UML: Clean up asm/system.h
[linux-2.6/x86.git] / drivers / ide / pmac.c
blob850ee452e9bb34db31d833cab4a9f66674b92658
1 /*
2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/dbdma.h>
40 #include <asm/ide.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
45 #include <asm/irq.h>
46 #include <asm/mediabay.h>
48 #define DRV_NAME "ide-pmac"
50 #undef IDE_PMAC_DEBUG
52 #define DMA_WAIT_TIMEOUT 50
54 typedef struct pmac_ide_hwif {
55 unsigned long regbase;
56 int irq;
57 int kind;
58 int aapl_bus_id;
59 unsigned broken_dma : 1;
60 unsigned broken_dma_warn : 1;
61 struct device_node* node;
62 struct macio_dev *mdev;
63 u32 timings[4];
64 volatile u32 __iomem * *kauai_fcr;
65 ide_hwif_t *hwif;
67 /* Those fields are duplicating what is in hwif. We currently
68 * can't use the hwif ones because of some assumptions that are
69 * beeing done by the generic code about the kind of dma controller
70 * and format of the dma table. This will have to be fixed though.
72 volatile struct dbdma_regs __iomem * dma_regs;
73 struct dbdma_cmd* dma_table_cpu;
74 } pmac_ide_hwif_t;
76 enum {
77 controller_ohare, /* OHare based */
78 controller_heathrow, /* Heathrow/Paddington */
79 controller_kl_ata3, /* KeyLargo ATA-3 */
80 controller_kl_ata4, /* KeyLargo ATA-4 */
81 controller_un_ata6, /* UniNorth2 ATA-6 */
82 controller_k2_ata6, /* K2 ATA-6 */
83 controller_sh_ata6, /* Shasta ATA-6 */
86 static const char* model_name[] = {
87 "OHare ATA", /* OHare based */
88 "Heathrow ATA", /* Heathrow/Paddington */
89 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
90 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
91 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
92 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
93 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
97 * Extra registers, both 32-bit little-endian
99 #define IDE_TIMING_CONFIG 0x200
100 #define IDE_INTERRUPT 0x300
102 /* Kauai (U2) ATA has different register setup */
103 #define IDE_KAUAI_PIO_CONFIG 0x200
104 #define IDE_KAUAI_ULTRA_CONFIG 0x210
105 #define IDE_KAUAI_POLL_CONFIG 0x220
108 * Timing configuration register definitions
111 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
112 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
113 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
114 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
115 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
117 /* 133Mhz cell, found in shasta.
118 * See comments about 100 Mhz Uninorth 2...
119 * Note that PIO_MASK and MDMA_MASK seem to overlap
121 #define TR_133_PIOREG_PIO_MASK 0xff000fff
122 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
123 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
124 #define TR_133_UDMAREG_UDMA_EN 0x00000001
126 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
127 * this one yet, it appears as a pci device (106b/0033) on uninorth
128 * internal PCI bus and it's clock is controlled like gem or fw. It
129 * appears to be an evolution of keylargo ATA4 with a timing register
130 * extended to 2 32bits registers and a similar DBDMA channel. Other
131 * registers seem to exist but I can't tell much about them.
133 * So far, I'm using pre-calculated tables for this extracted from
134 * the values used by the MacOS X driver.
136 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
137 * register controls the UDMA timings. At least, it seems bit 0
138 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
139 * cycle time in units of 10ns. Bits 8..15 are used by I don't
140 * know their meaning yet
142 #define TR_100_PIOREG_PIO_MASK 0xff000fff
143 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
144 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
145 #define TR_100_UDMAREG_UDMA_EN 0x00000001
148 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
149 * 40 connector cable and to 4 on 80 connector one.
150 * Clock unit is 15ns (66Mhz)
152 * 3 Values can be programmed:
153 * - Write data setup, which appears to match the cycle time. They
154 * also call it DIOW setup.
155 * - Ready to pause time (from spec)
156 * - Address setup. That one is weird. I don't see where exactly
157 * it fits in UDMA cycles, I got it's name from an obscure piece
158 * of commented out code in Darwin. They leave it to 0, we do as
159 * well, despite a comment that would lead to think it has a
160 * min value of 45ns.
161 * Apple also add 60ns to the write data setup (or cycle time ?) on
162 * reads.
164 #define TR_66_UDMA_MASK 0xfff00000
165 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
166 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
167 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
168 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
169 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
170 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
171 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
172 #define TR_66_MDMA_MASK 0x000ffc00
173 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
174 #define TR_66_MDMA_RECOVERY_SHIFT 15
175 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
176 #define TR_66_MDMA_ACCESS_SHIFT 10
177 #define TR_66_PIO_MASK 0x000003ff
178 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
179 #define TR_66_PIO_RECOVERY_SHIFT 5
180 #define TR_66_PIO_ACCESS_MASK 0x0000001f
181 #define TR_66_PIO_ACCESS_SHIFT 0
183 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
184 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
186 * The access time and recovery time can be programmed. Some older
187 * Darwin code base limit OHare to 150ns cycle time. I decided to do
188 * the same here fore safety against broken old hardware ;)
189 * The HalfTick bit, when set, adds half a clock (15ns) to the access
190 * time and removes one from recovery. It's not supported on KeyLargo
191 * implementation afaik. The E bit appears to be set for PIO mode 0 and
192 * is used to reach long timings used in this mode.
194 #define TR_33_MDMA_MASK 0x003ff800
195 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
196 #define TR_33_MDMA_RECOVERY_SHIFT 16
197 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
198 #define TR_33_MDMA_ACCESS_SHIFT 11
199 #define TR_33_MDMA_HALFTICK 0x00200000
200 #define TR_33_PIO_MASK 0x000007ff
201 #define TR_33_PIO_E 0x00000400
202 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
203 #define TR_33_PIO_RECOVERY_SHIFT 5
204 #define TR_33_PIO_ACCESS_MASK 0x0000001f
205 #define TR_33_PIO_ACCESS_SHIFT 0
208 * Interrupt register definitions
210 #define IDE_INTR_DMA 0x80000000
211 #define IDE_INTR_DEVICE 0x40000000
214 * FCR Register on Kauai. Not sure what bit 0x4 is ...
