;
1621 struct sched_domain
*sd
= data
;
1622 unsigned long flags
;
1628 local_irq_save(flags
);
1629 usd
= &__get_cpu_var(update_shares_data
);
1631 for_each_cpu(i
, sched_domain_span(sd
)) {
1632 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1633 usd
->rq_weight
[i
] = weight
;
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1641 weight
= NICE_0_LOAD
;
1643 rq_weight
+= weight
;
1644 shares
+= tg
->cfs_rq
[i
]->shares
;
1647 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1648 shares
= tg
->shares
;
1650 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1651 shares
= tg
->shares
;
1653 for_each_cpu(i
, sched_domain_span(sd
))
1654 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd
);
1656 local_irq_restore(flags
);
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
1666 static int tg_load_down(struct task_group
*tg
, void *data
)
1669 long cpu
= (long)data
;
1672 load
= cpu_rq(cpu
)->load
.weight
;
1674 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1675 load
*= tg
->cfs_rq
[cpu
]->shares
;
1676 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1679 tg
->cfs_rq
[cpu
]->h_load
= load
;
1684 static void update_shares(struct sched_domain
*sd
)
1689 if (root_task_group_empty())
1692 now
= cpu_clock(raw_smp_processor_id());
1693 elapsed
= now
- sd
->last_update
;
1695 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1696 sd
->last_update
= now
;
1697 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1701 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1703 if (root_task_group_empty())
1706 spin_unlock(&rq
->lock
);
1708 spin_lock(&rq
->lock
);
1711 static void update_h_load(long cpu
)
1713 if (root_task_group_empty())
1716 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1721 static inline void update_shares(struct sched_domain
*sd
)
1725 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1731 #ifdef CONFIG_PREEMPT
1733 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
1743 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1744 __releases(this_rq
->lock
)
1745 __acquires(busiest
->lock
)
1746 __acquires(this_rq
->lock
)
1748 spin_unlock(&this_rq
->lock
);
1749 double_rq_lock(this_rq
, busiest
);
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1762 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1763 __releases(this_rq
->lock
)
1764 __acquires(busiest
->lock
)
1765 __acquires(this_rq
->lock
)
1769 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1770 if (busiest
< this_rq
) {
1771 spin_unlock(&this_rq
->lock
);
1772 spin_lock(&busiest
->lock
);
1773 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1776 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1781 #endif /* CONFIG_PREEMPT */
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq
->lock
);
1794 return _double_lock_balance(this_rq
, busiest
);
1797 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1798 __releases(busiest
->lock
)
1800 spin_unlock(&busiest
->lock
);
1801 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1805 #ifdef CONFIG_FAIR_GROUP_SCHED
1806 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1809 cfs_rq
->shares
= shares
;
1814 static void calc_load_account_active(struct rq
*this_rq
);
1816 #include "sched_stats.h"
1817 #include "sched_idletask.c"
1818 #include "sched_fair.c"
1819 #include "sched_rt.c"
1820 #ifdef CONFIG_SCHED_DEBUG
1821 # include "sched_debug.c"
1824 #define sched_class_highest (&rt_sched_class)
1825 #define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
1828 static void inc_nr_running(struct rq
*rq
)
1833 static void dec_nr_running(struct rq
*rq
)
1838 static void set_load_weight(struct task_struct
*p
)
1840 if (task_has_rt_policy(p
)) {
1841 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1842 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1847 * SCHED_IDLE tasks get minimal weight:
1849 if (p
->policy
== SCHED_IDLE
) {
1850 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1851 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1855 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1856 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1859 static void update_avg(u64
*avg
, u64 sample
)
1861 s64 diff
= sample
- *avg
;
1865 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1868 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1870 sched_info_queued(p
);
1871 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1875 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1878 if (p
->se
.last_wakeup
) {
1879 update_avg(&p
->se
.avg_overlap
,
1880 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1881 p
->se
.last_wakeup
= 0;
1883 update_avg(&p
->se
.avg_wakeup
,
1884 sysctl_sched_wakeup_granularity
);
1888 sched_info_dequeued(p
);
1889 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1894 * __normal_prio - return the priority that is based on the static prio
1896 static inline int __normal_prio(struct task_struct
*p
)
1898 return p
->static_prio
;
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1908 static inline int normal_prio(struct task_struct
*p
)
1912 if (task_has_rt_policy(p
))
1913 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1915 prio
= __normal_prio(p
);
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1926 static int effective_prio(struct task_struct
*p
)
1928 p
->normal_prio
= normal_prio(p
);
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1934 if (!rt_prio(p
->prio
))
1935 return p
->normal_prio
;
1940 * activate_task - move a task to the runqueue.
1942 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1944 if (task_contributes_to_load(p
))
1945 rq
->nr_uninterruptible
--;
1947 enqueue_task(rq
, p
, wakeup
);
1952 * deactivate_task - remove a task from the runqueue.
1954 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1956 if (task_contributes_to_load(p
))
1957 rq
->nr_uninterruptible
++;
1959 dequeue_task(rq
, p
, sleep
);
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1967 inline int task_curr(const struct task_struct
*p
)
1969 return cpu_curr(task_cpu(p
)) == p
;
1972 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1974 set_task_rq(p
, cpu
);
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1982 task_thread_info(p
)->cpu
= cpu
;
1986 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1987 const struct sched_class
*prev_class
,
1988 int oldprio
, int running
)
1990 if (prev_class
!= p
->sched_class
) {
1991 if (prev_class
->switched_from
)
1992 prev_class
->switched_from(rq
, p
, running
);
1993 p
->sched_class
->switched_to(rq
, p
, running
);
1995 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2000 * Is this task likely cache-hot:
2003 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2008 * Buddy candidates are cache hot:
2010 if (sched_feat(CACHE_HOT_BUDDY
) &&
2011 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2012 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2015 if (p
->sched_class
!= &fair_sched_class
)
2018 if (sysctl_sched_migration_cost
== -1)
2020 if (sysctl_sched_migration_cost
== 0)
2023 delta
= now
- p
->se
.exec_start
;
2025 return delta
< (s64
)sysctl_sched_migration_cost
;
2029 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2031 int old_cpu
= task_cpu(p
);
2032 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
2033 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
2034 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
2037 clock_offset
= old_rq
->clock
- new_rq
->clock
;
2039 trace_sched_migrate_task(p
, new_cpu
);
2041 #ifdef CONFIG_SCHEDSTATS
2042 if (p
->se
.wait_start
)
2043 p
->se
.wait_start
-= clock_offset
;
2044 if (p
->se
.sleep_start
)
2045 p
->se
.sleep_start
-= clock_offset
;
2046 if (p
->se
.block_start
)
2047 p
->se
.block_start
-= clock_offset
;
2049 if (old_cpu
!= new_cpu
) {
2050 p
->se
.nr_migrations
++;
2051 new_rq
->nr_migrations_in
++;
2052 #ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p
, old_rq
->clock
, NULL
))
2054 schedstat_inc(p
, se
.nr_forced2_migrations
);
2056 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS
,
2059 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
2060 new_cfsrq
->min_vruntime
;
2062 __set_task_cpu(p
, new_cpu
);
2065 struct migration_req
{
2066 struct list_head list
;
2068 struct task_struct
*task
;
2071 struct completion done
;
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2079 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2081 struct rq
*rq
= task_rq(p
);
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2087 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2088 set_task_cpu(p
, dest_cpu
);
2092 init_completion(&req
->done
);
2094 req
->dest_cpu
= dest_cpu
;
2095 list_add(&req
->list
, &rq
->migration_queue
);
2101 * wait_task_context_switch - wait for a thread to complete at least one
2104 * @p must not be current.
2106 void wait_task_context_switch(struct task_struct
*p
)
2108 unsigned long nvcsw
, nivcsw
, flags
;
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2123 rq
= task_rq_lock(p
, &flags
);
2124 running
= task_running(rq
, p
);
2125 task_rq_unlock(rq
, &flags
);
2127 if (likely(!running
))
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2134 if ((p
->nvcsw
- nvcsw
) > 1)
2136 if ((p
->nivcsw
- nivcsw
) > 1)
2144 * wait_task_inactive - wait for a thread to unschedule.
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2159 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2161 unsigned long flags
;
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2186 while (task_running(rq
, p
)) {
2187 if (match_state
&& unlikely(p
->state
!= match_state
))
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2197 rq
= task_rq_lock(p
, &flags
);
2198 trace_sched_wait_task(rq
, p
);
2199 running
= task_running(rq
, p
);
2200 on_rq
= p
->se
.on_rq
;
2202 if (!match_state
|| p
->state
== match_state
)
2203 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2204 task_rq_unlock(rq
, &flags
);
2207 * If it changed from the expected state, bail out now.
2209 if (unlikely(!ncsw
))
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2216 * Oops. Go back and try again..
2218 if (unlikely(running
)) {
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2228 * So if it was still runnable (but just not actively
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2232 if (unlikely(on_rq
)) {
2233 schedule_timeout_uninterruptible(1);
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2261 void kick_process(struct task_struct
*p
)
2267 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2268 smp_send_reschedule(cpu
);
2271 EXPORT_SYMBOL_GPL(kick_process
);
2272 #endif /* CONFIG_SMP */
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2283 void task_oncpu_function_call(struct task_struct
*p
,
2284 void (*func
) (void *info
), void *info
)
2291 smp_call_function_single(cpu
, func
, info
, 1);
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2307 * returns failure only if the task is already active.
2309 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2312 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2313 unsigned long flags
;
2316 if (!sched_feat(SYNC_WAKEUPS
))
2317 wake_flags
&= ~WF_SYNC
;
2319 this_cpu
= get_cpu();
2322 rq
= task_rq_lock(p
, &flags
);
2323 update_rq_clock(rq
);
2324 if (!(p
->state
& state
))
2334 if (unlikely(task_running(rq
, p
)))
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
2341 * First fix up the nr_uninterruptible count:
2343 if (task_contributes_to_load(p
))
2344 rq
->nr_uninterruptible
--;
2345 p
->state
= TASK_WAKING
;
2346 task_rq_unlock(rq
, &flags
);
2348 cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2349 if (cpu
!= orig_cpu
)
2350 set_task_cpu(p
, cpu
);
2352 rq
= task_rq_lock(p
, &flags
);
2353 WARN_ON(p
->state
!= TASK_WAKING
);
2356 #ifdef CONFIG_SCHEDSTATS
2357 schedstat_inc(rq
, ttwu_count
);
2358 if (cpu
== this_cpu
)
2359 schedstat_inc(rq
, ttwu_local
);
2361 struct sched_domain
*sd
;
2362 for_each_domain(this_cpu
, sd
) {
2363 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2364 schedstat_inc(sd
, ttwu_wake_remote
);
2369 #endif /* CONFIG_SCHEDSTATS */
2372 #endif /* CONFIG_SMP */
2373 schedstat_inc(p
, se
.nr_wakeups
);
2374 if (wake_flags
& WF_SYNC
)
2375 schedstat_inc(p
, se
.nr_wakeups_sync
);
2376 if (orig_cpu
!= cpu
)
2377 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2378 if (cpu
== this_cpu
)
2379 schedstat_inc(p
, se
.nr_wakeups_local
);
2381 schedstat_inc(p
, se
.nr_wakeups_remote
);
2382 activate_task(rq
, p
, 1);
2386 * Only attribute actual wakeups done by this task.
2388 if (!in_interrupt()) {
2389 struct sched_entity
*se
= ¤t
->se
;
2390 u64 sample
= se
->sum_exec_runtime
;
2392 if (se
->last_wakeup
)
2393 sample
-= se
->last_wakeup
;
2395 sample
-= se
->start_runtime
;
2396 update_avg(&se
->avg_wakeup
, sample
);
2398 se
->last_wakeup
= se
->sum_exec_runtime
;
2402 trace_sched_wakeup(rq
, p
, success
);
2403 check_preempt_curr(rq
, p
, wake_flags
);
2405 p
->state
= TASK_RUNNING
;
2407 if (p
->sched_class
->task_wake_up
)
2408 p
->sched_class
->task_wake_up(rq
, p
);
2411 task_rq_unlock(rq
, &flags
);
2418 * wake_up_process - Wake up a specific process
2419 * @p: The process to be woken up.
2421 * Attempt to wake up the nominated process and move it to the set of runnable
2422 * processes. Returns 1 if the process was woken up, 0 if it was already
2425 * It may be assumed that this function implies a write memory barrier before
2426 * changing the task state if and only if any tasks are woken up.
2428 int wake_up_process(struct task_struct
*p
)
2430 return try_to_wake_up(p
, TASK_ALL
, 0);
2432 EXPORT_SYMBOL(wake_up_process
);
2434 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2436 return try_to_wake_up(p
, state
, 0);
2440 * Perform scheduler related setup for a newly forked process p.
2441 * p is forked by current.
2443 * __sched_fork() is basic setup used by init_idle() too:
2445 static void __sched_fork(struct task_struct
*p
)
2447 p
->se
.exec_start
= 0;
2448 p
->se
.sum_exec_runtime
= 0;
2449 p
->se
.prev_sum_exec_runtime
= 0;
2450 p
->se
.nr_migrations
= 0;
2451 p
->se
.last_wakeup
= 0;
2452 p
->se
.avg_overlap
= 0;
2453 p
->se
.start_runtime
= 0;
2454 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2455 p
->se
.avg_running
= 0;
2457 #ifdef CONFIG_SCHEDSTATS
2458 p
->se
.wait_start
= 0;
2460 p
->se
.wait_count
= 0;
2463 p
->se
.sleep_start
= 0;
2464 p
->se
.sleep_max
= 0;
2465 p
->se
.sum_sleep_runtime
= 0;
2467 p
->se
.block_start
= 0;
2468 p
->se
.block_max
= 0;
2470 p
->se
.slice_max
= 0;
2472 p
->se
.nr_migrations_cold
= 0;
2473 p
->se
.nr_failed_migrations_affine
= 0;
2474 p
->se
.nr_failed_migrations_running
= 0;
2475 p
->se
.nr_failed_migrations_hot
= 0;
2476 p
->se
.nr_forced_migrations
= 0;
2477 p
->se
.nr_forced2_migrations
= 0;
2479 p
->se
.nr_wakeups
= 0;
2480 p
->se
.nr_wakeups_sync
= 0;
2481 p
->se
.nr_wakeups_migrate
= 0;
2482 p
->se
.nr_wakeups_local
= 0;
2483 p
->se
.nr_wakeups_remote
= 0;
2484 p
->se
.nr_wakeups_affine
= 0;
2485 p
->se
.nr_wakeups_affine_attempts
= 0;
2486 p
->se
.nr_wakeups_passive
= 0;
2487 p
->se
.nr_wakeups_idle
= 0;
2491 INIT_LIST_HEAD(&p
->rt
.run_list
);
2493 INIT_LIST_HEAD(&p
->se
.group_node
);
2495 #ifdef CONFIG_PREEMPT_NOTIFIERS
2496 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2500 * We mark the process as running here, but have not actually
2501 * inserted it onto the runqueue yet. This guarantees that
2502 * nobody will actually run it, and a signal or other external
2503 * event cannot wake it up and insert it on the runqueue either.
2505 p
->state
= TASK_RUNNING
;
2509 * fork()/clone()-time setup:
2511 void sched_fork(struct task_struct
*p
, int clone_flags
)
2513 int cpu
= get_cpu();
2518 * Make sure we do not leak PI boosting priority to the child.
2520 p
->prio
= current
->normal_prio
;
2523 * Revert to default priority/policy on fork if requested.
2525 if (unlikely(p
->sched_reset_on_fork
)) {
2526 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
)
2527 p
->policy
= SCHED_NORMAL
;
2529 if (p
->normal_prio
< DEFAULT_PRIO
)
2530 p
->prio
= DEFAULT_PRIO
;
2532 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2533 p
->static_prio
= NICE_TO_PRIO(0);
2538 * We don't need the reset flag anymore after the fork. It has
2539 * fulfilled its duty:
2541 p
->sched_reset_on_fork
= 0;
2544 if (!rt_prio(p
->prio
))
2545 p
->sched_class
= &fair_sched_class
;
2548 cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_FORK
, 0);
2550 set_task_cpu(p
, cpu
);
2552 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2553 if (likely(sched_info_on()))
2554 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2556 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2559 #ifdef CONFIG_PREEMPT
2560 /* Want to start with kernel preemption disabled. */
2561 task_thread_info(p
)->preempt_count
= 1;
2563 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2569 * wake_up_new_task - wake up a newly created task for the first time.
2571 * This function will do some initial scheduler statistics housekeeping
2572 * that must be done for every newly created context, then puts the task
2573 * on the runqueue and wakes it.
2575 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2577 unsigned long flags
;
2580 rq
= task_rq_lock(p
, &flags
);
2581 BUG_ON(p
->state
!= TASK_RUNNING
);
2582 update_rq_clock(rq
);
2584 p
->prio
= effective_prio(p
);
2586 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2587 activate_task(rq
, p
, 0);
2590 * Let the scheduling class do new task startup
2591 * management (if any):
2593 p
->sched_class
->task_new(rq
, p
);
2596 trace_sched_wakeup_new(rq
, p
, 1);
2597 check_preempt_curr(rq
, p
, WF_FORK
);
2599 if (p
->sched_class
->task_wake_up
)
2600 p
->sched_class
->task_wake_up(rq
, p
);
2602 task_rq_unlock(rq
, &flags
);
2605 #ifdef CONFIG_PREEMPT_NOTIFIERS
2608 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2609 * @notifier: notifier struct to register
2611 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2613 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2615 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2618 * preempt_notifier_unregister - no longer interested in preemption notifications
2619 * @notifier: notifier struct to unregister
2621 * This is safe to call from within a preemption notifier.
2623 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2625 hlist_del(¬ifier
->link
);
2627 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2629 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2631 struct preempt_notifier
*notifier
;
2632 struct hlist_node
*node
;
2634 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2635 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2639 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2640 struct task_struct
*next
)
2642 struct preempt_notifier
*notifier
;
2643 struct hlist_node
*node
;
2645 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2646 notifier
->ops
->sched_out(notifier
, next
);
2649 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2651 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2656 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2657 struct task_struct
*next
)
2661 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2664 * prepare_task_switch - prepare to switch tasks
2665 * @rq: the runqueue preparing to switch
2666 * @prev: the current task that is being switched out
2667 * @next: the task we are going to switch to.
2669 * This is called with the rq lock held and interrupts off. It must
2670 * be paired with a subsequent finish_task_switch after the context
2673 * prepare_task_switch sets up locking and calls architecture specific
2677 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2678 struct task_struct
*next
)
2680 fire_sched_out_preempt_notifiers(prev
, next
);
2681 prepare_lock_switch(rq
, next
);
2682 prepare_arch_switch(next
);
2686 * finish_task_switch - clean up after a task-switch
2687 * @rq: runqueue associated with task-switch
2688 * @prev: the thread we just switched away from.
2690 * finish_task_switch must be called after the context switch, paired
2691 * with a prepare_task_switch call before the context switch.
2692 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2693 * and do any other architecture-specific cleanup actions.
2695 * Note that we may have delayed dropping an mm in context_switch(). If
2696 * so, we finish that here outside of the runqueue lock. (Doing it
2697 * with the lock held can cause deadlocks; see schedule() for
2700 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2701 __releases(rq
->lock
)
2703 struct mm_struct
*mm
= rq
->prev_mm
;
2709 * A task struct has one reference for the use as "current".
2710 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2711 * schedule one last time. The schedule call will never return, and
2712 * the scheduled task must drop that reference.
2713 * The test for TASK_DEAD must occur while the runqueue locks are
2714 * still held, otherwise prev could be scheduled on another cpu, die
2715 * there before we look at prev->state, and then the reference would
2717 * Manfred Spraul <manfred@colorfullife.com>
2719 prev_state
= prev
->state
;
2720 finish_arch_switch(prev
);
2721 perf_counter_task_sched_in(current
, cpu_of(rq
));
2722 finish_lock_switch(rq
, prev
);
2724 fire_sched_in_preempt_notifiers(current
);
2727 if (unlikely(prev_state
== TASK_DEAD
)) {
2729 * Remove function-return probe instances associated with this
2730 * task and put them back on the free list.
2732 kprobe_flush_task(prev
);
2733 put_task_struct(prev
);
2739 /* assumes rq->lock is held */
2740 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2742 if (prev
->sched_class
->pre_schedule
)
2743 prev
->sched_class
->pre_schedule(rq
, prev
);
2746 /* rq->lock is NOT held, but preemption is disabled */
2747 static inline void post_schedule(struct rq
*rq
)
2749 if (rq
->post_schedule
) {
2750 unsigned long flags
;
2752 spin_lock_irqsave(&rq
->lock
, flags
);
2753 if (rq
->curr
->sched_class
->post_schedule
)
2754 rq
->curr
->sched_class
->post_schedule(rq
);
2755 spin_unlock_irqrestore(&rq
->lock
, flags
);
2757 rq
->post_schedule
= 0;
2763 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2767 static inline void post_schedule(struct rq
*rq
)
2774 * schedule_tail - first thing a freshly forked thread must call.
2775 * @prev: the thread we just switched away from.
2777 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2778 __releases(rq
->lock
)
2780 struct rq
*rq
= this_rq();
2782 finish_task_switch(rq
, prev
);
2785 * FIXME: do we need to worry about rq being invalidated by the
2790 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2791 /* In this case, finish_task_switch does not reenable preemption */
2794 if (current
->set_child_tid
)
2795 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2799 * context_switch - switch to the new MM and the new
2800 * thread's register state.
2803 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2804 struct task_struct
*next
)
2806 struct mm_struct
*mm
, *oldmm
;
2808 prepare_task_switch(rq
, prev
, next
);
2809 trace_sched_switch(rq
, prev
, next
);
2811 oldmm
= prev
->active_mm
;
2813 * For paravirt, this is coupled with an exit in switch_to to
2814 * combine the page table reload and the switch backend into
2817 arch_start_context_switch(prev
);
2819 if (unlikely(!mm
)) {
2820 next
->active_mm
= oldmm
;
2821 atomic_inc(&oldmm
->mm_count
);
2822 enter_lazy_tlb(oldmm
, next
);
2824 switch_mm(oldmm
, mm
, next
);
2826 if (unlikely(!prev
->mm
)) {
2827 prev
->active_mm
= NULL
;
2828 rq
->prev_mm
= oldmm
;
2831 * Since the runqueue lock will be released by the next
2832 * task (which is an invalid locking op but in the case
2833 * of the scheduler it's an obvious special-case), so we
2834 * do an early lockdep release here:
2836 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2837 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2840 /* Here we just switch the register state and the stack. */
2841 switch_to(prev
, next
, prev
);
2845 * this_rq must be evaluated again because prev may have moved
2846 * CPUs since it called schedule(), thus the 'rq' on its stack
2847 * frame will be invalid.
2849 finish_task_switch(this_rq(), prev
);
2853 * nr_running, nr_uninterruptible and nr_context_switches:
2855 * externally visible scheduler statistics: current number of runnable
2856 * threads, current number of uninterruptible-sleeping threads, total
2857 * number of context switches performed since bootup.
2859 unsigned long nr_running(void)
2861 unsigned long i
, sum
= 0;
2863 for_each_online_cpu(i
)
2864 sum
+= cpu_rq(i
)->nr_running
;
2869 unsigned long nr_uninterruptible(void)
2871 unsigned long i
, sum
= 0;
2873 for_each_possible_cpu(i
)
2874 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2877 * Since we read the counters lockless, it might be slightly
2878 * inaccurate. Do not allow it to go below zero though:
2880 if (unlikely((long)sum
< 0))
2886 unsigned long long nr_context_switches(void)
2889 unsigned long long sum
= 0;
2891 for_each_possible_cpu(i
)
2892 sum
+= cpu_rq(i
)->nr_switches
;
2897 unsigned long nr_iowait(void)
2899 unsigned long i
, sum
= 0;
2901 for_each_possible_cpu(i
)
2902 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2907 /* Variables and functions for calc_load */
2908 static atomic_long_t calc_load_tasks
;
2909 static unsigned long calc_load_update
;
2910 unsigned long avenrun
[3];
2911 EXPORT_SYMBOL(avenrun
);
2914 * get_avenrun - get the load average array
2915 * @loads: pointer to dest load array
2916 * @offset: offset to add
2917 * @shift: shift count to shift the result left
2919 * These values are estimates at best, so no need for locking.
