SELinux: move security_skb_extlbl_sid() out of the security server
[linux-2.6/x86.git] / security / selinux / ss / services.c
blob8ee4aaef109433a78ee5776ac9edd88d7af30be2
1 /*
2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
20 * Updated: Chad Sellers <csellers@tresys.com>
22 * Added validation of kernel classes and permissions
24 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
25 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
26 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
27 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License as published by
30 * the Free Software Foundation, version 2.
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/spinlock.h>
36 #include <linux/rcupdate.h>
37 #include <linux/errno.h>
38 #include <linux/in.h>
39 #include <linux/sched.h>
40 #include <linux/audit.h>
41 #include <linux/mutex.h>
42 #include <net/netlabel.h>
44 #include "flask.h"
45 #include "avc.h"
46 #include "avc_ss.h"
47 #include "security.h"
48 #include "context.h"
49 #include "policydb.h"
50 #include "sidtab.h"
51 #include "services.h"
52 #include "conditional.h"
53 #include "mls.h"
54 #include "objsec.h"
55 #include "netlabel.h"
56 #include "xfrm.h"
57 #include "ebitmap.h"
59 extern void selnl_notify_policyload(u32 seqno);
60 unsigned int policydb_loaded_version;
63 * This is declared in avc.c
65 extern const struct selinux_class_perm selinux_class_perm;
67 static DEFINE_RWLOCK(policy_rwlock);
68 #define POLICY_RDLOCK read_lock(&policy_rwlock)
69 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
70 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
71 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
73 static DEFINE_MUTEX(load_mutex);
74 #define LOAD_LOCK mutex_lock(&load_mutex)
75 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
77 static struct sidtab sidtab;
78 struct policydb policydb;
79 int ss_initialized = 0;
82 * The largest sequence number that has been used when
83 * providing an access decision to the access vector cache.
84 * The sequence number only changes when a policy change
85 * occurs.
87 static u32 latest_granting = 0;
89 /* Forward declaration. */
90 static int context_struct_to_string(struct context *context, char **scontext,
91 u32 *scontext_len);
94 * Return the boolean value of a constraint expression
95 * when it is applied to the specified source and target
96 * security contexts.
98 * xcontext is a special beast... It is used by the validatetrans rules
99 * only. For these rules, scontext is the context before the transition,
100 * tcontext is the context after the transition, and xcontext is the context
101 * of the process performing the transition. All other callers of
102 * constraint_expr_eval should pass in NULL for xcontext.
104 static int constraint_expr_eval(struct context *scontext,
105 struct context *tcontext,
106 struct context *xcontext,
107 struct constraint_expr *cexpr)
109 u32 val1, val2;
110 struct context *c;
111 struct role_datum *r1, *r2;
112 struct mls_level *l1, *l2;
113 struct constraint_expr *e;
114 int s[CEXPR_MAXDEPTH];
115 int sp = -1;
117 for (e = cexpr; e; e = e->next) {
118 switch (e->expr_type) {
119 case CEXPR_NOT:
120 BUG_ON(sp < 0);
121 s[sp] = !s[sp];
122 break;
123 case CEXPR_AND:
124 BUG_ON(sp < 1);
125 sp--;
126 s[sp] &= s[sp+1];
127 break;
128 case CEXPR_OR:
129 BUG_ON(sp < 1);
130 sp--;
131 s[sp] |= s[sp+1];
132 break;
133 case CEXPR_ATTR:
134 if (sp == (CEXPR_MAXDEPTH-1))
135 return 0;
136 switch (e->attr) {
137 case CEXPR_USER:
138 val1 = scontext->user;
139 val2 = tcontext->user;
140 break;
141 case CEXPR_TYPE:
142 val1 = scontext->type;
143 val2 = tcontext->type;
144 break;
145 case CEXPR_ROLE:
146 val1 = scontext->role;
147 val2 = tcontext->role;
148 r1 = policydb.role_val_to_struct[val1 - 1];
149 r2 = policydb.role_val_to_struct[val2 - 1];
150 switch (e->op) {
151 case CEXPR_DOM:
152 s[++sp] = ebitmap_get_bit(&r1->dominates,
153 val2 - 1);
154 continue;
155 case CEXPR_DOMBY:
156 s[++sp] = ebitmap_get_bit(&r2->dominates,
157 val1 - 1);
158 continue;
159 case CEXPR_INCOMP:
160 s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
161 val2 - 1) &&
162 !ebitmap_get_bit(&r2->dominates,
163 val1 - 1) );
164 continue;
165 default:
166 break;
168 break;
169 case CEXPR_L1L2:
170 l1 = &(scontext->range.level[0]);
171 l2 = &(tcontext->range.level[0]);
172 goto mls_ops;
173 case CEXPR_L1H2:
174 l1 = &(scontext->range.level[0]);
175 l2 = &(tcontext->range.level[1]);
176 goto mls_ops;
177 case CEXPR_H1L2:
178 l1 = &(scontext->range.level[1]);
179 l2 = &(tcontext->range.level[0]);
180 goto mls_ops;
181 case CEXPR_H1H2:
182 l1 = &(scontext->range.level[1]);
183 l2 = &(tcontext->range.level[1]);
184 goto mls_ops;
185 case CEXPR_L1H1:
186 l1 = &(scontext->range.level[0]);
187 l2 = &(scontext->range.level[1]);
188 goto mls_ops;
189 case CEXPR_L2H2:
190 l1 = &(tcontext->range.level[0]);
191 l2 = &(tcontext->range.level[1]);
192 goto mls_ops;
193 mls_ops:
194 switch (e->op) {
195 case CEXPR_EQ:
196 s[++sp] = mls_level_eq(l1, l2);
197 continue;
198 case CEXPR_NEQ:
199 s[++sp] = !mls_level_eq(l1, l2);
200 continue;
201 case CEXPR_DOM:
202 s[++sp] = mls_level_dom(l1, l2);
203 continue;
204 case CEXPR_DOMBY:
205 s[++sp] = mls_level_dom(l2, l1);
206 continue;
207 case CEXPR_INCOMP:
208 s[++sp] = mls_level_incomp(l2, l1);
209 continue;
210 default:
211 BUG();
212 return 0;
214 break;
215 default:
216 BUG();
217 return 0;
220 switch (e->op) {
221 case CEXPR_EQ:
222 s[++sp] = (val1 == val2);
223 break;
224 case CEXPR_NEQ:
225 s[++sp] = (val1 != val2);
226 break;
227 default:
228 BUG();
229 return 0;
231 break;
232 case CEXPR_NAMES:
233 if (sp == (CEXPR_MAXDEPTH-1))
234 return 0;
235 c = scontext;
236 if (e->attr & CEXPR_TARGET)
237 c = tcontext;
238 else if (e->attr & CEXPR_XTARGET) {
239 c = xcontext;
240 if (!c) {
241 BUG();
242 return 0;
245 if (e->attr & CEXPR_USER)
246 val1 = c->user;
247 else if (e->attr & CEXPR_ROLE)
248 val1 = c->role;
249 else if (e->attr & CEXPR_TYPE)
250 val1 = c->type;
251 else {
252 BUG();
253 return 0;
256 switch (e->op) {
257 case CEXPR_EQ:
258 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
259 break;
260 case CEXPR_NEQ:
261 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
262 break;
263 default:
264 BUG();
265 return 0;
267 break;
268 default:
269 BUG();
270 return 0;
274 BUG_ON(sp != 0);
275 return s[0];
279 * Compute access vectors based on a context structure pair for
280 * the permissions in a particular class.