216 #define KAUAI_FCR_UATA_MAGIC 0x00000004
217 #define KAUAI_FCR_UATA_RESET_N 0x00000002
218 #define KAUAI_FCR_UATA_ENABLE 0x00000001
220 /* Rounded Multiword DMA timings
222 * I gave up finding a generic formula for all controller
223 * types and instead, built tables based on timing values
224 * used by Apple in Darwin's implementation.
226 struct mdma_timings_t {
227 int accessTime;
228 int recoveryTime;
229 int cycleTime;
232 struct mdma_timings_t mdma_timings_33[] =
234 { 240, 240, 480 },
235 { 180, 180, 360 },
236 { 135, 135, 270 },
237 { 120, 120, 240 },
238 { 105, 105, 210 },
239 { 90, 90, 180 },
240 { 75, 75, 150 },
241 { 75, 45, 120 },
242 { 0, 0, 0 }
245 struct mdma_timings_t mdma_timings_33k[] =
247 { 240, 240, 480 },
248 { 180, 180, 360 },
249 { 150, 150, 300 },
250 { 120, 120, 240 },
251 { 90, 120, 210 },
252 { 90, 90, 180 },
253 { 90, 60, 150 },
254 { 90, 30, 120 },
255 { 0, 0, 0 }
258 struct mdma_timings_t mdma_timings_66[] =
260 { 240, 240, 480 },
261 { 180, 180, 360 },
262 { 135, 135, 270 },
263 { 120, 120, 240 },
264 { 105, 105, 210 },
265 { 90, 90, 180 },
266 { 90, 75, 165 },
267 { 75, 45, 120 },
268 { 0, 0, 0 }
271 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
272 struct {
273 int addrSetup; /* ??? */
274 int rdy2pause;
275 int wrDataSetup;
276 } kl66_udma_timings[] =
278 { 0, 180, 120 }, /* Mode 0 */
279 { 0, 150, 90 }, /* 1 */
280 { 0, 120, 60 }, /* 2 */
281 { 0, 90, 45 }, /* 3 */
282 { 0, 90, 30 } /* 4 */
285 /* UniNorth 2 ATA/100 timings */
286 struct kauai_timing {
287 int cycle_time;
288 u32 timing_reg;
291 static struct kauai_timing kauai_pio_timings[] =
293 { 930 , 0x08000fff },
294 { 600 , 0x08000a92 },
295 { 383 , 0x0800060f },
296 { 360 , 0x08000492 },
297 { 330 , 0x0800048f },
298 { 300 , 0x080003cf },
299 { 270 , 0x080003cc },
300 { 240 , 0x0800038b },
301 { 239 , 0x0800030c },
302 { 180 , 0x05000249 },
303 { 120 , 0x04000148 },
304 { 0 , 0 },
307 static struct kauai_timing kauai_mdma_timings[] =
309 { 1260 , 0x00fff000 },
310 { 480 , 0x00618000 },
311 { 360 , 0x00492000 },
312 { 270 , 0x0038e000 },
313 { 240 , 0x0030c000 },
314 { 210 , 0x002cb000 },
315 { 180 , 0x00249000 },
316 { 150 , 0x00209000 },
317 { 120 , 0x00148000 },
318 { 0 , 0 },
321 static struct kauai_timing kauai_udma_timings[] =
323 { 120 , 0x000070c0 },
324 { 90 , 0x00005d80 },
325 { 60 , 0x00004a60 },
326 { 45 , 0x00003a50 },
327 { 30 , 0x00002a30 },
328 { 20 , 0x00002921 },
329 { 0 , 0 },
332 static struct kauai_timing shasta_pio_timings[] =
334 { 930 , 0x08000fff },
335 { 600 , 0x0A000c97 },
336 { 383 , 0x07000712 },
337 { 360 , 0x040003cd },
338 { 330 , 0x040003cd },
339 { 300 , 0x040003cd },
340 { 270 , 0x040003cd },
341 { 240 , 0x040003cd },
342 { 239 , 0x040003cd },
343 { 180 , 0x0400028b },
344 { 120 , 0x0400010a },
345 { 0 , 0 },
348 static struct kauai_timing shasta_mdma_timings[] =
350 { 1260 , 0x00fff000 },
351 { 480 , 0x00820800 },
352 { 360 , 0x00820800 },
353 { 270 , 0x00820800 },
354 { 240 , 0x00820800 },
355 { 210 , 0x00820800 },
356 { 180 , 0x00820800 },
357 { 150 , 0x0028b000 },
358 { 120 , 0x001ca000 },
359 { 0 , 0 },
362 static struct kauai_timing shasta_udma133_timings[] =
364 { 120 , 0x00035901, },
365 { 90 , 0x000348b1, },
366 { 60 , 0x00033881, },
367 { 45 , 0x00033861, },
368 { 30 , 0x00033841, },
369 { 20 , 0x00033031, },
370 { 15 , 0x00033021, },
371 { 0 , 0 },
375 static inline u32
376 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
378 int i;
380 for (i=0; table[i].cycle_time; i++)
381 if (cycle_time > table[i+1].cycle_time)
382 return table[i].timing_reg;
383 BUG();
384 return 0;
387 /* allow up to 256 DBDMA commands per xfer */
388 #define MAX_DCMDS 256
391 * Wait 1s for disk to answer on IDE bus after a hard reset
392 * of the device (via GPIO/FCR).
394 * Some devices seem to "pollute" the bus even after dropping
395 * the BSY bit (typically some combo drives slave on the UDMA
396 * bus) after a hard reset. Since we hard reset all drives on
397 * KeyLargo ATA66, we have to keep that delay around. I may end
398 * up not hard resetting anymore on these and keep the delay only
399 * for older interfaces instead (we have to reset when coming
400 * from MacOS...) --BenH.
