[PATCH] powerpc: powermac adb fix udbg_adb_use_btext warning
[linux-2.6/x86.git] / net / core / skbuff.c
blob070f91cfde598cf20c20b1b291479a832922657b
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
77 * reliable.
80 /**
81 * skb_over_panic - private function
82 * @skb: buffer
83 * @sz: size
84 * @here: address
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 skb->dev ? skb->dev->name : "<NULL>");
94 BUG();
97 /**
98 * skb_under_panic - private function
99 * @skb: buffer
100 * @sz: size
101 * @here: address
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 skb->dev ? skb->dev->name : "<NULL>");
112 BUG();
115 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
116 * 'private' fields and also do memory statistics to find all the
117 * [BEEP] leaks.
122 * __alloc_skb - allocate a network buffer
123 * @size: size to allocate
124 * @gfp_mask: allocation mask
125 * @fclone: allocate from fclone cache instead of head cache
126 * and allocate a cloned (child) skb
128 * Allocate a new &sk_buff. The returned buffer has no headroom and a
129 * tail room of size bytes. The object has a reference count of one.
130 * The return is the buffer. On a failure the return is %NULL.
132 * Buffers may only be allocated from interrupts using a @gfp_mask of
133 * %GFP_ATOMIC.
135 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
136 int fclone)
138 struct skb_shared_info *shinfo;
139 struct sk_buff *skb;
140 u8 *data;
142 /* Get the HEAD */
143 skb = kmem_cache_alloc(fclone ? skbuff_fclone_cache : skbuff_head_cache,
144 gfp_mask & ~__GFP_DMA);
145 if (!skb)
146 goto out;
148 /* Get the DATA. Size must match skb_add_mtu(). */
149 size = SKB_DATA_ALIGN(size);
150 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
151 if (!data)
152 goto nodata;
154 memset(skb, 0, offsetof(struct sk_buff, truesize));
155 skb->truesize = size + sizeof(struct sk_buff);
156 atomic_set(&skb->users, 1);
157 skb->head = data;
158 skb->data = data;
159 skb->tail = data;
160 skb->end = data + size;
161 /* make sure we initialize shinfo sequentially */
162 shinfo = skb_shinfo(skb);
163 atomic_set(&shinfo->dataref, 1);
164 shinfo->nr_frags = 0;
165 shinfo->tso_size = 0;
166 shinfo->tso_segs = 0;
167 shinfo->ufo_size = 0;
168 shinfo->ip6_frag_id = 0;
169 shinfo->frag_list = NULL;
171 if (fclone) {
172 struct sk_buff *child = skb + 1;
173 atomic_t *fclone_ref = (atomic_t *) (child + 1);
175 skb->fclone = SKB_FCLONE_ORIG;
176 atomic_set(fclone_ref, 1);
178 child->fclone = SKB_FCLONE_UNAVAILABLE;
180 out:
181 return skb;
182 nodata:
183 kmem_cache_free(skbuff_head_cache, skb);
184 skb = NULL;
185 goto out;
189 * alloc_skb_from_cache - allocate a network buffer
190 * @cp: kmem_cache from which to allocate the data area
191 * (object size must be big enough for @size bytes + skb overheads)
192 * @size: size to allocate
193 * @gfp_mask: allocation mask
195 * Allocate a new &sk_buff. The returned buffer has no headroom and
196 * tail room of size bytes. The object has a reference count of one.
197 * The return is the buffer. On a failure the return is %NULL.
199 * Buffers may only be allocated from interrupts using a @gfp_mask of
200 * %GFP_ATOMIC.
202 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
203 unsigned int size,
204 gfp_t gfp_mask)
206 struct sk_buff *skb;
207 u8 *data;
209 /* Get the HEAD */
210 skb = kmem_cache_alloc(skbuff_head_cache,
211 gfp_mask & ~__GFP_DMA);
212 if (!skb)
213 goto out;
215 /* Get the DATA. */
216 size = SKB_DATA_ALIGN(size);
217 data = kmem_cache_alloc(cp, gfp_mask);
218 if (!data)
219 goto nodata;
221 memset(skb, 0, offsetof(struct sk_buff, truesize));
222 skb->truesize = size + sizeof(struct sk_buff);
223 atomic_set(&skb->users, 1);
224 skb->head = data;
225 skb->data = data;
226 skb->tail = data;
227 skb->end = data + size;
229 atomic_set(&(skb_shinfo(skb)->dataref), 1);
230 skb_shinfo(skb)->nr_frags = 0;
231 skb_shinfo(skb)->tso_size = 0;
232 skb_shinfo(skb)->tso_segs = 0;
233 skb_shinfo(skb)->frag_list = NULL;
234 out:
235 return skb;
236 nodata:
237 kmem_cache_free(skbuff_head_cache, skb);
238 skb = NULL;
239 goto out;
243 static void skb_drop_fraglist(struct sk_buff *skb)
245 struct sk_buff *list = skb_shinfo(skb)->frag_list;
247 skb_shinfo(skb)->frag_list = NULL;
249 do {
250 struct sk_buff *this = list;
251 list = list->next;
252 kfree_skb(this);
253 } while (list);
256 static void skb_clone_fraglist(struct sk_buff *skb)
258 struct sk_buff *list;
260 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
261 skb_get(list);
264 void skb_release_data(struct sk_buff *skb)
266 if (!skb->cloned ||
267 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
268 &skb_shinfo(skb)->dataref)) {
269 if (skb_shinfo(skb)->nr_frags) {
270 int i;
271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
272 put_page(skb_shinfo(skb)->frags[i].page);
275 if (skb_shinfo(skb)->frag_list)
276 skb_drop_fraglist(skb);
278 kfree(skb->head);
283 * Free an skbuff by memory without cleaning the state.