282 static int context_struct_compute_av(struct context *scontext,
283 struct context *tcontext,
284 u16 tclass,
285 u32 requested,
286 struct av_decision *avd)
288 struct constraint_node *constraint;
289 struct role_allow *ra;
290 struct avtab_key avkey;
291 struct avtab_node *node;
292 struct class_datum *tclass_datum;
293 struct ebitmap *sattr, *tattr;
294 struct ebitmap_node *snode, *tnode;
295 unsigned int i, j;
298 * Remap extended Netlink classes for old policy versions.
299 * Do this here rather than socket_type_to_security_class()
300 * in case a newer policy version is loaded, allowing sockets
301 * to remain in the correct class.
303 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
304 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
305 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
306 tclass = SECCLASS_NETLINK_SOCKET;
308 if (!tclass || tclass > policydb.p_classes.nprim) {
309 printk(KERN_ERR "security_compute_av: unrecognized class %d\n",
310 tclass);
311 return -EINVAL;
313 tclass_datum = policydb.class_val_to_struct[tclass - 1];
316 * Initialize the access vectors to the default values.
318 avd->allowed = 0;
319 avd->decided = 0xffffffff;
320 avd->auditallow = 0;
321 avd->auditdeny = 0xffffffff;
322 avd->seqno = latest_granting;
325 * If a specific type enforcement rule was defined for
326 * this permission check, then use it.
328 avkey.target_class = tclass;
329 avkey.specified = AVTAB_AV;
330 sattr = &policydb.type_attr_map[scontext->type - 1];
331 tattr = &policydb.type_attr_map[tcontext->type - 1];
332 ebitmap_for_each_bit(sattr, snode, i) {
333 if (!ebitmap_node_get_bit(snode, i))
334 continue;
335 ebitmap_for_each_bit(tattr, tnode, j) {
336 if (!ebitmap_node_get_bit(tnode, j))
337 continue;
338 avkey.source_type = i + 1;
339 avkey.target_type = j + 1;
340 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
341 node != NULL;
342 node = avtab_search_node_next(node, avkey.specified)) {
343 if (node->key.specified == AVTAB_ALLOWED)
344 avd->allowed |= node->datum.data;
345 else if (node->key.specified == AVTAB_AUDITALLOW)
346 avd->auditallow |= node->datum.data;
347 else if (node->key.specified == AVTAB_AUDITDENY)
348 avd->auditdeny &= node->datum.data;
351 /* Check conditional av table for additional permissions */
352 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
358 * Remove any permissions prohibited by a constraint (this includes
359 * the MLS policy).
361 constraint = tclass_datum->constraints;
362 while (constraint) {
363 if ((constraint->permissions & (avd->allowed)) &&
364 !constraint_expr_eval(scontext, tcontext, NULL,
365 constraint->expr)) {
366 avd->allowed = (avd->allowed) & ~(constraint->permissions);
368 constraint = constraint->next;
372 * If checking process transition permission and the
373 * role is changing, then check the (current_role, new_role)
374 * pair.
376 if (tclass == SECCLASS_PROCESS &&
377 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
378 scontext->role != tcontext->role) {
379 for (ra = policydb.role_allow; ra; ra = ra->next) {
380 if (scontext->role == ra->role &&
381 tcontext->role == ra->new_role)
382 break;
384 if (!ra)
385 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
386 PROCESS__DYNTRANSITION);
389 return 0;
392 static int security_validtrans_handle_fail(struct context *ocontext,
393 struct context *ncontext,
394 struct context *tcontext,
395 u16 tclass)
397 char *o = NULL, *n = NULL, *t = NULL;
398 u32 olen, nlen, tlen;
400 if (context_struct_to_string(ocontext, &o, &olen) < 0)
401 goto out;
402 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
403 goto out;
404 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
405 goto out;
406 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
407 "security_validate_transition: denied for"
408 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
409 o, n, t, policydb.p_class_val_to_name[tclass-1]);
410 out:
411 kfree(o);
412 kfree(n);
413 kfree(t);
415 if (!selinux_enforcing)
416 return 0;
417 return -EPERM;
420 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
421 u16 tclass)
423 struct context *ocontext;
424 struct context *ncontext;
425 struct context *tcontext;
426 struct class_datum *tclass_datum;
427 struct constraint_node *constraint;
428 int rc = 0;
430 if (!ss_initialized)
431 return 0;
433 POLICY_RDLOCK;
436 * Remap extended Netlink classes for old policy versions.
437 * Do this here rather than socket_type_to_security_class()
438 * in case a newer policy version is loaded, allowing sockets
439 * to remain in the correct class.
441 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
442 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
443 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
444 tclass = SECCLASS_NETLINK_SOCKET;
446 if (!tclass || tclass > policydb.p_classes.nprim) {
447 printk(KERN_ERR "security_validate_transition: "
448 "unrecognized class %d\n", tclass);
449 rc = -EINVAL;
450 goto out;
452 tclass_datum = policydb.class_val_to_struct[tclass - 1];
454 ocontext = sidtab_search(&sidtab, oldsid);
455 if (!ocontext) {
456 printk(KERN_ERR "security_validate_transition: "
457 " unrecognized SID %d\n", oldsid);
458 rc = -EINVAL;
459 goto out;
462 ncontext = sidtab_search(&sidtab, newsid);
463 if (!ncontext) {
464 printk(KERN_ERR "security_validate_transition: "
465 " unrecognized SID %d\n", newsid);
466 rc = -EINVAL;
467 goto out;
470 tcontext = sidtab_search(&sidtab, tasksid);
471 if (!tcontext) {
472 printk(KERN_ERR "security_validate_transition: "
473 " unrecognized SID %d\n", tasksid);
474 rc = -EINVAL;
475 goto out;
478 constraint = tclass_datum->validatetrans;
479 while (constraint) {
480 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
481 constraint->expr)) {
482 rc = security_validtrans_handle_fail(ocontext, ncontext,
483 tcontext, tclass);
484 goto out;
486 constraint = constraint->next;
489 out:
490 POLICY_RDUNLOCK;
491 return rc;
495 * security_compute_av - Compute access vector decisions.
496 * @ssid: source security identifier
497 * @tsid: target security identifier
498 * @tclass: target security class
499 * @requested: requested permissions
500 * @avd: access vector decisions
502 * Compute a set of access vector decisions based on the
503 * SID pair (@ssid, @tsid) for the permissions in @tclass.
504 * Return -%EINVAL if any of the parameters are invalid or %0
505 * if the access vector decisions were computed successfully.