402 #define IDE_WAKEUP_DELAY (1*HZ)
404 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
406 #define PMAC_IDE_REG(x) \
407 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
410 * Apply the timings of the proper unit (master/slave) to the shared
411 * timing register when selecting that unit. This version is for
412 * ASICs with a single timing register
414 static void pmac_ide_apply_timings(ide_drive_t *drive)
416 ide_hwif_t *hwif = drive->hwif;
417 pmac_ide_hwif_t *pmif =
418 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
420 if (drive->dn & 1)
421 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
422 else
423 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
424 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
428 * Apply the timings of the proper unit (master/slave) to the shared
429 * timing register when selecting that unit. This version is for
430 * ASICs with a dual timing register (Kauai)
432 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
434 ide_hwif_t *hwif = drive->hwif;
435 pmac_ide_hwif_t *pmif =
436 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
438 if (drive->dn & 1) {
439 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
440 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
441 } else {
442 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
443 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
445 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
449 * Force an update of controller timing values for a given drive
451 static void
452 pmac_ide_do_update_timings(ide_drive_t *drive)
454 ide_hwif_t *hwif = drive->hwif;
455 pmac_ide_hwif_t *pmif =
456 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
458 if (pmif->kind == controller_sh_ata6 ||
459 pmif->kind == controller_un_ata6 ||
460 pmif->kind == controller_k2_ata6)
461 pmac_ide_kauai_apply_timings(drive);
462 else
463 pmac_ide_apply_timings(drive);
466 static void pmac_dev_select(ide_drive_t *drive)
468 pmac_ide_apply_timings(drive);
470 writeb(drive->select | ATA_DEVICE_OBS,
471 (void __iomem *)drive->hwif->io_ports.device_addr);
474 static void pmac_kauai_dev_select(ide_drive_t *drive)
476 pmac_ide_kauai_apply_timings(drive);
478 writeb(drive->select | ATA_DEVICE_OBS,
479 (void __iomem *)drive->hwif->io_ports.device_addr);
482 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
484 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
485 (void)readl((void __iomem *)(hwif->io_ports.data_addr
486 + IDE_TIMING_CONFIG));
489 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
491 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
492 (void)readl((void __iomem *)(hwif->io_ports.data_addr
493 + IDE_TIMING_CONFIG));
497 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
499 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
501 pmac_ide_hwif_t *pmif =
502 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
503 const u8 pio = drive->pio_mode - XFER_PIO_0;
504 struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
505 u32 *timings, t;
506 unsigned accessTicks, recTicks;
507 unsigned accessTime, recTime;
508 unsigned int cycle_time;
510 /* which drive is it ? */
511 timings = &pmif->timings[drive->dn & 1];
512 t = *timings;
514 cycle_time = ide_pio_cycle_time(drive, pio);
516 switch (pmif->kind) {
517 case controller_sh_ata6: {
518 /* 133Mhz cell */
519 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
520 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
521 break;
523 case controller_un_ata6:
524 case controller_k2_ata6: {
525 /* 100Mhz cell */
526 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
527 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
528 break;
530 case controller_kl_ata4:
531 /* 66Mhz cell */
532 recTime = cycle_time - tim->active - tim->setup;
533 recTime = max(recTime, 150U);
534 accessTime = tim->active;
535 accessTime = max(accessTime, 150U);
536 accessTicks = SYSCLK_TICKS_66(accessTime);
537 accessTicks = min(accessTicks, 0x1fU);
538 recTicks = SYSCLK_TICKS_66(recTime);
539 recTicks = min(recTicks, 0x1fU);
540 t = (t & ~TR_66_PIO_MASK) |
541 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
542 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
543 break;
544 default: {
545 /* 33Mhz cell */
546 int ebit = 0;
547 recTime = cycle_time - tim->active - tim->setup;
548 recTime = max(recTime, 150U);
549 accessTime = tim->active;
550 accessTime = max(accessTime, 150U);
551 accessTicks = SYSCLK_TICKS(accessTime);
552 accessTicks = min(accessTicks, 0x1fU);
553 accessTicks = max(accessTicks, 4U);
554 recTicks = SYSCLK_TICKS(recTime);
555 recTicks = min(recTicks, 0x1fU);
556 recTicks = max(recTicks, 5U) - 4;
557 if (recTicks > 9) {
558 recTicks--; /* guess, but it's only for PIO0, so... */
559 ebit = 1;
561 t = (t & ~TR_33_PIO_MASK) |
562 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
563 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
564 if (ebit)
565 t |= TR_33_PIO_E;
566 break;
570 #ifdef IDE_PMAC_DEBUG
571 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
572 drive->name, pio, *timings);
573 #endif
575 *timings = t;
576 pmac_ide_do_update_timings(drive);
580 * Calculate KeyLargo ATA/66 UDMA timings
582 static int
583 set_timings_udma_ata4(u32 *timings, u8 speed)
585 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
587 if (speed > XFER_UDMA_4)
588 return 1;
590 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
591 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
592 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
594 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
595 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
596 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
597 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
598 TR_66_UDMA_EN;
599 #ifdef IDE_PMAC_DEBUG
600 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
601 speed & 0xf, *timings);
602 #endif
604 return 0;
608 * Calculate Kauai ATA/100 UDMA timings
610 static int
611 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
613 struct ide_timing *t = ide_timing_find_mode(speed);
614 u32 tr;
616 if (speed > XFER_UDMA_5 || t == NULL)
617 return 1;
618 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
619 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
620 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
622 return 0;
626 * Calculate Shasta ATA/133 UDMA timings
628 static int
629 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
631 struct ide_timing *t = ide_timing_find_mode(speed);
632 u32 tr;
634 if (speed > XFER_UDMA_6 || t == NULL)
635 return 1;
636 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
637 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
638 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
640 return 0;
644 * Calculate MDMA timings for all cells
646 static void
647 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
648 u8 speed)
650 u16 *id = drive->id;
651 int cycleTime, accessTime = 0, recTime = 0;
652 unsigned accessTicks, recTicks;
653 struct mdma_timings_t* tm = NULL;
654 int i;
656 /* Get default cycle time for mode */
657 switch(speed & 0xf) {
658 case 0: cycleTime = 480; break;
659 case 1: cycleTime = 150; break;
660 case 2: cycleTime = 120; break;
661 default:
662 BUG();
663 break;
666 /* Check if drive provides explicit DMA cycle time */
667 if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
668 cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
670 /* OHare limits according to some old Apple sources */
671 if ((intf_type == controller_ohare) && (cycleTime < 150))