285 void kfree_skbmem(struct sk_buff *skb)
287 struct sk_buff *other;
288 atomic_t *fclone_ref;
290 skb_release_data(skb);
291 switch (skb->fclone) {
292 case SKB_FCLONE_UNAVAILABLE:
293 kmem_cache_free(skbuff_head_cache, skb);
294 break;
296 case SKB_FCLONE_ORIG:
297 fclone_ref = (atomic_t *) (skb + 2);
298 if (atomic_dec_and_test(fclone_ref))
299 kmem_cache_free(skbuff_fclone_cache, skb);
300 break;
302 case SKB_FCLONE_CLONE:
303 fclone_ref = (atomic_t *) (skb + 1);
304 other = skb - 1;
306 /* The clone portion is available for
307 * fast-cloning again.
309 skb->fclone = SKB_FCLONE_UNAVAILABLE;
311 if (atomic_dec_and_test(fclone_ref))
312 kmem_cache_free(skbuff_fclone_cache, other);
313 break;
318 * __kfree_skb - private function
319 * @skb: buffer
321 * Free an sk_buff. Release anything attached to the buffer.
322 * Clean the state. This is an internal helper function. Users should
323 * always call kfree_skb
326 void __kfree_skb(struct sk_buff *skb)
328 dst_release(skb->dst);
329 #ifdef CONFIG_XFRM
330 secpath_put(skb->sp);
331 #endif
332 if (skb->destructor) {
333 WARN_ON(in_irq());
334 skb->destructor(skb);
336 #ifdef CONFIG_NETFILTER
337 nf_conntrack_put(skb->nfct);
338 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
339 nf_conntrack_put_reasm(skb->nfct_reasm);
340 #endif
341 #ifdef CONFIG_BRIDGE_NETFILTER
342 nf_bridge_put(skb->nf_bridge);
343 #endif
344 #endif
345 /* XXX: IS this still necessary? - JHS */
346 #ifdef CONFIG_NET_SCHED
347 skb->tc_index = 0;
348 #ifdef CONFIG_NET_CLS_ACT
349 skb->tc_verd = 0;
350 #endif
351 #endif
353 kfree_skbmem(skb);
357 * skb_clone - duplicate an sk_buff
358 * @skb: buffer to clone
359 * @gfp_mask: allocation priority
361 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
362 * copies share the same packet data but not structure. The new
363 * buffer has a reference count of 1. If the allocation fails the
364 * function returns %NULL otherwise the new buffer is returned.
366 * If this function is called from an interrupt gfp_mask() must be
367 * %GFP_ATOMIC.
370 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
372 struct sk_buff *n;
374 n = skb + 1;
375 if (skb->fclone == SKB_FCLONE_ORIG &&
376 n->fclone == SKB_FCLONE_UNAVAILABLE) {
377 atomic_t *fclone_ref = (atomic_t *) (n + 1);
378 n->fclone = SKB_FCLONE_CLONE;
379 atomic_inc(fclone_ref);
380 } else {
381 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
382 if (!n)
383 return NULL;
384 n->fclone = SKB_FCLONE_UNAVAILABLE;
387 #define C(x) n->x = skb->x
389 n->next = n->prev = NULL;
390 n->sk = NULL;
391 C(tstamp);
392 C(dev);
393 C(h);
394 C(nh);
395 C(mac);
396 C(dst);
397 dst_clone(skb->dst);
398 C(sp);
399 #ifdef CONFIG_INET
400 secpath_get(skb->sp);
401 #endif
402 memcpy(n->cb, skb->cb, sizeof(skb->cb));
403 C(len);
404 C(data_len);
405 C(csum);
406 C(local_df);
407 n->cloned = 1;
408 n->nohdr = 0;
409 C(pkt_type);
410 C(ip_summed);
411 C(priority);
412 C(protocol);
413 n->destructor = NULL;
414 #ifdef CONFIG_NETFILTER
415 C(nfmark);
416 C(nfct);
417 nf_conntrack_get(skb->nfct);
418 C(nfctinfo);
419 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
420 C(nfct_reasm);
421 nf_conntrack_get_reasm(skb->nfct_reasm);
422 #endif
423 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
424 C(ipvs_property);
425 #endif
426 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
427 C(nfct_reasm);
428 nf_conntrack_get_reasm(skb->nfct_reasm);
429 #endif
430 #ifdef CONFIG_BRIDGE_NETFILTER
431 C(nf_bridge);
432 nf_bridge_get(skb->nf_bridge);
433 #endif
434 #endif /*CONFIG_NETFILTER*/
435 #ifdef CONFIG_NET_SCHED
436 C(tc_index);
437 #ifdef CONFIG_NET_CLS_ACT
438 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
439 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
440 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
441 C(input_dev);
442 #endif
444 #endif
445 C(truesize);
446 atomic_set(&n->users, 1);
447 C(head);
448 C(data);
449 C(tail);
450 C(end);
452 atomic_inc(&(skb_shinfo(skb)->dataref));
453 skb->cloned = 1;
455 return n;
458 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
461 * Shift between the two data areas in bytes
463 unsigned long offset = new->data - old->data;
465 new->sk = NULL;
466 new->dev = old->dev;
467 new->priority = old->priority;
468 new->protocol = old->protocol;
469 new->dst = dst_clone(old->dst);
470 #ifdef CONFIG_INET
471 new->sp = secpath_get(old->sp);
472 #endif
473 new->h.raw = old->h.raw + offset;
474 new->nh.raw = old->nh.raw + offset;
475 new->mac.raw = old->mac.raw + offset;
476 memcpy(new->cb, old->cb, sizeof(old->cb));
477 new->local_df = old->local_df;
478 new->fclone = SKB_FCLONE_UNAVAILABLE;
479 new->pkt_type = old->pkt_type;
480 new->tstamp = old->tstamp;
481 new->destructor = NULL;
482 #ifdef CONFIG_NETFILTER
483 new->nfmark = old->nfmark;
484 new->nfct = old->nfct;
485 nf_conntrack_get(old->nfct);
486 new->nfctinfo = old->nfctinfo;
487 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
488 new->nfct_reasm = old->nfct_reasm;
489 nf_conntrack_get_reasm(old->nfct_reasm);
490 #endif
491 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
492 new->ipvs_property = old->ipvs_property;
493 #endif
494 #ifdef CONFIG_BRIDGE_NETFILTER
495 new->nf_bridge = old->nf_bridge;
496 nf_bridge_get(old->nf_bridge);
497 #endif
498 #endif
499 #ifdef CONFIG_NET_SCHED
500 #ifdef CONFIG_NET_CLS_ACT
501 new->tc_verd = old->tc_verd;
502 #endif
503 new->tc_index = old->tc_index;
504 #endif
505 atomic_set(&new->users, 1);
506 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
507 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
511 * skb_copy - create private copy of an sk_buff
512 * @skb: buffer to copy
513 * @gfp_mask: allocation priority
515 * Make a copy of both an &sk_buff and its data. This is used when the
516 * caller wishes to modify the data and needs a private copy of the
517 * data to alter. Returns %NULL on failure or the pointer to the buffer
518 * on success. The returned buffer has a reference count of 1.