507 int security_compute_av(u32 ssid,
508 u32 tsid,
509 u16 tclass,
510 u32 requested,
511 struct av_decision *avd)
513 struct context *scontext = NULL, *tcontext = NULL;
514 int rc = 0;
516 if (!ss_initialized) {
517 avd->allowed = 0xffffffff;
518 avd->decided = 0xffffffff;
519 avd->auditallow = 0;
520 avd->auditdeny = 0xffffffff;
521 avd->seqno = latest_granting;
522 return 0;
525 POLICY_RDLOCK;
527 scontext = sidtab_search(&sidtab, ssid);
528 if (!scontext) {
529 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
530 ssid);
531 rc = -EINVAL;
532 goto out;
534 tcontext = sidtab_search(&sidtab, tsid);
535 if (!tcontext) {
536 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
537 tsid);
538 rc = -EINVAL;
539 goto out;
542 rc = context_struct_compute_av(scontext, tcontext, tclass,
543 requested, avd);
544 out:
545 POLICY_RDUNLOCK;
546 return rc;
550 * Write the security context string representation of
551 * the context structure `context' into a dynamically
552 * allocated string of the correct size. Set `*scontext'
553 * to point to this string and set `*scontext_len' to
554 * the length of the string.
556 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
558 char *scontextp;
560 *scontext = NULL;
561 *scontext_len = 0;
563 /* Compute the size of the context. */
564 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
565 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
566 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
567 *scontext_len += mls_compute_context_len(context);
569 /* Allocate space for the context; caller must free this space. */
570 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
571 if (!scontextp) {
572 return -ENOMEM;
574 *scontext = scontextp;
577 * Copy the user name, role name and type name into the context.
579 sprintf(scontextp, "%s:%s:%s",
580 policydb.p_user_val_to_name[context->user - 1],
581 policydb.p_role_val_to_name[context->role - 1],
582 policydb.p_type_val_to_name[context->type - 1]);
583 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
584 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
585 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
587 mls_sid_to_context(context, &scontextp);
589 *scontextp = 0;
591 return 0;
594 #include "initial_sid_to_string.h"
597 * security_sid_to_context - Obtain a context for a given SID.
598 * @sid: security identifier, SID
599 * @scontext: security context
600 * @scontext_len: length in bytes
602 * Write the string representation of the context associated with @sid
603 * into a dynamically allocated string of the correct size. Set @scontext
604 * to point to this string and set @scontext_len to the length of the string.
606 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
608 struct context *context;
609 int rc = 0;
611 *scontext = NULL;
612 *scontext_len = 0;
614 if (!ss_initialized) {
615 if (sid <= SECINITSID_NUM) {
616 char *scontextp;
618 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
619 scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
620 if (!scontextp) {
621 rc = -ENOMEM;
622 goto out;
624 strcpy(scontextp, initial_sid_to_string[sid]);
625 *scontext = scontextp;
626 goto out;
628 printk(KERN_ERR "security_sid_to_context: called before initial "
629 "load_policy on unknown SID %d\n", sid);
630 rc = -EINVAL;
631 goto out;
633 POLICY_RDLOCK;
634 context = sidtab_search(&sidtab, sid);
635 if (!context) {
636 printk(KERN_ERR "security_sid_to_context: unrecognized SID "
637 "%d\n", sid);
638 rc = -EINVAL;
639 goto out_unlock;
641 rc = context_struct_to_string(context, scontext, scontext_len);
642 out_unlock:
643 POLICY_RDUNLOCK;
644 out:
645 return rc;
649 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
651 char *scontext2;
652 struct context context;
653 struct role_datum *role;
654 struct type_datum *typdatum;
655 struct user_datum *usrdatum;
656 char *scontextp, *p, oldc;
657 int rc = 0;
659 if (!ss_initialized) {
660 int i;
662 for (i = 1; i < SECINITSID_NUM; i++) {
663 if (!strcmp(initial_sid_to_string[i], scontext)) {
664 *sid = i;
665 goto out;
668 *sid = SECINITSID_KERNEL;
669 goto out;
671 *sid = SECSID_NULL;
673 /* Copy the string so that we can modify the copy as we parse it.
674 The string should already by null terminated, but we append a
675 null suffix to the copy to avoid problems with the existing
676 attr package, which doesn't view the null terminator as part
677 of the attribute value. */
678 scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
679 if (!scontext2) {
680 rc = -ENOMEM;
681 goto out;
683 memcpy(scontext2, scontext, scontext_len);
684 scontext2[scontext_len] = 0;
686 context_init(&context);
687 *sid = SECSID_NULL;
689 POLICY_RDLOCK;
691 /* Parse the security context. */
693 rc = -EINVAL;
694 scontextp = (char *) scontext2;
696 /* Extract the user. */
697 p = scontextp;
698 while (*p && *p != ':')
699 p++;
701 if (*p == 0)
702 goto out_unlock;
704 *p++ = 0;
706 usrdatum = hashtab_search(policydb.p_users.table, scontextp);
707 if (!usrdatum)
708 goto out_unlock;
710 context.user = usrdatum->value;
712 /* Extract role. */
713 scontextp = p;
714 while (*p && *p != ':')
715 p++;
717 if (*p == 0)
718 goto out_unlock;
720 *p++ = 0;
722 role = hashtab_search(policydb.p_roles.table, scontextp);
723 if (!role)
724 goto out_unlock;
725 context.role = role->value;
727 /* Extract type. */
728 scontextp = p;
729 while (*p && *p != ':')
730 p++;
731 oldc = *p;
732 *p++ = 0;
734 typdatum = hashtab_search(policydb.p_types.table, scontextp);
735 if (!typdatum)
736 goto out_unlock;
738 context.type = typdatum->value;
740 rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
741 if (rc)
742 goto out_unlock;
744 if ((p - scontext2) < scontext_len) {
745 rc = -EINVAL;
746 goto out_unlock;
749 /* Check the validity of the new context. */
750 if (!policydb_context_isvalid(&policydb, &context)) {
751 rc = -EINVAL;
752 goto out_unlock;
754 /* Obtain the new sid. */
755 rc = sidtab_context_to_sid(&sidtab, &context, sid);
756 out_unlock:
757 POLICY_RDUNLOCK;
758 context_destroy(&context);
759 kfree(scontext2);
760 out:
761 return rc;
765 * security_context_to_sid - Obtain a SID for a given security context.
766 * @scontext: security context
767 * @scontext_len: length in bytes
768 * @sid: security identifier, SID
770 * Obtains a SID associated with the security context that
771 * has the string representation specified by @scontext.
772 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
773 * memory is available, or 0 on success.
775 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
777 return security_context_to_sid_core(scontext, scontext_len,
778 sid, SECSID_NULL);
782 * security_context_to_sid_default - Obtain a SID for a given security context,
783 * falling back to specified default if needed.
785 * @scontext: security context
786 * @scontext_len: length in bytes
787 * @sid: security identifier, SID
788 * @def_sid: default SID to assign on errror
790 * Obtains a SID associated with the security context that
791 * has the string representation specified by @scontext.
792 * The default SID is passed to the MLS layer to be used to allow
793 * kernel labeling of the MLS field if the MLS field is not present
794 * (for upgrading to MLS without full relabel).
795 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
796 * memory is available, or 0 on success.