672 cycleTime = 150;
673 /* Get the proper timing array for this controller */
674 switch(intf_type) {
675 case controller_sh_ata6:
676 case controller_un_ata6:
677 case controller_k2_ata6:
678 break;
679 case controller_kl_ata4:
680 tm = mdma_timings_66;
681 break;
682 case controller_kl_ata3:
683 tm = mdma_timings_33k;
684 break;
685 default:
686 tm = mdma_timings_33;
687 break;
689 if (tm != NULL) {
690 /* Lookup matching access & recovery times */
691 i = -1;
692 for (;;) {
693 if (tm[i+1].cycleTime < cycleTime)
694 break;
695 i++;
697 cycleTime = tm[i].cycleTime;
698 accessTime = tm[i].accessTime;
699 recTime = tm[i].recoveryTime;
701 #ifdef IDE_PMAC_DEBUG
702 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
703 drive->name, cycleTime, accessTime, recTime);
704 #endif
706 switch(intf_type) {
707 case controller_sh_ata6: {
708 /* 133Mhz cell */
709 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
710 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
711 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
713 case controller_un_ata6:
714 case controller_k2_ata6: {
715 /* 100Mhz cell */
716 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
717 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
718 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
720 break;
721 case controller_kl_ata4:
722 /* 66Mhz cell */
723 accessTicks = SYSCLK_TICKS_66(accessTime);
724 accessTicks = min(accessTicks, 0x1fU);
725 accessTicks = max(accessTicks, 0x1U);
726 recTicks = SYSCLK_TICKS_66(recTime);
727 recTicks = min(recTicks, 0x1fU);
728 recTicks = max(recTicks, 0x3U);
729 /* Clear out mdma bits and disable udma */
730 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
731 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
732 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
733 break;
734 case controller_kl_ata3:
735 /* 33Mhz cell on KeyLargo */
736 accessTicks = SYSCLK_TICKS(accessTime);
737 accessTicks = max(accessTicks, 1U);
738 accessTicks = min(accessTicks, 0x1fU);
739 accessTime = accessTicks * IDE_SYSCLK_NS;
740 recTicks = SYSCLK_TICKS(recTime);
741 recTicks = max(recTicks, 1U);
742 recTicks = min(recTicks, 0x1fU);
743 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
744 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
745 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
746 break;
747 default: {
748 /* 33Mhz cell on others */
749 int halfTick = 0;
750 int origAccessTime = accessTime;
751 int origRecTime = recTime;
753 accessTicks = SYSCLK_TICKS(accessTime);
754 accessTicks = max(accessTicks, 1U);
755 accessTicks = min(accessTicks, 0x1fU);
756 accessTime = accessTicks * IDE_SYSCLK_NS;
757 recTicks = SYSCLK_TICKS(recTime);
758 recTicks = max(recTicks, 2U) - 1;
759 recTicks = min(recTicks, 0x1fU);
760 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
761 if ((accessTicks > 1) &&
762 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
763 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
764 halfTick = 1;
765 accessTicks--;
767 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
768 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
769 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
770 if (halfTick)
771 *timings |= TR_33_MDMA_HALFTICK;
774 #ifdef IDE_PMAC_DEBUG
775 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
776 drive->name, speed & 0xf, *timings);
777 #endif
780 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
782 pmac_ide_hwif_t *pmif =
783 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
784 int ret = 0;
785 u32 *timings, *timings2, tl[2];
786 u8 unit = drive->dn & 1;
787 const u8 speed = drive->dma_mode;
789 timings = &pmif->timings[unit];
790 timings2 = &pmif->timings[unit+2];
792 /* Copy timings to local image */
793 tl[0] = *timings;
794 tl[1] = *timings2;
796 if (speed >= XFER_UDMA_0) {
797 if (pmif->kind == controller_kl_ata4)
798 ret = set_timings_udma_ata4(&tl[0], speed);
799 else if (pmif->kind == controller_un_ata6
800 || pmif->kind == controller_k2_ata6)
801 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
802 else if (pmif->kind == controller_sh_ata6)
803 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
804 else
805 ret = -1;
806 } else
807 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
809 if (ret)
810 return;
812 /* Apply timings to controller */
813 *timings = tl[0];
814 *timings2 = tl[1];
816 pmac_ide_do_update_timings(drive);
820 * Blast some well known "safe" values to the timing registers at init or
821 * wakeup from sleep time, before we do real calculation
823 static void
824 sanitize_timings(pmac_ide_hwif_t *pmif)
826 unsigned int value, value2 = 0;
828 switch(pmif->kind) {
829 case controller_sh_ata6:
830 value = 0x0a820c97;
831 value2 = 0x00033031;
832 break;
833 case controller_un_ata6:
834 case controller_k2_ata6:
835 value = 0x08618a92;
836 value2 = 0x00002921;
837 break;
838 case controller_kl_ata4:
839 value = 0x0008438c;
840 break;
841 case controller_kl_ata3:
842 value = 0x00084526;
843 break;
844 case controller_heathrow:
845 case controller_ohare:
846 default:
847 value = 0x00074526;
848 break;
850 pmif->timings[0] = pmif->timings[1] = value;
851 pmif->timings[2] = pmif->timings[3] = value2;
854 static int on_media_bay(pmac_ide_hwif_t *pmif)
856 return pmif->mdev && pmif->mdev->media_bay != NULL;
859 /* Suspend call back, should be called after the child devices
860 * have actually been suspended
862 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
864 /* We clear the timings */
865 pmif->timings[0] = 0;
866 pmif->timings[1] = 0;
868 disable_irq(pmif->irq);
870 /* The media bay will handle itself just fine */
871 if (on_media_bay(pmif))
872 return 0;
874 /* Kauai has bus control FCRs directly here */
875 if (pmif->kauai_fcr) {
876 u32 fcr = readl(pmif->kauai_fcr);
877 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
878 writel(fcr, pmif->kauai_fcr);
881 /* Disable the bus on older machines and the cell on kauai */
882 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
885 return 0;
888 /* Resume call back, should be called before the child devices
889 * are resumed
891 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
893 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
894 if (!on_media_bay(pmif)) {
895 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
896 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
897 msleep(10);
898 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
900 /* Kauai has it different */
901 if (pmif->kauai_fcr) {
902 u32 fcr = readl(pmif->kauai_fcr);
903 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
904 writel(fcr, pmif->kauai_fcr);
907 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
910 /* Sanitize drive timings */
911 sanitize_timings(pmif);
913 enable_irq(pmif->irq);
915 return 0;
918 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
920 pmac_ide_hwif_t *pmif =
921 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
922 struct device_node *np = pmif->node;
923 const char *cable = of_get_property(np, "cable-type", NULL);
924 struct device_node *root = of_find_node_by_path("/");
925 const char *model = of_get_property(root, "model", NULL);
927 /* Get cable type from device-tree. */
928 if (cable && !strncmp(cable, "80-", 3)) {
929 /* Some drives fail to detect 80c cable in PowerBook */
930 /* These machine use proprietary short IDE cable anyway */
931 if (!strncmp(model, "PowerBook", 9))
932 return ATA_CBL_PATA40_SHORT;
933 else
934 return ATA_CBL_PATA80;
938 * G5's seem to have incorrect cable type in device-tree.