2921 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2923 loads
[0] = (avenrun
[0] + offset
) << shift
;
2924 loads
[1] = (avenrun
[1] + offset
) << shift
;
2925 loads
[2] = (avenrun
[2] + offset
) << shift
;
2928 static unsigned long
2929 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2932 load
+= active
* (FIXED_1
- exp
);
2933 return load
>> FSHIFT
;
2937 * calc_load - update the avenrun load estimates 10 ticks after the
2938 * CPUs have updated calc_load_tasks.
2940 void calc_global_load(void)
2942 unsigned long upd
= calc_load_update
+ 10;
2945 if (time_before(jiffies
, upd
))
2948 active
= atomic_long_read(&calc_load_tasks
);
2949 active
= active
> 0 ? active
* FIXED_1
: 0;
2951 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2952 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2953 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2955 calc_load_update
+= LOAD_FREQ
;
2959 * Either called from update_cpu_load() or from a cpu going idle
2961 static void calc_load_account_active(struct rq
*this_rq
)
2963 long nr_active
, delta
;
2965 nr_active
= this_rq
->nr_running
;
2966 nr_active
+= (long) this_rq
->nr_uninterruptible
;
2968 if (nr_active
!= this_rq
->calc_load_active
) {
2969 delta
= nr_active
- this_rq
->calc_load_active
;
2970 this_rq
->calc_load_active
= nr_active
;
2971 atomic_long_add(delta
, &calc_load_tasks
);
2976 * Externally visible per-cpu scheduler statistics:
2977 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2979 u64
cpu_nr_migrations(int cpu
)
2981 return cpu_rq(cpu
)->nr_migrations_in
;
2985 * Update rq->cpu_load[] statistics. This function is usually called every
2986 * scheduler tick (TICK_NSEC).
2988 static void update_cpu_load(struct rq
*this_rq
)
2990 unsigned long this_load
= this_rq
->load
.weight
;
2993 this_rq
->nr_load_updates
++;
2995 /* Update our load: */
2996 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2997 unsigned long old_load
, new_load
;
2999 /* scale is effectively 1 << i now, and >> i divides by scale */
3001 old_load
= this_rq
->cpu_load
[i
];
3002 new_load
= this_load
;
3004 * Round up the averaging division if load is increasing. This
3005 * prevents us from getting stuck on 9 if the load is 10, for
3008 if (new_load
> old_load
)
3009 new_load
+= scale
-1;
3010 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3013 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3014 this_rq
->calc_load_update
+= LOAD_FREQ
;
3015 calc_load_account_active(this_rq
);
3022 * double_rq_lock - safely lock two runqueues
3024 * Note this does not disable interrupts like task_rq_lock,
3025 * you need to do so manually before calling.
3027 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3028 __acquires(rq1
->lock
)
3029 __acquires(rq2
->lock
)
3031 BUG_ON(!irqs_disabled());
3033 spin_lock(&rq1
->lock
);
3034 __acquire(rq2
->lock
); /* Fake it out ;) */
3037 spin_lock(&rq1
->lock
);
3038 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3040 spin_lock(&rq2
->lock
);
3041 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3044 update_rq_clock(rq1
);
3045 update_rq_clock(rq2
);
3049 * double_rq_unlock - safely unlock two runqueues
3051 * Note this does not restore interrupts like task_rq_unlock,
3052 * you need to do so manually after calling.
3054 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3055 __releases(rq1
->lock
)
3056 __releases(rq2
->lock
)
3058 spin_unlock(&rq1
->lock
);
3060 spin_unlock(&rq2
->lock
);
3062 __release(rq2
->lock
);
3066 * If dest_cpu is allowed for this process, migrate the task to it.
3067 * This is accomplished by forcing the cpu_allowed mask to only
3068 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3069 * the cpu_allowed mask is restored.
3071 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3073 struct migration_req req
;
3074 unsigned long flags
;
3077 rq
= task_rq_lock(p
, &flags
);
3078 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3079 || unlikely(!cpu_active(dest_cpu
)))
3082 /* force the process onto the specified CPU */
3083 if (migrate_task(p
, dest_cpu
, &req
)) {
3084 /* Need to wait for migration thread (might exit: take ref). */
3085 struct task_struct
*mt
= rq
->migration_thread
;
3087 get_task_struct(mt
);
3088 task_rq_unlock(rq
, &flags
);
3089 wake_up_process(mt
);
3090 put_task_struct(mt
);
3091 wait_for_completion(&req
.done
);
3096 task_rq_unlock(rq
, &flags
);
3100 * sched_exec - execve() is a valuable balancing opportunity, because at
3101 * this point the task has the smallest effective memory and cache footprint.
3103 void sched_exec(void)
3105 int new_cpu
, this_cpu
= get_cpu();
3106 new_cpu
= current
->sched_class
->select_task_rq(current
, SD_BALANCE_EXEC
, 0);
3108 if (new_cpu
!= this_cpu
)
3109 sched_migrate_task(current
, new_cpu
);
3113 * pull_task - move a task from a remote runqueue to the local runqueue.
3114 * Both runqueues must be locked.
3116 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3117 struct rq
*this_rq
, int this_cpu
)
3119 deactivate_task(src_rq
, p
, 0);
3120 set_task_cpu(p
, this_cpu
);
3121 activate_task(this_rq
, p
, 0);
3123 * Note that idle threads have a prio of MAX_PRIO, for this test
3124 * to be always true for them.
3126 check_preempt_curr(this_rq
, p
, 0);
3130 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3133 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3134 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3137 int tsk_cache_hot
= 0;
3139 * We do not migrate tasks that are:
3140 * 1) running (obviously), or
3141 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3142 * 3) are cache-hot on their current CPU.
3144 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3145 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3150 if (task_running(rq
, p
)) {
3151 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3156 * Aggressive migration if:
3157 * 1) task is cache cold, or
3158 * 2) too many balance attempts have failed.
3161 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3162 if (!tsk_cache_hot
||
3163 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3164 #ifdef CONFIG_SCHEDSTATS
3165 if (tsk_cache_hot
) {
3166 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3167 schedstat_inc(p
, se
.nr_forced_migrations
);
3173 if (tsk_cache_hot
) {
3174 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3180 static unsigned long
3181 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3182 unsigned long max_load_move
, struct sched_domain
*sd
,
3183 enum cpu_idle_type idle
, int *all_pinned
,
3184 int *this_best_prio
, struct rq_iterator
*iterator
)
3186 int loops
= 0, pulled
= 0, pinned
= 0;
3187 struct task_struct
*p
;
3188 long rem_load_move
= max_load_move
;
3190 if (max_load_move
== 0)
3196 * Start the load-balancing iterator:
3198 p
= iterator
->start(iterator
->arg
);
3200 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3203 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3204 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3205 p
= iterator
->next(iterator
->arg
);
3209 pull_task(busiest
, p
, this_rq
, this_cpu
);
3211 rem_load_move
-= p
->se
.load
.weight
;
3213 #ifdef CONFIG_PREEMPT
3215 * NEWIDLE balancing is a source of latency, so preemptible kernels
3216 * will stop after the first task is pulled to minimize the critical
3219 if (idle
== CPU_NEWLY_IDLE
)
3224 * We only want to steal up to the prescribed amount of weighted load.
3226 if (rem_load_move
> 0) {
3227 if (p
->prio
< *this_best_prio
)
3228 *this_best_prio
= p
->prio
;
3229 p
= iterator
->next(iterator
->arg
);
3234 * Right now, this is one of only two places pull_task() is called,
3235 * so we can safely collect pull_task() stats here rather than
3236 * inside pull_task().
3238 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3241 *all_pinned
= pinned
;
3243 return max_load_move
- rem_load_move
;
3247 * move_tasks tries to move up to max_load_move weighted load from busiest to
3248 * this_rq, as part of a balancing operation within domain "sd".
3249 * Returns 1 if successful and 0 otherwise.
3251 * Called with both runqueues locked.
3253 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3254 unsigned long max_load_move
,
3255 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3258 const struct sched_class
*class = sched_class_highest
;
3259 unsigned long total_load_moved
= 0;
3260 int this_best_prio
= this_rq
->curr
->prio
;
3264 class->load_balance(this_rq
, this_cpu
, busiest
,
3265 max_load_move
- total_load_moved
,
3266 sd
, idle
, all_pinned
, &this_best_prio
);
3267 class = class->next
;
3269 #ifdef CONFIG_PREEMPT
3271 * NEWIDLE balancing is a source of latency, so preemptible
3272 * kernels will stop after the first task is pulled to minimize
3273 * the critical section.
3275 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3278 } while (class && max_load_move
> total_load_moved
);
3280 return total_load_moved
> 0;
3284 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3285 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3286 struct rq_iterator
*iterator
)
3288 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3292 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3293 pull_task(busiest
, p
, this_rq
, this_cpu
);
3295 * Right now, this is only the second place pull_task()
3296 * is called, so we can safely collect pull_task()
3297 * stats here rather than inside pull_task().
3299 schedstat_inc(sd
, lb_gained
[idle
]);
3303 p
= iterator
->next(iterator
->arg
);
3310 * move_one_task tries to move exactly one task from busiest to this_rq, as
3311 * part of active balancing operations within "domain".
3312 * Returns 1 if successful and 0 otherwise.
3314 * Called with both runqueues locked.
3316 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3317 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3319 const struct sched_class
*class;
3321 for_each_class(class) {
3322 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3328 /********** Helpers for find_busiest_group ************************/
3330 * sd_lb_stats - Structure to store the statistics of a sched_domain
3331 * during load balancing.
3333 struct sd_lb_stats
{
3334 struct sched_group
*busiest
; /* Busiest group in this sd */
3335 struct sched_group
*this; /* Local group in this sd */
3336 unsigned long total_load
; /* Total load of all groups in sd */
3337 unsigned long total_pwr
; /* Total power of all groups in sd */
3338 unsigned long avg_load
; /* Average load across all groups in sd */
3340 /** Statistics of this group */
3341 unsigned long this_load
;
3342 unsigned long this_load_per_task
;
3343 unsigned long this_nr_running
;
3345 /* Statistics of the busiest group */
3346 unsigned long max_load
;
3347 unsigned long busiest_load_per_task
;
3348 unsigned long busiest_nr_running
;
3350 int group_imb
; /* Is there imbalance in this sd */
3351 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3352 int power_savings_balance
; /* Is powersave balance needed for this sd */
3353 struct sched_group
*group_min
; /* Least loaded group in sd */
3354 struct sched_group
*group_leader
; /* Group which relieves group_min */
3355 unsigned long min_load_per_task
; /* load_per_task in group_min */
3356 unsigned long leader_nr_running
; /* Nr running of group_leader */
3357 unsigned long min_nr_running
; /* Nr running of group_min */
3362 * sg_lb_stats - stats of a sched_group required for load_balancing
3364 struct sg_lb_stats
{
3365 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3366 unsigned long group_load
; /* Total load over the CPUs of the group */
3367 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3368 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3369 unsigned long group_capacity
;
3370 int group_imb
; /* Is there an imbalance in the group ? */
3374 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3375 * @group: The group whose first cpu is to be returned.
3377 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3379 return cpumask_first(sched_group_cpus(group
));
3383 * get_sd_load_idx - Obtain the load index for a given sched domain.
3384 * @sd: The sched_domain whose load_idx is to be obtained.
3385 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3387 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3388 enum cpu_idle_type idle
)
3394 load_idx
= sd
->busy_idx
;
3397 case CPU_NEWLY_IDLE
:
3398 load_idx
= sd
->newidle_idx
;
3401 load_idx
= sd
->idle_idx
;
3409 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3411 * init_sd_power_savings_stats - Initialize power savings statistics for
3412 * the given sched_domain, during load balancing.
3414 * @sd: Sched domain whose power-savings statistics are to be initialized.
3415 * @sds: Variable containing the statistics for sd.
3416 * @idle: Idle status of the CPU at which we're performing load-balancing.
3418 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3419 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3422 * Busy processors will not participate in power savings
3425 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3426 sds
->power_savings_balance
= 0;
3428 sds
->power_savings_balance
= 1;
3429 sds
->min_nr_running
= ULONG_MAX
;
3430 sds
->leader_nr_running
= 0;
3435 * update_sd_power_savings_stats - Update the power saving stats for a
3436 * sched_domain while performing load balancing.
3438 * @group: sched_group belonging to the sched_domain under consideration.
3439 * @sds: Variable containing the statistics of the sched_domain
3440 * @local_group: Does group contain the CPU for which we're performing
3442 * @sgs: Variable containing the statistics of the group.
3444 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3445 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3448 if (!sds
->power_savings_balance
)
3452 * If the local group is idle or completely loaded
3453 * no need to do power savings balance at this domain
3455 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3456 !sds
->this_nr_running
))
3457 sds
->power_savings_balance
= 0;
3460 * If a group is already running at full capacity or idle,
3461 * don't include that group in power savings calculations
3463 if (!sds
->power_savings_balance
||
3464 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3465 !sgs
->sum_nr_running
)
3469 * Calculate the group which has the least non-idle load.
3470 * This is the group from where we need to pick up the load
3473 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3474 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3475 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3476 sds
->group_min
= group
;
3477 sds
->min_nr_running
= sgs
->sum_nr_running
;
3478 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3479 sgs
->sum_nr_running
;
3483 * Calculate the group which is almost near its
3484 * capacity but still has some space to pick up some load
3485 * from other group and save more power
3487 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3490 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3491 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3492 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3493 sds
->group_leader
= group
;
3494 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3499 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3500 * @sds: Variable containing the statistics of the sched_domain
3501 * under consideration.
3502 * @this_cpu: Cpu at which we're currently performing load-balancing.
3503 * @imbalance: Variable to store the imbalance.
3506 * Check if we have potential to perform some power-savings balance.
3507 * If yes, set the busiest group to be the least loaded group in the
3508 * sched_domain, so that it's CPUs can be put to idle.
3510 * Returns 1 if there is potential to perform power-savings balance.
3513 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3514 int this_cpu
, unsigned long *imbalance
)
3516 if (!sds
->power_savings_balance
)
3519 if (sds
->this != sds
->group_leader
||
3520 sds
->group_leader
== sds
->group_min
)
3523 *imbalance
= sds
->min_load_per_task
;
3524 sds
->busiest
= sds
->group_min
;
3529 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3530 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3531 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3536 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3537 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3542 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3543 int this_cpu
, unsigned long *imbalance
)
3547 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3550 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3552 return SCHED_LOAD_SCALE
;
3555 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3557 return default_scale_freq_power(sd
, cpu
);
3560 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3562 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3563 unsigned long smt_gain
= sd
->smt_gain
;
3570 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3572 return default_scale_smt_power(sd
, cpu
);
3575 unsigned long scale_rt_power(int cpu
)
3577 struct rq
*rq
= cpu_rq(cpu
);
3578 u64 total
, available
;
3580 sched_avg_update(rq
);
3582 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3583 available
= total
- rq
->rt_avg
;
3585 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
3586 total
= SCHED_LOAD_SCALE
;
3588 total
>>= SCHED_LOAD_SHIFT
;
3590 return div_u64(available
, total
);
3593 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3595 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3596 unsigned long power
= SCHED_LOAD_SCALE
;
3597 struct sched_group
*sdg
= sd
->groups
;
3599 if (sched_feat(ARCH_POWER
))
3600 power
*= arch_scale_freq_power(sd
, cpu
);
3602 power
*= default_scale_freq_power(sd
, cpu
);
3604 power
>>= SCHED_LOAD_SHIFT
;
3606 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3607 if (sched_feat(ARCH_POWER
))
3608 power
*= arch_scale_smt_power(sd
, cpu
);
3610 power
*= default_scale_smt_power(sd
, cpu
);
3612 power
>>= SCHED_LOAD_SHIFT
;
3615 power
*= scale_rt_power(cpu
);
3616 power
>>= SCHED_LOAD_SHIFT
;
3621 sdg
->cpu_power
= power
;
3624 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3626 struct sched_domain
*child
= sd
->child
;
3627 struct sched_group
*group
, *sdg
= sd
->groups
;
3628 unsigned long power
;
3631 update_cpu_power(sd
, cpu
);
3637 group
= child
->groups
;
3639 power
+= group
->cpu_power
;
3640 group
= group
->next
;
3641 } while (group
!= child
->groups
);
3643 sdg
->cpu_power
= power
;
3647 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3648 * @group: sched_group whose statistics are to be updated.
3649 * @this_cpu: Cpu for which load balance is currently performed.
3650 * @idle: Idle status of this_cpu
3651 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3652 * @sd_idle: Idle status of the sched_domain containing group.
3653 * @local_group: Does group contain this_cpu.
3654 * @cpus: Set of cpus considered for load balancing.
3655 * @balance: Should we balance.
3656 * @sgs: variable to hold the statistics for this group.
3658 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3659 struct sched_group
*group
, int this_cpu
,
3660 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3661 int local_group
, const struct cpumask
*cpus
,
3662 int *balance
, struct sg_lb_stats
*sgs
)
3664 unsigned long load
, max_cpu_load
, min_cpu_load
;
3666 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3667 unsigned long sum_avg_load_per_task
;
3668 unsigned long avg_load_per_task
;
3671 balance_cpu
= group_first_cpu(group
);
3672 if (balance_cpu
== this_cpu
)
3673 update_group_power(sd
, this_cpu
);
3676 /* Tally up the load of all CPUs in the group */
3677 sum_avg_load_per_task
= avg_load_per_task
= 0;
3679 min_cpu_load
= ~0UL;
3681 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3682 struct rq
*rq
= cpu_rq(i
);
3684 if (*sd_idle
&& rq
->nr_running
)
3687 /* Bias balancing toward cpus of our domain */
3689 if (idle_cpu(i
) && !first_idle_cpu
) {
3694 load
= target_load(i
, load_idx
);
3696 load
= source_load(i
, load_idx
);
3697 if (load
> max_cpu_load
)
3698 max_cpu_load
= load
;
3699 if (min_cpu_load
> load
)
3700 min_cpu_load
= load
;
3703 sgs
->group_load
+= load
;
3704 sgs
->sum_nr_running
+= rq
->nr_running
;
3705 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3707 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3711 * First idle cpu or the first cpu(busiest) in this sched group
3712 * is eligible for doing load balancing at this and above
3713 * domains. In the newly idle case, we will allow all the cpu's
3714 * to do the newly idle load balance.
3716 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3717 balance_cpu
!= this_cpu
&& balance
) {
3722 /* Adjust by relative CPU power of the group */
3723 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
3727 * Consider the group unbalanced when the imbalance is larger
3728 * than the average weight of two tasks.
3730 * APZ: with cgroup the avg task weight can vary wildly and
3731 * might not be a suitable number - should we keep a
3732 * normalized nr_running number somewhere that negates
3735 avg_load_per_task
= (sum_avg_load_per_task
* SCHED_LOAD_SCALE
) /
3738 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3741 sgs
->group_capacity
=
3742 DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
3746 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3747 * @sd: sched_domain whose statistics are to be updated.
3748 * @this_cpu: Cpu for which load balance is currently performed.
3749 * @idle: Idle status of this_cpu
3750 * @sd_idle: Idle status of the sched_domain containing group.
3751 * @cpus: Set of cpus considered for load balancing.
3752 * @balance: Should we balance.
3753 * @sds: variable to hold the statistics for this sched_domain.
3755 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3756 enum cpu_idle_type idle
, int *sd_idle
,
3757 const struct cpumask
*cpus
, int *balance
,
3758 struct sd_lb_stats
*sds
)
3760 struct sched_domain
*child
= sd
->child
;
3761 struct sched_group
*group
= sd
->groups
;
3762 struct sg_lb_stats sgs
;
3763 int load_idx
, prefer_sibling
= 0;
3765 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3768 init_sd_power_savings_stats(sd
, sds
, idle
);
3769 load_idx
= get_sd_load_idx(sd
, idle
);
3774 local_group
= cpumask_test_cpu(this_cpu
,
3775 sched_group_cpus(group
));
3776 memset(&sgs
, 0, sizeof(sgs
));
3777 update_sg_lb_stats(sd
, group
, this_cpu
, idle
, load_idx
, sd_idle
,
3778 local_group
, cpus
, balance
, &sgs
);
3780 if (local_group
&& balance
&& !(*balance
))
3783 sds
->total_load
+= sgs
.group_load
;
3784 sds
->total_pwr
+= group
->cpu_power
;
3787 * In case the child domain prefers tasks go to siblings
3788 * first, lower the group capacity to one so that we'll try
3789 * and move all the excess tasks away.
3792 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
3795 sds
->this_load
= sgs
.avg_load
;
3797 sds
->this_nr_running
= sgs
.sum_nr_running
;
3798 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3799 } else if (sgs
.avg_load
> sds
->max_load
&&
3800 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3802 sds
->max_load
= sgs
.avg_load
;
3803 sds
->busiest
= group
;
3804 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3805 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3806 sds
->group_imb
= sgs
.group_imb
;
3809 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3810 group
= group
->next
;
3811 } while (group
!= sd
->groups
);
3815 * fix_small_imbalance - Calculate the minor imbalance that exists
3816 * amongst the groups of a sched_domain, during
3818 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3819 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3820 * @imbalance: Variable to store the imbalance.
3822 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3823 int this_cpu
, unsigned long *imbalance
)
3825 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3826 unsigned int imbn
= 2;
3828 if (sds
->this_nr_running
) {
3829 sds
->this_load_per_task
/= sds
->this_nr_running
;
3830 if (sds
->busiest_load_per_task
>
3831 sds
->this_load_per_task
)
3834 sds
->this_load_per_task
=
3835 cpu_avg_load_per_task(this_cpu
);
3837 if (sds
->max_load
- sds
->this_load
+ sds
->busiest_load_per_task
>=
3838 sds
->busiest_load_per_task
* imbn
) {
3839 *imbalance
= sds
->busiest_load_per_task
;
3844 * OK, we don't have enough imbalance to justify moving tasks,
3845 * however we may be able to increase total CPU power used by
3849 pwr_now
+= sds
->busiest
->cpu_power
*
3850 min(sds
->busiest_load_per_task
, sds
->max_load
);
3851 pwr_now
+= sds
->this->cpu_power
*
3852 min(sds
->this_load_per_task
, sds
->this_load
);
3853 pwr_now
/= SCHED_LOAD_SCALE
;
3855 /* Amount of load we'd subtract */
3856 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3857 sds
->busiest
->cpu_power
;
3858 if (sds
->max_load
> tmp
)
3859 pwr_move
+= sds
->busiest
->cpu_power
*
3860 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3862 /* Amount of load we'd add */
3863 if (sds
->max_load
* sds
->busiest
->cpu_power
<
3864 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3865 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
3866 sds
->this->cpu_power
;
3868 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3869 sds
->this->cpu_power
;
3870 pwr_move
+= sds
->this->cpu_power
*
3871 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3872 pwr_move
/= SCHED_LOAD_SCALE
;
3874 /* Move if we gain throughput */
3875 if (pwr_move
> pwr_now
)
3876 *imbalance
= sds
->busiest_load_per_task
;
3880 * calculate_imbalance - Calculate the amount of imbalance present within the
3881 * groups of a given sched_domain during load balance.
3882 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3883 * @this_cpu: Cpu for which currently load balance is being performed.
3884 * @imbalance: The variable to store the imbalance.
3886 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3887 unsigned long *imbalance
)
3889 unsigned long max_pull
;
3891 * In the presence of smp nice balancing, certain scenarios can have
3892 * max load less than avg load(as we skip the groups at or below
3893 * its cpu_power, while calculating max_load..)
3895 if (sds
->max_load
< sds
->avg_load
) {
3897 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3900 /* Don't want to pull so many tasks that a group would go idle */
3901 max_pull
= min(sds
->max_load
- sds
->avg_load
,
3902 sds
->max_load
- sds
->busiest_load_per_task
);
3904 /* How much load to actually move to equalise the imbalance */
3905 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
3906 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
3910 * if *imbalance is less than the average load per runnable task
3911 * there is no gaurantee that any tasks will be moved so we'll have
3912 * a think about bumping its value to force at least one task to be
3915 if (*imbalance
< sds
->busiest_load_per_task
)
3916 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3919 /******* find_busiest_group() helpers end here *********************/
3922 * find_busiest_group - Returns the busiest group within the sched_domain
3923 * if there is an imbalance. If there isn't an imbalance, and
3924 * the user has opted for power-savings, it returns a group whose
3925 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3926 * such a group exists.
3928 * Also calculates the amount of weighted load which should be moved
3929 * to restore balance.
3931 * @sd: The sched_domain whose busiest group is to be returned.
3932 * @this_cpu: The cpu for which load balancing is currently being performed.