798 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
800 return security_context_to_sid_core(scontext, scontext_len,
801 sid, def_sid);
804 static int compute_sid_handle_invalid_context(
805 struct context *scontext,
806 struct context *tcontext,
807 u16 tclass,
808 struct context *newcontext)
810 char *s = NULL, *t = NULL, *n = NULL;
811 u32 slen, tlen, nlen;
813 if (context_struct_to_string(scontext, &s, &slen) < 0)
814 goto out;
815 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
816 goto out;
817 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
818 goto out;
819 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
820 "security_compute_sid: invalid context %s"
821 " for scontext=%s"
822 " tcontext=%s"
823 " tclass=%s",
824 n, s, t, policydb.p_class_val_to_name[tclass-1]);
825 out:
826 kfree(s);
827 kfree(t);
828 kfree(n);
829 if (!selinux_enforcing)
830 return 0;
831 return -EACCES;
834 static int security_compute_sid(u32 ssid,
835 u32 tsid,
836 u16 tclass,
837 u32 specified,
838 u32 *out_sid)
840 struct context *scontext = NULL, *tcontext = NULL, newcontext;
841 struct role_trans *roletr = NULL;
842 struct avtab_key avkey;
843 struct avtab_datum *avdatum;
844 struct avtab_node *node;
845 int rc = 0;
847 if (!ss_initialized) {
848 switch (tclass) {
849 case SECCLASS_PROCESS:
850 *out_sid = ssid;
851 break;
852 default:
853 *out_sid = tsid;
854 break;
856 goto out;
859 context_init(&newcontext);
861 POLICY_RDLOCK;
863 scontext = sidtab_search(&sidtab, ssid);
864 if (!scontext) {
865 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
866 ssid);
867 rc = -EINVAL;
868 goto out_unlock;
870 tcontext = sidtab_search(&sidtab, tsid);
871 if (!tcontext) {
872 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
873 tsid);
874 rc = -EINVAL;
875 goto out_unlock;
878 /* Set the user identity. */
879 switch (specified) {
880 case AVTAB_TRANSITION:
881 case AVTAB_CHANGE:
882 /* Use the process user identity. */
883 newcontext.user = scontext->user;
884 break;
885 case AVTAB_MEMBER:
886 /* Use the related object owner. */
887 newcontext.user = tcontext->user;
888 break;
891 /* Set the role and type to default values. */
892 switch (tclass) {
893 case SECCLASS_PROCESS:
894 /* Use the current role and type of process. */
895 newcontext.role = scontext->role;
896 newcontext.type = scontext->type;
897 break;
898 default:
899 /* Use the well-defined object role. */
900 newcontext.role = OBJECT_R_VAL;
901 /* Use the type of the related object. */
902 newcontext.type = tcontext->type;
905 /* Look for a type transition/member/change rule. */
906 avkey.source_type = scontext->type;
907 avkey.target_type = tcontext->type;
908 avkey.target_class = tclass;
909 avkey.specified = specified;
910 avdatum = avtab_search(&policydb.te_avtab, &avkey);
912 /* If no permanent rule, also check for enabled conditional rules */
913 if(!avdatum) {
914 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
915 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
916 if (node->key.specified & AVTAB_ENABLED) {
917 avdatum = &node->datum;
918 break;
923 if (avdatum) {
924 /* Use the type from the type transition/member/change rule. */
925 newcontext.type = avdatum->data;
928 /* Check for class-specific changes. */
929 switch (tclass) {
930 case SECCLASS_PROCESS:
931 if (specified & AVTAB_TRANSITION) {
932 /* Look for a role transition rule. */
933 for (roletr = policydb.role_tr; roletr;
934 roletr = roletr->next) {
935 if (roletr->role == scontext->role &&
936 roletr->type == tcontext->type) {
937 /* Use the role transition rule. */
938 newcontext.role = roletr->new_role;
939 break;
943 break;
944 default:
945 break;
948 /* Set the MLS attributes.
949 This is done last because it may allocate memory. */
950 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
951 if (rc)
952 goto out_unlock;
954 /* Check the validity of the context. */
955 if (!policydb_context_isvalid(&policydb, &newcontext)) {
956 rc = compute_sid_handle_invalid_context(scontext,
957 tcontext,
958 tclass,
959 &newcontext);
960 if (rc)
961 goto out_unlock;
963 /* Obtain the sid for the context. */
964 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
965 out_unlock:
966 POLICY_RDUNLOCK;
967 context_destroy(&newcontext);
968 out:
969 return rc;
973 * security_transition_sid - Compute the SID for a new subject/object.
974 * @ssid: source security identifier
975 * @tsid: target security identifier
976 * @tclass: target security class
977 * @out_sid: security identifier for new subject/object
979 * Compute a SID to use for labeling a new subject or object in the
980 * class @tclass based on a SID pair (@ssid, @tsid).
981 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
982 * if insufficient memory is available, or %0 if the new SID was
983 * computed successfully.
985 int security_transition_sid(u32 ssid,
986 u32 tsid,
987 u16 tclass,
988 u32 *out_sid)
990 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
994 * security_member_sid - Compute the SID for member selection.
995 * @ssid: source security identifier
996 * @tsid: target security identifier
997 * @tclass: target security class
998 * @out_sid: security identifier for selected member
1000 * Compute a SID to use when selecting a member of a polyinstantiated
1001 * object of class @tclass based on a SID pair (@ssid, @tsid).
1002 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1003 * if insufficient memory is available, or %0 if the SID was
1004 * computed successfully.
1006 int security_member_sid(u32 ssid,
1007 u32 tsid,
1008 u16 tclass,
1009 u32 *out_sid)
1011 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1015 * security_change_sid - Compute the SID for object relabeling.
1016 * @ssid: source security identifier
1017 * @tsid: target security identifier
1018 * @tclass: target security class
1019 * @out_sid: security identifier for selected member
1021 * Compute a SID to use for relabeling an object of class @tclass
1022 * based on a SID pair (@ssid, @tsid).
1023 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1024 * if insufficient memory is available, or %0 if the SID was
1025 * computed successfully.