939 * Let's assume they have a 80 conductor cable, this seem
940 * to be always the case unless the user mucked around.
942 if (of_device_is_compatible(np, "K2-UATA") ||
943 of_device_is_compatible(np, "shasta-ata"))
944 return ATA_CBL_PATA80;
946 return ATA_CBL_PATA40;
949 static void pmac_ide_init_dev(ide_drive_t *drive)
951 ide_hwif_t *hwif = drive->hwif;
952 pmac_ide_hwif_t *pmif =
953 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
955 if (on_media_bay(pmif)) {
956 if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
957 drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
958 return;
960 drive->dev_flags |= IDE_DFLAG_NOPROBE;
964 static const struct ide_tp_ops pmac_tp_ops = {
965 .exec_command = pmac_exec_command,
966 .read_status = ide_read_status,
967 .read_altstatus = ide_read_altstatus,
968 .write_devctl = pmac_write_devctl,
970 .dev_select = pmac_dev_select,
971 .tf_load = ide_tf_load,
972 .tf_read = ide_tf_read,
974 .input_data = ide_input_data,
975 .output_data = ide_output_data,
978 static const struct ide_tp_ops pmac_ata6_tp_ops = {
979 .exec_command = pmac_exec_command,
980 .read_status = ide_read_status,
981 .read_altstatus = ide_read_altstatus,
982 .write_devctl = pmac_write_devctl,
984 .dev_select = pmac_kauai_dev_select,
985 .tf_load = ide_tf_load,
986 .tf_read = ide_tf_read,
988 .input_data = ide_input_data,
989 .output_data = ide_output_data,
992 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
993 .init_dev = pmac_ide_init_dev,
994 .set_pio_mode = pmac_ide_set_pio_mode,
995 .set_dma_mode = pmac_ide_set_dma_mode,
996 .cable_detect = pmac_ide_cable_detect,
999 static const struct ide_port_ops pmac_ide_port_ops = {
1000 .init_dev = pmac_ide_init_dev,
1001 .set_pio_mode = pmac_ide_set_pio_mode,
1002 .set_dma_mode = pmac_ide_set_dma_mode,
1005 static const struct ide_dma_ops pmac_dma_ops;
1007 static const struct ide_port_info pmac_port_info = {
1008 .name = DRV_NAME,
1009 .init_dma = pmac_ide_init_dma,
1010 .chipset = ide_pmac,
1011 .tp_ops = &pmac_tp_ops,
1012 .port_ops = &pmac_ide_port_ops,
1013 .dma_ops = &pmac_dma_ops,
1014 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1015 IDE_HFLAG_POST_SET_MODE |
1016 IDE_HFLAG_MMIO |
1017 IDE_HFLAG_UNMASK_IRQS,
1018 .pio_mask = ATA_PIO4,
1019 .mwdma_mask = ATA_MWDMA2,
1023 * Setup, register & probe an IDE channel driven by this driver, this is
1024 * called by one of the 2 probe functions (macio or PCI).