3933 * @imbalance: Variable which stores amount of weighted load which should
3934 * be moved to restore balance/put a group to idle.
3935 * @idle: The idle status of this_cpu.
3936 * @sd_idle: The idleness of sd
3937 * @cpus: The set of CPUs under consideration for load-balancing.
3938 * @balance: Pointer to a variable indicating if this_cpu
3939 * is the appropriate cpu to perform load balancing at this_level.
3941 * Returns: - the busiest group if imbalance exists.
3942 * - If no imbalance and user has opted for power-savings balance,
3943 * return the least loaded group whose CPUs can be
3944 * put to idle by rebalancing its tasks onto our group.
3946 static struct sched_group
*
3947 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3948 unsigned long *imbalance
, enum cpu_idle_type idle
,
3949 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3951 struct sd_lb_stats sds
;
3953 memset(&sds
, 0, sizeof(sds
));
3956 * Compute the various statistics relavent for load balancing at
3959 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
3962 /* Cases where imbalance does not exist from POV of this_cpu */
3963 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3965 * 2) There is no busy sibling group to pull from.
3966 * 3) This group is the busiest group.
3967 * 4) This group is more busy than the avg busieness at this
3969 * 5) The imbalance is within the specified limit.
3970 * 6) Any rebalance would lead to ping-pong
3972 if (balance
&& !(*balance
))
3975 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3978 if (sds
.this_load
>= sds
.max_load
)
3981 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3983 if (sds
.this_load
>= sds
.avg_load
)
3986 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3989 sds
.busiest_load_per_task
/= sds
.busiest_nr_running
;
3991 sds
.busiest_load_per_task
=
3992 min(sds
.busiest_load_per_task
, sds
.avg_load
);
3995 * We're trying to get all the cpus to the average_load, so we don't
3996 * want to push ourselves above the average load, nor do we wish to
3997 * reduce the max loaded cpu below the average load, as either of these
3998 * actions would just result in more rebalancing later, and ping-pong
3999 * tasks around. Thus we look for the minimum possible imbalance.
4000 * Negative imbalances (*we* are more loaded than anyone else) will
4001 * be counted as no imbalance for these purposes -- we can't fix that
4002 * by pulling tasks to us. Be careful of negative numbers as they'll
4003 * appear as very large values with unsigned longs.
4005 if (sds
.max_load
<= sds
.busiest_load_per_task
)
4008 /* Looks like there is an imbalance. Compute it */
4009 calculate_imbalance(&sds
, this_cpu
, imbalance
);
4014 * There is no obvious imbalance. But check if we can do some balancing
4017 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
4025 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4028 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
4029 unsigned long imbalance
, const struct cpumask
*cpus
)
4031 struct rq
*busiest
= NULL
, *rq
;
4032 unsigned long max_load
= 0;
4035 for_each_cpu(i
, sched_group_cpus(group
)) {
4036 unsigned long power
= power_of(i
);
4037 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
4040 if (!cpumask_test_cpu(i
, cpus
))
4044 wl
= weighted_cpuload(i
) * SCHED_LOAD_SCALE
;
4047 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4050 if (wl
> max_load
) {
4060 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4061 * so long as it is large enough.
4063 #define MAX_PINNED_INTERVAL 512
4065 /* Working cpumask for load_balance and load_balance_newidle. */
4066 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4069 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4070 * tasks if there is an imbalance.
4072 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4073 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4076 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4077 struct sched_group
*group
;
4078 unsigned long imbalance
;
4080 unsigned long flags
;
4081 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4083 cpumask_setall(cpus
);
4086 * When power savings policy is enabled for the parent domain, idle
4087 * sibling can pick up load irrespective of busy siblings. In this case,
4088 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4089 * portraying it as CPU_NOT_IDLE.
4091 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4092 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4095 schedstat_inc(sd
, lb_count
[idle
]);
4099 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4106 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4110 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4112 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4116 BUG_ON(busiest
== this_rq
);
4118 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4121 if (busiest
->nr_running
> 1) {
4123 * Attempt to move tasks. If find_busiest_group has found
4124 * an imbalance but busiest->nr_running <= 1, the group is
4125 * still unbalanced. ld_moved simply stays zero, so it is
4126 * correctly treated as an imbalance.
4128 local_irq_save(flags
);
4129 double_rq_lock(this_rq
, busiest
);
4130 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4131 imbalance
, sd
, idle
, &all_pinned
);
4132 double_rq_unlock(this_rq
, busiest
);
4133 local_irq_restore(flags
);
4136 * some other cpu did the load balance for us.
4138 if (ld_moved
&& this_cpu
!= smp_processor_id())
4139 resched_cpu(this_cpu
);
4141 /* All tasks on this runqueue were pinned by CPU affinity */
4142 if (unlikely(all_pinned
)) {
4143 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4144 if (!cpumask_empty(cpus
))
4151 schedstat_inc(sd
, lb_failed
[idle
]);
4152 sd
->nr_balance_failed
++;
4154 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4156 spin_lock_irqsave(&busiest
->lock
, flags
);
4158 /* don't kick the migration_thread, if the curr
4159 * task on busiest cpu can't be moved to this_cpu
4161 if (!cpumask_test_cpu(this_cpu
,
4162 &busiest
->curr
->cpus_allowed
)) {
4163 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4165 goto out_one_pinned
;
4168 if (!busiest
->active_balance
) {
4169 busiest
->active_balance
= 1;
4170 busiest
->push_cpu
= this_cpu
;
4173 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4175 wake_up_process(busiest
->migration_thread
);
4178 * We've kicked active balancing, reset the failure
4181 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4184 sd
->nr_balance_failed
= 0;
4186 if (likely(!active_balance
)) {
4187 /* We were unbalanced, so reset the balancing interval */
4188 sd
->balance_interval
= sd
->min_interval
;
4191 * If we've begun active balancing, start to back off. This
4192 * case may not be covered by the all_pinned logic if there
4193 * is only 1 task on the busy runqueue (because we don't call
4196 if (sd
->balance_interval
< sd
->max_interval
)
4197 sd
->balance_interval
*= 2;
4200 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4201 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4207 schedstat_inc(sd
, lb_balanced
[idle
]);
4209 sd
->nr_balance_failed
= 0;
4212 /* tune up the balancing interval */
4213 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4214 (sd
->balance_interval
< sd
->max_interval
))
4215 sd
->balance_interval
*= 2;
4217 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4218 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4230 * tasks if there is an imbalance.
4232 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4233 * this_rq is locked.
4236 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4238 struct sched_group
*group
;
4239 struct rq
*busiest
= NULL
;
4240 unsigned long imbalance
;
4244 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4246 cpumask_setall(cpus
);
4249 * When power savings policy is enabled for the parent domain, idle
4250 * sibling can pick up load irrespective of busy siblings. In this case,
4251 * let the state of idle sibling percolate up as IDLE, instead of
4252 * portraying it as CPU_NOT_IDLE.
4254 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4255 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4258 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4260 update_shares_locked(this_rq
, sd
);
4261 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4262 &sd_idle
, cpus
, NULL
);
4264 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4268 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4270 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4274 BUG_ON(busiest
== this_rq
);
4276 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4279 if (busiest
->nr_running
> 1) {
4280 /* Attempt to move tasks */
4281 double_lock_balance(this_rq
, busiest
);
4282 /* this_rq->clock is already updated */
4283 update_rq_clock(busiest
);
4284 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4285 imbalance
, sd
, CPU_NEWLY_IDLE
,
4287 double_unlock_balance(this_rq
, busiest
);
4289 if (unlikely(all_pinned
)) {
4290 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4291 if (!cpumask_empty(cpus
))
4297 int active_balance
= 0;
4299 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4300 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4301 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4304 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4307 if (sd
->nr_balance_failed
++ < 2)
4311 * The only task running in a non-idle cpu can be moved to this
4312 * cpu in an attempt to completely freeup the other CPU
4313 * package. The same method used to move task in load_balance()
4314 * have been extended for load_balance_newidle() to speedup
4315 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4317 * The package power saving logic comes from
4318 * find_busiest_group(). If there are no imbalance, then
4319 * f_b_g() will return NULL. However when sched_mc={1,2} then
4320 * f_b_g() will select a group from which a running task may be
4321 * pulled to this cpu in order to make the other package idle.
4322 * If there is no opportunity to make a package idle and if
4323 * there are no imbalance, then f_b_g() will return NULL and no
4324 * action will be taken in load_balance_newidle().
4326 * Under normal task pull operation due to imbalance, there
4327 * will be more than one task in the source run queue and
4328 * move_tasks() will succeed. ld_moved will be true and this
4329 * active balance code will not be triggered.
4332 /* Lock busiest in correct order while this_rq is held */
4333 double_lock_balance(this_rq
, busiest
);
4336 * don't kick the migration_thread, if the curr
4337 * task on busiest cpu can't be moved to this_cpu
4339 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4340 double_unlock_balance(this_rq
, busiest
);
4345 if (!busiest
->active_balance
) {
4346 busiest
->active_balance
= 1;
4347 busiest
->push_cpu
= this_cpu
;
4351 double_unlock_balance(this_rq
, busiest
);
4353 * Should not call ttwu while holding a rq->lock
4355 spin_unlock(&this_rq
->lock
);
4357 wake_up_process(busiest
->migration_thread
);
4358 spin_lock(&this_rq
->lock
);
4361 sd
->nr_balance_failed
= 0;
4363 update_shares_locked(this_rq
, sd
);
4367 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4368 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4369 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4371 sd
->nr_balance_failed
= 0;
4377 * idle_balance is called by schedule() if this_cpu is about to become
4378 * idle. Attempts to pull tasks from other CPUs.
4380 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4382 struct sched_domain
*sd
;
4383 int pulled_task
= 0;
4384 unsigned long next_balance
= jiffies
+ HZ
;
4386 for_each_domain(this_cpu
, sd
) {
4387 unsigned long interval
;
4389 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4392 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4393 /* If we've pulled tasks over stop searching: */
4394 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4397 interval
= msecs_to_jiffies(sd
->balance_interval
);
4398 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4399 next_balance
= sd
->last_balance
+ interval
;
4403 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4405 * We are going idle. next_balance may be set based on
4406 * a busy processor. So reset next_balance.
4408 this_rq
->next_balance
= next_balance
;
4413 * active_load_balance is run by migration threads. It pushes running tasks
4414 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4415 * running on each physical CPU where possible, and avoids physical /
4416 * logical imbalances.
4418 * Called with busiest_rq locked.
4420 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4422 int target_cpu
= busiest_rq
->push_cpu
;
4423 struct sched_domain
*sd
;
4424 struct rq
*target_rq
;
4426 /* Is there any task to move? */
4427 if (busiest_rq
->nr_running
<= 1)
4430 target_rq
= cpu_rq(target_cpu
);
4433 * This condition is "impossible", if it occurs
4434 * we need to fix it. Originally reported by
4435 * Bjorn Helgaas on a 128-cpu setup.
4437 BUG_ON(busiest_rq
== target_rq
);
4439 /* move a task from busiest_rq to target_rq */
4440 double_lock_balance(busiest_rq
, target_rq
);
4441 update_rq_clock(busiest_rq
);
4442 update_rq_clock(target_rq
);
4444 /* Search for an sd spanning us and the target CPU. */
4445 for_each_domain(target_cpu
, sd
) {
4446 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4447 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4452 schedstat_inc(sd
, alb_count
);
4454 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4456 schedstat_inc(sd
, alb_pushed
);
4458 schedstat_inc(sd
, alb_failed
);
4460 double_unlock_balance(busiest_rq
, target_rq
);
4465 atomic_t load_balancer
;
4466 cpumask_var_t cpu_mask
;
4467 cpumask_var_t ilb_grp_nohz_mask
;
4468 } nohz ____cacheline_aligned
= {
4469 .load_balancer
= ATOMIC_INIT(-1),
4472 int get_nohz_load_balancer(void)
4474 return atomic_read(&nohz
.load_balancer
);
4477 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4479 * lowest_flag_domain - Return lowest sched_domain containing flag.
4480 * @cpu: The cpu whose lowest level of sched domain is to
4482 * @flag: The flag to check for the lowest sched_domain
4483 * for the given cpu.
4485 * Returns the lowest sched_domain of a cpu which contains the given flag.
4487 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4489 struct sched_domain
*sd
;
4491 for_each_domain(cpu
, sd
)
4492 if (sd
&& (sd
->flags
& flag
))
4499 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4500 * @cpu: The cpu whose domains we're iterating over.
4501 * @sd: variable holding the value of the power_savings_sd
4503 * @flag: The flag to filter the sched_domains to be iterated.
4505 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4506 * set, starting from the lowest sched_domain to the highest.
4508 #define for_each_flag_domain(cpu, sd, flag) \
4509 for (sd = lowest_flag_domain(cpu, flag); \
4510 (sd && (sd->flags & flag)); sd = sd->parent)
4513 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4514 * @ilb_group: group to be checked for semi-idleness
4516 * Returns: 1 if the group is semi-idle. 0 otherwise.
4518 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4519 * and atleast one non-idle CPU. This helper function checks if the given
4520 * sched_group is semi-idle or not.
4522 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4524 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4525 sched_group_cpus(ilb_group
));
4528 * A sched_group is semi-idle when it has atleast one busy cpu
4529 * and atleast one idle cpu.
4531 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4534 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4540 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4541 * @cpu: The cpu which is nominating a new idle_load_balancer.
4543 * Returns: Returns the id of the idle load balancer if it exists,
4544 * Else, returns >= nr_cpu_ids.
4546 * This algorithm picks the idle load balancer such that it belongs to a
4547 * semi-idle powersavings sched_domain. The idea is to try and avoid
4548 * completely idle packages/cores just for the purpose of idle load balancing
4549 * when there are other idle cpu's which are better suited for that job.
4551 static int find_new_ilb(int cpu
)
4553 struct sched_domain
*sd
;
4554 struct sched_group
*ilb_group
;
4557 * Have idle load balancer selection from semi-idle packages only
4558 * when power-aware load balancing is enabled
4560 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4564 * Optimize for the case when we have no idle CPUs or only one
4565 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4567 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4570 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4571 ilb_group
= sd
->groups
;
4574 if (is_semi_idle_group(ilb_group
))
4575 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4577 ilb_group
= ilb_group
->next
;
4579 } while (ilb_group
!= sd
->groups
);
4583 return cpumask_first(nohz
.cpu_mask
);
4585 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4586 static inline int find_new_ilb(int call_cpu
)
4588 return cpumask_first(nohz
.cpu_mask
);
4593 * This routine will try to nominate the ilb (idle load balancing)
4594 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4595 * load balancing on behalf of all those cpus. If all the cpus in the system
4596 * go into this tickless mode, then there will be no ilb owner (as there is
4597 * no need for one) and all the cpus will sleep till the next wakeup event
4600 * For the ilb owner, tick is not stopped. And this tick will be used
4601 * for idle load balancing. ilb owner will still be part of
4604 * While stopping the tick, this cpu will become the ilb owner if there
4605 * is no other owner. And will be the owner till that cpu becomes busy
4606 * or if all cpus in the system stop their ticks at which point
4607 * there is no need for ilb owner.
4609 * When the ilb owner becomes busy, it nominates another owner, during the
4610 * next busy scheduler_tick()
4612 int select_nohz_load_balancer(int stop_tick
)
4614 int cpu
= smp_processor_id();
4617 cpu_rq(cpu
)->in_nohz_recently
= 1;
4619 if (!cpu_active(cpu
)) {
4620 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4624 * If we are going offline and still the leader,
4627 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4633 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4635 /* time for ilb owner also to sleep */
4636 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4637 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4638 atomic_set(&nohz
.load_balancer
, -1);
4642 if (atomic_read(&nohz
.load_balancer
) == -1) {
4643 /* make me the ilb owner */
4644 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4646 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4649 if (!(sched_smt_power_savings
||
4650 sched_mc_power_savings
))
4653 * Check to see if there is a more power-efficient
4656 new_ilb
= find_new_ilb(cpu
);
4657 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4658 atomic_set(&nohz
.load_balancer
, -1);
4659 resched_cpu(new_ilb
);
4665 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4668 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4670 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4671 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4678 static DEFINE_SPINLOCK(balancing
);
4681 * It checks each scheduling domain to see if it is due to be balanced,
4682 * and initiates a balancing operation if so.
4684 * Balancing parameters are set up in arch_init_sched_domains.
4686 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4689 struct rq
*rq
= cpu_rq(cpu
);
4690 unsigned long interval
;
4691 struct sched_domain
*sd
;
4692 /* Earliest time when we have to do rebalance again */
4693 unsigned long next_balance
= jiffies
+ 60*HZ
;
4694 int update_next_balance
= 0;
4697 for_each_domain(cpu
, sd
) {
4698 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4701 interval
= sd
->balance_interval
;
4702 if (idle
!= CPU_IDLE
)
4703 interval
*= sd
->busy_factor
;
4705 /* scale ms to jiffies */
4706 interval
= msecs_to_jiffies(interval
);
4707 if (unlikely(!interval
))
4709 if (interval
> HZ
*NR_CPUS
/10)
4710 interval
= HZ
*NR_CPUS
/10;
4712 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4714 if (need_serialize
) {
4715 if (!spin_trylock(&balancing
))
4719 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4720 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4722 * We've pulled tasks over so either we're no
4723 * longer idle, or one of our SMT siblings is
4726 idle
= CPU_NOT_IDLE
;
4728 sd
->last_balance
= jiffies
;
4731 spin_unlock(&balancing
);
4733 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4734 next_balance
= sd
->last_balance
+ interval
;
4735 update_next_balance
= 1;
4739 * Stop the load balance at this level. There is another
4740 * CPU in our sched group which is doing load balancing more
4748 * next_balance will be updated only when there is a need.
4749 * When the cpu is attached to null domain for ex, it will not be
4752 if (likely(update_next_balance
))
4753 rq
->next_balance
= next_balance
;
4757 * run_rebalance_domains is triggered when needed from the scheduler tick.
4758 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4759 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4761 static void run_rebalance_domains(struct softirq_action
*h
)
4763 int this_cpu
= smp_processor_id();
4764 struct rq
*this_rq
= cpu_rq(this_cpu
);
4765 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4766 CPU_IDLE
: CPU_NOT_IDLE
;
4768 rebalance_domains(this_cpu
, idle
);
4772 * If this cpu is the owner for idle load balancing, then do the
4773 * balancing on behalf of the other idle cpus whose ticks are
4776 if (this_rq
->idle_at_tick
&&
4777 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4781 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4782 if (balance_cpu
== this_cpu
)
4786 * If this cpu gets work to do, stop the load balancing
4787 * work being done for other cpus. Next load
4788 * balancing owner will pick it up.
4793 rebalance_domains(balance_cpu
, CPU_IDLE
);
4795 rq
= cpu_rq(balance_cpu
);
4796 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4797 this_rq
->next_balance
= rq
->next_balance
;
4803 static inline int on_null_domain(int cpu
)
4805 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4809 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4811 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4812 * idle load balancing owner or decide to stop the periodic load balancing,
4813 * if the whole system is idle.
4815 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4819 * If we were in the nohz mode recently and busy at the current
4820 * scheduler tick, then check if we need to nominate new idle
4823 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4824 rq
->in_nohz_recently
= 0;
4826 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4827 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4828 atomic_set(&nohz
.load_balancer
, -1);
4831 if (atomic_read(&nohz
.load_balancer
) == -1) {
4832 int ilb
= find_new_ilb(cpu
);
4834 if (ilb
< nr_cpu_ids
)
4840 * If this cpu is idle and doing idle load balancing for all the
4841 * cpus with ticks stopped, is it time for that to stop?
4843 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4844 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4850 * If this cpu is idle and the idle load balancing is done by
4851 * someone else, then no need raise the SCHED_SOFTIRQ
4853 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4854 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4857 /* Don't need to rebalance while attached to NULL domain */
4858 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4859 likely(!on_null_domain(cpu
)))
4860 raise_softirq(SCHED_SOFTIRQ
);
4863 #else /* CONFIG_SMP */
4866 * on UP we do not need to balance between CPUs:
4868 static inline void idle_balance(int cpu
, struct rq
*rq
)
4874 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4876 EXPORT_PER_CPU_SYMBOL(kstat
);
4879 * Return any ns on the sched_clock that have not yet been accounted in
4880 * @p in case that task is currently running.
4882 * Called with task_rq_lock() held on @rq.
4884 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4888 if (task_current(rq
, p
)) {
4889 update_rq_clock(rq
);
4890 ns
= rq
->clock
- p
->se
.exec_start
;
4898 unsigned long long task_delta_exec(struct task_struct
*p
)
4900 unsigned long flags
;
4904 rq
= task_rq_lock(p
, &flags
);
4905 ns
= do_task_delta_exec(p
, rq
);
4906 task_rq_unlock(rq
, &flags
);
4912 * Return accounted runtime for the task.
4913 * In case the task is currently running, return the runtime plus current's
4914 * pending runtime that have not been accounted yet.
4916 unsigned long long task_sched_runtime(struct task_struct
*p
)
4918 unsigned long flags
;
4922 rq
= task_rq_lock(p
, &flags
);
4923 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4924 task_rq_unlock(rq
, &flags
);
4930 * Return sum_exec_runtime for the thread group.
4931 * In case the task is currently running, return the sum plus current's
4932 * pending runtime that have not been accounted yet.
4934 * Note that the thread group might have other running tasks as well,
4935 * so the return value not includes other pending runtime that other
4936 * running tasks might have.
4938 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
4940 struct task_cputime totals
;
4941 unsigned long flags
;
4945 rq
= task_rq_lock(p
, &flags
);
4946 thread_group_cputime(p
, &totals
);
4947 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4948 task_rq_unlock(rq
, &flags
);
4954 * Account user cpu time to a process.
4955 * @p: the process that the cpu time gets accounted to
4956 * @cputime: the cpu time spent in user space since the last update
4957 * @cputime_scaled: cputime scaled by cpu frequency
4959 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4960 cputime_t cputime_scaled
)
4962 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4965 /* Add user time to process. */
4966 p
->utime
= cputime_add(p
->utime
, cputime
);
4967 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4968 account_group_user_time(p
, cputime
);
4970 /* Add user time to cpustat. */
4971 tmp
= cputime_to_cputime64(cputime
);
4972 if (TASK_NICE(p
) > 0)
4973 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4975 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4977 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
4978 /* Account for user time used */
4979 acct_update_integrals(p
);
4983 * Account guest cpu time to a process.
4984 * @p: the process that the cpu time gets accounted to
4985 * @cputime: the cpu time spent in virtual machine since the last update
4986 * @cputime_scaled: cputime scaled by cpu frequency
4988 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4989 cputime_t cputime_scaled
)
4992 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4994 tmp
= cputime_to_cputime64(cputime
);
4996 /* Add guest time to process. */
4997 p
->utime
= cputime_add(p
->utime
, cputime
);
4998 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4999 account_group_user_time(p
, cputime
);
5000 p
->gtime
= cputime_add(p
->gtime
, cputime
);
5002 /* Add guest time to cpustat. */
5003 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5004 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
5008 * Account system cpu time to a process.
5009 * @p: the process that the cpu time gets accounted to
5010 * @hardirq_offset: the offset to subtract from hardirq_count()
5011 * @cputime: the cpu time spent in kernel space since the last update
5012 * @cputime_scaled: cputime scaled by cpu frequency
5014 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
5015 cputime_t cputime
, cputime_t cputime_scaled
)
5017 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5020 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
5021 account_guest_time(p
, cputime
, cputime_scaled
);
5025 /* Add system time to process. */
5026 p
->stime
= cputime_add(p
->stime
, cputime
);
5027 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
5028 account_group_system_time(p
, cputime
);
5030 /* Add system time to cpustat. */
5031 tmp
= cputime_to_cputime64(cputime
);
5032 if (hardirq_count() - hardirq_offset
)
5033 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
5034 else if (softirq_count())
5035 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
5037 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
5039 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
5041 /* Account for system time used */
5042 acct_update_integrals(p
);
5046 * Account for involuntary wait time.
5047 * @steal: the cpu time spent in involuntary wait
5049 void account_steal_time(cputime_t cputime
)
5051 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5052 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5054 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
5058 * Account for idle time.
5059 * @cputime: the cpu time spent in idle wait
5061 void account_idle_time(cputime_t cputime
)
5063 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5064 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5065 struct rq
*rq
= this_rq();
5067 if (atomic_read(&rq
->nr_iowait
) > 0)
5068 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
5070 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
5073 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5076 * Account a single tick of cpu time.