520 * As by-product this function converts non-linear &sk_buff to linear
521 * one, so that &sk_buff becomes completely private and caller is allowed
522 * to modify all the data of returned buffer. This means that this
523 * function is not recommended for use in circumstances when only
524 * header is going to be modified. Use pskb_copy() instead.
527 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
529 int headerlen = skb->data - skb->head;
531 * Allocate the copy buffer
533 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
534 gfp_mask);
535 if (!n)
536 return NULL;
538 /* Set the data pointer */
539 skb_reserve(n, headerlen);
540 /* Set the tail pointer and length */
541 skb_put(n, skb->len);
542 n->csum = skb->csum;
543 n->ip_summed = skb->ip_summed;
545 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
546 BUG();
548 copy_skb_header(n, skb);
549 return n;
554 * pskb_copy - create copy of an sk_buff with private head.
555 * @skb: buffer to copy
556 * @gfp_mask: allocation priority
558 * Make a copy of both an &sk_buff and part of its data, located
559 * in header. Fragmented data remain shared. This is used when
560 * the caller wishes to modify only header of &sk_buff and needs
561 * private copy of the header to alter. Returns %NULL on failure
562 * or the pointer to the buffer on success.
563 * The returned buffer has a reference count of 1.
566 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
569 * Allocate the copy buffer
571 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
573 if (!n)
574 goto out;
576 /* Set the data pointer */
577 skb_reserve(n, skb->data - skb->head);
578 /* Set the tail pointer and length */
579 skb_put(n, skb_headlen(skb));
580 /* Copy the bytes */
581 memcpy(n->data, skb->data, n->len);
582 n->csum = skb->csum;
583 n->ip_summed = skb->ip_summed;
585 n->data_len = skb->data_len;
586 n->len = skb->len;
588 if (skb_shinfo(skb)->nr_frags) {
589 int i;
591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
592 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
593 get_page(skb_shinfo(n)->frags[i].page);
595 skb_shinfo(n)->nr_frags = i;
598 if (skb_shinfo(skb)->frag_list) {
599 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
600 skb_clone_fraglist(n);
603 copy_skb_header(n, skb);
604 out:
605 return n;
609 * pskb_expand_head - reallocate header of &sk_buff
610 * @skb: buffer to reallocate
611 * @nhead: room to add at head
612 * @ntail: room to add at tail
613 * @gfp_mask: allocation priority
615 * Expands (or creates identical copy, if &nhead and &ntail are zero)
616 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
617 * reference count of 1. Returns zero in the case of success or error,
618 * if expansion failed. In the last case, &sk_buff is not changed.
620 * All the pointers pointing into skb header may change and must be
621 * reloaded after call to this function.
624 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
625 gfp_t gfp_mask)
627 int i;
628 u8 *data;
629 int size = nhead + (skb->end - skb->head) + ntail;
630 long off;
632 if (skb_shared(skb))
633 BUG();
635 size = SKB_DATA_ALIGN(size);
637 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
638 if (!data)
639 goto nodata;
641 /* Copy only real data... and, alas, header. This should be
642 * optimized for the cases when header is void. */
643 memcpy(data + nhead, skb->head, skb->tail - skb->head);
644 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
647 get_page(skb_shinfo(skb)->frags[i].page);
649 if (skb_shinfo(skb)->frag_list)
650 skb_clone_fraglist(skb);
652 skb_release_data(skb);
654 off = (data + nhead) - skb->head;
656 skb->head = data;
657 skb->end = data + size;
658 skb->data += off;
659 skb->tail += off;
660 skb->mac.raw += off;
661 skb->h.raw += off;
662 skb->nh.raw += off;
663 skb->cloned = 0;
664 skb->nohdr = 0;
665 atomic_set(&skb_shinfo(skb)->dataref, 1);
666 return 0;
668 nodata:
669 return -ENOMEM;
672 /* Make private copy of skb with writable head and some headroom */
674 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
676 struct sk_buff *skb2;
677 int delta = headroom - skb_headroom(skb);
679 if (delta <= 0)
680 skb2 = pskb_copy(skb, GFP_ATOMIC);
681 else {
682 skb2 = skb_clone(skb, GFP_ATOMIC);
683 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
684 GFP_ATOMIC)) {
685 kfree_skb(skb2);
686 skb2 = NULL;
689 return skb2;
694 * skb_copy_expand - copy and expand sk_buff
695 * @skb: buffer to copy
696 * @newheadroom: new free bytes at head
697 * @newtailroom: new free bytes at tail
698 * @gfp_mask: allocation priority
700 * Make a copy of both an &sk_buff and its data and while doing so
701 * allocate additional space.
703 * This is used when the caller wishes to modify the data and needs a
704 * private copy of the data to alter as well as more space for new fields.
705 * Returns %NULL on failure or the pointer to the buffer
706 * on success. The returned buffer has a reference count of 1.
708 * You must pass %GFP_ATOMIC as the allocation priority if this function
709 * is called from an interrupt.