1027 int security_change_sid(u32 ssid,
1028 u32 tsid,
1029 u16 tclass,
1030 u32 *out_sid)
1032 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1036 * Verify that each kernel class that is defined in the
1037 * policy is correct
1039 static int validate_classes(struct policydb *p)
1041 int i, j;
1042 struct class_datum *cladatum;
1043 struct perm_datum *perdatum;
1044 u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1045 u16 class_val;
1046 const struct selinux_class_perm *kdefs = &selinux_class_perm;
1047 const char *def_class, *def_perm, *pol_class;
1048 struct symtab *perms;
1050 for (i = 1; i < kdefs->cts_len; i++) {
1051 def_class = kdefs->class_to_string[i];
1052 if (i > p->p_classes.nprim) {
1053 printk(KERN_INFO
1054 "security: class %s not defined in policy\n",
1055 def_class);
1056 continue;
1058 pol_class = p->p_class_val_to_name[i-1];
1059 if (strcmp(pol_class, def_class)) {
1060 printk(KERN_ERR
1061 "security: class %d is incorrect, found %s but should be %s\n",
1062 i, pol_class, def_class);
1063 return -EINVAL;
1066 for (i = 0; i < kdefs->av_pts_len; i++) {
1067 class_val = kdefs->av_perm_to_string[i].tclass;
1068 perm_val = kdefs->av_perm_to_string[i].value;
1069 def_perm = kdefs->av_perm_to_string[i].name;
1070 if (class_val > p->p_classes.nprim)
1071 continue;
1072 pol_class = p->p_class_val_to_name[class_val-1];
1073 cladatum = hashtab_search(p->p_classes.table, pol_class);
1074 BUG_ON(!cladatum);
1075 perms = &cladatum->permissions;
1076 nprim = 1 << (perms->nprim - 1);
1077 if (perm_val > nprim) {
1078 printk(KERN_INFO
1079 "security: permission %s in class %s not defined in policy\n",
1080 def_perm, pol_class);
1081 continue;
1083 perdatum = hashtab_search(perms->table, def_perm);
1084 if (perdatum == NULL) {
1085 printk(KERN_ERR
1086 "security: permission %s in class %s not found in policy\n",
1087 def_perm, pol_class);
1088 return -EINVAL;
1090 pol_val = 1 << (perdatum->value - 1);
1091 if (pol_val != perm_val) {
1092 printk(KERN_ERR
1093 "security: permission %s in class %s has incorrect value\n",
1094 def_perm, pol_class);
1095 return -EINVAL;
1098 for (i = 0; i < kdefs->av_inherit_len; i++) {
1099 class_val = kdefs->av_inherit[i].tclass;
1100 if (class_val > p->p_classes.nprim)
1101 continue;
1102 pol_class = p->p_class_val_to_name[class_val-1];
1103 cladatum = hashtab_search(p->p_classes.table, pol_class);
1104 BUG_ON(!cladatum);
1105 if (!cladatum->comdatum) {
1106 printk(KERN_ERR
1107 "security: class %s should have an inherits clause but does not\n",
1108 pol_class);
1109 return -EINVAL;
1111 tmp = kdefs->av_inherit[i].common_base;
1112 common_pts_len = 0;
1113 while (!(tmp & 0x01)) {
1114 common_pts_len++;
1115 tmp >>= 1;
1117 perms = &cladatum->comdatum->permissions;
1118 for (j = 0; j < common_pts_len; j++) {
1119 def_perm = kdefs->av_inherit[i].common_pts[j];
1120 if (j >= perms->nprim) {
1121 printk(KERN_INFO
1122 "security: permission %s in class %s not defined in policy\n",
1123 def_perm, pol_class);
1124 continue;
1126 perdatum = hashtab_search(perms->table, def_perm);
1127 if (perdatum == NULL) {
1128 printk(KERN_ERR
1129 "security: permission %s in class %s not found in policy\n",
1130 def_perm, pol_class);
1131 return -EINVAL;
1133 if (perdatum->value != j + 1) {
1134 printk(KERN_ERR
1135 "security: permission %s in class %s has incorrect value\n",
1136 def_perm, pol_class);
1137 return -EINVAL;
1141 return 0;
1144 /* Clone the SID into the new SID table. */
1145 static int clone_sid(u32 sid,
1146 struct context *context,
1147 void *arg)
1149 struct sidtab *s = arg;
1151 return sidtab_insert(s, sid, context);
1154 static inline int convert_context_handle_invalid_context(struct context *context)
1156 int rc = 0;
1158 if (selinux_enforcing) {
1159 rc = -EINVAL;
1160 } else {
1161 char *s;
1162 u32 len;
1164 context_struct_to_string(context, &s, &len);
1165 printk(KERN_ERR "security: context %s is invalid\n", s);
1166 kfree(s);
1168 return rc;
1171 struct convert_context_args {
1172 struct policydb *oldp;
1173 struct policydb *newp;
1177 * Convert the values in the security context
1178 * structure `c' from the values specified
1179 * in the policy `p->oldp' to the values specified
1180 * in the policy `p->newp'. Verify that the
1181 * context is valid under the new policy.
1183 static int convert_context(u32 key,
1184 struct context *c,
1185 void *p)
1187 struct convert_context_args *args;
1188 struct context oldc;
1189 struct role_datum *role;
1190 struct type_datum *typdatum;
1191 struct user_datum *usrdatum;
1192 char *s;
1193 u32 len;
1194 int rc;
1196 args = p;
1198 rc = context_cpy(&oldc, c);
1199 if (rc)
1200 goto out;
1202 rc = -EINVAL;
1204 /* Convert the user. */
1205 usrdatum = hashtab_search(args->newp->p_users.table,
1206 args->oldp->p_user_val_to_name[c->user - 1]);
1207 if (!usrdatum) {
1208 goto bad;
1210 c->user = usrdatum->value;
1212 /* Convert the role. */
1213 role = hashtab_search(args->newp->p_roles.table,
1214 args->oldp->p_role_val_to_name[c->role - 1]);
1215 if (!role) {
1216 goto bad;
1218 c->role = role->value;
1220 /* Convert the type. */
1221 typdatum = hashtab_search(args->newp->p_types.table,
1222 args->oldp->p_type_val_to_name[c->type - 1]);
1223 if (!typdatum) {
1224 goto bad;
1226 c->type = typdatum->value;
1228 rc = mls_convert_context(args->oldp, args->newp, c);
1229 if (rc)
1230 goto bad;
1232 /* Check the validity of the new context. */
1233 if (!policydb_context_isvalid(args->newp, c)) {
1234 rc = convert_context_handle_invalid_context(&oldc);
1235 if (rc)
1236 goto bad;
1239 context_destroy(&oldc);
1240 out:
1241 return rc;
1242 bad:
1243 context_struct_to_string(&oldc, &s, &len);
1244 context_destroy(&oldc);
1245 printk(KERN_ERR "security: invalidating context %s\n", s);
1246 kfree(s);
1247 goto out;
1250 extern void selinux_complete_init(void);
1253 * security_load_policy - Load a security policy configuration.
1254 * @data: binary policy data
1255 * @len: length of data in bytes
1257 * Load a new set of security policy configuration data,
1258 * validate it and convert the SID table as necessary.
1259 * This function will flush the access vector cache after
1260 * loading the new policy.
1262 int security_load_policy(void *data, size_t len)
1264 struct policydb oldpolicydb, newpolicydb;
1265 struct sidtab oldsidtab, newsidtab;
1266 struct convert_context_args args;
1267 u32 seqno;
1268 int rc = 0;
1269 struct policy_file file = { data, len }, *fp = &file;
1271 LOAD_LOCK;
1273 if (!ss_initialized) {
1274 avtab_cache_init();
1275 if (policydb_read(&policydb, fp)) {
1276 LOAD_UNLOCK;
1277 avtab_cache_destroy();
1278 return -EINVAL;
1280 if (policydb_load_isids(&policydb, &sidtab)) {
1281 LOAD_UNLOCK;
1282 policydb_destroy(&policydb);
1283 avtab_cache_destroy();
1284 return -EINVAL;
1286 /* Verify that the kernel defined classes are correct. */
1287 if (validate_classes(&policydb)) {
1288 printk(KERN_ERR
1289 "security: the definition of a class is incorrect\n");
1290 LOAD_UNLOCK;
1291 sidtab_destroy(&sidtab);
1292 policydb_destroy(&policydb);
1293 avtab_cache_destroy();
1294 return -EINVAL;
1296 policydb_loaded_version = policydb.policyvers;
1297 ss_initialized = 1;
1298 seqno = ++latest_granting;
1299 LOAD_UNLOCK;
1300 selinux_complete_init();
1301 avc_ss_reset(seqno);
1302 selnl_notify_policyload(seqno);
1303 selinux_netlbl_cache_invalidate();
1304 selinux_xfrm_notify_policyload();
1305 return 0;
1308 #if 0
1309 sidtab_hash_eval(&sidtab, "sids");
1310 #endif
1312 if (policydb_read(&newpolicydb, fp)) {
1313 LOAD_UNLOCK;
1314 return -EINVAL;
1317 sidtab_init(&newsidtab);
1319 /* Verify that the kernel defined classes are correct. */
1320 if (validate_classes(&newpolicydb)) {
1321 printk(KERN_ERR
1322 "security: the definition of a class is incorrect\n");
1323 rc = -EINVAL;
1324 goto err;
1327 /* Clone the SID table. */
1328 sidtab_shutdown(&sidtab);
1329 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1330 rc = -ENOMEM;
1331 goto err;
1334 /* Convert the internal representations of contexts
1335 in the new SID table and remove invalid SIDs. */
1336 args.oldp = &policydb;
1337 args.newp = &newpolicydb;
1338 sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1340 /* Save the old policydb and SID table to free later. */
1341 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1342 sidtab_set(&oldsidtab, &sidtab);
1344 /* Install the new policydb and SID table. */
1345 POLICY_WRLOCK;
1346 memcpy(&policydb, &newpolicydb, sizeof policydb);
1347 sidtab_set(&sidtab, &newsidtab);
1348 seqno = ++latest_granting;
1349 policydb_loaded_version = policydb.policyvers;
1350 POLICY_WRUNLOCK;
1351 LOAD_UNLOCK;
1353 /* Free the old policydb and SID table. */
1354 policydb_destroy(&oldpolicydb);
1355 sidtab_destroy(&oldsidtab);
1357 avc_ss_reset(seqno);
1358 selnl_notify_policyload(seqno);
1359 selinux_netlbl_cache_invalidate();
1360 selinux_xfrm_notify_policyload();
1362 return 0;
1364 err:
1365 LOAD_UNLOCK;
1366 sidtab_destroy(&newsidtab);
1367 policydb_destroy(&newpolicydb);
1368 return rc;
1373 * security_port_sid - Obtain the SID for a port.