1026 static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1027 struct ide_hw *hw)
1029 struct device_node *np = pmif->node;
1030 const int *bidp;
1031 struct ide_host *host;
1032 ide_hwif_t *hwif;
1033 struct ide_hw *hws[] = { hw };
1034 struct ide_port_info d = pmac_port_info;
1035 int rc;
1037 pmif->broken_dma = pmif->broken_dma_warn = 0;
1038 if (of_device_is_compatible(np, "shasta-ata")) {
1039 pmif->kind = controller_sh_ata6;
1040 d.tp_ops = &pmac_ata6_tp_ops;
1041 d.port_ops = &pmac_ide_ata4_port_ops;
1042 d.udma_mask = ATA_UDMA6;
1043 } else if (of_device_is_compatible(np, "kauai-ata")) {
1044 pmif->kind = controller_un_ata6;
1045 d.tp_ops = &pmac_ata6_tp_ops;
1046 d.port_ops = &pmac_ide_ata4_port_ops;
1047 d.udma_mask = ATA_UDMA5;
1048 } else if (of_device_is_compatible(np, "K2-UATA")) {
1049 pmif->kind = controller_k2_ata6;
1050 d.tp_ops = &pmac_ata6_tp_ops;
1051 d.port_ops = &pmac_ide_ata4_port_ops;
1052 d.udma_mask = ATA_UDMA5;
1053 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1054 if (strcmp(np->name, "ata-4") == 0) {
1055 pmif->kind = controller_kl_ata4;
1056 d.port_ops = &pmac_ide_ata4_port_ops;
1057 d.udma_mask = ATA_UDMA4;
1058 } else
1059 pmif->kind = controller_kl_ata3;
1060 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1061 pmif->kind = controller_heathrow;
1062 } else {
1063 pmif->kind = controller_ohare;
1064 pmif->broken_dma = 1;
1067 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1068 pmif->aapl_bus_id = bidp ? *bidp : 0;
1070 /* On Kauai-type controllers, we make sure the FCR is correct */
1071 if (pmif->kauai_fcr)
1072 writel(KAUAI_FCR_UATA_MAGIC |
1073 KAUAI_FCR_UATA_RESET_N |
1074 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1076 /* Make sure we have sane timings */
1077 sanitize_timings(pmif);
1079 /* If we are on a media bay, wait for it to settle and lock it */
1080 if (pmif->mdev)
1081 lock_media_bay(pmif->mdev->media_bay);
1083 host = ide_host_alloc(&d, hws, 1);
1084 if (host == NULL) {
1085 rc = -ENOMEM;
1086 goto bail;
1088 hwif = pmif->hwif = host->ports[0];
1090 if (on_media_bay(pmif)) {
1091 /* Fixup bus ID for media bay */
1092 if (!bidp)
1093 pmif->aapl_bus_id = 1;
1094 } else if (pmif->kind == controller_ohare) {
1095 /* The code below is having trouble on some ohare machines
1096 * (timing related ?). Until I can put my hand on one of these
1097 * units, I keep the old way
1099 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1100 } else {
1101 /* This is necessary to enable IDE when net-booting */
1102 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1103 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1104 msleep(10);
1105 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1106 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1109 printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1110 "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1111 pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1112 on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1114 rc = ide_host_register(host, &d, hws);
1115 if (rc)
1116 pmif->hwif = NULL;
1118 if (pmif->mdev)
1119 unlock_media_bay(pmif->mdev->media_bay);
1121 bail:
1122 if (rc && host)
1123 ide_host_free(host);
1124 return rc;
1127 static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1129 int i;
1131 for (i = 0; i < 8; ++i)
1132 hw->io_ports_array[i] = base + i * 0x10;
1134 hw->io_ports.ctl_addr = base + 0x160;
1138 * Attach to a macio probed interface
1140 static int __devinit
1141 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1143 void __iomem *base;
1144 unsigned long regbase;
1145 pmac_ide_hwif_t *pmif;
1146 int irq, rc;
1147 struct ide_hw hw;
1149 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1150 if (pmif == NULL)
1151 return -ENOMEM;
1153 if (macio_resource_count(mdev) == 0) {
1154 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1155 mdev->ofdev.node->full_name);
1156 rc = -ENXIO;
1157 goto out_free_pmif;
1160 /* Request memory resource for IO ports */
1161 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1162 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1163 "%s!\n", mdev->ofdev.node->full_name);
1164 rc = -EBUSY;
1165 goto out_free_pmif;
1168 /* XXX This is bogus. Should be fixed in the registry by checking
1169 * the kind of host interrupt controller, a bit like gatwick
1170 * fixes in irq.c. That works well enough for the single case
1171 * where that happens though...
1173 if (macio_irq_count(mdev) == 0) {
1174 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1175 "13\n", mdev->ofdev.node->full_name);
1176 irq = irq_create_mapping(NULL, 13);
1177 } else
1178 irq = macio_irq(mdev, 0);
1180 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1181 regbase = (unsigned long) base;
1183 pmif->mdev = mdev;
1184 pmif->node = mdev->ofdev.node;
1185 pmif->regbase = regbase;
1186 pmif->irq = irq;
1187 pmif->kauai_fcr = NULL;
1189 if (macio_resource_count(mdev) >= 2) {
1190 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1191 printk(KERN_WARNING "ide-pmac: can't request DMA "
1192 "resource for %s!\n",
1193 mdev->ofdev.node->full_name);
1194 else
1195 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1196 } else
1197 pmif->dma_regs = NULL;
1199 dev_set_drvdata(&mdev->ofdev.dev, pmif);
1201 memset(&hw, 0, sizeof(hw));
1202 pmac_ide_init_ports(&hw, pmif->regbase);
1203 hw.irq = irq;
1204 hw.dev = &mdev->bus->pdev->dev;
1205 hw.parent = &mdev->ofdev.dev;
1207 rc = pmac_ide_setup_device(pmif, &hw);
1208 if (rc != 0) {
1209 /* The inteface is released to the common IDE layer */
1210 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1211 iounmap(base);