711 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
712 * only by netfilter in the cases when checksum is recalculated? --ANK
714 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
715 int newheadroom, int newtailroom,
716 gfp_t gfp_mask)
719 * Allocate the copy buffer
721 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
722 gfp_mask);
723 int head_copy_len, head_copy_off;
725 if (!n)
726 return NULL;
728 skb_reserve(n, newheadroom);
730 /* Set the tail pointer and length */
731 skb_put(n, skb->len);
733 head_copy_len = skb_headroom(skb);
734 head_copy_off = 0;
735 if (newheadroom <= head_copy_len)
736 head_copy_len = newheadroom;
737 else
738 head_copy_off = newheadroom - head_copy_len;
740 /* Copy the linear header and data. */
741 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
742 skb->len + head_copy_len))
743 BUG();
745 copy_skb_header(n, skb);
747 return n;
751 * skb_pad - zero pad the tail of an skb
752 * @skb: buffer to pad
753 * @pad: space to pad
755 * Ensure that a buffer is followed by a padding area that is zero
756 * filled. Used by network drivers which may DMA or transfer data
757 * beyond the buffer end onto the wire.
759 * May return NULL in out of memory cases.
762 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
764 struct sk_buff *nskb;
766 /* If the skbuff is non linear tailroom is always zero.. */
767 if (skb_tailroom(skb) >= pad) {
768 memset(skb->data+skb->len, 0, pad);
769 return skb;
772 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
773 kfree_skb(skb);
774 if (nskb)
775 memset(nskb->data+nskb->len, 0, pad);
776 return nskb;
779 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
780 * If realloc==0 and trimming is impossible without change of data,
781 * it is BUG().
784 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
786 int offset = skb_headlen(skb);
787 int nfrags = skb_shinfo(skb)->nr_frags;
788 int i;
790 for (i = 0; i < nfrags; i++) {
791 int end = offset + skb_shinfo(skb)->frags[i].size;
792 if (end > len) {
793 if (skb_cloned(skb)) {
794 if (!realloc)
795 BUG();
796 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
797 return -ENOMEM;
799 if (len <= offset) {
800 put_page(skb_shinfo(skb)->frags[i].page);
801 skb_shinfo(skb)->nr_frags--;
802 } else {
803 skb_shinfo(skb)->frags[i].size = len - offset;
806 offset = end;
809 if (offset < len) {
810 skb->data_len -= skb->len - len;
811 skb->len = len;
812 } else {
813 if (len <= skb_headlen(skb)) {
814 skb->len = len;
815 skb->data_len = 0;
816 skb->tail = skb->data + len;
817 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
818 skb_drop_fraglist(skb);
819 } else {
820 skb->data_len -= skb->len - len;
821 skb->len = len;
825 return 0;
829 * __pskb_pull_tail - advance tail of skb header
830 * @skb: buffer to reallocate
831 * @delta: number of bytes to advance tail
833 * The function makes a sense only on a fragmented &sk_buff,
834 * it expands header moving its tail forward and copying necessary
835 * data from fragmented part.
837 * &sk_buff MUST have reference count of 1.
839 * Returns %NULL (and &sk_buff does not change) if pull failed
840 * or value of new tail of skb in the case of success.
842 * All the pointers pointing into skb header may change and must be
843 * reloaded after call to this function.
846 /* Moves tail of skb head forward, copying data from fragmented part,
847 * when it is necessary.
848 * 1. It may fail due to malloc failure.
849 * 2. It may change skb pointers.
851 * It is pretty complicated. Luckily, it is called only in exceptional cases.
853 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
855 /* If skb has not enough free space at tail, get new one
856 * plus 128 bytes for future expansions. If we have enough
857 * room at tail, reallocate without expansion only if skb is cloned.
859 int i, k, eat = (skb->tail + delta) - skb->end;
861 if (eat > 0 || skb_cloned(skb)) {
862 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
863 GFP_ATOMIC))
864 return NULL;
867 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
868 BUG();
870 /* Optimization: no fragments, no reasons to preestimate
871 * size of pulled pages. Superb.
873 if (!skb_shinfo(skb)->frag_list)
874 goto pull_pages;
876 /* Estimate size of pulled pages. */
877 eat = delta;
878 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
879 if (skb_shinfo(skb)->frags[i].size >= eat)
880 goto pull_pages;
881 eat -= skb_shinfo(skb)->frags[i].size;
884 /* If we need update frag list, we are in troubles.
885 * Certainly, it possible to add an offset to skb data,
886 * but taking into account that pulling is expected to
887 * be very rare operation, it is worth to fight against
888 * further bloating skb head and crucify ourselves here instead.