1374 * @domain: communication domain aka address family
1375 * @type: socket type
1376 * @protocol: protocol number
1377 * @port: port number
1378 * @out_sid: security identifier
1380 int security_port_sid(u16 domain,
1381 u16 type,
1382 u8 protocol,
1383 u16 port,
1384 u32 *out_sid)
1386 struct ocontext *c;
1387 int rc = 0;
1389 POLICY_RDLOCK;
1391 c = policydb.ocontexts[OCON_PORT];
1392 while (c) {
1393 if (c->u.port.protocol == protocol &&
1394 c->u.port.low_port <= port &&
1395 c->u.port.high_port >= port)
1396 break;
1397 c = c->next;
1400 if (c) {
1401 if (!c->sid[0]) {
1402 rc = sidtab_context_to_sid(&sidtab,
1403 &c->context[0],
1404 &c->sid[0]);
1405 if (rc)
1406 goto out;
1408 *out_sid = c->sid[0];
1409 } else {
1410 *out_sid = SECINITSID_PORT;
1413 out:
1414 POLICY_RDUNLOCK;
1415 return rc;
1419 * security_netif_sid - Obtain the SID for a network interface.
1420 * @name: interface name
1421 * @if_sid: interface SID
1422 * @msg_sid: default SID for received packets
1424 int security_netif_sid(char *name,
1425 u32 *if_sid,
1426 u32 *msg_sid)
1428 int rc = 0;
1429 struct ocontext *c;
1431 POLICY_RDLOCK;
1433 c = policydb.ocontexts[OCON_NETIF];
1434 while (c) {
1435 if (strcmp(name, c->u.name) == 0)
1436 break;
1437 c = c->next;
1440 if (c) {
1441 if (!c->sid[0] || !c->sid[1]) {
1442 rc = sidtab_context_to_sid(&sidtab,
1443 &c->context[0],
1444 &c->sid[0]);
1445 if (rc)
1446 goto out;
1447 rc = sidtab_context_to_sid(&sidtab,
1448 &c->context[1],
1449 &c->sid[1]);
1450 if (rc)
1451 goto out;
1453 *if_sid = c->sid[0];
1454 *msg_sid = c->sid[1];
1455 } else {
1456 *if_sid = SECINITSID_NETIF;
1457 *msg_sid = SECINITSID_NETMSG;
1460 out:
1461 POLICY_RDUNLOCK;
1462 return rc;
1465 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1467 int i, fail = 0;
1469 for(i = 0; i < 4; i++)
1470 if(addr[i] != (input[i] & mask[i])) {
1471 fail = 1;
1472 break;
1475 return !fail;
1479 * security_node_sid - Obtain the SID for a node (host).
1480 * @domain: communication domain aka address family
1481 * @addrp: address
1482 * @addrlen: address length in bytes
1483 * @out_sid: security identifier
1485 int security_node_sid(u16 domain,
1486 void *addrp,
1487 u32 addrlen,
1488 u32 *out_sid)
1490 int rc = 0;
1491 struct ocontext *c;
1493 POLICY_RDLOCK;
1495 switch (domain) {
1496 case AF_INET: {
1497 u32 addr;
1499 if (addrlen != sizeof(u32)) {
1500 rc = -EINVAL;
1501 goto out;
1504 addr = *((u32 *)addrp);
1506 c = policydb.ocontexts[OCON_NODE];
1507 while (c) {
1508 if (c->u.node.addr == (addr & c->u.node.mask))
1509 break;
1510 c = c->next;
1512 break;
1515 case AF_INET6:
1516 if (addrlen != sizeof(u64) * 2) {
1517 rc = -EINVAL;
1518 goto out;
1520 c = policydb.ocontexts[OCON_NODE6];
1521 while (c) {
1522 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1523 c->u.node6.mask))
1524 break;
1525 c = c->next;
1527 break;
1529 default:
1530 *out_sid = SECINITSID_NODE;
1531 goto out;
1534 if (c) {
1535 if (!c->sid[0]) {
1536 rc = sidtab_context_to_sid(&sidtab,
1537 &c->context[0],
1538 &c->sid[0]);
1539 if (rc)
1540 goto out;
1542 *out_sid = c->sid[0];
1543 } else {
1544 *out_sid = SECINITSID_NODE;
1547 out:
1548 POLICY_RDUNLOCK;
1549 return rc;
1552 #define SIDS_NEL 25
1555 * security_get_user_sids - Obtain reachable SIDs for a user.
1556 * @fromsid: starting SID
1557 * @username: username
1558 * @sids: array of reachable SIDs for user
1559 * @nel: number of elements in @sids
1561 * Generate the set of SIDs for legal security contexts
1562 * for a given user that can be reached by @fromsid.
1563 * Set *@sids to point to a dynamically allocated
1564 * array containing the set of SIDs. Set *@nel to the
1565 * number of elements in the array.