5077 * @p: the process that the cpu time gets accounted to
5078 * @user_tick: indicates if the tick is a user or a system tick
5080 void account_process_tick(struct task_struct
*p
, int user_tick
)
5082 cputime_t one_jiffy
= jiffies_to_cputime(1);
5083 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
5084 struct rq
*rq
= this_rq();
5087 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
5088 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5089 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
5092 account_idle_time(one_jiffy
);
5096 * Account multiple ticks of steal time.
5097 * @p: the process from which the cpu time has been stolen
5098 * @ticks: number of stolen ticks
5100 void account_steal_ticks(unsigned long ticks
)
5102 account_steal_time(jiffies_to_cputime(ticks
));
5106 * Account multiple ticks of idle time.
5107 * @ticks: number of stolen ticks
5109 void account_idle_ticks(unsigned long ticks
)
5111 account_idle_time(jiffies_to_cputime(ticks
));
5117 * Use precise platform statistics if available:
5119 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5120 cputime_t
task_utime(struct task_struct
*p
)
5125 cputime_t
task_stime(struct task_struct
*p
)
5130 cputime_t
task_utime(struct task_struct
*p
)
5132 clock_t utime
= cputime_to_clock_t(p
->utime
),
5133 total
= utime
+ cputime_to_clock_t(p
->stime
);
5137 * Use CFS's precise accounting:
5139 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
5143 do_div(temp
, total
);
5145 utime
= (clock_t)temp
;
5147 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
5148 return p
->prev_utime
;
5151 cputime_t
task_stime(struct task_struct
*p
)
5156 * Use CFS's precise accounting. (we subtract utime from
5157 * the total, to make sure the total observed by userspace
5158 * grows monotonically - apps rely on that):
5160 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
5161 cputime_to_clock_t(task_utime(p
));
5164 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
5166 return p
->prev_stime
;
5170 inline cputime_t
task_gtime(struct task_struct
*p
)
5176 * This function gets called by the timer code, with HZ frequency.
5177 * We call it with interrupts disabled.
5179 * It also gets called by the fork code, when changing the parent's
5182 void scheduler_tick(void)
5184 int cpu
= smp_processor_id();
5185 struct rq
*rq
= cpu_rq(cpu
);
5186 struct task_struct
*curr
= rq
->curr
;
5190 spin_lock(&rq
->lock
);
5191 update_rq_clock(rq
);
5192 update_cpu_load(rq
);
5193 curr
->sched_class
->task_tick(rq
, curr
, 0);
5194 spin_unlock(&rq
->lock
);
5196 perf_counter_task_tick(curr
, cpu
);
5199 rq
->idle_at_tick
= idle_cpu(cpu
);
5200 trigger_load_balance(rq
, cpu
);
5204 notrace
unsigned long get_parent_ip(unsigned long addr
)
5206 if (in_lock_functions(addr
)) {
5207 addr
= CALLER_ADDR2
;
5208 if (in_lock_functions(addr
))
5209 addr
= CALLER_ADDR3
;
5214 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5215 defined(CONFIG_PREEMPT_TRACER))
5217 void __kprobes
add_preempt_count(int val
)
5219 #ifdef CONFIG_DEBUG_PREEMPT
5223 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5226 preempt_count() += val
;
5227 #ifdef CONFIG_DEBUG_PREEMPT
5229 * Spinlock count overflowing soon?
5231 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5234 if (preempt_count() == val
)
5235 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5237 EXPORT_SYMBOL(add_preempt_count
);
5239 void __kprobes
sub_preempt_count(int val
)
5241 #ifdef CONFIG_DEBUG_PREEMPT
5245 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5248 * Is the spinlock portion underflowing?
5250 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5251 !(preempt_count() & PREEMPT_MASK
)))
5255 if (preempt_count() == val
)
5256 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5257 preempt_count() -= val
;
5259 EXPORT_SYMBOL(sub_preempt_count
);
5264 * Print scheduling while atomic bug:
5266 static noinline
void __schedule_bug(struct task_struct
*prev
)
5268 struct pt_regs
*regs
= get_irq_regs();
5270 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5271 prev
->comm
, prev
->pid
, preempt_count());
5273 debug_show_held_locks(prev
);
5275 if (irqs_disabled())
5276 print_irqtrace_events(prev
);
5285 * Various schedule()-time debugging checks and statistics:
5287 static inline void schedule_debug(struct task_struct
*prev
)
5290 * Test if we are atomic. Since do_exit() needs to call into
5291 * schedule() atomically, we ignore that path for now.
5292 * Otherwise, whine if we are scheduling when we should not be.
5294 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5295 __schedule_bug(prev
);
5297 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5299 schedstat_inc(this_rq(), sched_count
);
5300 #ifdef CONFIG_SCHEDSTATS
5301 if (unlikely(prev
->lock_depth
>= 0)) {
5302 schedstat_inc(this_rq(), bkl_count
);
5303 schedstat_inc(prev
, sched_info
.bkl_count
);
5308 static void put_prev_task(struct rq
*rq
, struct task_struct
*p
)
5310 u64 runtime
= p
->se
.sum_exec_runtime
- p
->se
.prev_sum_exec_runtime
;
5312 update_avg(&p
->se
.avg_running
, runtime
);
5314 if (p
->state
== TASK_RUNNING
) {
5316 * In order to avoid avg_overlap growing stale when we are
5317 * indeed overlapping and hence not getting put to sleep, grow
5318 * the avg_overlap on preemption.
5320 * We use the average preemption runtime because that
5321 * correlates to the amount of cache footprint a task can
5324 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5325 update_avg(&p
->se
.avg_overlap
, runtime
);
5327 update_avg(&p
->se
.avg_running
, 0);
5329 p
->sched_class
->put_prev_task(rq
, p
);
5333 * Pick up the highest-prio task:
5335 static inline struct task_struct
*
5336 pick_next_task(struct rq
*rq
)
5338 const struct sched_class
*class;
5339 struct task_struct
*p
;
5342 * Optimization: we know that if all tasks are in
5343 * the fair class we can call that function directly:
5345 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5346 p
= fair_sched_class
.pick_next_task(rq
);
5351 class = sched_class_highest
;
5353 p
= class->pick_next_task(rq
);
5357 * Will never be NULL as the idle class always
5358 * returns a non-NULL p:
5360 class = class->next
;
5365 * schedule() is the main scheduler function.
5367 asmlinkage
void __sched
schedule(void)
5369 struct task_struct
*prev
, *next
;
5370 unsigned long *switch_count
;
5376 cpu
= smp_processor_id();
5380 switch_count
= &prev
->nivcsw
;
5382 release_kernel_lock(prev
);
5383 need_resched_nonpreemptible
:
5385 schedule_debug(prev
);
5387 if (sched_feat(HRTICK
))
5390 spin_lock_irq(&rq
->lock
);
5391 update_rq_clock(rq
);
5392 clear_tsk_need_resched(prev
);
5394 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5395 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5396 prev
->state
= TASK_RUNNING
;
5398 deactivate_task(rq
, prev
, 1);
5399 switch_count
= &prev
->nvcsw
;
5402 pre_schedule(rq
, prev
);
5404 if (unlikely(!rq
->nr_running
))
5405 idle_balance(cpu
, rq
);
5407 put_prev_task(rq
, prev
);
5408 next
= pick_next_task(rq
);
5410 if (likely(prev
!= next
)) {
5411 sched_info_switch(prev
, next
);
5412 perf_counter_task_sched_out(prev
, next
, cpu
);
5418 context_switch(rq
, prev
, next
); /* unlocks the rq */
5420 * the context switch might have flipped the stack from under
5421 * us, hence refresh the local variables.
5423 cpu
= smp_processor_id();
5426 spin_unlock_irq(&rq
->lock
);
5430 if (unlikely(reacquire_kernel_lock(current
) < 0))
5431 goto need_resched_nonpreemptible
;
5433 preempt_enable_no_resched();
5437 EXPORT_SYMBOL(schedule
);
5441 * Look out! "owner" is an entirely speculative pointer
5442 * access and not reliable.
5444 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5449 if (!sched_feat(OWNER_SPIN
))
5452 #ifdef CONFIG_DEBUG_PAGEALLOC
5454 * Need to access the cpu field knowing that
5455 * DEBUG_PAGEALLOC could have unmapped it if
5456 * the mutex owner just released it and exited.
5458 if (probe_kernel_address(&owner
->cpu
, cpu
))
5465 * Even if the access succeeded (likely case),
5466 * the cpu field may no longer be valid.
5468 if (cpu
>= nr_cpumask_bits
)
5472 * We need to validate that we can do a
5473 * get_cpu() and that we have the percpu area.
5475 if (!cpu_online(cpu
))
5482 * Owner changed, break to re-assess state.
5484 if (lock
->owner
!= owner
)
5488 * Is that owner really running on that cpu?
5490 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5500 #ifdef CONFIG_PREEMPT
5502 * this is the entry point to schedule() from in-kernel preemption
5503 * off of preempt_enable. Kernel preemptions off return from interrupt
5504 * occur there and call schedule directly.
5506 asmlinkage
void __sched
preempt_schedule(void)
5508 struct thread_info
*ti
= current_thread_info();
5511 * If there is a non-zero preempt_count or interrupts are disabled,
5512 * we do not want to preempt the current task. Just return..
5514 if (likely(ti
->preempt_count
|| irqs_disabled()))
5518 add_preempt_count(PREEMPT_ACTIVE
);
5520 sub_preempt_count(PREEMPT_ACTIVE
);
5523 * Check again in case we missed a preemption opportunity
5524 * between schedule and now.
5527 } while (need_resched());
5529 EXPORT_SYMBOL(preempt_schedule
);
5532 * this is the entry point to schedule() from kernel preemption
5533 * off of irq context.
5534 * Note, that this is called and return with irqs disabled. This will
5535 * protect us against recursive calling from irq.
5537 asmlinkage
void __sched
preempt_schedule_irq(void)
5539 struct thread_info
*ti
= current_thread_info();
5541 /* Catch callers which need to be fixed */
5542 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5545 add_preempt_count(PREEMPT_ACTIVE
);
5548 local_irq_disable();
5549 sub_preempt_count(PREEMPT_ACTIVE
);
5552 * Check again in case we missed a preemption opportunity
5553 * between schedule and now.
5556 } while (need_resched());
5559 #endif /* CONFIG_PREEMPT */
5561 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
5564 return try_to_wake_up(curr
->private, mode
, wake_flags
);
5566 EXPORT_SYMBOL(default_wake_function
);
5569 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5570 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5571 * number) then we wake all the non-exclusive tasks and one exclusive task.
5573 * There are circumstances in which we can try to wake a task which has already
5574 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5575 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5577 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5578 int nr_exclusive
, int wake_flags
, void *key
)
5580 wait_queue_t
*curr
, *next
;
5582 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5583 unsigned flags
= curr
->flags
;
5585 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
5586 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5592 * __wake_up - wake up threads blocked on a waitqueue.
5594 * @mode: which threads
5595 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5596 * @key: is directly passed to the wakeup function
5598 * It may be assumed that this function implies a write memory barrier before
5599 * changing the task state if and only if any tasks are woken up.
5601 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5602 int nr_exclusive
, void *key
)
5604 unsigned long flags
;
5606 spin_lock_irqsave(&q
->lock
, flags
);
5607 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5608 spin_unlock_irqrestore(&q
->lock
, flags
);
5610 EXPORT_SYMBOL(__wake_up
);
5613 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5615 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5617 __wake_up_common(q
, mode
, 1, 0, NULL
);
5620 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5622 __wake_up_common(q
, mode
, 1, 0, key
);
5626 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5628 * @mode: which threads
5629 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5630 * @key: opaque value to be passed to wakeup targets
5632 * The sync wakeup differs that the waker knows that it will schedule
5633 * away soon, so while the target thread will be woken up, it will not
5634 * be migrated to another CPU - ie. the two threads are 'synchronized'
5635 * with each other. This can prevent needless bouncing between CPUs.
5637 * On UP it can prevent extra preemption.
5639 * It may be assumed that this function implies a write memory barrier before
5640 * changing the task state if and only if any tasks are woken up.
5642 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5643 int nr_exclusive
, void *key
)
5645 unsigned long flags
;
5646 int wake_flags
= WF_SYNC
;
5651 if (unlikely(!nr_exclusive
))
5654 spin_lock_irqsave(&q
->lock
, flags
);
5655 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
5656 spin_unlock_irqrestore(&q
->lock
, flags
);
5658 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5661 * __wake_up_sync - see __wake_up_sync_key()
5663 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5665 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5667 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5670 * complete: - signals a single thread waiting on this completion
5671 * @x: holds the state of this particular completion
5673 * This will wake up a single thread waiting on this completion. Threads will be
5674 * awakened in the same order in which they were queued.
5676 * See also complete_all(), wait_for_completion() and related routines.
5678 * It may be assumed that this function implies a write memory barrier before
5679 * changing the task state if and only if any tasks are woken up.
5681 void complete(struct completion
*x
)
5683 unsigned long flags
;
5685 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5687 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5688 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5690 EXPORT_SYMBOL(complete
);
5693 * complete_all: - signals all threads waiting on this completion
5694 * @x: holds the state of this particular completion
5696 * This will wake up all threads waiting on this particular completion event.
5698 * It may be assumed that this function implies a write memory barrier before
5699 * changing the task state if and only if any tasks are woken up.
5701 void complete_all(struct completion
*x
)
5703 unsigned long flags
;
5705 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5706 x
->done
+= UINT_MAX
/2;
5707 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5708 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5710 EXPORT_SYMBOL(complete_all
);
5712 static inline long __sched
5713 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5716 DECLARE_WAITQUEUE(wait
, current
);
5718 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5719 __add_wait_queue_tail(&x
->wait
, &wait
);
5721 if (signal_pending_state(state
, current
)) {
5722 timeout
= -ERESTARTSYS
;
5725 __set_current_state(state
);
5726 spin_unlock_irq(&x
->wait
.lock
);
5727 timeout
= schedule_timeout(timeout
);
5728 spin_lock_irq(&x
->wait
.lock
);
5729 } while (!x
->done
&& timeout
);
5730 __remove_wait_queue(&x
->wait
, &wait
);
5735 return timeout
?: 1;
5739 wait_for_common(struct completion
*x
, long timeout
, int state
)
5743 spin_lock_irq(&x
->wait
.lock
);
5744 timeout
= do_wait_for_common(x
, timeout
, state
);
5745 spin_unlock_irq(&x
->wait
.lock
);
5750 * wait_for_completion: - waits for completion of a task
5751 * @x: holds the state of this particular completion
5753 * This waits to be signaled for completion of a specific task. It is NOT
5754 * interruptible and there is no timeout.
5756 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5757 * and interrupt capability. Also see complete().
5759 void __sched
wait_for_completion(struct completion
*x
)
5761 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5763 EXPORT_SYMBOL(wait_for_completion
);
5766 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5767 * @x: holds the state of this particular completion
5768 * @timeout: timeout value in jiffies
5770 * This waits for either a completion of a specific task to be signaled or for a
5771 * specified timeout to expire. The timeout is in jiffies. It is not
5774 unsigned long __sched
5775 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5777 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5779 EXPORT_SYMBOL(wait_for_completion_timeout
);
5782 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5783 * @x: holds the state of this particular completion
5785 * This waits for completion of a specific task to be signaled. It is
5788 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5790 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5791 if (t
== -ERESTARTSYS
)
5795 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5798 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5799 * @x: holds the state of this particular completion
5800 * @timeout: timeout value in jiffies
5802 * This waits for either a completion of a specific task to be signaled or for a
5803 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5805 unsigned long __sched
5806 wait_for_completion_interruptible_timeout(struct completion
*x
,
5807 unsigned long timeout
)
5809 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5811 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5814 * wait_for_completion_killable: - waits for completion of a task (killable)
5815 * @x: holds the state of this particular completion
5817 * This waits to be signaled for completion of a specific task. It can be
5818 * interrupted by a kill signal.
5820 int __sched
wait_for_completion_killable(struct completion
*x
)
5822 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5823 if (t
== -ERESTARTSYS
)
5827 EXPORT_SYMBOL(wait_for_completion_killable
);
5830 * try_wait_for_completion - try to decrement a completion without blocking
5831 * @x: completion structure
5833 * Returns: 0 if a decrement cannot be done without blocking
5834 * 1 if a decrement succeeded.
5836 * If a completion is being used as a counting completion,
5837 * attempt to decrement the counter without blocking. This
5838 * enables us to avoid waiting if the resource the completion
5839 * is protecting is not available.
5841 bool try_wait_for_completion(struct completion
*x
)
5845 spin_lock_irq(&x
->wait
.lock
);
5850 spin_unlock_irq(&x
->wait
.lock
);
5853 EXPORT_SYMBOL(try_wait_for_completion
);
5856 * completion_done - Test to see if a completion has any waiters
5857 * @x: completion structure
5859 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5860 * 1 if there are no waiters.
5863 bool completion_done(struct completion
*x
)
5867 spin_lock_irq(&x
->wait
.lock
);
5870 spin_unlock_irq(&x
->wait
.lock
);
5873 EXPORT_SYMBOL(completion_done
);
5876 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5878 unsigned long flags
;
5881 init_waitqueue_entry(&wait
, current
);
5883 __set_current_state(state
);
5885 spin_lock_irqsave(&q
->lock
, flags
);
5886 __add_wait_queue(q
, &wait
);
5887 spin_unlock(&q
->lock
);
5888 timeout
= schedule_timeout(timeout
);
5889 spin_lock_irq(&q
->lock
);
5890 __remove_wait_queue(q
, &wait
);
5891 spin_unlock_irqrestore(&q
->lock
, flags
);
5896 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5898 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5900 EXPORT_SYMBOL(interruptible_sleep_on
);
5903 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5905 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5907 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5909 void __sched
sleep_on(wait_queue_head_t
*q
)
5911 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5913 EXPORT_SYMBOL(sleep_on
);
5915 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5917 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5919 EXPORT_SYMBOL(sleep_on_timeout
);
5921 #ifdef CONFIG_RT_MUTEXES
5924 * rt_mutex_setprio - set the current priority of a task
5926 * @prio: prio value (kernel-internal form)
5928 * This function changes the 'effective' priority of a task. It does
5929 * not touch ->normal_prio like __setscheduler().
5931 * Used by the rt_mutex code to implement priority inheritance logic.
5933 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5935 unsigned long flags
;
5936 int oldprio
, on_rq
, running
;
5938 const struct sched_class
*prev_class
= p
->sched_class
;
5940 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5942 rq
= task_rq_lock(p
, &flags
);
5943 update_rq_clock(rq
);
5946 on_rq
= p
->se
.on_rq
;
5947 running
= task_current(rq
, p
);
5949 dequeue_task(rq
, p
, 0);
5951 p
->sched_class
->put_prev_task(rq
, p
);
5954 p
->sched_class
= &rt_sched_class
;
5956 p
->sched_class
= &fair_sched_class
;
5961 p
->sched_class
->set_curr_task(rq
);
5963 enqueue_task(rq
, p
, 0);
5965 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5967 task_rq_unlock(rq
, &flags
);
5972 void set_user_nice(struct task_struct
*p
, long nice
)
5974 int old_prio
, delta
, on_rq
;
5975 unsigned long flags
;
5978 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5981 * We have to be careful, if called from sys_setpriority(),
5982 * the task might be in the middle of scheduling on another CPU.
5984 rq
= task_rq_lock(p
, &flags
);
5985 update_rq_clock(rq
);
5987 * The RT priorities are set via sched_setscheduler(), but we still
5988 * allow the 'normal' nice value to be set - but as expected
5989 * it wont have any effect on scheduling until the task is
5990 * SCHED_FIFO/SCHED_RR:
5992 if (task_has_rt_policy(p
)) {
5993 p
->static_prio
= NICE_TO_PRIO(nice
);
5996 on_rq
= p
->se
.on_rq
;
5998 dequeue_task(rq
, p
, 0);
6000 p
->static_prio
= NICE_TO_PRIO(nice
);
6003 p
->prio
= effective_prio(p
);
6004 delta
= p
->prio
- old_prio
;
6007 enqueue_task(rq
, p
, 0);
6009 * If the task increased its priority or is running and
6010 * lowered its priority, then reschedule its CPU:
6012 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
6013 resched_task(rq
->curr
);
6016 task_rq_unlock(rq
, &flags
);
6018 EXPORT_SYMBOL(set_user_nice
);
6021 * can_nice - check if a task can reduce its nice value
6025 int can_nice(const struct task_struct
*p
, const int nice
)
6027 /* convert nice value [19,-20] to rlimit style value [1,40] */
6028 int nice_rlim
= 20 - nice
;
6030 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
6031 capable(CAP_SYS_NICE
));
6034 #ifdef __ARCH_WANT_SYS_NICE
6037 * sys_nice - change the priority of the current process.
6038 * @increment: priority increment
6040 * sys_setpriority is a more generic, but much slower function that
6041 * does similar things.
6043 SYSCALL_DEFINE1(nice
, int, increment
)
6048 * Setpriority might change our priority at the same moment.
6049 * We don't have to worry. Conceptually one call occurs first
6050 * and we have a single winner.
6052 if (increment
< -40)
6057 nice
= TASK_NICE(current
) + increment
;
6063 if (increment
< 0 && !can_nice(current
, nice
))
6066 retval
= security_task_setnice(current
, nice
);
6070 set_user_nice(current
, nice
);
6077 * task_prio - return the priority value of a given task.
6078 * @p: the task in question.
6080 * This is the priority value as seen by users in /proc.
6081 * RT tasks are offset by -200. Normal tasks are centered
6082 * around 0, value goes from -16 to +15.
6084 int task_prio(const struct task_struct
*p
)
6086 return p
->prio
- MAX_RT_PRIO
;
6090 * task_nice - return the nice value of a given task.
6091 * @p: the task in question.
6093 int task_nice(const struct task_struct
*p
)
6095 return TASK_NICE(p
);
6097 EXPORT_SYMBOL(task_nice
);
6100 * idle_cpu - is a given cpu idle currently?
6101 * @cpu: the processor in question.
6103 int idle_cpu(int cpu
)
6105 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6109 * idle_task - return the idle task for a given cpu.
6110 * @cpu: the processor in question.
6112 struct task_struct
*idle_task(int cpu
)
6114 return cpu_rq(cpu
)->idle
;
6118 * find_process_by_pid - find a process with a matching PID value.
6119 * @pid: the pid in question.
6121 static struct task_struct
*find_process_by_pid(pid_t pid
)
6123 return pid
? find_task_by_vpid(pid
) : current
;
6126 /* Actually do priority change: must hold rq lock. */
6128 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6130 BUG_ON(p
->se
.on_rq
);
6133 switch (p
->policy
) {
6137 p
->sched_class
= &fair_sched_class
;
6141 p
->sched_class
= &rt_sched_class
;
6145 p
->rt_priority
= prio
;
6146 p
->normal_prio
= normal_prio(p
);
6147 /* we are holding p->pi_lock already */
6148 p
->prio
= rt_mutex_getprio(p
);
6153 * check the target process has a UID that matches the current process's
6155 static bool check_same_owner(struct task_struct
*p
)
6157 const struct cred
*cred
= current_cred(), *pcred
;
6161 pcred
= __task_cred(p
);
6162 match
= (cred
->euid
== pcred
->euid
||
6163 cred
->euid
== pcred
->uid
);
6168 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6169 struct sched_param
*param
, bool user
)
6171 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6172 unsigned long flags
;
6173 const struct sched_class
*prev_class
= p
->sched_class
;
6177 /* may grab non-irq protected spin_locks */
6178 BUG_ON(in_interrupt());
6180 /* double check policy once rq lock held */
6182 reset_on_fork
= p
->sched_reset_on_fork
;
6183 policy
= oldpolicy
= p
->policy
;
6185 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
6186 policy
&= ~SCHED_RESET_ON_FORK
;
6188 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6189 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6190 policy
!= SCHED_IDLE
)
6195 * Valid priorities for SCHED_FIFO and SCHED_RR are
6196 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6197 * SCHED_BATCH and SCHED_IDLE is 0.