889 * Pure masohism, indeed. 8)8)
891 if (eat) {
892 struct sk_buff *list = skb_shinfo(skb)->frag_list;
893 struct sk_buff *clone = NULL;
894 struct sk_buff *insp = NULL;
896 do {
897 if (!list)
898 BUG();
900 if (list->len <= eat) {
901 /* Eaten as whole. */
902 eat -= list->len;
903 list = list->next;
904 insp = list;
905 } else {
906 /* Eaten partially. */
908 if (skb_shared(list)) {
909 /* Sucks! We need to fork list. :-( */
910 clone = skb_clone(list, GFP_ATOMIC);
911 if (!clone)
912 return NULL;
913 insp = list->next;
914 list = clone;
915 } else {
916 /* This may be pulled without
917 * problems. */
918 insp = list;
920 if (!pskb_pull(list, eat)) {
921 if (clone)
922 kfree_skb(clone);
923 return NULL;
925 break;
927 } while (eat);
929 /* Free pulled out fragments. */
930 while ((list = skb_shinfo(skb)->frag_list) != insp) {
931 skb_shinfo(skb)->frag_list = list->next;
932 kfree_skb(list);
934 /* And insert new clone at head. */
935 if (clone) {
936 clone->next = list;
937 skb_shinfo(skb)->frag_list = clone;
940 /* Success! Now we may commit changes to skb data. */
942 pull_pages:
943 eat = delta;
944 k = 0;
945 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
946 if (skb_shinfo(skb)->frags[i].size <= eat) {
947 put_page(skb_shinfo(skb)->frags[i].page);
948 eat -= skb_shinfo(skb)->frags[i].size;
949 } else {
950 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
951 if (eat) {
952 skb_shinfo(skb)->frags[k].page_offset += eat;
953 skb_shinfo(skb)->frags[k].size -= eat;
954 eat = 0;
956 k++;
959 skb_shinfo(skb)->nr_frags = k;
961 skb->tail += delta;
962 skb->data_len -= delta;
964 return skb->tail;
967 /* Copy some data bits from skb to kernel buffer. */
969 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
971 int i, copy;
972 int start = skb_headlen(skb);
974 if (offset > (int)skb->len - len)
975 goto fault;
977 /* Copy header. */
978 if ((copy = start - offset) > 0) {
979 if (copy > len)
980 copy = len;
981 memcpy(to, skb->data + offset, copy);
982 if ((len -= copy) == 0)
983 return 0;
984 offset += copy;
985 to += copy;
988 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
989 int end;
991 BUG_TRAP(start <= offset + len);
993 end = start + skb_shinfo(skb)->frags[i].size;
994 if ((copy = end - offset) > 0) {
995 u8 *vaddr;
997 if (copy > len)
998 copy = len;
1000 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1001 memcpy(to,
1002 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1003 offset - start, copy);
1004 kunmap_skb_frag(vaddr);
1006 if ((len -= copy) == 0)
1007 return 0;
1008 offset += copy;
1009 to += copy;
1011 start = end;
1014 if (skb_shinfo(skb)->frag_list) {
1015 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1017 for (; list; list = list->next) {
1018 int end;
1020 BUG_TRAP(start <= offset + len);
1022 end = start + list->len;
1023 if ((copy = end - offset) > 0) {
1024 if (copy > len)
1025 copy = len;
1026 if (skb_copy_bits(list, offset - start,
1027 to, copy))
1028 goto fault;
1029 if ((len -= copy) == 0)
1030 return 0;
1031 offset += copy;
1032 to += copy;
1034 start = end;
1037 if (!len)
1038 return 0;
1040 fault:
1041 return -EFAULT;
1045 * skb_store_bits - store bits from kernel buffer to skb
1046 * @skb: destination buffer
1047 * @offset: offset in destination
1048 * @from: source buffer
1049 * @len: number of bytes to copy
1051 * Copy the specified number of bytes from the source buffer to the
1052 * destination skb. This function handles all the messy bits of
1053 * traversing fragment lists and such.
1056 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1058 int i, copy;
1059 int start = skb_headlen(skb);
1061 if (offset > (int)skb->len - len)
1062 goto fault;
1064 if ((copy = start - offset) > 0) {
1065 if (copy > len)
1066 copy = len;
1067 memcpy(skb->data + offset, from, copy);
1068 if ((len -= copy) == 0)
1069 return 0;
1070 offset += copy;
1071 from += copy;
1074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1075 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1076 int end;
1078 BUG_TRAP(start <= offset + len);
1080 end = start + frag->size;
1081 if ((copy = end - offset) > 0) {
1082 u8 *vaddr;
1084 if (copy > len)
1085 copy = len;
1087 vaddr = kmap_skb_frag(frag);
1088 memcpy(vaddr + frag->page_offset + offset - start,
1089 from, copy);
1090 kunmap_skb_frag(vaddr);
1092 if ((len -= copy) == 0)
1093 return 0;
1094 offset += copy;
1095 from += copy;
1097 start = end;
1100 if (skb_shinfo(skb)->frag_list) {
1101 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1103 for (; list; list = list->next) {
1104 int end;
1106 BUG_TRAP(start <= offset + len);
1108 end = start + list->len;
1109 if ((copy = end - offset) > 0) {
1110 if (copy > len)
1111 copy = len;
1112 if (skb_store_bits(list, offset - start,
1113 from, copy))
1114 goto fault;
1115 if ((len -= copy) == 0)
1116 return 0;
1117 offset += copy;
1118 from += copy;
1120 start = end;
1123 if (!len)
1124 return 0;
1126 fault:
1127 return -EFAULT;
1130 EXPORT_SYMBOL(skb_store_bits);
1132 /* Checksum skb data. */
1134 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1135 int len, unsigned int csum)
1137 int start = skb_headlen(skb);
1138 int i, copy = start - offset;
1139 int pos = 0;
1141 /* Checksum header. */
1142 if (copy > 0) {
1143 if (copy > len)
1144 copy = len;
1145 csum = csum_partial(skb->data + offset, copy, csum);
1146 if ((len -= copy) == 0)
1147 return csum;
1148 offset += copy;
1149 pos = copy;
1152 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1153 int end;
1155 BUG_TRAP(start <= offset + len);
1157 end = start + skb_shinfo(skb)->frags[i].size;
1158 if ((copy = end - offset) > 0) {
1159 unsigned int csum2;
1160 u8 *vaddr;
1161 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1163 if (copy > len)
1164 copy = len;
1165 vaddr = kmap_skb_frag(frag);
1166 csum2 = csum_partial(vaddr + frag->page_offset +
1167 offset - start, copy, 0);
1168 kunmap_skb_frag(vaddr);
1169 csum = csum_block_add(csum, csum2, pos);
1170 if (!(len -= copy))
1171 return csum;
1172 offset += copy;
1173 pos += copy;
1175 start = end;
1178 if (skb_shinfo(skb)->frag_list) {
1179 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1181 for (; list; list = list->next) {
1182 int end;
1184 BUG_TRAP(start <= offset + len);
1186 end = start + list->len;
1187 if ((copy = end - offset) > 0) {
1188 unsigned int csum2;
1189 if (copy > len)
1190 copy = len;
1191 csum2 = skb_checksum(list, offset - start,
1192 copy, 0);
1193 csum = csum_block_add(csum, csum2, pos);