1568 int security_get_user_sids(u32 fromsid,
1569 char *username,
1570 u32 **sids,
1571 u32 *nel)
1573 struct context *fromcon, usercon;
1574 u32 *mysids, *mysids2, sid;
1575 u32 mynel = 0, maxnel = SIDS_NEL;
1576 struct user_datum *user;
1577 struct role_datum *role;
1578 struct av_decision avd;
1579 struct ebitmap_node *rnode, *tnode;
1580 int rc = 0, i, j;
1582 if (!ss_initialized) {
1583 *sids = NULL;
1584 *nel = 0;
1585 goto out;
1588 POLICY_RDLOCK;
1590 fromcon = sidtab_search(&sidtab, fromsid);
1591 if (!fromcon) {
1592 rc = -EINVAL;
1593 goto out_unlock;
1596 user = hashtab_search(policydb.p_users.table, username);
1597 if (!user) {
1598 rc = -EINVAL;
1599 goto out_unlock;
1601 usercon.user = user->value;
1603 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1604 if (!mysids) {
1605 rc = -ENOMEM;
1606 goto out_unlock;
1609 ebitmap_for_each_bit(&user->roles, rnode, i) {
1610 if (!ebitmap_node_get_bit(rnode, i))
1611 continue;
1612 role = policydb.role_val_to_struct[i];
1613 usercon.role = i+1;
1614 ebitmap_for_each_bit(&role->types, tnode, j) {
1615 if (!ebitmap_node_get_bit(tnode, j))
1616 continue;
1617 usercon.type = j+1;
1619 if (mls_setup_user_range(fromcon, user, &usercon))
1620 continue;
1622 rc = context_struct_compute_av(fromcon, &usercon,
1623 SECCLASS_PROCESS,
1624 PROCESS__TRANSITION,
1625 &avd);
1626 if (rc || !(avd.allowed & PROCESS__TRANSITION))
1627 continue;
1628 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1629 if (rc) {
1630 kfree(mysids);
1631 goto out_unlock;
1633 if (mynel < maxnel) {
1634 mysids[mynel++] = sid;
1635 } else {
1636 maxnel += SIDS_NEL;
1637 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1638 if (!mysids2) {
1639 rc = -ENOMEM;
1640 kfree(mysids);
1641 goto out_unlock;
1643 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1644 kfree(mysids);
1645 mysids = mysids2;
1646 mysids[mynel++] = sid;
1651 *sids = mysids;
1652 *nel = mynel;
1654 out_unlock:
1655 POLICY_RDUNLOCK;
1656 out:
1657 return rc;
1661 * security_genfs_sid - Obtain a SID for a file in a filesystem
1662 * @fstype: filesystem type
1663 * @path: path from root of mount
1664 * @sclass: file security class
1665 * @sid: SID for path
1667 * Obtain a SID to use for a file in a filesystem that
1668 * cannot support xattr or use a fixed labeling behavior like
1669 * transition SIDs or task SIDs.
1671 int security_genfs_sid(const char *fstype,
1672 char *path,
1673 u16 sclass,
1674 u32 *sid)
1676 int len;
1677 struct genfs *genfs;
1678 struct ocontext *c;
1679 int rc = 0, cmp = 0;
1681 POLICY_RDLOCK;
1683 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1684 cmp = strcmp(fstype, genfs->fstype);
1685 if (cmp <= 0)
1686 break;
1689 if (!genfs || cmp) {
1690 *sid = SECINITSID_UNLABELED;
1691 rc = -ENOENT;
1692 goto out;
1695 for (c = genfs->head; c; c = c->next) {
1696 len = strlen(c->u.name);
1697 if ((!c->v.sclass || sclass == c->v.sclass) &&
1698 (strncmp(c->u.name, path, len) == 0))
1699 break;
1702 if (!c) {
1703 *sid = SECINITSID_UNLABELED;
1704 rc = -ENOENT;
1705 goto out;
1708 if (!c->sid[0]) {
1709 rc = sidtab_context_to_sid(&sidtab,
1710 &c->context[0],
1711 &c->sid[0]);
1712 if (rc)
1713 goto out;
1716 *sid = c->sid[0];
1717 out:
1718 POLICY_RDUNLOCK;
1719 return rc;
1723 * security_fs_use - Determine how to handle labeling for a filesystem.
1724 * @fstype: filesystem type
1725 * @behavior: labeling behavior
1726 * @sid: SID for filesystem (superblock)
1728 int security_fs_use(
1729 const char *fstype,
1730 unsigned int *behavior,
1731 u32 *sid)
1733 int rc = 0;
1734 struct ocontext *c;
1736 POLICY_RDLOCK;
1738 c = policydb.ocontexts[OCON_FSUSE];
1739 while (c) {
1740 if (strcmp(fstype, c->u.name) == 0)
1741 break;
1742 c = c->next;
1745 if (c) {
1746 *behavior = c->v.behavior;
1747 if (!c->sid[0]) {
1748 rc = sidtab_context_to_sid(&sidtab,
1749 &c->context[0],
1750 &c->sid[0]);
1751 if (rc)
1752 goto out;
1754 *sid = c->sid[0];
1755 } else {
1756 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1757 if (rc) {
1758 *behavior = SECURITY_FS_USE_NONE;
1759 rc = 0;
1760 } else {
1761 *behavior = SECURITY_FS_USE_GENFS;
1765 out:
1766 POLICY_RDUNLOCK;
1767 return rc;
1770 int security_get_bools(int *len, char ***names, int **values)
1772 int i, rc = -ENOMEM;
1774 POLICY_RDLOCK;
1775 *names = NULL;
1776 *values = NULL;
1778 *len = policydb.p_bools.nprim;
1779 if (!*len) {
1780 rc = 0;
1781 goto out;
1784 *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1785 if (!*names)
1786 goto err;
1788 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1789 if (!*values)
1790 goto err;
1792 for (i = 0; i < *len; i++) {
1793 size_t name_len;
1794 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1795 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1796 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1797 if (!(*names)[i])
1798 goto err;
1799 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1800 (*names)[i][name_len - 1] = 0;
1802 rc = 0;
1803 out:
1804 POLICY_RDUNLOCK;
1805 return rc;
1806 err:
1807 if (*names) {
1808 for (i = 0; i < *len; i++)
1809 kfree((*names)[i]);
1811 kfree(*values);
1812 goto out;
1816 int security_set_bools(int len, int *values)
1818 int i, rc = 0;
1819 int lenp, seqno = 0;
1820 struct cond_node *cur;
1822 POLICY_WRLOCK;
1824 lenp = policydb.p_bools.nprim;
1825 if (len != lenp) {
1826 rc = -EFAULT;
1827 goto out;
1830 for (i = 0; i < len; i++) {
1831 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1832 audit_log(current->audit_context, GFP_ATOMIC,
1833 AUDIT_MAC_CONFIG_CHANGE,
1834 "bool=%s val=%d old_val=%d auid=%u",
1835 policydb.p_bool_val_to_name[i],
1836 !!values[i],
1837 policydb.bool_val_to_struct[i]->state,
1838 audit_get_loginuid(current->audit_context));
1840 if (values[i]) {
1841 policydb.bool_val_to_struct[i]->state = 1;
1842 } else {
1843 policydb.bool_val_to_struct[i]->state = 0;
1847 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1848 rc = evaluate_cond_node(&policydb, cur);
1849 if (rc)
1850 goto out;
1853 seqno = ++latest_granting;
1855 out:
1856 POLICY_WRUNLOCK;
1857 if (!rc) {
1858 avc_ss_reset(seqno);
1859 selnl_notify_policyload(seqno);
1860 selinux_xfrm_notify_policyload();
1862 return rc;
1865 int security_get_bool_value(int bool)
1867 int rc = 0;
1868 int len;
1870 POLICY_RDLOCK;
1872 len = policydb.p_bools.nprim;
1873 if (bool >= len) {
1874 rc = -EFAULT;
1875 goto out;
1878 rc = policydb.bool_val_to_struct[bool]->state;
1879 out:
1880 POLICY_RDUNLOCK;
1881 return rc;
1885 * security_sid_mls_copy() - computes a new sid based on the given
1886 * sid and the mls portion of mls_sid.