6199 if (param
->sched_priority
< 0 ||
6200 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6201 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6203 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6207 * Allow unprivileged RT tasks to decrease priority:
6209 if (user
&& !capable(CAP_SYS_NICE
)) {
6210 if (rt_policy(policy
)) {
6211 unsigned long rlim_rtprio
;
6213 if (!lock_task_sighand(p
, &flags
))
6215 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6216 unlock_task_sighand(p
, &flags
);
6218 /* can't set/change the rt policy */
6219 if (policy
!= p
->policy
&& !rlim_rtprio
)
6222 /* can't increase priority */
6223 if (param
->sched_priority
> p
->rt_priority
&&
6224 param
->sched_priority
> rlim_rtprio
)
6228 * Like positive nice levels, dont allow tasks to
6229 * move out of SCHED_IDLE either:
6231 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6234 /* can't change other user's priorities */
6235 if (!check_same_owner(p
))
6238 /* Normal users shall not reset the sched_reset_on_fork flag */
6239 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
6244 #ifdef CONFIG_RT_GROUP_SCHED
6246 * Do not allow realtime tasks into groups that have no runtime
6249 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6250 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6254 retval
= security_task_setscheduler(p
, policy
, param
);
6260 * make sure no PI-waiters arrive (or leave) while we are
6261 * changing the priority of the task:
6263 spin_lock_irqsave(&p
->pi_lock
, flags
);
6265 * To be able to change p->policy safely, the apropriate
6266 * runqueue lock must be held.
6268 rq
= __task_rq_lock(p
);
6269 /* recheck policy now with rq lock held */
6270 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6271 policy
= oldpolicy
= -1;
6272 __task_rq_unlock(rq
);
6273 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6276 update_rq_clock(rq
);
6277 on_rq
= p
->se
.on_rq
;
6278 running
= task_current(rq
, p
);
6280 deactivate_task(rq
, p
, 0);
6282 p
->sched_class
->put_prev_task(rq
, p
);
6284 p
->sched_reset_on_fork
= reset_on_fork
;
6287 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6290 p
->sched_class
->set_curr_task(rq
);
6292 activate_task(rq
, p
, 0);
6294 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6296 __task_rq_unlock(rq
);
6297 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6299 rt_mutex_adjust_pi(p
);
6305 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6306 * @p: the task in question.
6307 * @policy: new policy.
6308 * @param: structure containing the new RT priority.
6310 * NOTE that the task may be already dead.
6312 int sched_setscheduler(struct task_struct
*p
, int policy
,
6313 struct sched_param
*param
)
6315 return __sched_setscheduler(p
, policy
, param
, true);
6317 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6320 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6321 * @p: the task in question.
6322 * @policy: new policy.
6323 * @param: structure containing the new RT priority.
6325 * Just like sched_setscheduler, only don't bother checking if the
6326 * current context has permission. For example, this is needed in
6327 * stop_machine(): we create temporary high priority worker threads,
6328 * but our caller might not have that capability.
6330 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6331 struct sched_param
*param
)
6333 return __sched_setscheduler(p
, policy
, param
, false);
6337 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6339 struct sched_param lparam
;
6340 struct task_struct
*p
;
6343 if (!param
|| pid
< 0)
6345 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6350 p
= find_process_by_pid(pid
);
6352 retval
= sched_setscheduler(p
, policy
, &lparam
);
6359 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6360 * @pid: the pid in question.
6361 * @policy: new policy.
6362 * @param: structure containing the new RT priority.
6364 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6365 struct sched_param __user
*, param
)
6367 /* negative values for policy are not valid */
6371 return do_sched_setscheduler(pid
, policy
, param
);
6375 * sys_sched_setparam - set/change the RT priority of a thread
6376 * @pid: the pid in question.
6377 * @param: structure containing the new RT priority.
6379 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6381 return do_sched_setscheduler(pid
, -1, param
);
6385 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6386 * @pid: the pid in question.
6388 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6390 struct task_struct
*p
;
6397 read_lock(&tasklist_lock
);
6398 p
= find_process_by_pid(pid
);
6400 retval
= security_task_getscheduler(p
);
6403 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
6405 read_unlock(&tasklist_lock
);
6410 * sys_sched_getparam - get the RT priority of a thread
6411 * @pid: the pid in question.
6412 * @param: structure containing the RT priority.
6414 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6416 struct sched_param lp
;
6417 struct task_struct
*p
;
6420 if (!param
|| pid
< 0)
6423 read_lock(&tasklist_lock
);
6424 p
= find_process_by_pid(pid
);
6429 retval
= security_task_getscheduler(p
);
6433 lp
.sched_priority
= p
->rt_priority
;
6434 read_unlock(&tasklist_lock
);
6437 * This one might sleep, we cannot do it with a spinlock held ...
6439 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6444 read_unlock(&tasklist_lock
);
6448 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6450 cpumask_var_t cpus_allowed
, new_mask
;
6451 struct task_struct
*p
;
6455 read_lock(&tasklist_lock
);
6457 p
= find_process_by_pid(pid
);
6459 read_unlock(&tasklist_lock
);
6465 * It is not safe to call set_cpus_allowed with the
6466 * tasklist_lock held. We will bump the task_struct's
6467 * usage count and then drop tasklist_lock.
6470 read_unlock(&tasklist_lock
);
6472 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6476 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6478 goto out_free_cpus_allowed
;
6481 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6484 retval
= security_task_setscheduler(p
, 0, NULL
);
6488 cpuset_cpus_allowed(p
, cpus_allowed
);
6489 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6491 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6494 cpuset_cpus_allowed(p
, cpus_allowed
);
6495 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6497 * We must have raced with a concurrent cpuset
6498 * update. Just reset the cpus_allowed to the
6499 * cpuset's cpus_allowed
6501 cpumask_copy(new_mask
, cpus_allowed
);
6506 free_cpumask_var(new_mask
);
6507 out_free_cpus_allowed
:
6508 free_cpumask_var(cpus_allowed
);
6515 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6516 struct cpumask
*new_mask
)
6518 if (len
< cpumask_size())
6519 cpumask_clear(new_mask
);
6520 else if (len
> cpumask_size())
6521 len
= cpumask_size();
6523 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6527 * sys_sched_setaffinity - set the cpu affinity of a process
6528 * @pid: pid of the process
6529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6530 * @user_mask_ptr: user-space pointer to the new cpu mask
6532 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6533 unsigned long __user
*, user_mask_ptr
)
6535 cpumask_var_t new_mask
;
6538 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6541 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6543 retval
= sched_setaffinity(pid
, new_mask
);
6544 free_cpumask_var(new_mask
);
6548 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6550 struct task_struct
*p
;
6554 read_lock(&tasklist_lock
);
6557 p
= find_process_by_pid(pid
);
6561 retval
= security_task_getscheduler(p
);
6565 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6568 read_unlock(&tasklist_lock
);
6575 * sys_sched_getaffinity - get the cpu affinity of a process
6576 * @pid: pid of the process
6577 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6578 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6580 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6581 unsigned long __user
*, user_mask_ptr
)
6586 if (len
< cpumask_size())
6589 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6592 ret
= sched_getaffinity(pid
, mask
);
6594 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
6597 ret
= cpumask_size();
6599 free_cpumask_var(mask
);
6605 * sys_sched_yield - yield the current processor to other threads.
6607 * This function yields the current CPU to other tasks. If there are no
6608 * other threads running on this CPU then this function will return.
6610 SYSCALL_DEFINE0(sched_yield
)
6612 struct rq
*rq
= this_rq_lock();
6614 schedstat_inc(rq
, yld_count
);
6615 current
->sched_class
->yield_task(rq
);
6618 * Since we are going to call schedule() anyway, there's
6619 * no need to preempt or enable interrupts:
6621 __release(rq
->lock
);
6622 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6623 _raw_spin_unlock(&rq
->lock
);
6624 preempt_enable_no_resched();
6631 static inline int should_resched(void)
6633 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
6636 static void __cond_resched(void)
6638 add_preempt_count(PREEMPT_ACTIVE
);
6640 sub_preempt_count(PREEMPT_ACTIVE
);
6643 int __sched
_cond_resched(void)
6645 if (should_resched()) {
6651 EXPORT_SYMBOL(_cond_resched
);
6654 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6655 * call schedule, and on return reacquire the lock.
6657 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6658 * operations here to prevent schedule() from being called twice (once via
6659 * spin_unlock(), once by hand).
6661 int __cond_resched_lock(spinlock_t
*lock
)
6663 int resched
= should_resched();
6666 lockdep_assert_held(lock
);
6668 if (spin_needbreak(lock
) || resched
) {
6679 EXPORT_SYMBOL(__cond_resched_lock
);
6681 int __sched
__cond_resched_softirq(void)
6683 BUG_ON(!in_softirq());
6685 if (should_resched()) {
6693 EXPORT_SYMBOL(__cond_resched_softirq
);
6696 * yield - yield the current processor to other threads.
6698 * This is a shortcut for kernel-space yielding - it marks the
6699 * thread runnable and calls sys_sched_yield().
6701 void __sched
yield(void)
6703 set_current_state(TASK_RUNNING
);
6706 EXPORT_SYMBOL(yield
);
6709 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6710 * that process accounting knows that this is a task in IO wait state.
6712 * But don't do that if it is a deliberate, throttling IO wait (this task
6713 * has set its backing_dev_info: the queue against which it should throttle)
6715 void __sched
io_schedule(void)
6717 struct rq
*rq
= raw_rq();
6719 delayacct_blkio_start();
6720 atomic_inc(&rq
->nr_iowait
);
6721 current
->in_iowait
= 1;
6723 current
->in_iowait
= 0;
6724 atomic_dec(&rq
->nr_iowait
);
6725 delayacct_blkio_end();
6727 EXPORT_SYMBOL(io_schedule
);
6729 long __sched
io_schedule_timeout(long timeout
)
6731 struct rq
*rq
= raw_rq();
6734 delayacct_blkio_start();
6735 atomic_inc(&rq
->nr_iowait
);
6736 current
->in_iowait
= 1;
6737 ret
= schedule_timeout(timeout
);
6738 current
->in_iowait
= 0;
6739 atomic_dec(&rq
->nr_iowait
);
6740 delayacct_blkio_end();
6745 * sys_sched_get_priority_max - return maximum RT priority.
6746 * @policy: scheduling class.
6748 * this syscall returns the maximum rt_priority that can be used
6749 * by a given scheduling class.
6751 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6758 ret
= MAX_USER_RT_PRIO
-1;
6770 * sys_sched_get_priority_min - return minimum RT priority.
6771 * @policy: scheduling class.
6773 * this syscall returns the minimum rt_priority that can be used
6774 * by a given scheduling class.
6776 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6794 * sys_sched_rr_get_interval - return the default timeslice of a process.
6795 * @pid: pid of the process.
6796 * @interval: userspace pointer to the timeslice value.
6798 * this syscall writes the default timeslice value of a given process
6799 * into the user-space timespec buffer. A value of '0' means infinity.
6801 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6802 struct timespec __user
*, interval
)
6804 struct task_struct
*p
;
6805 unsigned int time_slice
;
6813 read_lock(&tasklist_lock
);
6814 p
= find_process_by_pid(pid
);
6818 retval
= security_task_getscheduler(p
);
6822 time_slice
= p
->sched_class
->get_rr_interval(p
);
6824 read_unlock(&tasklist_lock
);
6825 jiffies_to_timespec(time_slice
, &t
);
6826 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6830 read_unlock(&tasklist_lock
);
6834 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6836 void sched_show_task(struct task_struct
*p
)
6838 unsigned long free
= 0;
6841 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6842 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6843 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6844 #if BITS_PER_LONG == 32
6845 if (state
== TASK_RUNNING
)
6846 printk(KERN_CONT
" running ");
6848 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6850 if (state
== TASK_RUNNING
)
6851 printk(KERN_CONT
" running task ");
6853 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6855 #ifdef CONFIG_DEBUG_STACK_USAGE
6856 free
= stack_not_used(p
);
6858 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6859 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6860 (unsigned long)task_thread_info(p
)->flags
);
6862 show_stack(p
, NULL
);
6865 void show_state_filter(unsigned long state_filter
)
6867 struct task_struct
*g
, *p
;
6869 #if BITS_PER_LONG == 32
6871 " task PC stack pid father\n");
6874 " task PC stack pid father\n");
6876 read_lock(&tasklist_lock
);
6877 do_each_thread(g
, p
) {
6879 * reset the NMI-timeout, listing all files on a slow
6880 * console might take alot of time:
6882 touch_nmi_watchdog();
6883 if (!state_filter
|| (p
->state
& state_filter
))
6885 } while_each_thread(g
, p
);
6887 touch_all_softlockup_watchdogs();
6889 #ifdef CONFIG_SCHED_DEBUG
6890 sysrq_sched_debug_show();
6892 read_unlock(&tasklist_lock
);
6894 * Only show locks if all tasks are dumped:
6896 if (state_filter
== -1)
6897 debug_show_all_locks();
6900 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6902 idle
->sched_class
= &idle_sched_class
;
6906 * init_idle - set up an idle thread for a given CPU
6907 * @idle: task in question
6908 * @cpu: cpu the idle task belongs to
6910 * NOTE: this function does not set the idle thread's NEED_RESCHED
6911 * flag, to make booting more robust.
6913 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6915 struct rq
*rq
= cpu_rq(cpu
);
6916 unsigned long flags
;
6918 spin_lock_irqsave(&rq
->lock
, flags
);
6921 idle
->se
.exec_start
= sched_clock();
6923 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6924 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6925 __set_task_cpu(idle
, cpu
);
6927 rq
->curr
= rq
->idle
= idle
;
6928 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6931 spin_unlock_irqrestore(&rq
->lock
, flags
);
6933 /* Set the preempt count _outside_ the spinlocks! */
6934 #if defined(CONFIG_PREEMPT)
6935 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6937 task_thread_info(idle
)->preempt_count
= 0;
6940 * The idle tasks have their own, simple scheduling class:
6942 idle
->sched_class
= &idle_sched_class
;
6943 ftrace_graph_init_task(idle
);
6947 * In a system that switches off the HZ timer nohz_cpu_mask
6948 * indicates which cpus entered this state. This is used
6949 * in the rcu update to wait only for active cpus. For system
6950 * which do not switch off the HZ timer nohz_cpu_mask should
6951 * always be CPU_BITS_NONE.
6953 cpumask_var_t nohz_cpu_mask
;
6956 * Increase the granularity value when there are more CPUs,
6957 * because with more CPUs the 'effective latency' as visible
6958 * to users decreases. But the relationship is not linear,
6959 * so pick a second-best guess by going with the log2 of the
6962 * This idea comes from the SD scheduler of Con Kolivas:
6964 static inline void sched_init_granularity(void)
6966 unsigned int factor
= 1 + ilog2(num_online_cpus());
6967 const unsigned long limit
= 200000000;
6969 sysctl_sched_min_granularity
*= factor
;
6970 if (sysctl_sched_min_granularity
> limit
)
6971 sysctl_sched_min_granularity
= limit
;
6973 sysctl_sched_latency
*= factor
;
6974 if (sysctl_sched_latency
> limit
)
6975 sysctl_sched_latency
= limit
;
6977 sysctl_sched_wakeup_granularity
*= factor
;
6979 sysctl_sched_shares_ratelimit
*= factor
;
6984 * This is how migration works:
6986 * 1) we queue a struct migration_req structure in the source CPU's
6987 * runqueue and wake up that CPU's migration thread.
6988 * 2) we down() the locked semaphore => thread blocks.
6989 * 3) migration thread wakes up (implicitly it forces the migrated
6990 * thread off the CPU)
6991 * 4) it gets the migration request and checks whether the migrated
6992 * task is still in the wrong runqueue.
6993 * 5) if it's in the wrong runqueue then the migration thread removes
6994 * it and puts it into the right queue.
6995 * 6) migration thread up()s the semaphore.
6996 * 7) we wake up and the migration is done.
7000 * Change a given task's CPU affinity. Migrate the thread to a
7001 * proper CPU and schedule it away if the CPU it's executing on
7002 * is removed from the allowed bitmask.
7004 * NOTE: the caller must have a valid reference to the task, the
7005 * task must not exit() & deallocate itself prematurely. The
7006 * call is not atomic; no spinlocks may be held.
7008 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
7010 struct migration_req req
;
7011 unsigned long flags
;
7015 rq
= task_rq_lock(p
, &flags
);
7016 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
7021 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
7022 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
7027 if (p
->sched_class
->set_cpus_allowed
)
7028 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
7030 cpumask_copy(&p
->cpus_allowed
, new_mask
);
7031 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
7034 /* Can the task run on the task's current CPU? If so, we're done */
7035 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
7038 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
7039 /* Need help from migration thread: drop lock and wait. */
7040 struct task_struct
*mt
= rq
->migration_thread
;
7042 get_task_struct(mt
);
7043 task_rq_unlock(rq
, &flags
);
7044 wake_up_process(rq
->migration_thread
);
7045 put_task_struct(mt
);
7046 wait_for_completion(&req
.done
);
7047 tlb_migrate_finish(p
->mm
);
7051 task_rq_unlock(rq
, &flags
);
7055 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
7058 * Move (not current) task off this cpu, onto dest cpu. We're doing
7059 * this because either it can't run here any more (set_cpus_allowed()
7060 * away from this CPU, or CPU going down), or because we're
7061 * attempting to rebalance this task on exec (sched_exec).
7063 * So we race with normal scheduler movements, but that's OK, as long
7064 * as the task is no longer on this CPU.
7066 * Returns non-zero if task was successfully migrated.
7068 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7070 struct rq
*rq_dest
, *rq_src
;
7073 if (unlikely(!cpu_active(dest_cpu
)))
7076 rq_src
= cpu_rq(src_cpu
);
7077 rq_dest
= cpu_rq(dest_cpu
);
7079 double_rq_lock(rq_src
, rq_dest
);
7080 /* Already moved. */
7081 if (task_cpu(p
) != src_cpu
)
7083 /* Affinity changed (again). */
7084 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7087 on_rq
= p
->se
.on_rq
;
7089 deactivate_task(rq_src
, p
, 0);
7091 set_task_cpu(p
, dest_cpu
);
7093 activate_task(rq_dest
, p
, 0);
7094 check_preempt_curr(rq_dest
, p
, 0);
7099 double_rq_unlock(rq_src
, rq_dest
);
7103 #define RCU_MIGRATION_IDLE 0
7104 #define RCU_MIGRATION_NEED_QS 1
7105 #define RCU_MIGRATION_GOT_QS 2
7106 #define RCU_MIGRATION_MUST_SYNC 3
7109 * migration_thread - this is a highprio system thread that performs
7110 * thread migration by bumping thread off CPU then 'pushing' onto
7113 static int migration_thread(void *data
)
7116 int cpu
= (long)data
;
7120 BUG_ON(rq
->migration_thread
!= current
);
7122 set_current_state(TASK_INTERRUPTIBLE
);
7123 while (!kthread_should_stop()) {
7124 struct migration_req
*req
;
7125 struct list_head
*head
;
7127 spin_lock_irq(&rq
->lock
);
7129 if (cpu_is_offline(cpu
)) {
7130 spin_unlock_irq(&rq
->lock
);
7134 if (rq
->active_balance
) {
7135 active_load_balance(rq
, cpu
);
7136 rq
->active_balance
= 0;
7139 head
= &rq
->migration_queue
;
7141 if (list_empty(head
)) {
7142 spin_unlock_irq(&rq
->lock
);
7144 set_current_state(TASK_INTERRUPTIBLE
);
7147 req
= list_entry(head
->next
, struct migration_req
, list
);
7148 list_del_init(head
->next
);
7150 if (req
->task
!= NULL
) {
7151 spin_unlock(&rq
->lock
);
7152 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7153 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
7154 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
7155 spin_unlock(&rq
->lock
);
7157 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
7158 spin_unlock(&rq
->lock
);
7159 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
7163 complete(&req
->done
);
7165 __set_current_state(TASK_RUNNING
);
7170 #ifdef CONFIG_HOTPLUG_CPU
7172 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7176 local_irq_disable();
7177 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7183 * Figure out where task on dead CPU should go, use force if necessary.
7185 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7188 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
7191 /* Look for allowed, online CPU in same node. */
7192 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
7193 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7196 /* Any allowed, online CPU? */
7197 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
7198 if (dest_cpu
< nr_cpu_ids
)
7201 /* No more Mr. Nice Guy. */
7202 if (dest_cpu
>= nr_cpu_ids
) {
7203 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
7204 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
7207 * Don't tell them about moving exiting tasks or
7208 * kernel threads (both mm NULL), since they never
7211 if (p
->mm
&& printk_ratelimit()) {
7212 printk(KERN_INFO
"process %d (%s) no "
7213 "longer affine to cpu%d\n",
7214 task_pid_nr(p
), p
->comm
, dead_cpu
);
7219 /* It can have affinity changed while we were choosing. */
7220 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7225 * While a dead CPU has no uninterruptible tasks queued at this point,
7226 * it might still have a nonzero ->nr_uninterruptible counter, because
7227 * for performance reasons the counter is not stricly tracking tasks to
7228 * their home CPUs. So we just add the counter to another CPU's counter,
7229 * to keep the global sum constant after CPU-down:
7231 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7233 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
7234 unsigned long flags
;
7236 local_irq_save(flags
);
7237 double_rq_lock(rq_src
, rq_dest
);
7238 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7239 rq_src
->nr_uninterruptible
= 0;
7240 double_rq_unlock(rq_src
, rq_dest
);
7241 local_irq_restore(flags
);
7244 /* Run through task list and migrate tasks from the dead cpu. */
7245 static void migrate_live_tasks(int src_cpu
)
7247 struct task_struct
*p
, *t
;
7249 read_lock(&tasklist_lock
);
7251 do_each_thread(t
, p
) {
7255 if (task_cpu(p
) == src_cpu
)
7256 move_task_off_dead_cpu(src_cpu
, p
);
7257 } while_each_thread(t
, p
);
7259 read_unlock(&tasklist_lock
);
7263 * Schedules idle task to be the next runnable task on current CPU.
7264 * It does so by boosting its priority to highest possible.
7265 * Used by CPU offline code.
7267 void sched_idle_next(void)
7269 int this_cpu
= smp_processor_id();
7270 struct rq
*rq
= cpu_rq(this_cpu
);
7271 struct task_struct
*p
= rq
->idle
;
7272 unsigned long flags
;
7274 /* cpu has to be offline */
7275 BUG_ON(cpu_online(this_cpu
));
7278 * Strictly not necessary since rest of the CPUs are stopped by now
7279 * and interrupts disabled on the current cpu.
7281 spin_lock_irqsave(&rq
->lock
, flags
);
7283 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7285 update_rq_clock(rq
);
7286 activate_task(rq
, p
, 0);
7288 spin_unlock_irqrestore(&rq
->lock
, flags
);
7292 * Ensures that the idle task is using init_mm right before its cpu goes
7295 void idle_task_exit(void)
7297 struct mm_struct
*mm
= current
->active_mm
;
7299 BUG_ON(cpu_online(smp_processor_id()));
7302 switch_mm(mm
, &init_mm
, current
);
7306 /* called under rq->lock with disabled interrupts */
7307 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7309 struct rq
*rq
= cpu_rq(dead_cpu
);
7311 /* Must be exiting, otherwise would be on tasklist. */
7312 BUG_ON(!p
->exit_state
);
7314 /* Cannot have done final schedule yet: would have vanished. */
7315 BUG_ON(p
->state
== TASK_DEAD
);
7320 * Drop lock around migration; if someone else moves it,
7321 * that's OK. No task can be added to this CPU, so iteration is
7324 spin_unlock_irq(&rq
->lock
);
7325 move_task_off_dead_cpu(dead_cpu
, p
);
7326 spin_lock_irq(&rq
->lock
);
7331 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7332 static void migrate_dead_tasks(unsigned int dead_cpu
)
7334 struct rq
*rq
= cpu_rq(dead_cpu
);
7335 struct task_struct
*next
;
7338 if (!rq
->nr_running
)
7340 update_rq_clock(rq
);
7341 next
= pick_next_task(rq
);
7344 next
->sched_class
->put_prev_task(rq
, next
);
7345 migrate_dead(dead_cpu
, next
);
7351 * remove the tasks which were accounted by rq from calc_load_tasks.
7353 static void calc_global_load_remove(struct rq
*rq
)
7355 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7356 rq
->calc_load_active
= 0;
7358 #endif /* CONFIG_HOTPLUG_CPU */
7360 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7362 static struct ctl_table sd_ctl_dir
[] = {
7364 .procname
= "sched_domain",
7370 static struct ctl_table sd_ctl_root
[] = {
7372 .ctl_name
= CTL_KERN
,
7373 .procname
= "kernel",
7375 .child
= sd_ctl_dir
,
7380 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7382 struct ctl_table
*entry
=
7383 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7388 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7390 struct ctl_table
*entry
;
7393 * In the intermediate directories, both the child directory and
7394 * procname are dynamically allocated and could fail but the mode
7395 * will always be set. In the lowest directory the names are
7396 * static strings and all have proc handlers.