1194 if ((len -= copy) == 0)
1195 return csum;
1196 offset += copy;
1197 pos += copy;
1199 start = end;
1202 if (len)
1203 BUG();
1205 return csum;
1208 /* Both of above in one bottle. */
1210 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1211 u8 *to, int len, unsigned int csum)
1213 int start = skb_headlen(skb);
1214 int i, copy = start - offset;
1215 int pos = 0;
1217 /* Copy header. */
1218 if (copy > 0) {
1219 if (copy > len)
1220 copy = len;
1221 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1222 copy, csum);
1223 if ((len -= copy) == 0)
1224 return csum;
1225 offset += copy;
1226 to += copy;
1227 pos = copy;
1230 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1231 int end;
1233 BUG_TRAP(start <= offset + len);
1235 end = start + skb_shinfo(skb)->frags[i].size;
1236 if ((copy = end - offset) > 0) {
1237 unsigned int csum2;
1238 u8 *vaddr;
1239 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1241 if (copy > len)
1242 copy = len;
1243 vaddr = kmap_skb_frag(frag);
1244 csum2 = csum_partial_copy_nocheck(vaddr +
1245 frag->page_offset +
1246 offset - start, to,
1247 copy, 0);
1248 kunmap_skb_frag(vaddr);
1249 csum = csum_block_add(csum, csum2, pos);
1250 if (!(len -= copy))
1251 return csum;
1252 offset += copy;
1253 to += copy;
1254 pos += copy;
1256 start = end;
1259 if (skb_shinfo(skb)->frag_list) {
1260 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1262 for (; list; list = list->next) {
1263 unsigned int csum2;
1264 int end;
1266 BUG_TRAP(start <= offset + len);
1268 end = start + list->len;
1269 if ((copy = end - offset) > 0) {
1270 if (copy > len)
1271 copy = len;
1272 csum2 = skb_copy_and_csum_bits(list,
1273 offset - start,
1274 to, copy, 0);
1275 csum = csum_block_add(csum, csum2, pos);
1276 if ((len -= copy) == 0)
1277 return csum;
1278 offset += copy;
1279 to += copy;
1280 pos += copy;
1282 start = end;
1285 if (len)
1286 BUG();
1287 return csum;
1290 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1292 unsigned int csum;
1293 long csstart;
1295 if (skb->ip_summed == CHECKSUM_HW)
1296 csstart = skb->h.raw - skb->data;
1297 else
1298 csstart = skb_headlen(skb);
1300 if (csstart > skb_headlen(skb))
1301 BUG();
1303 memcpy(to, skb->data, csstart);
1305 csum = 0;
1306 if (csstart != skb->len)
1307 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1308 skb->len - csstart, 0);
1310 if (skb->ip_summed == CHECKSUM_HW) {
1311 long csstuff = csstart + skb->csum;
1313 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1318 * skb_dequeue - remove from the head of the queue
1319 * @list: list to dequeue from
1321 * Remove the head of the list. The list lock is taken so the function
1322 * may be used safely with other locking list functions. The head item is
1323 * returned or %NULL if the list is empty.
1326 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1328 unsigned long flags;
1329 struct sk_buff *result;
1331 spin_lock_irqsave(&list->lock, flags);
1332 result = __skb_dequeue(list);
1333 spin_unlock_irqrestore(&list->lock, flags);
1334 return result;
1338 * skb_dequeue_tail - remove from the tail of the queue
1339 * @list: list to dequeue from
1341 * Remove the tail of the list. The list lock is taken so the function
1342 * may be used safely with other locking list functions. The tail item is
1343 * returned or %NULL if the list is empty.
1345 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1347 unsigned long flags;
1348 struct sk_buff *result;
1350 spin_lock_irqsave(&list->lock, flags);
1351 result = __skb_dequeue_tail(list);
1352 spin_unlock_irqrestore(&list->lock, flags);
1353 return result;
1357 * skb_queue_purge - empty a list
1358 * @list: list to empty
1360 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1361 * the list and one reference dropped. This function takes the list
1362 * lock and is atomic with respect to other list locking functions.
1364 void skb_queue_purge(struct sk_buff_head *list)
1366 struct sk_buff *skb;
1367 while ((skb = skb_dequeue(list)) != NULL)
1368 kfree_skb(skb);
1372 * skb_queue_head - queue a buffer at the list head
1373 * @list: list to use
1374 * @newsk: buffer to queue
1376 * Queue a buffer at the start of the list. This function takes the
1377 * list lock and can be used safely with other locking &sk_buff functions
1378 * safely.
1380 * A buffer cannot be placed on two lists at the same time.
1382 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1384 unsigned long flags;
1386 spin_lock_irqsave(&list->lock, flags);
1387 __skb_queue_head(list, newsk);
1388 spin_unlock_irqrestore(&list->lock, flags);
1392 * skb_queue_tail - queue a buffer at the list tail
1393 * @list: list to use
1394 * @newsk: buffer to queue
1396 * Queue a buffer at the tail of the list. This function takes the
1397 * list lock and can be used safely with other locking &sk_buff functions
1398 * safely.
1400 * A buffer cannot be placed on two lists at the same time.
1402 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1404 unsigned long flags;
1406 spin_lock_irqsave(&list->lock, flags);
1407 __skb_queue_tail(list, newsk);
1408 spin_unlock_irqrestore(&list->lock, flags);
1412 * skb_unlink - remove a buffer from a list
1413 * @skb: buffer to remove
1414 * @list: list to use
1416 * Remove a packet from a list. The list locks are taken and this
1417 * function is atomic with respect to other list locked calls
1419 * You must know what list the SKB is on.
1421 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1423 unsigned long flags;
1425 spin_lock_irqsave(&list->lock, flags);
1426 __skb_unlink(skb, list);
1427 spin_unlock_irqrestore(&list->lock, flags);
1431 * skb_append - append a buffer
1432 * @old: buffer to insert after
1433 * @newsk: buffer to insert
1434 * @list: list to use
1436 * Place a packet after a given packet in a list. The list locks are taken
1437 * and this function is atomic with respect to other list locked calls.
1438 * A buffer cannot be placed on two lists at the same time.
1440 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1442 unsigned long flags;
1444 spin_lock_irqsave(&list->lock, flags);
1445 __skb_append(old, newsk, list);
1446 spin_unlock_irqrestore(&list->lock, flags);
1451 * skb_insert - insert a buffer
1452 * @old: buffer to insert before
1453 * @newsk: buffer to insert
1454 * @list: list to use
1456 * Place a packet before a given packet in a list. The list locks are
1457 * taken and this function is atomic with respect to other list locked
1458 * calls.