1212 if (pmif->dma_regs) {
1213 iounmap(pmif->dma_regs);
1214 macio_release_resource(mdev, 1);
1216 macio_release_resource(mdev, 0);
1217 kfree(pmif);
1220 return rc;
1222 out_free_pmif:
1223 kfree(pmif);
1224 return rc;
1227 static int
1228 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1230 pmac_ide_hwif_t *pmif =
1231 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1232 int rc = 0;
1234 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1235 && (mesg.event & PM_EVENT_SLEEP)) {
1236 rc = pmac_ide_do_suspend(pmif);
1237 if (rc == 0)
1238 mdev->ofdev.dev.power.power_state = mesg;
1241 return rc;
1244 static int
1245 pmac_ide_macio_resume(struct macio_dev *mdev)
1247 pmac_ide_hwif_t *pmif =
1248 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1249 int rc = 0;
1251 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1252 rc = pmac_ide_do_resume(pmif);
1253 if (rc == 0)
1254 mdev->ofdev.dev.power.power_state = PMSG_ON;
1257 return rc;
1261 * Attach to a PCI probed interface
1263 static int __devinit
1264 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1266 struct device_node *np;
1267 pmac_ide_hwif_t *pmif;
1268 void __iomem *base;
1269 unsigned long rbase, rlen;
1270 int rc;
1271 struct ide_hw hw;
1273 np = pci_device_to_OF_node(pdev);
1274 if (np == NULL) {
1275 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1276 return -ENODEV;
1279 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1280 if (pmif == NULL)
1281 return -ENOMEM;
1283 if (pci_enable_device(pdev)) {
1284 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1285 "%s\n", np->full_name);
1286 rc = -ENXIO;
1287 goto out_free_pmif;
1289 pci_set_master(pdev);
1291 if (pci_request_regions(pdev, "Kauai ATA")) {
1292 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1293 "%s\n", np->full_name);
1294 rc = -ENXIO;
1295 goto out_free_pmif;
1298 pmif->mdev = NULL;
1299 pmif->node = np;
1301 rbase = pci_resource_start(pdev, 0);
1302 rlen = pci_resource_len(pdev, 0);
1304 base = ioremap(rbase, rlen);
1305 pmif->regbase = (unsigned long) base + 0x2000;
1306 pmif->dma_regs = base + 0x1000;
1307 pmif->kauai_fcr = base;
1308 pmif->irq = pdev->irq;
1310 pci_set_drvdata(pdev, pmif);
1312 memset(&hw, 0, sizeof(hw));
1313 pmac_ide_init_ports(&hw, pmif->regbase);
1314 hw.irq = pdev->irq;
1315 hw.dev = &pdev->dev;
1317 rc = pmac_ide_setup_device(pmif, &hw);
1318 if (rc != 0) {
1319 /* The inteface is released to the common IDE layer */
1320 pci_set_drvdata(pdev, NULL);
1321 iounmap(base);
1322 pci_release_regions(pdev);
1323 kfree(pmif);
1326 return rc;
1328 out_free_pmif:
1329 kfree(pmif);
1330 return rc;
1333 static int
1334 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1336 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1337 int rc = 0;
1339 if (mesg.event != pdev->dev.power.power_state.event
1340 && (mesg.event & PM_EVENT_SLEEP)) {
1341 rc = pmac_ide_do_suspend(pmif);
1342 if (rc == 0)
1343 pdev->dev.power.power_state = mesg;
1346 return rc;
1349 static int
1350 pmac_ide_pci_resume(struct pci_dev *pdev)
1352 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1353 int rc = 0;
1355 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1356 rc = pmac_ide_do_resume(pmif);
1357 if (rc == 0)
1358 pdev->dev.power.power_state = PMSG_ON;
1361 return rc;
1364 #ifdef CONFIG_PMAC_MEDIABAY
1365 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1367 pmac_ide_hwif_t *pmif =
1368 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1370 switch(mb_state) {
1371 case MB_CD:
1372 if (!pmif->hwif->present)
1373 ide_port_scan(pmif->hwif);
1374 break;
1375 default:
1376 if (pmif->hwif->present)
1377 ide_port_unregister_devices(pmif->hwif);
1380 #endif /* CONFIG_PMAC_MEDIABAY */
1383 static struct of_device_id pmac_ide_macio_match[] =
1386 .name = "IDE",
1389 .name = "ATA",
1392 .type = "ide",
1395 .type = "ata",
1400 static struct macio_driver pmac_ide_macio_driver =
1402 .name = "ide-pmac",
1403 .match_table = pmac_ide_macio_match,
1404 .probe = pmac_ide_macio_attach,
1405 .suspend = pmac_ide_macio_suspend,
1406 .resume = pmac_ide_macio_resume,
1407 #ifdef CONFIG_PMAC_MEDIABAY
1408 .mediabay_event = pmac_ide_macio_mb_event,
1409 #endif
1412 static const struct pci_device_id pmac_ide_pci_match[] = {
1413 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1414 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1415 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1416 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1417 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1421 static struct pci_driver pmac_ide_pci_driver = {
1422 .name = "ide-pmac",
1423 .id_table = pmac_ide_pci_match,
1424 .probe = pmac_ide_pci_attach,
1425 .suspend = pmac_ide_pci_suspend,
1426 .resume = pmac_ide_pci_resume,
1428 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1430 int __init pmac_ide_probe(void)
1432 int error;
1434 if (!machine_is(powermac))
1435 return -ENODEV;
1437 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1438 error = pci_register_driver(&pmac_ide_pci_driver);
1439 if (error)
1440 goto out;
1441 error = macio_register_driver(&pmac_ide_macio_driver);
1442 if (error) {
1443 pci_unregister_driver(&pmac_ide_pci_driver);
1444 goto out;
1446 #else
1447 error = macio_register_driver(&pmac_ide_macio_driver);
1448 if (error)
1449 goto out;
1450 error = pci_register_driver(&pmac_ide_pci_driver);
1451 if (error) {
1452 macio_unregister_driver(&pmac_ide_macio_driver);
1453 goto out;
1455 #endif
1456 out:
1457 return error;
1461 * pmac_ide_build_dmatable builds the DBDMA command list
1462 * for a transfer and sets the DBDMA channel to point to it.