7398 for (entry
= *tablep
; entry
->mode
; entry
++) {
7400 sd_free_ctl_entry(&entry
->child
);
7401 if (entry
->proc_handler
== NULL
)
7402 kfree(entry
->procname
);
7410 set_table_entry(struct ctl_table
*entry
,
7411 const char *procname
, void *data
, int maxlen
,
7412 mode_t mode
, proc_handler
*proc_handler
)
7414 entry
->procname
= procname
;
7416 entry
->maxlen
= maxlen
;
7418 entry
->proc_handler
= proc_handler
;
7421 static struct ctl_table
*
7422 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7424 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7429 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7430 sizeof(long), 0644, proc_doulongvec_minmax
);
7431 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7432 sizeof(long), 0644, proc_doulongvec_minmax
);
7433 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7434 sizeof(int), 0644, proc_dointvec_minmax
);
7435 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7436 sizeof(int), 0644, proc_dointvec_minmax
);
7437 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7438 sizeof(int), 0644, proc_dointvec_minmax
);
7439 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7440 sizeof(int), 0644, proc_dointvec_minmax
);
7441 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7442 sizeof(int), 0644, proc_dointvec_minmax
);
7443 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7444 sizeof(int), 0644, proc_dointvec_minmax
);
7445 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7446 sizeof(int), 0644, proc_dointvec_minmax
);
7447 set_table_entry(&table
[9], "cache_nice_tries",
7448 &sd
->cache_nice_tries
,
7449 sizeof(int), 0644, proc_dointvec_minmax
);
7450 set_table_entry(&table
[10], "flags", &sd
->flags
,
7451 sizeof(int), 0644, proc_dointvec_minmax
);
7452 set_table_entry(&table
[11], "name", sd
->name
,
7453 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7454 /* &table[12] is terminator */
7459 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7461 struct ctl_table
*entry
, *table
;
7462 struct sched_domain
*sd
;
7463 int domain_num
= 0, i
;
7466 for_each_domain(cpu
, sd
)
7468 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7473 for_each_domain(cpu
, sd
) {
7474 snprintf(buf
, 32, "domain%d", i
);
7475 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7477 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7484 static struct ctl_table_header
*sd_sysctl_header
;
7485 static void register_sched_domain_sysctl(void)
7487 int i
, cpu_num
= num_online_cpus();
7488 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7491 WARN_ON(sd_ctl_dir
[0].child
);
7492 sd_ctl_dir
[0].child
= entry
;
7497 for_each_online_cpu(i
) {
7498 snprintf(buf
, 32, "cpu%d", i
);
7499 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7501 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7505 WARN_ON(sd_sysctl_header
);
7506 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7509 /* may be called multiple times per register */
7510 static void unregister_sched_domain_sysctl(void)
7512 if (sd_sysctl_header
)
7513 unregister_sysctl_table(sd_sysctl_header
);
7514 sd_sysctl_header
= NULL
;
7515 if (sd_ctl_dir
[0].child
)
7516 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7519 static void register_sched_domain_sysctl(void)
7522 static void unregister_sched_domain_sysctl(void)
7527 static void set_rq_online(struct rq
*rq
)
7530 const struct sched_class
*class;
7532 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7535 for_each_class(class) {
7536 if (class->rq_online
)
7537 class->rq_online(rq
);
7542 static void set_rq_offline(struct rq
*rq
)
7545 const struct sched_class
*class;
7547 for_each_class(class) {
7548 if (class->rq_offline
)
7549 class->rq_offline(rq
);
7552 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7558 * migration_call - callback that gets triggered when a CPU is added.
7559 * Here we can start up the necessary migration thread for the new CPU.
7561 static int __cpuinit
7562 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7564 struct task_struct
*p
;
7565 int cpu
= (long)hcpu
;
7566 unsigned long flags
;
7571 case CPU_UP_PREPARE
:
7572 case CPU_UP_PREPARE_FROZEN
:
7573 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7576 kthread_bind(p
, cpu
);
7577 /* Must be high prio: stop_machine expects to yield to it. */
7578 rq
= task_rq_lock(p
, &flags
);
7579 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7580 task_rq_unlock(rq
, &flags
);
7582 cpu_rq(cpu
)->migration_thread
= p
;
7583 rq
->calc_load_update
= calc_load_update
;
7587 case CPU_ONLINE_FROZEN
:
7588 /* Strictly unnecessary, as first user will wake it. */
7589 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7591 /* Update our root-domain */
7593 spin_lock_irqsave(&rq
->lock
, flags
);
7595 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7599 spin_unlock_irqrestore(&rq
->lock
, flags
);
7602 #ifdef CONFIG_HOTPLUG_CPU
7603 case CPU_UP_CANCELED
:
7604 case CPU_UP_CANCELED_FROZEN
:
7605 if (!cpu_rq(cpu
)->migration_thread
)
7607 /* Unbind it from offline cpu so it can run. Fall thru. */
7608 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7609 cpumask_any(cpu_online_mask
));
7610 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7611 put_task_struct(cpu_rq(cpu
)->migration_thread
);
7612 cpu_rq(cpu
)->migration_thread
= NULL
;
7616 case CPU_DEAD_FROZEN
:
7617 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7618 migrate_live_tasks(cpu
);
7620 kthread_stop(rq
->migration_thread
);
7621 put_task_struct(rq
->migration_thread
);
7622 rq
->migration_thread
= NULL
;
7623 /* Idle task back to normal (off runqueue, low prio) */
7624 spin_lock_irq(&rq
->lock
);
7625 update_rq_clock(rq
);
7626 deactivate_task(rq
, rq
->idle
, 0);
7627 rq
->idle
->static_prio
= MAX_PRIO
;
7628 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7629 rq
->idle
->sched_class
= &idle_sched_class
;
7630 migrate_dead_tasks(cpu
);
7631 spin_unlock_irq(&rq
->lock
);
7633 migrate_nr_uninterruptible(rq
);
7634 BUG_ON(rq
->nr_running
!= 0);
7635 calc_global_load_remove(rq
);
7637 * No need to migrate the tasks: it was best-effort if
7638 * they didn't take sched_hotcpu_mutex. Just wake up
7641 spin_lock_irq(&rq
->lock
);
7642 while (!list_empty(&rq
->migration_queue
)) {
7643 struct migration_req
*req
;
7645 req
= list_entry(rq
->migration_queue
.next
,
7646 struct migration_req
, list
);
7647 list_del_init(&req
->list
);
7648 spin_unlock_irq(&rq
->lock
);
7649 complete(&req
->done
);
7650 spin_lock_irq(&rq
->lock
);
7652 spin_unlock_irq(&rq
->lock
);
7656 case CPU_DYING_FROZEN
:
7657 /* Update our root-domain */
7659 spin_lock_irqsave(&rq
->lock
, flags
);
7661 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7664 spin_unlock_irqrestore(&rq
->lock
, flags
);
7672 * Register at high priority so that task migration (migrate_all_tasks)
7673 * happens before everything else. This has to be lower priority than
7674 * the notifier in the perf_counter subsystem, though.
7676 static struct notifier_block __cpuinitdata migration_notifier
= {
7677 .notifier_call
= migration_call
,
7681 static int __init
migration_init(void)
7683 void *cpu
= (void *)(long)smp_processor_id();
7686 /* Start one for the boot CPU: */
7687 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7688 BUG_ON(err
== NOTIFY_BAD
);
7689 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7690 register_cpu_notifier(&migration_notifier
);
7694 early_initcall(migration_init
);
7699 #ifdef CONFIG_SCHED_DEBUG
7701 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7702 struct cpumask
*groupmask
)
7704 struct sched_group
*group
= sd
->groups
;
7707 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7708 cpumask_clear(groupmask
);
7710 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7712 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7713 printk("does not load-balance\n");
7715 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7720 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7722 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7723 printk(KERN_ERR
"ERROR: domain->span does not contain "
7726 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7727 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7731 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7735 printk(KERN_ERR
"ERROR: group is NULL\n");
7739 if (!group
->cpu_power
) {
7740 printk(KERN_CONT
"\n");
7741 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7746 if (!cpumask_weight(sched_group_cpus(group
))) {
7747 printk(KERN_CONT
"\n");
7748 printk(KERN_ERR
"ERROR: empty group\n");
7752 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7753 printk(KERN_CONT
"\n");
7754 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7758 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7760 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7762 printk(KERN_CONT
" %s", str
);
7763 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
7764 printk(KERN_CONT
" (cpu_power = %d)",
7768 group
= group
->next
;
7769 } while (group
!= sd
->groups
);
7770 printk(KERN_CONT
"\n");
7772 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7773 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7776 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7777 printk(KERN_ERR
"ERROR: parent span is not a superset "
7778 "of domain->span\n");
7782 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7784 cpumask_var_t groupmask
;
7788 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7792 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7794 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7795 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7800 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7807 free_cpumask_var(groupmask
);
7809 #else /* !CONFIG_SCHED_DEBUG */
7810 # define sched_domain_debug(sd, cpu) do { } while (0)
7811 #endif /* CONFIG_SCHED_DEBUG */
7813 static int sd_degenerate(struct sched_domain
*sd
)
7815 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7818 /* Following flags need at least 2 groups */
7819 if (sd
->flags
& (SD_LOAD_BALANCE
|
7820 SD_BALANCE_NEWIDLE
|
7824 SD_SHARE_PKG_RESOURCES
)) {
7825 if (sd
->groups
!= sd
->groups
->next
)
7829 /* Following flags don't use groups */
7830 if (sd
->flags
& (SD_WAKE_AFFINE
))
7837 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7839 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7841 if (sd_degenerate(parent
))
7844 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7847 /* Flags needing groups don't count if only 1 group in parent */
7848 if (parent
->groups
== parent
->groups
->next
) {
7849 pflags
&= ~(SD_LOAD_BALANCE
|
7850 SD_BALANCE_NEWIDLE
|
7854 SD_SHARE_PKG_RESOURCES
);
7855 if (nr_node_ids
== 1)
7856 pflags
&= ~SD_SERIALIZE
;
7858 if (~cflags
& pflags
)
7864 static void free_rootdomain(struct root_domain
*rd
)
7866 cpupri_cleanup(&rd
->cpupri
);
7868 free_cpumask_var(rd
->rto_mask
);
7869 free_cpumask_var(rd
->online
);
7870 free_cpumask_var(rd
->span
);
7874 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7876 struct root_domain
*old_rd
= NULL
;
7877 unsigned long flags
;
7879 spin_lock_irqsave(&rq
->lock
, flags
);
7884 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7887 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7890 * If we dont want to free the old_rt yet then
7891 * set old_rd to NULL to skip the freeing later
7894 if (!atomic_dec_and_test(&old_rd
->refcount
))
7898 atomic_inc(&rd
->refcount
);
7901 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7902 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
7905 spin_unlock_irqrestore(&rq
->lock
, flags
);
7908 free_rootdomain(old_rd
);
7911 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
7913 gfp_t gfp
= GFP_KERNEL
;
7915 memset(rd
, 0, sizeof(*rd
));
7920 if (!alloc_cpumask_var(&rd
->span
, gfp
))
7922 if (!alloc_cpumask_var(&rd
->online
, gfp
))
7924 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
7927 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
7932 free_cpumask_var(rd
->rto_mask
);
7934 free_cpumask_var(rd
->online
);
7936 free_cpumask_var(rd
->span
);
7941 static void init_defrootdomain(void)
7943 init_rootdomain(&def_root_domain
, true);
7945 atomic_set(&def_root_domain
.refcount
, 1);
7948 static struct root_domain
*alloc_rootdomain(void)
7950 struct root_domain
*rd
;
7952 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7956 if (init_rootdomain(rd
, false) != 0) {
7965 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7966 * hold the hotplug lock.
7969 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7971 struct rq
*rq
= cpu_rq(cpu
);
7972 struct sched_domain
*tmp
;
7974 /* Remove the sched domains which do not contribute to scheduling. */
7975 for (tmp
= sd
; tmp
; ) {
7976 struct sched_domain
*parent
= tmp
->parent
;
7980 if (sd_parent_degenerate(tmp
, parent
)) {
7981 tmp
->parent
= parent
->parent
;
7983 parent
->parent
->child
= tmp
;
7988 if (sd
&& sd_degenerate(sd
)) {
7994 sched_domain_debug(sd
, cpu
);
7996 rq_attach_root(rq
, rd
);
7997 rcu_assign_pointer(rq
->sd
, sd
);
8000 /* cpus with isolated domains */
8001 static cpumask_var_t cpu_isolated_map
;
8003 /* Setup the mask of cpus configured for isolated domains */
8004 static int __init
isolated_cpu_setup(char *str
)
8006 cpulist_parse(str
, cpu_isolated_map
);
8010 __setup("isolcpus=", isolated_cpu_setup
);
8013 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8014 * to a function which identifies what group(along with sched group) a CPU
8015 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8016 * (due to the fact that we keep track of groups covered with a struct cpumask).
8018 * init_sched_build_groups will build a circular linked list of the groups
8019 * covered by the given span, and will set each group's ->cpumask correctly,
8020 * and ->cpu_power to 0.
8023 init_sched_build_groups(const struct cpumask
*span
,
8024 const struct cpumask
*cpu_map
,
8025 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
8026 struct sched_group
**sg
,
8027 struct cpumask
*tmpmask
),
8028 struct cpumask
*covered
, struct cpumask
*tmpmask
)
8030 struct sched_group
*first
= NULL
, *last
= NULL
;
8033 cpumask_clear(covered
);
8035 for_each_cpu(i
, span
) {
8036 struct sched_group
*sg
;
8037 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
8040 if (cpumask_test_cpu(i
, covered
))
8043 cpumask_clear(sched_group_cpus(sg
));
8046 for_each_cpu(j
, span
) {
8047 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
8050 cpumask_set_cpu(j
, covered
);
8051 cpumask_set_cpu(j
, sched_group_cpus(sg
));
8062 #define SD_NODES_PER_DOMAIN 16
8067 * find_next_best_node - find the next node to include in a sched_domain
8068 * @node: node whose sched_domain we're building
8069 * @used_nodes: nodes already in the sched_domain
8071 * Find the next node to include in a given scheduling domain. Simply
8072 * finds the closest node not already in the @used_nodes map.
8074 * Should use nodemask_t.
8076 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
8078 int i
, n
, val
, min_val
, best_node
= 0;
8082 for (i
= 0; i
< nr_node_ids
; i
++) {
8083 /* Start at @node */
8084 n
= (node
+ i
) % nr_node_ids
;
8086 if (!nr_cpus_node(n
))
8089 /* Skip already used nodes */
8090 if (node_isset(n
, *used_nodes
))
8093 /* Simple min distance search */
8094 val
= node_distance(node
, n
);
8096 if (val
< min_val
) {
8102 node_set(best_node
, *used_nodes
);
8107 * sched_domain_node_span - get a cpumask for a node's sched_domain
8108 * @node: node whose cpumask we're constructing
8109 * @span: resulting cpumask
8111 * Given a node, construct a good cpumask for its sched_domain to span. It
8112 * should be one that prevents unnecessary balancing, but also spreads tasks
8115 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8117 nodemask_t used_nodes
;
8120 cpumask_clear(span
);
8121 nodes_clear(used_nodes
);
8123 cpumask_or(span
, span
, cpumask_of_node(node
));
8124 node_set(node
, used_nodes
);
8126 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8127 int next_node
= find_next_best_node(node
, &used_nodes
);
8129 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8132 #endif /* CONFIG_NUMA */
8134 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8137 * The cpus mask in sched_group and sched_domain hangs off the end.
8139 * ( See the the comments in include/linux/sched.h:struct sched_group
8140 * and struct sched_domain. )
8142 struct static_sched_group
{
8143 struct sched_group sg
;
8144 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8147 struct static_sched_domain
{
8148 struct sched_domain sd
;
8149 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8155 cpumask_var_t domainspan
;
8156 cpumask_var_t covered
;
8157 cpumask_var_t notcovered
;
8159 cpumask_var_t nodemask
;
8160 cpumask_var_t this_sibling_map
;
8161 cpumask_var_t this_core_map
;
8162 cpumask_var_t send_covered
;
8163 cpumask_var_t tmpmask
;
8164 struct sched_group
**sched_group_nodes
;
8165 struct root_domain
*rd
;
8169 sa_sched_groups
= 0,
8174 sa_this_sibling_map
,
8176 sa_sched_group_nodes
,
8186 * SMT sched-domains:
8188 #ifdef CONFIG_SCHED_SMT
8189 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8190 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
8193 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8194 struct sched_group
**sg
, struct cpumask
*unused
)
8197 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
8200 #endif /* CONFIG_SCHED_SMT */
8203 * multi-core sched-domains:
8205 #ifdef CONFIG_SCHED_MC
8206 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8207 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8208 #endif /* CONFIG_SCHED_MC */
8210 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8212 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8213 struct sched_group
**sg
, struct cpumask
*mask
)
8217 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8218 group
= cpumask_first(mask
);
8220 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8223 #elif defined(CONFIG_SCHED_MC)
8225 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8226 struct sched_group
**sg
, struct cpumask
*unused
)
8229 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8234 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8235 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8238 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8239 struct sched_group
**sg
, struct cpumask
*mask
)
8242 #ifdef CONFIG_SCHED_MC
8243 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8244 group
= cpumask_first(mask
);
8245 #elif defined(CONFIG_SCHED_SMT)
8246 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8247 group
= cpumask_first(mask
);
8252 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8258 * The init_sched_build_groups can't handle what we want to do with node
8259 * groups, so roll our own. Now each node has its own list of groups which
8260 * gets dynamically allocated.
8262 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8263 static struct sched_group
***sched_group_nodes_bycpu
;
8265 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8266 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8268 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8269 struct sched_group
**sg
,
8270 struct cpumask
*nodemask
)
8274 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8275 group
= cpumask_first(nodemask
);
8278 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8282 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8284 struct sched_group
*sg
= group_head
;
8290 for_each_cpu(j
, sched_group_cpus(sg
)) {
8291 struct sched_domain
*sd
;
8293 sd
= &per_cpu(phys_domains
, j
).sd
;
8294 if (j
!= group_first_cpu(sd
->groups
)) {
8296 * Only add "power" once for each
8302 sg
->cpu_power
+= sd
->groups
->cpu_power
;
8305 } while (sg
!= group_head
);
8308 static int build_numa_sched_groups(struct s_data
*d
,
8309 const struct cpumask
*cpu_map
, int num
)
8311 struct sched_domain
*sd
;
8312 struct sched_group
*sg
, *prev
;
8315 cpumask_clear(d
->covered
);
8316 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
8317 if (cpumask_empty(d
->nodemask
)) {
8318 d
->sched_group_nodes
[num
] = NULL
;
8322 sched_domain_node_span(num
, d
->domainspan
);
8323 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
8325 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8328 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
8332 d
->sched_group_nodes
[num
] = sg
;
8334 for_each_cpu(j
, d
->nodemask
) {
8335 sd
= &per_cpu(node_domains
, j
).sd
;
8340 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
8342 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
8345 for (j
= 0; j
< nr_node_ids
; j
++) {
8346 n
= (num
+ j
) % nr_node_ids
;
8347 cpumask_complement(d
->notcovered
, d
->covered
);
8348 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
8349 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
8350 if (cpumask_empty(d
->tmpmask
))
8352 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
8353 if (cpumask_empty(d
->tmpmask
))
8355 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8359 "Can not alloc domain group for node %d\n", j
);
8363 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
8364 sg
->next
= prev
->next
;
8365 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
8372 #endif /* CONFIG_NUMA */
8375 /* Free memory allocated for various sched_group structures */
8376 static void free_sched_groups(const struct cpumask
*cpu_map
,
8377 struct cpumask
*nodemask
)
8381 for_each_cpu(cpu
, cpu_map
) {
8382 struct sched_group
**sched_group_nodes
8383 = sched_group_nodes_bycpu
[cpu
];
8385 if (!sched_group_nodes
)
8388 for (i
= 0; i
< nr_node_ids
; i
++) {
8389 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8391 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8392 if (cpumask_empty(nodemask
))
8402 if (oldsg
!= sched_group_nodes
[i
])
8405 kfree(sched_group_nodes
);
8406 sched_group_nodes_bycpu
[cpu
] = NULL
;
8409 #else /* !CONFIG_NUMA */
8410 static void free_sched_groups(const struct cpumask
*cpu_map
,
8411 struct cpumask
*nodemask
)
8414 #endif /* CONFIG_NUMA */
8417 * Initialize sched groups cpu_power.
8419 * cpu_power indicates the capacity of sched group, which is used while
8420 * distributing the load between different sched groups in a sched domain.
8421 * Typically cpu_power for all the groups in a sched domain will be same unless
8422 * there are asymmetries in the topology. If there are asymmetries, group
8423 * having more cpu_power will pickup more load compared to the group having
8426 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8428 struct sched_domain
*child
;
8429 struct sched_group
*group
;
8433 WARN_ON(!sd
|| !sd
->groups
);
8435 if (cpu
!= group_first_cpu(sd
->groups
))
8440 sd
->groups
->cpu_power
= 0;
8443 power
= SCHED_LOAD_SCALE
;
8444 weight
= cpumask_weight(sched_domain_span(sd
));
8446 * SMT siblings share the power of a single core.
8447 * Usually multiple threads get a better yield out of
8448 * that one core than a single thread would have,
8449 * reflect that in sd->smt_gain.
8451 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
8452 power
*= sd
->smt_gain
;
8454 power
>>= SCHED_LOAD_SHIFT
;
8456 sd
->groups
->cpu_power
+= power
;
8461 * Add cpu_power of each child group to this groups cpu_power.