1460 * A buffer cannot be placed on two lists at the same time.
1462 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1464 unsigned long flags;
1466 spin_lock_irqsave(&list->lock, flags);
1467 __skb_insert(newsk, old->prev, old, list);
1468 spin_unlock_irqrestore(&list->lock, flags);
1471 #if 0
1473 * Tune the memory allocator for a new MTU size.
1475 void skb_add_mtu(int mtu)
1477 /* Must match allocation in alloc_skb */
1478 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1480 kmem_add_cache_size(mtu);
1482 #endif
1484 static inline void skb_split_inside_header(struct sk_buff *skb,
1485 struct sk_buff* skb1,
1486 const u32 len, const int pos)
1488 int i;
1490 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1492 /* And move data appendix as is. */
1493 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1494 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1496 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1497 skb_shinfo(skb)->nr_frags = 0;
1498 skb1->data_len = skb->data_len;
1499 skb1->len += skb1->data_len;
1500 skb->data_len = 0;
1501 skb->len = len;
1502 skb->tail = skb->data + len;
1505 static inline void skb_split_no_header(struct sk_buff *skb,
1506 struct sk_buff* skb1,
1507 const u32 len, int pos)
1509 int i, k = 0;
1510 const int nfrags = skb_shinfo(skb)->nr_frags;
1512 skb_shinfo(skb)->nr_frags = 0;
1513 skb1->len = skb1->data_len = skb->len - len;
1514 skb->len = len;
1515 skb->data_len = len - pos;
1517 for (i = 0; i < nfrags; i++) {
1518 int size = skb_shinfo(skb)->frags[i].size;
1520 if (pos + size > len) {
1521 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1523 if (pos < len) {
1524 /* Split frag.
1525 * We have two variants in this case:
1526 * 1. Move all the frag to the second
1527 * part, if it is possible. F.e.
1528 * this approach is mandatory for TUX,
1529 * where splitting is expensive.
1530 * 2. Split is accurately. We make this.
1532 get_page(skb_shinfo(skb)->frags[i].page);
1533 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1534 skb_shinfo(skb1)->frags[0].size -= len - pos;
1535 skb_shinfo(skb)->frags[i].size = len - pos;
1536 skb_shinfo(skb)->nr_frags++;
1538 k++;
1539 } else
1540 skb_shinfo(skb)->nr_frags++;
1541 pos += size;
1543 skb_shinfo(skb1)->nr_frags = k;
1547 * skb_split - Split fragmented skb to two parts at length len.
1548 * @skb: the buffer to split
1549 * @skb1: the buffer to receive the second part
1550 * @len: new length for skb
1552 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1554 int pos = skb_headlen(skb);
1556 if (len < pos) /* Split line is inside header. */
1557 skb_split_inside_header(skb, skb1, len, pos);
1558 else /* Second chunk has no header, nothing to copy. */
1559 skb_split_no_header(skb, skb1, len, pos);
1563 * skb_prepare_seq_read - Prepare a sequential read of skb data
1564 * @skb: the buffer to read
1565 * @from: lower offset of data to be read
1566 * @to: upper offset of data to be read
1567 * @st: state variable
1569 * Initializes the specified state variable. Must be called before
1570 * invoking skb_seq_read() for the first time.
1572 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1573 unsigned int to, struct skb_seq_state *st)
1575 st->lower_offset = from;
1576 st->upper_offset = to;
1577 st->root_skb = st->cur_skb = skb;
1578 st->frag_idx = st->stepped_offset = 0;
1579 st->frag_data = NULL;
1583 * skb_seq_read - Sequentially read skb data
1584 * @consumed: number of bytes consumed by the caller so far
1585 * @data: destination pointer for data to be returned
1586 * @st: state variable
1588 * Reads a block of skb data at &consumed relative to the
1589 * lower offset specified to skb_prepare_seq_read(). Assigns
1590 * the head of the data block to &data and returns the length
1591 * of the block or 0 if the end of the skb data or the upper
1592 * offset has been reached.
1594 * The caller is not required to consume all of the data
1595 * returned, i.e. &consumed is typically set to the number
1596 * of bytes already consumed and the next call to
1597 * skb_seq_read() will return the remaining part of the block.
1599 * Note: The size of each block of data returned can be arbitary,
1600 * this limitation is the cost for zerocopy seqeuental
1601 * reads of potentially non linear data.
1603 * Note: Fragment lists within fragments are not implemented
1604 * at the moment, state->root_skb could be replaced with
1605 * a stack for this purpose.
1607 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1608 struct skb_seq_state *st)
1610 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1611 skb_frag_t *frag;
1613 if (unlikely(abs_offset >= st->upper_offset))
1614 return 0;
1616 next_skb:
1617 block_limit = skb_headlen(st->cur_skb);
1619 if (abs_offset < block_limit) {
1620 *data = st->cur_skb->data + abs_offset;
1621 return block_limit - abs_offset;
1624 if (st->frag_idx == 0 && !st->frag_data)
1625 st->stepped_offset += skb_headlen(st->cur_skb);
1627 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1628 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1629 block_limit = frag->size + st->stepped_offset;
1631 if (abs_offset < block_limit) {
1632 if (!st->frag_data)
1633 st->frag_data = kmap_skb_frag(frag);
1635 *data = (u8 *) st->frag_data + frag->page_offset +
1636 (abs_offset - st->stepped_offset);
1638 return block_limit - abs_offset;
1641 if (st->frag_data) {
1642 kunmap_skb_frag(st->frag_data);
1643 st->frag_data = NULL;
1646 st->frag_idx++;
1647 st->stepped_offset += frag->size;
1650 if (st->cur_skb->next) {
1651 st->cur_skb = st->cur_skb->next;
1652 st->frag_idx = 0;
1653 goto next_skb;
1654 } else if (st->root_skb == st->cur_skb &&
1655 skb_shinfo(st->root_skb)->frag_list) {
1656 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1657 goto next_skb;
1660 return 0;
1664 * skb_abort_seq_read - Abort a sequential read of skb data
1665 * @st: state variable
1667 * Must be called if skb_seq_read() was not called until it
1668 * returned 0.