1464 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1466 ide_hwif_t *hwif = drive->hwif;
1467 pmac_ide_hwif_t *pmif =
1468 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1469 struct dbdma_cmd *table;
1470 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1471 struct scatterlist *sg;
1472 int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1473 int i = cmd->sg_nents, count = 0;
1475 /* DMA table is already aligned */
1476 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1478 /* Make sure DMA controller is stopped (necessary ?) */
1479 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1480 while (readl(&dma->status) & RUN)
1481 udelay(1);
1483 /* Build DBDMA commands list */
1484 sg = hwif->sg_table;
1485 while (i && sg_dma_len(sg)) {
1486 u32 cur_addr;
1487 u32 cur_len;
1489 cur_addr = sg_dma_address(sg);
1490 cur_len = sg_dma_len(sg);
1492 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1493 if (pmif->broken_dma_warn == 0) {
1494 printk(KERN_WARNING "%s: DMA on non aligned address, "
1495 "switching to PIO on Ohare chipset\n", drive->name);
1496 pmif->broken_dma_warn = 1;
1498 return 0;
1500 while (cur_len) {
1501 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1503 if (count++ >= MAX_DCMDS) {
1504 printk(KERN_WARNING "%s: DMA table too small\n",
1505 drive->name);
1506 return 0;
1508 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1509 st_le16(&table->req_count, tc);
1510 st_le32(&table->phy_addr, cur_addr);
1511 table->cmd_dep = 0;
1512 table->xfer_status = 0;
1513 table->res_count = 0;
1514 cur_addr += tc;
1515 cur_len -= tc;
1516 ++table;
1518 sg = sg_next(sg);
1519 i--;
1522 /* convert the last command to an input/output last command */
1523 if (count) {
1524 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1525 /* add the stop command to the end of the list */
1526 memset(table, 0, sizeof(struct dbdma_cmd));
1527 st_le16(&table->command, DBDMA_STOP);
1528 mb();
1529 writel(hwif->dmatable_dma, &dma->cmdptr);
1530 return 1;
1533 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1535 return 0; /* revert to PIO for this request */
1539 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1540 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1542 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1544 ide_hwif_t *hwif = drive->hwif;
1545 pmac_ide_hwif_t *pmif =
1546 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1547 u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1548 u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1550 if (pmac_ide_build_dmatable(drive, cmd) == 0)
1551 return 1;
1553 /* Apple adds 60ns to wrDataSetup on reads */
1554 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1555 writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1556 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1557 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1560 return 0;
1564 * Kick the DMA controller into life after the DMA command has been issued
1565 * to the drive.
1567 static void
1568 pmac_ide_dma_start(ide_drive_t *drive)
1570 ide_hwif_t *hwif = drive->hwif;
1571 pmac_ide_hwif_t *pmif =
1572 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1573 volatile struct dbdma_regs __iomem *dma;
1575 dma = pmif->dma_regs;
1577 writel((RUN << 16) | RUN, &dma->control);
1578 /* Make sure it gets to the controller right now */
1579 (void)readl(&dma->control);
1583 * After a DMA transfer, make sure the controller is stopped
1585 static int
1586 pmac_ide_dma_end (ide_drive_t *drive)
1588 ide_hwif_t *hwif = drive->hwif;
1589 pmac_ide_hwif_t *pmif =
1590 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1591 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1592 u32 dstat;
1594 dstat = readl(&dma->status);
1595 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1597 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1598 * in theory, but with ATAPI decices doing buffer underruns, that would
1599 * cause us to disable DMA, which isn't what we want
1601 return (dstat & (RUN|DEAD)) != RUN;
1605 * Check out that the interrupt we got was for us. We can't always know this
1606 * for sure with those Apple interfaces (well, we could on the recent ones but
1607 * that's not implemented yet), on the other hand, we don't have shared interrupts
1608 * so it's not really a problem
1610 static int
1611 pmac_ide_dma_test_irq (ide_drive_t *drive)
1613 ide_hwif_t *hwif = drive->hwif;
1614 pmac_ide_hwif_t *pmif =
1615 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1616 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1617 unsigned long status, timeout;
1619 /* We have to things to deal with here:
1621 * - The dbdma won't stop if the command was started
1622 * but completed with an error without transferring all
1623 * datas. This happens when bad blocks are met during
1624 * a multi-block transfer.
1626 * - The dbdma fifo hasn't yet finished flushing to
1627 * to system memory when the disk interrupt occurs.
1631 /* If ACTIVE is cleared, the STOP command have passed and
1632 * transfer is complete.
1634 status = readl(&dma->status);
1635 if (!(status & ACTIVE))
1636 return 1;
1638 /* If dbdma didn't execute the STOP command yet, the
1639 * active bit is still set. We consider that we aren't
1640 * sharing interrupts (which is hopefully the case with
1641 * those controllers) and so we just try to flush the
1642 * channel for pending data in the fifo
1644 udelay(1);
1645 writel((FLUSH << 16) | FLUSH, &dma->control);
1646 timeout = 0;
1647 for (;;) {
1648 udelay(1);
1649 status = readl(&dma->status);
1650 if ((status & FLUSH) == 0)
1651 break;
1652 if (++timeout > 100) {
1653 printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1654 hwif->index);
1655 break;
1658 return 1;
1661 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1665 static void
1666 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1668 ide_hwif_t *hwif = drive->hwif;
1669 pmac_ide_hwif_t *pmif =
1670 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1671 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1672 unsigned long status = readl(&dma->status);
1674 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1677 static const struct ide_dma_ops pmac_dma_ops = {
1678 .dma_host_set = pmac_ide_dma_host_set,
1679 .dma_setup = pmac_ide_dma_setup,
1680 .dma_start = pmac_ide_dma_start,
1681 .dma_end = pmac_ide_dma_end,
1682 .dma_test_irq = pmac_ide_dma_test_irq,
1683 .dma_lost_irq = pmac_ide_dma_lost_irq,
1687 * Allocate the data structures needed for using DMA with an interface
1688 * and fill the proper list of functions pointers
1690 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1691 const struct ide_port_info *d)
1693 pmac_ide_hwif_t *pmif =
1694 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1695 struct pci_dev *dev = to_pci_dev(hwif->dev);
1697 /* We won't need pci_dev if we switch to generic consistent
1698 * DMA routines ...
1700 if (dev == NULL || pmif->dma_regs == 0)
1701 return -ENODEV;
1703 * Allocate space for the DBDMA commands.
1704 * The +2 is +1 for the stop command and +1 to allow for
1705 * aligning the start address to a multiple of 16 bytes.
1707 pmif->dma_table_cpu = pci_alloc_consistent(
1708 dev,
1709 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1710 &hwif->dmatable_dma);
1711 if (pmif->dma_table_cpu == NULL) {
1712 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1713 hwif->name);
1714 return -ENOMEM;
1717 hwif->sg_max_nents = MAX_DCMDS;
1719 return 0;
1722 module_init(pmac_ide_probe);
1724 MODULE_LICENSE("GPL");