8463 group
= child
->groups
;
8465 sd
->groups
->cpu_power
+= group
->cpu_power
;
8466 group
= group
->next
;
8467 } while (group
!= child
->groups
);
8471 * Initializers for schedule domains
8472 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8475 #ifdef CONFIG_SCHED_DEBUG
8476 # define SD_INIT_NAME(sd, type) sd->name = #type
8478 # define SD_INIT_NAME(sd, type) do { } while (0)
8481 #define SD_INIT(sd, type) sd_init_##type(sd)
8483 #define SD_INIT_FUNC(type) \
8484 static noinline void sd_init_##type(struct sched_domain *sd) \
8486 memset(sd, 0, sizeof(*sd)); \
8487 *sd = SD_##type##_INIT; \
8488 sd->level = SD_LV_##type; \
8489 SD_INIT_NAME(sd, type); \
8494 SD_INIT_FUNC(ALLNODES
)
8497 #ifdef CONFIG_SCHED_SMT
8498 SD_INIT_FUNC(SIBLING
)
8500 #ifdef CONFIG_SCHED_MC
8504 static int default_relax_domain_level
= -1;
8506 static int __init
setup_relax_domain_level(char *str
)
8510 val
= simple_strtoul(str
, NULL
, 0);
8511 if (val
< SD_LV_MAX
)
8512 default_relax_domain_level
= val
;
8516 __setup("relax_domain_level=", setup_relax_domain_level
);
8518 static void set_domain_attribute(struct sched_domain
*sd
,
8519 struct sched_domain_attr
*attr
)
8523 if (!attr
|| attr
->relax_domain_level
< 0) {
8524 if (default_relax_domain_level
< 0)
8527 request
= default_relax_domain_level
;
8529 request
= attr
->relax_domain_level
;
8530 if (request
< sd
->level
) {
8531 /* turn off idle balance on this domain */
8532 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8534 /* turn on idle balance on this domain */
8535 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8539 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
8540 const struct cpumask
*cpu_map
)
8543 case sa_sched_groups
:
8544 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
8545 d
->sched_group_nodes
= NULL
;
8547 free_rootdomain(d
->rd
); /* fall through */
8549 free_cpumask_var(d
->tmpmask
); /* fall through */
8550 case sa_send_covered
:
8551 free_cpumask_var(d
->send_covered
); /* fall through */
8552 case sa_this_core_map
:
8553 free_cpumask_var(d
->this_core_map
); /* fall through */
8554 case sa_this_sibling_map
:
8555 free_cpumask_var(d
->this_sibling_map
); /* fall through */
8557 free_cpumask_var(d
->nodemask
); /* fall through */
8558 case sa_sched_group_nodes
:
8560 kfree(d
->sched_group_nodes
); /* fall through */
8562 free_cpumask_var(d
->notcovered
); /* fall through */
8564 free_cpumask_var(d
->covered
); /* fall through */
8566 free_cpumask_var(d
->domainspan
); /* fall through */
8573 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
8574 const struct cpumask
*cpu_map
)
8577 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
8579 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
8580 return sa_domainspan
;
8581 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
8583 /* Allocate the per-node list of sched groups */
8584 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
8585 sizeof(struct sched_group
*), GFP_KERNEL
);
8586 if (!d
->sched_group_nodes
) {
8587 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8588 return sa_notcovered
;
8590 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
8592 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
8593 return sa_sched_group_nodes
;
8594 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
8596 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
8597 return sa_this_sibling_map
;
8598 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
8599 return sa_this_core_map
;
8600 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
8601 return sa_send_covered
;
8602 d
->rd
= alloc_rootdomain();
8604 printk(KERN_WARNING
"Cannot alloc root domain\n");
8607 return sa_rootdomain
;
8610 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
8611 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
8613 struct sched_domain
*sd
= NULL
;
8615 struct sched_domain
*parent
;
8618 if (cpumask_weight(cpu_map
) >
8619 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
8620 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8621 SD_INIT(sd
, ALLNODES
);
8622 set_domain_attribute(sd
, attr
);
8623 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8624 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8629 sd
= &per_cpu(node_domains
, i
).sd
;
8631 set_domain_attribute(sd
, attr
);
8632 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8633 sd
->parent
= parent
;
8636 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
8641 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
8642 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8643 struct sched_domain
*parent
, int i
)
8645 struct sched_domain
*sd
;
8646 sd
= &per_cpu(phys_domains
, i
).sd
;
8648 set_domain_attribute(sd
, attr
);
8649 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
8650 sd
->parent
= parent
;
8653 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8657 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
8658 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8659 struct sched_domain
*parent
, int i
)
8661 struct sched_domain
*sd
= parent
;
8662 #ifdef CONFIG_SCHED_MC
8663 sd
= &per_cpu(core_domains
, i
).sd
;
8665 set_domain_attribute(sd
, attr
);
8666 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
8667 sd
->parent
= parent
;
8669 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8674 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
8675 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8676 struct sched_domain
*parent
, int i
)
8678 struct sched_domain
*sd
= parent
;
8679 #ifdef CONFIG_SCHED_SMT
8680 sd
= &per_cpu(cpu_domains
, i
).sd
;
8681 SD_INIT(sd
, SIBLING
);
8682 set_domain_attribute(sd
, attr
);
8683 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
8684 sd
->parent
= parent
;
8686 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8691 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
8692 const struct cpumask
*cpu_map
, int cpu
)
8695 #ifdef CONFIG_SCHED_SMT
8696 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
8697 cpumask_and(d
->this_sibling_map
, cpu_map
,
8698 topology_thread_cpumask(cpu
));
8699 if (cpu
== cpumask_first(d
->this_sibling_map
))
8700 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
8702 d
->send_covered
, d
->tmpmask
);
8705 #ifdef CONFIG_SCHED_MC
8706 case SD_LV_MC
: /* set up multi-core groups */
8707 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
8708 if (cpu
== cpumask_first(d
->this_core_map
))
8709 init_sched_build_groups(d
->this_core_map
, cpu_map
,
8711 d
->send_covered
, d
->tmpmask
);
8714 case SD_LV_CPU
: /* set up physical groups */
8715 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
8716 if (!cpumask_empty(d
->nodemask
))
8717 init_sched_build_groups(d
->nodemask
, cpu_map
,
8719 d
->send_covered
, d
->tmpmask
);
8722 case SD_LV_ALLNODES
:
8723 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
8724 d
->send_covered
, d
->tmpmask
);
8733 * Build sched domains for a given set of cpus and attach the sched domains
8734 * to the individual cpus
8736 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8737 struct sched_domain_attr
*attr
)
8739 enum s_alloc alloc_state
= sa_none
;
8741 struct sched_domain
*sd
;
8747 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
8748 if (alloc_state
!= sa_rootdomain
)
8750 alloc_state
= sa_sched_groups
;
8753 * Set up domains for cpus specified by the cpu_map.
8755 for_each_cpu(i
, cpu_map
) {
8756 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
8759 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
8760 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8761 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8762 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8765 for_each_cpu(i
, cpu_map
) {
8766 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
8767 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
8770 /* Set up physical groups */
8771 for (i
= 0; i
< nr_node_ids
; i
++)
8772 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
8775 /* Set up node groups */
8777 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
8779 for (i
= 0; i
< nr_node_ids
; i
++)
8780 if (build_numa_sched_groups(&d
, cpu_map
, i
))
8784 /* Calculate CPU power for physical packages and nodes */
8785 #ifdef CONFIG_SCHED_SMT
8786 for_each_cpu(i
, cpu_map
) {
8787 sd
= &per_cpu(cpu_domains
, i
).sd
;
8788 init_sched_groups_power(i
, sd
);
8791 #ifdef CONFIG_SCHED_MC
8792 for_each_cpu(i
, cpu_map
) {
8793 sd
= &per_cpu(core_domains
, i
).sd
;
8794 init_sched_groups_power(i
, sd
);
8798 for_each_cpu(i
, cpu_map
) {
8799 sd
= &per_cpu(phys_domains
, i
).sd
;
8800 init_sched_groups_power(i
, sd
);
8804 for (i
= 0; i
< nr_node_ids
; i
++)
8805 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
8807 if (d
.sd_allnodes
) {
8808 struct sched_group
*sg
;
8810 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8812 init_numa_sched_groups_power(sg
);
8816 /* Attach the domains */
8817 for_each_cpu(i
, cpu_map
) {
8818 #ifdef CONFIG_SCHED_SMT
8819 sd
= &per_cpu(cpu_domains
, i
).sd
;
8820 #elif defined(CONFIG_SCHED_MC)
8821 sd
= &per_cpu(core_domains
, i
).sd
;
8823 sd
= &per_cpu(phys_domains
, i
).sd
;
8825 cpu_attach_domain(sd
, d
.rd
, i
);
8828 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
8829 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
8833 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
8837 static int build_sched_domains(const struct cpumask
*cpu_map
)
8839 return __build_sched_domains(cpu_map
, NULL
);
8842 static struct cpumask
*doms_cur
; /* current sched domains */
8843 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8844 static struct sched_domain_attr
*dattr_cur
;
8845 /* attribues of custom domains in 'doms_cur' */
8848 * Special case: If a kmalloc of a doms_cur partition (array of
8849 * cpumask) fails, then fallback to a single sched domain,
8850 * as determined by the single cpumask fallback_doms.
8852 static cpumask_var_t fallback_doms
;
8855 * arch_update_cpu_topology lets virtualized architectures update the
8856 * cpu core maps. It is supposed to return 1 if the topology changed
8857 * or 0 if it stayed the same.
8859 int __attribute__((weak
)) arch_update_cpu_topology(void)
8865 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8866 * For now this just excludes isolated cpus, but could be used to
8867 * exclude other special cases in the future.
8869 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
8873 arch_update_cpu_topology();
8875 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
8877 doms_cur
= fallback_doms
;
8878 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
8880 err
= build_sched_domains(doms_cur
);
8881 register_sched_domain_sysctl();
8886 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
8887 struct cpumask
*tmpmask
)
8889 free_sched_groups(cpu_map
, tmpmask
);
8893 * Detach sched domains from a group of cpus specified in cpu_map
8894 * These cpus will now be attached to the NULL domain
8896 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
8898 /* Save because hotplug lock held. */
8899 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
8902 for_each_cpu(i
, cpu_map
)
8903 cpu_attach_domain(NULL
, &def_root_domain
, i
);
8904 synchronize_sched();
8905 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
8908 /* handle null as "default" */
8909 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
8910 struct sched_domain_attr
*new, int idx_new
)
8912 struct sched_domain_attr tmp
;
8919 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
8920 new ? (new + idx_new
) : &tmp
,
8921 sizeof(struct sched_domain_attr
));
8925 * Partition sched domains as specified by the 'ndoms_new'
8926 * cpumasks in the array doms_new[] of cpumasks. This compares
8927 * doms_new[] to the current sched domain partitioning, doms_cur[].
8928 * It destroys each deleted domain and builds each new domain.
8930 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8931 * The masks don't intersect (don't overlap.) We should setup one
8932 * sched domain for each mask. CPUs not in any of the cpumasks will
8933 * not be load balanced. If the same cpumask appears both in the
8934 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8937 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8938 * ownership of it and will kfree it when done with it. If the caller
8939 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8940 * ndoms_new == 1, and partition_sched_domains() will fallback to
8941 * the single partition 'fallback_doms', it also forces the domains
8944 * If doms_new == NULL it will be replaced with cpu_online_mask.
8945 * ndoms_new == 0 is a special case for destroying existing domains,
8946 * and it will not create the default domain.
8948 * Call with hotplug lock held
8950 /* FIXME: Change to struct cpumask *doms_new[] */
8951 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
8952 struct sched_domain_attr
*dattr_new
)
8957 mutex_lock(&sched_domains_mutex
);
8959 /* always unregister in case we don't destroy any domains */
8960 unregister_sched_domain_sysctl();
8962 /* Let architecture update cpu core mappings. */
8963 new_topology
= arch_update_cpu_topology();
8965 n
= doms_new
? ndoms_new
: 0;
8967 /* Destroy deleted domains */
8968 for (i
= 0; i
< ndoms_cur
; i
++) {
8969 for (j
= 0; j
< n
&& !new_topology
; j
++) {
8970 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
8971 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
8974 /* no match - a current sched domain not in new doms_new[] */
8975 detach_destroy_domains(doms_cur
+ i
);
8980 if (doms_new
== NULL
) {
8982 doms_new
= fallback_doms
;
8983 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
8984 WARN_ON_ONCE(dattr_new
);
8987 /* Build new domains */
8988 for (i
= 0; i
< ndoms_new
; i
++) {
8989 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
8990 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
8991 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
8994 /* no match - add a new doms_new */
8995 __build_sched_domains(doms_new
+ i
,
8996 dattr_new
? dattr_new
+ i
: NULL
);
9001 /* Remember the new sched domains */
9002 if (doms_cur
!= fallback_doms
)
9004 kfree(dattr_cur
); /* kfree(NULL) is safe */
9005 doms_cur
= doms_new
;
9006 dattr_cur
= dattr_new
;
9007 ndoms_cur
= ndoms_new
;
9009 register_sched_domain_sysctl();
9011 mutex_unlock(&sched_domains_mutex
);
9014 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9015 static void arch_reinit_sched_domains(void)
9019 /* Destroy domains first to force the rebuild */
9020 partition_sched_domains(0, NULL
, NULL
);
9022 rebuild_sched_domains();
9026 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
9028 unsigned int level
= 0;
9030 if (sscanf(buf
, "%u", &level
) != 1)
9034 * level is always be positive so don't check for
9035 * level < POWERSAVINGS_BALANCE_NONE which is 0
9036 * What happens on 0 or 1 byte write,
9037 * need to check for count as well?
9040 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
9044 sched_smt_power_savings
= level
;
9046 sched_mc_power_savings
= level
;
9048 arch_reinit_sched_domains();
9053 #ifdef CONFIG_SCHED_MC
9054 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
9057 return sprintf(page
, "%u\n", sched_mc_power_savings
);
9059 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
9060 const char *buf
, size_t count
)
9062 return sched_power_savings_store(buf
, count
, 0);
9064 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
9065 sched_mc_power_savings_show
,
9066 sched_mc_power_savings_store
);
9069 #ifdef CONFIG_SCHED_SMT
9070 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
9073 return sprintf(page
, "%u\n", sched_smt_power_savings
);
9075 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
9076 const char *buf
, size_t count
)
9078 return sched_power_savings_store(buf
, count
, 1);
9080 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
9081 sched_smt_power_savings_show
,
9082 sched_smt_power_savings_store
);
9085 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
9089 #ifdef CONFIG_SCHED_SMT
9091 err
= sysfs_create_file(&cls
->kset
.kobj
,
9092 &attr_sched_smt_power_savings
.attr
);
9094 #ifdef CONFIG_SCHED_MC
9095 if (!err
&& mc_capable())
9096 err
= sysfs_create_file(&cls
->kset
.kobj
,
9097 &attr_sched_mc_power_savings
.attr
);
9101 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9103 #ifndef CONFIG_CPUSETS
9105 * Add online and remove offline CPUs from the scheduler domains.
9106 * When cpusets are enabled they take over this function.
9108 static int update_sched_domains(struct notifier_block
*nfb
,
9109 unsigned long action
, void *hcpu
)
9113 case CPU_ONLINE_FROZEN
:
9115 case CPU_DEAD_FROZEN
:
9116 partition_sched_domains(1, NULL
, NULL
);
9125 static int update_runtime(struct notifier_block
*nfb
,
9126 unsigned long action
, void *hcpu
)
9128 int cpu
= (int)(long)hcpu
;
9131 case CPU_DOWN_PREPARE
:
9132 case CPU_DOWN_PREPARE_FROZEN
:
9133 disable_runtime(cpu_rq(cpu
));
9136 case CPU_DOWN_FAILED
:
9137 case CPU_DOWN_FAILED_FROZEN
:
9139 case CPU_ONLINE_FROZEN
:
9140 enable_runtime(cpu_rq(cpu
));
9148 void __init
sched_init_smp(void)
9150 cpumask_var_t non_isolated_cpus
;
9152 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
9153 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9155 #if defined(CONFIG_NUMA)
9156 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
9158 BUG_ON(sched_group_nodes_bycpu
== NULL
);
9161 mutex_lock(&sched_domains_mutex
);
9162 arch_init_sched_domains(cpu_online_mask
);
9163 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9164 if (cpumask_empty(non_isolated_cpus
))
9165 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9166 mutex_unlock(&sched_domains_mutex
);
9169 #ifndef CONFIG_CPUSETS
9170 /* XXX: Theoretical race here - CPU may be hotplugged now */
9171 hotcpu_notifier(update_sched_domains
, 0);
9174 /* RT runtime code needs to handle some hotplug events */
9175 hotcpu_notifier(update_runtime
, 0);
9179 /* Move init over to a non-isolated CPU */
9180 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9182 sched_init_granularity();
9183 free_cpumask_var(non_isolated_cpus
);
9185 init_sched_rt_class();
9188 void __init
sched_init_smp(void)
9190 sched_init_granularity();
9192 #endif /* CONFIG_SMP */
9194 const_debug
unsigned int sysctl_timer_migration
= 1;
9196 int in_sched_functions(unsigned long addr
)
9198 return in_lock_functions(addr
) ||
9199 (addr
>= (unsigned long)__sched_text_start
9200 && addr
< (unsigned long)__sched_text_end
);
9203 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9205 cfs_rq
->tasks_timeline
= RB_ROOT
;
9206 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9207 #ifdef CONFIG_FAIR_GROUP_SCHED
9210 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9213 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9215 struct rt_prio_array
*array
;
9218 array
= &rt_rq
->active
;
9219 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9220 INIT_LIST_HEAD(array
->queue
+ i
);
9221 __clear_bit(i
, array
->bitmap
);
9223 /* delimiter for bitsearch: */
9224 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9226 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9227 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9229 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9233 rt_rq
->rt_nr_migratory
= 0;
9234 rt_rq
->overloaded
= 0;
9235 plist_head_init(&rt_rq
->pushable_tasks
, &rq
->lock
);
9239 rt_rq
->rt_throttled
= 0;
9240 rt_rq
->rt_runtime
= 0;
9241 spin_lock_init(&rt_rq
->rt_runtime_lock
);
9243 #ifdef CONFIG_RT_GROUP_SCHED
9244 rt_rq
->rt_nr_boosted
= 0;
9249 #ifdef CONFIG_FAIR_GROUP_SCHED
9250 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9251 struct sched_entity
*se
, int cpu
, int add
,
9252 struct sched_entity
*parent
)
9254 struct rq
*rq
= cpu_rq(cpu
);
9255 tg
->cfs_rq
[cpu
] = cfs_rq
;
9256 init_cfs_rq(cfs_rq
, rq
);
9259 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9262 /* se could be NULL for init_task_group */
9267 se
->cfs_rq
= &rq
->cfs
;
9269 se
->cfs_rq
= parent
->my_q
;
9272 se
->load
.weight
= tg
->shares
;
9273 se
->load
.inv_weight
= 0;
9274 se
->parent
= parent
;
9278 #ifdef CONFIG_RT_GROUP_SCHED
9279 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9280 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9281 struct sched_rt_entity
*parent
)
9283 struct rq
*rq
= cpu_rq(cpu
);
9285 tg
->rt_rq
[cpu
] = rt_rq
;
9286 init_rt_rq(rt_rq
, rq
);
9288 rt_rq
->rt_se
= rt_se
;
9289 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9291 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9293 tg
->rt_se
[cpu
] = rt_se
;
9298 rt_se
->rt_rq
= &rq
->rt
;
9300 rt_se
->rt_rq
= parent
->my_q
;
9302 rt_se
->my_q
= rt_rq
;
9303 rt_se
->parent
= parent
;
9304 INIT_LIST_HEAD(&rt_se
->run_list
);
9308 void __init
sched_init(void)
9311 unsigned long alloc_size
= 0, ptr
;
9313 #ifdef CONFIG_FAIR_GROUP_SCHED
9314 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9316 #ifdef CONFIG_RT_GROUP_SCHED
9317 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9319 #ifdef CONFIG_USER_SCHED
9322 #ifdef CONFIG_CPUMASK_OFFSTACK
9323 alloc_size
+= num_possible_cpus() * cpumask_size();
9326 * As sched_init() is called before page_alloc is setup,
9327 * we use alloc_bootmem().
9330 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9332 #ifdef CONFIG_FAIR_GROUP_SCHED
9333 init_task_group
.se
= (struct sched_entity
**)ptr
;
9334 ptr
+= nr_cpu_ids
* sizeof(void **);
9336 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9337 ptr
+= nr_cpu_ids
* sizeof(void **);
9339 #ifdef CONFIG_USER_SCHED
9340 root_task_group
.se
= (struct sched_entity
**)ptr
;
9341 ptr
+= nr_cpu_ids
* sizeof(void **);
9343 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9344 ptr
+= nr_cpu_ids
* sizeof(void **);
9345 #endif /* CONFIG_USER_SCHED */
9346 #endif /* CONFIG_FAIR_GROUP_SCHED */
9347 #ifdef CONFIG_RT_GROUP_SCHED
9348 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9349 ptr
+= nr_cpu_ids
* sizeof(void **);
9351 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9352 ptr
+= nr_cpu_ids
* sizeof(void **);
9354 #ifdef CONFIG_USER_SCHED
9355 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9356 ptr
+= nr_cpu_ids
* sizeof(void **);
9358 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9359 ptr
+= nr_cpu_ids
* sizeof(void **);
9360 #endif /* CONFIG_USER_SCHED */
9361 #endif /* CONFIG_RT_GROUP_SCHED */
9362 #ifdef CONFIG_CPUMASK_OFFSTACK
9363 for_each_possible_cpu(i
) {
9364 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9365 ptr
+= cpumask_size();
9367 #endif /* CONFIG_CPUMASK_OFFSTACK */
9371 init_defrootdomain();
9374 init_rt_bandwidth(&def_rt_bandwidth
,
9375 global_rt_period(), global_rt_runtime());
9377 #ifdef CONFIG_RT_GROUP_SCHED
9378 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9379 global_rt_period(), global_rt_runtime());
9380 #ifdef CONFIG_USER_SCHED
9381 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9382 global_rt_period(), RUNTIME_INF
);
9383 #endif /* CONFIG_USER_SCHED */
9384 #endif /* CONFIG_RT_GROUP_SCHED */
9386 #ifdef CONFIG_GROUP_SCHED
9387 list_add(&init_task_group
.list
, &task_groups
);
9388 INIT_LIST_HEAD(&init_task_group
.children
);
9390 #ifdef CONFIG_USER_SCHED
9391 INIT_LIST_HEAD(&root_task_group
.children
);
9392 init_task_group
.parent
= &root_task_group
;
9393 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9394 #endif /* CONFIG_USER_SCHED */
9395 #endif /* CONFIG_GROUP_SCHED */
9397 for_each_possible_cpu(i
) {
9401 spin_lock_init(&rq
->lock
);
9403 rq
->calc_load_active
= 0;
9404 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9405 init_cfs_rq(&rq
->cfs
, rq
);
9406 init_rt_rq(&rq
->rt
, rq
);
9407 #ifdef CONFIG_FAIR_GROUP_SCHED
9408 init_task_group
.shares
= init_task_group_load
;
9409 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9410 #ifdef CONFIG_CGROUP_SCHED
9412 * How much cpu bandwidth does init_task_group get?
9414 * In case of task-groups formed thr' the cgroup filesystem, it
9415 * gets 100% of the cpu resources in the system. This overall
9416 * system cpu resource is divided among the tasks of
9417 * init_task_group and its child task-groups in a fair manner,
9418 * based on each entity's (task or task-group's) weight
9419 * (se->load.weight).
9421 * In other words, if init_task_group has 10 tasks of weight
9422 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9423 * then A0's share of the cpu resource is:
9425 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9427 * We achieve this by letting init_task_group's tasks sit
9428 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9430 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9431 #elif defined CONFIG_USER_SCHED
9432 root_task_group
.shares
= NICE_0_LOAD
;
9433 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9435 * In case of task-groups formed thr' the user id of tasks,
9436 * init_task_group represents tasks belonging to root user.
9437 * Hence it forms a sibling of all subsequent groups formed.
9438 * In this case, init_task_group gets only a fraction of overall
9439 * system cpu resource, based on the weight assigned to root
9440 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9441 * by letting tasks of init_task_group sit in a separate cfs_rq
9442 * (init_tg_cfs_rq) and having one entity represent this group of
9443 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9445 init_tg_cfs_entry(&init_task_group
,
9446 &per_cpu(init_tg_cfs_rq
, i
),
9447 &per_cpu(init_sched_entity
, i
), i
, 1,
9448 root_task_group
.se
[i
]);
9451 #endif /* CONFIG_FAIR_GROUP_SCHED */
9453 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9454 #ifdef CONFIG_RT_GROUP_SCHED
9455 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9456 #ifdef CONFIG_CGROUP_SCHED
9457 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9458 #elif defined CONFIG_USER_SCHED
9459 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9460 init_tg_rt_entry(&init_task_group
,
9461 &per_cpu(init_rt_rq
, i
),
9462 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9463 root_task_group
.rt_se
[i
]);
9467 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9468 rq
->cpu_load
[j
] = 0;
9472 rq
->post_schedule
= 0;
9473 rq
->active_balance
= 0;
9474 rq
->next_balance
= jiffies
;
9478 rq
->migration_thread
= NULL
;
9479 INIT_LIST_HEAD(&rq
->migration_queue
);
9480 rq_attach_root(rq
, &def_root_domain
);
9483 atomic_set(&rq
->nr_iowait
, 0);
9486 set_load_weight(&init_task
);
9488 #ifdef CONFIG_PREEMPT_NOTIFIERS
9489 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9493 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9496 #ifdef CONFIG_RT_MUTEXES
9497 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9501 * The boot idle thread does lazy MMU switching as well:
9503 atomic_inc(&init_mm
.mm_count
);
9504 enter_lazy_tlb(&init_mm
, current
);
9507 * Make us the idle thread. Technically, schedule() should not be
9508 * called from this thread, however somewhere below it might be,
9509 * but because we are the idle thread, we just pick up running again
9510 * when this runqueue becomes "idle".