1670 void skb_abort_seq_read(struct skb_seq_state *st)
1672 if (st->frag_data)
1673 kunmap_skb_frag(st->frag_data);
1676 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1678 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1679 struct ts_config *conf,
1680 struct ts_state *state)
1682 return skb_seq_read(offset, text, TS_SKB_CB(state));
1685 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1687 skb_abort_seq_read(TS_SKB_CB(state));
1691 * skb_find_text - Find a text pattern in skb data
1692 * @skb: the buffer to look in
1693 * @from: search offset
1694 * @to: search limit
1695 * @config: textsearch configuration
1696 * @state: uninitialized textsearch state variable
1698 * Finds a pattern in the skb data according to the specified
1699 * textsearch configuration. Use textsearch_next() to retrieve
1700 * subsequent occurrences of the pattern. Returns the offset
1701 * to the first occurrence or UINT_MAX if no match was found.
1703 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1704 unsigned int to, struct ts_config *config,
1705 struct ts_state *state)
1707 config->get_next_block = skb_ts_get_next_block;
1708 config->finish = skb_ts_finish;
1710 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1712 return textsearch_find(config, state);
1716 * skb_append_datato_frags: - append the user data to a skb
1717 * @sk: sock structure
1718 * @skb: skb structure to be appened with user data.
1719 * @getfrag: call back function to be used for getting the user data
1720 * @from: pointer to user message iov
1721 * @length: length of the iov message
1723 * Description: This procedure append the user data in the fragment part
1724 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1726 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1727 int (*getfrag)(void *from, char *to, int offset,
1728 int len, int odd, struct sk_buff *skb),
1729 void *from, int length)
1731 int frg_cnt = 0;
1732 skb_frag_t *frag = NULL;
1733 struct page *page = NULL;
1734 int copy, left;
1735 int offset = 0;
1736 int ret;
1738 do {
1739 /* Return error if we don't have space for new frag */
1740 frg_cnt = skb_shinfo(skb)->nr_frags;
1741 if (frg_cnt >= MAX_SKB_FRAGS)
1742 return -EFAULT;
1744 /* allocate a new page for next frag */
1745 page = alloc_pages(sk->sk_allocation, 0);
1747 /* If alloc_page fails just return failure and caller will
1748 * free previous allocated pages by doing kfree_skb()
1750 if (page == NULL)
1751 return -ENOMEM;
1753 /* initialize the next frag */
1754 sk->sk_sndmsg_page = page;
1755 sk->sk_sndmsg_off = 0;
1756 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1757 skb->truesize += PAGE_SIZE;
1758 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1760 /* get the new initialized frag */
1761 frg_cnt = skb_shinfo(skb)->nr_frags;
1762 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1764 /* copy the user data to page */
1765 left = PAGE_SIZE - frag->page_offset;
1766 copy = (length > left)? left : length;
1768 ret = getfrag(from, (page_address(frag->page) +
1769 frag->page_offset + frag->size),
1770 offset, copy, 0, skb);
1771 if (ret < 0)
1772 return -EFAULT;
1774 /* copy was successful so update the size parameters */
1775 sk->sk_sndmsg_off += copy;
1776 frag->size += copy;
1777 skb->len += copy;
1778 skb->data_len += copy;
1779 offset += copy;
1780 length -= copy;
1782 } while (length > 0);
1784 return 0;
1787 void __init skb_init(void)
1789 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1790 sizeof(struct sk_buff),
1792 SLAB_HWCACHE_ALIGN,
1793 NULL, NULL);
1794 if (!skbuff_head_cache)
1795 panic("cannot create skbuff cache");
1797 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1798 (2*sizeof(struct sk_buff)) +
1799 sizeof(atomic_t),
1801 SLAB_HWCACHE_ALIGN,
1802 NULL, NULL);
1803 if (!skbuff_fclone_cache)
1804 panic("cannot create skbuff cache");
1807 EXPORT_SYMBOL(___pskb_trim);
1808 EXPORT_SYMBOL(__kfree_skb);
1809 EXPORT_SYMBOL(__pskb_pull_tail);
1810 EXPORT_SYMBOL(__alloc_skb);
1811 EXPORT_SYMBOL(pskb_copy);
1812 EXPORT_SYMBOL(pskb_expand_head);
1813 EXPORT_SYMBOL(skb_checksum);
1814 EXPORT_SYMBOL(skb_clone);
1815 EXPORT_SYMBOL(skb_clone_fraglist);
1816 EXPORT_SYMBOL(skb_copy);
1817 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1818 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1819 EXPORT_SYMBOL(skb_copy_bits);
1820 EXPORT_SYMBOL(skb_copy_expand);
1821 EXPORT_SYMBOL(skb_over_panic);
1822 EXPORT_SYMBOL(skb_pad);
1823 EXPORT_SYMBOL(skb_realloc_headroom);
1824 EXPORT_SYMBOL(skb_under_panic);
1825 EXPORT_SYMBOL(skb_dequeue);
1826 EXPORT_SYMBOL(skb_dequeue_tail);
1827 EXPORT_SYMBOL(skb_insert);
1828 EXPORT_SYMBOL(skb_queue_purge);
1829 EXPORT_SYMBOL(skb_queue_head);
1830 EXPORT_SYMBOL(skb_queue_tail);
1831 EXPORT_SYMBOL(skb_unlink);
1832 EXPORT_SYMBOL(skb_append);
1833 EXPORT_SYMBOL(skb_split);
1834 EXPORT_SYMBOL(skb_prepare_seq_read);
1835 EXPORT_SYMBOL(skb_seq_read);
1836 EXPORT_SYMBOL(skb_abort_seq_read);
1837 EXPORT_SYMBOL(skb_find_text);
1838 EXPORT_SYMBOL(skb_append_datato_frags);