9512 init_idle(current
, smp_processor_id());
9514 calc_load_update
= jiffies
+ LOAD_FREQ
;
9517 * During early bootup we pretend to be a normal task:
9519 current
->sched_class
= &fair_sched_class
;
9521 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9522 alloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9525 alloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9526 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9528 alloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9531 perf_counter_init();
9533 scheduler_running
= 1;
9536 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9537 static inline int preempt_count_equals(int preempt_offset
)
9539 int nested
= preempt_count() & ~PREEMPT_ACTIVE
;
9541 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
9544 void __might_sleep(char *file
, int line
, int preempt_offset
)
9547 static unsigned long prev_jiffy
; /* ratelimiting */
9549 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
9550 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9552 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9554 prev_jiffy
= jiffies
;
9557 "BUG: sleeping function called from invalid context at %s:%d\n",
9560 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9561 in_atomic(), irqs_disabled(),
9562 current
->pid
, current
->comm
);
9564 debug_show_held_locks(current
);
9565 if (irqs_disabled())
9566 print_irqtrace_events(current
);
9570 EXPORT_SYMBOL(__might_sleep
);
9573 #ifdef CONFIG_MAGIC_SYSRQ
9574 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9578 update_rq_clock(rq
);
9579 on_rq
= p
->se
.on_rq
;
9581 deactivate_task(rq
, p
, 0);
9582 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9584 activate_task(rq
, p
, 0);
9585 resched_task(rq
->curr
);
9589 void normalize_rt_tasks(void)
9591 struct task_struct
*g
, *p
;
9592 unsigned long flags
;
9595 read_lock_irqsave(&tasklist_lock
, flags
);
9596 do_each_thread(g
, p
) {
9598 * Only normalize user tasks:
9603 p
->se
.exec_start
= 0;
9604 #ifdef CONFIG_SCHEDSTATS
9605 p
->se
.wait_start
= 0;
9606 p
->se
.sleep_start
= 0;
9607 p
->se
.block_start
= 0;
9612 * Renice negative nice level userspace
9615 if (TASK_NICE(p
) < 0 && p
->mm
)
9616 set_user_nice(p
, 0);
9620 spin_lock(&p
->pi_lock
);
9621 rq
= __task_rq_lock(p
);
9623 normalize_task(rq
, p
);
9625 __task_rq_unlock(rq
);
9626 spin_unlock(&p
->pi_lock
);
9627 } while_each_thread(g
, p
);
9629 read_unlock_irqrestore(&tasklist_lock
, flags
);
9632 #endif /* CONFIG_MAGIC_SYSRQ */
9636 * These functions are only useful for the IA64 MCA handling.
9638 * They can only be called when the whole system has been
9639 * stopped - every CPU needs to be quiescent, and no scheduling
9640 * activity can take place. Using them for anything else would
9641 * be a serious bug, and as a result, they aren't even visible
9642 * under any other configuration.
9646 * curr_task - return the current task for a given cpu.
9647 * @cpu: the processor in question.
9649 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9651 struct task_struct
*curr_task(int cpu
)
9653 return cpu_curr(cpu
);
9657 * set_curr_task - set the current task for a given cpu.
9658 * @cpu: the processor in question.
9659 * @p: the task pointer to set.
9661 * Description: This function must only be used when non-maskable interrupts
9662 * are serviced on a separate stack. It allows the architecture to switch the
9663 * notion of the current task on a cpu in a non-blocking manner. This function
9664 * must be called with all CPU's synchronized, and interrupts disabled, the
9665 * and caller must save the original value of the current task (see
9666 * curr_task() above) and restore that value before reenabling interrupts and
9667 * re-starting the system.
9669 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9671 void set_curr_task(int cpu
, struct task_struct
*p
)
9678 #ifdef CONFIG_FAIR_GROUP_SCHED
9679 static void free_fair_sched_group(struct task_group
*tg
)
9683 for_each_possible_cpu(i
) {
9685 kfree(tg
->cfs_rq
[i
]);
9695 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9697 struct cfs_rq
*cfs_rq
;
9698 struct sched_entity
*se
;
9702 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9705 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9709 tg
->shares
= NICE_0_LOAD
;
9711 for_each_possible_cpu(i
) {
9714 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9715 GFP_KERNEL
, cpu_to_node(i
));
9719 se
= kzalloc_node(sizeof(struct sched_entity
),
9720 GFP_KERNEL
, cpu_to_node(i
));
9724 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9733 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9735 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9736 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9739 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9741 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9743 #else /* !CONFG_FAIR_GROUP_SCHED */
9744 static inline void free_fair_sched_group(struct task_group
*tg
)
9749 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9754 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9758 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9761 #endif /* CONFIG_FAIR_GROUP_SCHED */
9763 #ifdef CONFIG_RT_GROUP_SCHED
9764 static void free_rt_sched_group(struct task_group
*tg
)
9768 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9770 for_each_possible_cpu(i
) {
9772 kfree(tg
->rt_rq
[i
]);
9774 kfree(tg
->rt_se
[i
]);
9782 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9784 struct rt_rq
*rt_rq
;
9785 struct sched_rt_entity
*rt_se
;
9789 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9792 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9796 init_rt_bandwidth(&tg
->rt_bandwidth
,
9797 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
9799 for_each_possible_cpu(i
) {
9802 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
9803 GFP_KERNEL
, cpu_to_node(i
));
9807 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
9808 GFP_KERNEL
, cpu_to_node(i
));
9812 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
9821 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9823 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
9824 &cpu_rq(cpu
)->leaf_rt_rq_list
);
9827 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9829 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
9831 #else /* !CONFIG_RT_GROUP_SCHED */
9832 static inline void free_rt_sched_group(struct task_group
*tg
)
9837 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9842 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9846 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9849 #endif /* CONFIG_RT_GROUP_SCHED */
9851 #ifdef CONFIG_GROUP_SCHED
9852 static void free_sched_group(struct task_group
*tg
)
9854 free_fair_sched_group(tg
);
9855 free_rt_sched_group(tg
);
9859 /* allocate runqueue etc for a new task group */
9860 struct task_group
*sched_create_group(struct task_group
*parent
)
9862 struct task_group
*tg
;
9863 unsigned long flags
;
9866 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
9868 return ERR_PTR(-ENOMEM
);
9870 if (!alloc_fair_sched_group(tg
, parent
))
9873 if (!alloc_rt_sched_group(tg
, parent
))
9876 spin_lock_irqsave(&task_group_lock
, flags
);
9877 for_each_possible_cpu(i
) {
9878 register_fair_sched_group(tg
, i
);
9879 register_rt_sched_group(tg
, i
);
9881 list_add_rcu(&tg
->list
, &task_groups
);
9883 WARN_ON(!parent
); /* root should already exist */
9885 tg
->parent
= parent
;
9886 INIT_LIST_HEAD(&tg
->children
);
9887 list_add_rcu(&tg
->siblings
, &parent
->children
);
9888 spin_unlock_irqrestore(&task_group_lock
, flags
);
9893 free_sched_group(tg
);
9894 return ERR_PTR(-ENOMEM
);
9897 /* rcu callback to free various structures associated with a task group */
9898 static void free_sched_group_rcu(struct rcu_head
*rhp
)
9900 /* now it should be safe to free those cfs_rqs */
9901 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
9904 /* Destroy runqueue etc associated with a task group */
9905 void sched_destroy_group(struct task_group
*tg
)
9907 unsigned long flags
;
9910 spin_lock_irqsave(&task_group_lock
, flags
);
9911 for_each_possible_cpu(i
) {
9912 unregister_fair_sched_group(tg
, i
);
9913 unregister_rt_sched_group(tg
, i
);
9915 list_del_rcu(&tg
->list
);
9916 list_del_rcu(&tg
->siblings
);
9917 spin_unlock_irqrestore(&task_group_lock
, flags
);
9919 /* wait for possible concurrent references to cfs_rqs complete */
9920 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
9923 /* change task's runqueue when it moves between groups.
9924 * The caller of this function should have put the task in its new group
9925 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9926 * reflect its new group.
9928 void sched_move_task(struct task_struct
*tsk
)
9931 unsigned long flags
;
9934 rq
= task_rq_lock(tsk
, &flags
);
9936 update_rq_clock(rq
);
9938 running
= task_current(rq
, tsk
);
9939 on_rq
= tsk
->se
.on_rq
;
9942 dequeue_task(rq
, tsk
, 0);
9943 if (unlikely(running
))
9944 tsk
->sched_class
->put_prev_task(rq
, tsk
);
9946 set_task_rq(tsk
, task_cpu(tsk
));
9948 #ifdef CONFIG_FAIR_GROUP_SCHED
9949 if (tsk
->sched_class
->moved_group
)
9950 tsk
->sched_class
->moved_group(tsk
);
9953 if (unlikely(running
))
9954 tsk
->sched_class
->set_curr_task(rq
);
9956 enqueue_task(rq
, tsk
, 0);
9958 task_rq_unlock(rq
, &flags
);
9960 #endif /* CONFIG_GROUP_SCHED */
9962 #ifdef CONFIG_FAIR_GROUP_SCHED
9963 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9965 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9970 dequeue_entity(cfs_rq
, se
, 0);
9972 se
->load
.weight
= shares
;
9973 se
->load
.inv_weight
= 0;
9976 enqueue_entity(cfs_rq
, se
, 0);
9979 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9981 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9982 struct rq
*rq
= cfs_rq
->rq
;
9983 unsigned long flags
;
9985 spin_lock_irqsave(&rq
->lock
, flags
);
9986 __set_se_shares(se
, shares
);
9987 spin_unlock_irqrestore(&rq
->lock
, flags
);
9990 static DEFINE_MUTEX(shares_mutex
);
9992 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9995 unsigned long flags
;
9998 * We can't change the weight of the root cgroup.
10003 if (shares
< MIN_SHARES
)
10004 shares
= MIN_SHARES
;
10005 else if (shares
> MAX_SHARES
)
10006 shares
= MAX_SHARES
;
10008 mutex_lock(&shares_mutex
);
10009 if (tg
->shares
== shares
)
10012 spin_lock_irqsave(&task_group_lock
, flags
);
10013 for_each_possible_cpu(i
)
10014 unregister_fair_sched_group(tg
, i
);
10015 list_del_rcu(&tg
->siblings
);
10016 spin_unlock_irqrestore(&task_group_lock
, flags
);
10018 /* wait for any ongoing reference to this group to finish */
10019 synchronize_sched();
10022 * Now we are free to modify the group's share on each cpu
10023 * w/o tripping rebalance_share or load_balance_fair.
10025 tg
->shares
= shares
;
10026 for_each_possible_cpu(i
) {
10028 * force a rebalance
10030 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
10031 set_se_shares(tg
->se
[i
], shares
);
10035 * Enable load balance activity on this group, by inserting it back on
10036 * each cpu's rq->leaf_cfs_rq_list.
10038 spin_lock_irqsave(&task_group_lock
, flags
);
10039 for_each_possible_cpu(i
)
10040 register_fair_sched_group(tg
, i
);
10041 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
10042 spin_unlock_irqrestore(&task_group_lock
, flags
);
10044 mutex_unlock(&shares_mutex
);
10048 unsigned long sched_group_shares(struct task_group
*tg
)
10054 #ifdef CONFIG_RT_GROUP_SCHED
10056 * Ensure that the real time constraints are schedulable.
10058 static DEFINE_MUTEX(rt_constraints_mutex
);
10060 static unsigned long to_ratio(u64 period
, u64 runtime
)
10062 if (runtime
== RUNTIME_INF
)
10065 return div64_u64(runtime
<< 20, period
);
10068 /* Must be called with tasklist_lock held */
10069 static inline int tg_has_rt_tasks(struct task_group
*tg
)
10071 struct task_struct
*g
, *p
;
10073 do_each_thread(g
, p
) {
10074 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
10076 } while_each_thread(g
, p
);
10081 struct rt_schedulable_data
{
10082 struct task_group
*tg
;
10087 static int tg_schedulable(struct task_group
*tg
, void *data
)
10089 struct rt_schedulable_data
*d
= data
;
10090 struct task_group
*child
;
10091 unsigned long total
, sum
= 0;
10092 u64 period
, runtime
;
10094 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10095 runtime
= tg
->rt_bandwidth
.rt_runtime
;
10098 period
= d
->rt_period
;
10099 runtime
= d
->rt_runtime
;
10102 #ifdef CONFIG_USER_SCHED
10103 if (tg
== &root_task_group
) {
10104 period
= global_rt_period();
10105 runtime
= global_rt_runtime();
10110 * Cannot have more runtime than the period.
10112 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10116 * Ensure we don't starve existing RT tasks.
10118 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
10121 total
= to_ratio(period
, runtime
);
10124 * Nobody can have more than the global setting allows.
10126 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
10130 * The sum of our children's runtime should not exceed our own.
10132 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
10133 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
10134 runtime
= child
->rt_bandwidth
.rt_runtime
;
10136 if (child
== d
->tg
) {
10137 period
= d
->rt_period
;
10138 runtime
= d
->rt_runtime
;
10141 sum
+= to_ratio(period
, runtime
);
10150 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
10152 struct rt_schedulable_data data
= {
10154 .rt_period
= period
,
10155 .rt_runtime
= runtime
,
10158 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
10161 static int tg_set_bandwidth(struct task_group
*tg
,
10162 u64 rt_period
, u64 rt_runtime
)
10166 mutex_lock(&rt_constraints_mutex
);
10167 read_lock(&tasklist_lock
);
10168 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10172 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10173 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10174 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10176 for_each_possible_cpu(i
) {
10177 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10179 spin_lock(&rt_rq
->rt_runtime_lock
);
10180 rt_rq
->rt_runtime
= rt_runtime
;
10181 spin_unlock(&rt_rq
->rt_runtime_lock
);
10183 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10185 read_unlock(&tasklist_lock
);
10186 mutex_unlock(&rt_constraints_mutex
);
10191 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10193 u64 rt_runtime
, rt_period
;
10195 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10196 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10197 if (rt_runtime_us
< 0)
10198 rt_runtime
= RUNTIME_INF
;
10200 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10203 long sched_group_rt_runtime(struct task_group
*tg
)
10207 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10210 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10211 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10212 return rt_runtime_us
;
10215 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10217 u64 rt_runtime
, rt_period
;
10219 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10220 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10222 if (rt_period
== 0)
10225 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10228 long sched_group_rt_period(struct task_group
*tg
)
10232 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10233 do_div(rt_period_us
, NSEC_PER_USEC
);
10234 return rt_period_us
;
10237 static int sched_rt_global_constraints(void)
10239 u64 runtime
, period
;
10242 if (sysctl_sched_rt_period
<= 0)
10245 runtime
= global_rt_runtime();
10246 period
= global_rt_period();
10249 * Sanity check on the sysctl variables.
10251 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10254 mutex_lock(&rt_constraints_mutex
);
10255 read_lock(&tasklist_lock
);
10256 ret
= __rt_schedulable(NULL
, 0, 0);
10257 read_unlock(&tasklist_lock
);
10258 mutex_unlock(&rt_constraints_mutex
);
10263 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10265 /* Don't accept realtime tasks when there is no way for them to run */
10266 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10272 #else /* !CONFIG_RT_GROUP_SCHED */
10273 static int sched_rt_global_constraints(void)
10275 unsigned long flags
;
10278 if (sysctl_sched_rt_period
<= 0)
10282 * There's always some RT tasks in the root group
10283 * -- migration, kstopmachine etc..
10285 if (sysctl_sched_rt_runtime
== 0)
10288 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10289 for_each_possible_cpu(i
) {
10290 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10292 spin_lock(&rt_rq
->rt_runtime_lock
);
10293 rt_rq
->rt_runtime
= global_rt_runtime();
10294 spin_unlock(&rt_rq
->rt_runtime_lock
);
10296 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10300 #endif /* CONFIG_RT_GROUP_SCHED */
10302 int sched_rt_handler(struct ctl_table
*table
, int write
,
10303 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
10307 int old_period
, old_runtime
;
10308 static DEFINE_MUTEX(mutex
);
10310 mutex_lock(&mutex
);
10311 old_period
= sysctl_sched_rt_period
;
10312 old_runtime
= sysctl_sched_rt_runtime
;
10314 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
10316 if (!ret
&& write
) {
10317 ret
= sched_rt_global_constraints();
10319 sysctl_sched_rt_period
= old_period
;
10320 sysctl_sched_rt_runtime
= old_runtime
;
10322 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10323 def_rt_bandwidth
.rt_period
=
10324 ns_to_ktime(global_rt_period());
10327 mutex_unlock(&mutex
);
10332 #ifdef CONFIG_CGROUP_SCHED
10334 /* return corresponding task_group object of a cgroup */
10335 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10337 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10338 struct task_group
, css
);
10341 static struct cgroup_subsys_state
*
10342 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10344 struct task_group
*tg
, *parent
;
10346 if (!cgrp
->parent
) {
10347 /* This is early initialization for the top cgroup */
10348 return &init_task_group
.css
;
10351 parent
= cgroup_tg(cgrp
->parent
);
10352 tg
= sched_create_group(parent
);
10354 return ERR_PTR(-ENOMEM
);
10360 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10362 struct task_group
*tg
= cgroup_tg(cgrp
);
10364 sched_destroy_group(tg
);
10368 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10369 struct task_struct
*tsk
)
10371 #ifdef CONFIG_RT_GROUP_SCHED
10372 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10375 /* We don't support RT-tasks being in separate groups */
10376 if (tsk
->sched_class
!= &fair_sched_class
)
10384 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10385 struct cgroup
*old_cont
, struct task_struct
*tsk
)
10387 sched_move_task(tsk
);
10390 #ifdef CONFIG_FAIR_GROUP_SCHED
10391 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10394 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10397 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10399 struct task_group
*tg
= cgroup_tg(cgrp
);
10401 return (u64
) tg
->shares
;
10403 #endif /* CONFIG_FAIR_GROUP_SCHED */
10405 #ifdef CONFIG_RT_GROUP_SCHED
10406 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10409 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10412 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10414 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10417 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10420 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10423 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10425 return sched_group_rt_period(cgroup_tg(cgrp
));
10427 #endif /* CONFIG_RT_GROUP_SCHED */
10429 static struct cftype cpu_files
[] = {
10430 #ifdef CONFIG_FAIR_GROUP_SCHED
10433 .read_u64
= cpu_shares_read_u64
,
10434 .write_u64
= cpu_shares_write_u64
,
10437 #ifdef CONFIG_RT_GROUP_SCHED
10439 .name
= "rt_runtime_us",
10440 .read_s64
= cpu_rt_runtime_read
,
10441 .write_s64
= cpu_rt_runtime_write
,
10444 .name
= "rt_period_us",
10445 .read_u64
= cpu_rt_period_read_uint
,
10446 .write_u64
= cpu_rt_period_write_uint
,
10451 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10453 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10456 struct cgroup_subsys cpu_cgroup_subsys
= {
10458 .create
= cpu_cgroup_create
,
10459 .destroy
= cpu_cgroup_destroy
,
10460 .can_attach
= cpu_cgroup_can_attach
,
10461 .attach
= cpu_cgroup_attach
,
10462 .populate
= cpu_cgroup_populate
,
10463 .subsys_id
= cpu_cgroup_subsys_id
,
10467 #endif /* CONFIG_CGROUP_SCHED */
10469 #ifdef CONFIG_CGROUP_CPUACCT
10472 * CPU accounting code for task groups.
10474 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10475 * (balbir@in.ibm.com).
10478 /* track cpu usage of a group of tasks and its child groups */
10480 struct cgroup_subsys_state css
;
10481 /* cpuusage holds pointer to a u64-type object on every cpu */
10483 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10484 struct cpuacct
*parent
;
10487 struct cgroup_subsys cpuacct_subsys
;
10489 /* return cpu accounting group corresponding to this container */
10490 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10492 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10493 struct cpuacct
, css
);
10496 /* return cpu accounting group to which this task belongs */
10497 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10499 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10500 struct cpuacct
, css
);
10503 /* create a new cpu accounting group */
10504 static struct cgroup_subsys_state
*cpuacct_create(
10505 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10507 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10513 ca
->cpuusage
= alloc_percpu(u64
);
10517 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10518 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10519 goto out_free_counters
;
10522 ca
->parent
= cgroup_ca(cgrp
->parent
);
10528 percpu_counter_destroy(&ca
->cpustat
[i
]);
10529 free_percpu(ca
->cpuusage
);
10533 return ERR_PTR(-ENOMEM
);
10536 /* destroy an existing cpu accounting group */
10538 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10540 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10543 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10544 percpu_counter_destroy(&ca
->cpustat
[i
]);
10545 free_percpu(ca
->cpuusage
);
10549 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10551 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10554 #ifndef CONFIG_64BIT
10556 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10558 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10560 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10568 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10570 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10572 #ifndef CONFIG_64BIT
10574 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10576 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10578 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10584 /* return total cpu usage (in nanoseconds) of a group */
10585 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10587 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10588 u64 totalcpuusage
= 0;
10591 for_each_present_cpu(i
)
10592 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10594 return totalcpuusage
;
10597 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10600 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10609 for_each_present_cpu(i
)
10610 cpuacct_cpuusage_write(ca
, i
, 0);
10616 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10617 struct seq_file
*m
)
10619 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10623 for_each_present_cpu(i
) {
10624 percpu
= cpuacct_cpuusage_read(ca
, i
);
10625 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10627 seq_printf(m
, "\n");
10631 static const char *cpuacct_stat_desc
[] = {
10632 [CPUACCT_STAT_USER
] = "user",
10633 [CPUACCT_STAT_SYSTEM
] = "system",
10636 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10637 struct cgroup_map_cb
*cb
)
10639 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10642 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10643 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10644 val
= cputime64_to_clock_t(val
);
10645 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10650 static struct cftype files
[] = {
10653 .read_u64
= cpuusage_read
,
10654 .write_u64
= cpuusage_write
,
10657 .name
= "usage_percpu",
10658 .read_seq_string
= cpuacct_percpu_seq_read
,
10662 .read_map
= cpuacct_stats_show
,
10666 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10668 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10672 * charge this task's execution time to its accounting group.
10674 * called with rq->lock held.
10676 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10678 struct cpuacct
*ca
;
10681 if (unlikely(!cpuacct_subsys
.active
))
10684 cpu
= task_cpu(tsk
);
10690 for (; ca
; ca
= ca
->parent
) {
10691 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10692 *cpuusage
+= cputime
;
10699 * Charge the system/user time to the task's accounting group.
10701 static void cpuacct_update_stats(struct task_struct
*tsk
,
10702 enum cpuacct_stat_index idx
, cputime_t val
)
10704 struct cpuacct
*ca
;
10706 if (unlikely(!cpuacct_subsys
.active
))
10713 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10719 struct cgroup_subsys cpuacct_subsys
= {
10721 .create
= cpuacct_create
,
10722 .destroy
= cpuacct_destroy
,
10723 .populate
= cpuacct_populate
,
10724 .subsys_id
= cpuacct_subsys_id
,
10726 #endif /* CONFIG_CGROUP_CPUACCT */
10730 int rcu_expedited_torture_stats(char *page
)
10734 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10736 void synchronize_sched_expedited(void)
10739 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10741 #else /* #ifndef CONFIG_SMP */
10743 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
10744 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
10746 #define RCU_EXPEDITED_STATE_POST -2
10747 #define RCU_EXPEDITED_STATE_IDLE -1
10749 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10751 int rcu_expedited_torture_stats(char *page
)
10756 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
10757 for_each_online_cpu(cpu
) {
10758 cnt
+= sprintf(&page
[cnt
], " %d:%d",
10759 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
10761 cnt
+= sprintf(&page
[cnt
], "\n");
10764 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10766 static long synchronize_sched_expedited_count
;
10769 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10770 * approach to force grace period to end quickly. This consumes
10771 * significant time on all CPUs, and is thus not recommended for
10772 * any sort of common-case code.
10774 * Note that it is illegal to call this function while holding any
10775 * lock that is acquired by a CPU-hotplug notifier. Failing to
10776 * observe this restriction will result in deadlock.
10778 void synchronize_sched_expedited(void)
10781 unsigned long flags
;
10782 bool need_full_sync
= 0;
10784 struct migration_req
*req
;
10788 smp_mb(); /* ensure prior mod happens before capturing snap. */
10789 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
10791 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
10793 if (trycount
++ < 10)
10794 udelay(trycount
* num_online_cpus());
10796 synchronize_sched();
10799 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
10800 smp_mb(); /* ensure test happens before caller kfree */
10805 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
10806 for_each_online_cpu(cpu
) {
10808 req
= &per_cpu(rcu_migration_req
, cpu
);
10809 init_completion(&req
->done
);
10811 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
10812 spin_lock_irqsave(&rq
->lock
, flags
);
10813 list_add(&req
->list
, &rq
->migration_queue
);
10814 spin_unlock_irqrestore(&rq
->lock
, flags
);
10815 wake_up_process(rq
->migration_thread
);
10817 for_each_online_cpu(cpu
) {
10818 rcu_expedited_state
= cpu
;
10819 req
= &per_cpu(rcu_migration_req
, cpu
);
10821 wait_for_completion(&req
->done
);
10822 spin_lock_irqsave(&rq
->lock
, flags
);
10823 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
10824 need_full_sync
= 1;
10825 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
10826 spin_unlock_irqrestore(&rq
->lock
, flags
);
10828 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10829 mutex_unlock(&rcu_sched_expedited_mutex
);
10831 if (need_full_sync
)
10832 synchronize_sched();
10834 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10836 #endif /* #else #ifndef CONFIG_SMP */