1888 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
1890 struct context *context1;
1891 struct context *context2;
1892 struct context newcon;
1893 char *s;
1894 u32 len;
1895 int rc = 0;
1897 if (!ss_initialized || !selinux_mls_enabled) {
1898 *new_sid = sid;
1899 goto out;
1902 context_init(&newcon);
1904 POLICY_RDLOCK;
1905 context1 = sidtab_search(&sidtab, sid);
1906 if (!context1) {
1907 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
1908 "%d\n", sid);
1909 rc = -EINVAL;
1910 goto out_unlock;
1913 context2 = sidtab_search(&sidtab, mls_sid);
1914 if (!context2) {
1915 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
1916 "%d\n", mls_sid);
1917 rc = -EINVAL;
1918 goto out_unlock;
1921 newcon.user = context1->user;
1922 newcon.role = context1->role;
1923 newcon.type = context1->type;
1924 rc = mls_context_cpy(&newcon, context2);
1925 if (rc)
1926 goto out_unlock;
1928 /* Check the validity of the new context. */
1929 if (!policydb_context_isvalid(&policydb, &newcon)) {
1930 rc = convert_context_handle_invalid_context(&newcon);
1931 if (rc)
1932 goto bad;
1935 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
1936 goto out_unlock;
1938 bad:
1939 if (!context_struct_to_string(&newcon, &s, &len)) {
1940 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1941 "security_sid_mls_copy: invalid context %s", s);
1942 kfree(s);
1945 out_unlock:
1946 POLICY_RDUNLOCK;
1947 context_destroy(&newcon);
1948 out:
1949 return rc;
1952 struct selinux_audit_rule {
1953 u32 au_seqno;
1954 struct context au_ctxt;
1957 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
1959 if (rule) {
1960 context_destroy(&rule->au_ctxt);
1961 kfree(rule);
1965 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
1966 struct selinux_audit_rule **rule)
1968 struct selinux_audit_rule *tmprule;
1969 struct role_datum *roledatum;
1970 struct type_datum *typedatum;
1971 struct user_datum *userdatum;
1972 int rc = 0;
1974 *rule = NULL;
1976 if (!ss_initialized)
1977 return -ENOTSUPP;
1979 switch (field) {
1980 case AUDIT_SUBJ_USER:
1981 case AUDIT_SUBJ_ROLE:
1982 case AUDIT_SUBJ_TYPE:
1983 case AUDIT_OBJ_USER:
1984 case AUDIT_OBJ_ROLE:
1985 case AUDIT_OBJ_TYPE:
1986 /* only 'equals' and 'not equals' fit user, role, and type */
1987 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
1988 return -EINVAL;
1989 break;
1990 case AUDIT_SUBJ_SEN:
1991 case AUDIT_SUBJ_CLR:
1992 case AUDIT_OBJ_LEV_LOW:
1993 case AUDIT_OBJ_LEV_HIGH:
1994 /* we do not allow a range, indicated by the presense of '-' */
1995 if (strchr(rulestr, '-'))
1996 return -EINVAL;
1997 break;
1998 default:
1999 /* only the above fields are valid */
2000 return -EINVAL;
2003 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2004 if (!tmprule)
2005 return -ENOMEM;
2007 context_init(&tmprule->au_ctxt);
2009 POLICY_RDLOCK;
2011 tmprule->au_seqno = latest_granting;
2013 switch (field) {
2014 case AUDIT_SUBJ_USER:
2015 case AUDIT_OBJ_USER:
2016 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2017 if (!userdatum)
2018 rc = -EINVAL;
2019 else
2020 tmprule->au_ctxt.user = userdatum->value;
2021 break;
2022 case AUDIT_SUBJ_ROLE:
2023 case AUDIT_OBJ_ROLE:
2024 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2025 if (!roledatum)
2026 rc = -EINVAL;
2027 else
2028 tmprule->au_ctxt.role = roledatum->value;
2029 break;
2030 case AUDIT_SUBJ_TYPE:
2031 case AUDIT_OBJ_TYPE:
2032 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2033 if (!typedatum)
2034 rc = -EINVAL;
2035 else
2036 tmprule->au_ctxt.type = typedatum->value;
2037 break;
2038 case AUDIT_SUBJ_SEN:
2039 case AUDIT_SUBJ_CLR:
2040 case AUDIT_OBJ_LEV_LOW:
2041 case AUDIT_OBJ_LEV_HIGH:
2042 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2043 break;
2046 POLICY_RDUNLOCK;
2048 if (rc) {
2049 selinux_audit_rule_free(tmprule);
2050 tmprule = NULL;
2053 *rule = tmprule;
2055 return rc;
2058 int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
2059 struct selinux_audit_rule *rule,
2060 struct audit_context *actx)
2062 struct context *ctxt;
2063 struct mls_level *level;
2064 int match = 0;
2066 if (!rule) {
2067 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2068 "selinux_audit_rule_match: missing rule\n");
2069 return -ENOENT;
2072 POLICY_RDLOCK;
2074 if (rule->au_seqno < latest_granting) {
2075 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2076 "selinux_audit_rule_match: stale rule\n");
2077 match = -ESTALE;
2078 goto out;
2081 ctxt = sidtab_search(&sidtab, sid);
2082 if (!ctxt) {
2083 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2084 "selinux_audit_rule_match: unrecognized SID %d\n",
2085 sid);
2086 match = -ENOENT;
2087 goto out;
2090 /* a field/op pair that is not caught here will simply fall through
2091 without a match */
2092 switch (field) {
2093 case AUDIT_SUBJ_USER:
2094 case AUDIT_OBJ_USER:
2095 switch (op) {
2096 case AUDIT_EQUAL:
2097 match = (ctxt->user == rule->au_ctxt.user);
2098 break;
2099 case AUDIT_NOT_EQUAL:
2100 match = (ctxt->user != rule->au_ctxt.user);
2101 break;
2103 break;
2104 case AUDIT_SUBJ_ROLE:
2105 case AUDIT_OBJ_ROLE:
2106 switch (op) {
2107 case AUDIT_EQUAL:
2108 match = (ctxt->role == rule->au_ctxt.role);
2109 break;
2110 case AUDIT_NOT_EQUAL:
2111 match = (ctxt->role != rule->au_ctxt.role);
2112 break;
2114 break;
2115 case AUDIT_SUBJ_TYPE:
2116 case AUDIT_OBJ_TYPE:
2117 switch (op) {
2118 case AUDIT_EQUAL:
2119 match = (ctxt->type == rule->au_ctxt.type);
2120 break;
2121 case AUDIT_NOT_EQUAL:
2122 match = (ctxt->type != rule->au_ctxt.type);
2123 break;
2125 break;
2126 case AUDIT_SUBJ_SEN:
2127 case AUDIT_SUBJ_CLR:
2128 case AUDIT_OBJ_LEV_LOW:
2129 case AUDIT_OBJ_LEV_HIGH:
2130 level = ((field == AUDIT_SUBJ_SEN ||
2131 field == AUDIT_OBJ_LEV_LOW) ?
2132 &ctxt->range.level[0] : &ctxt->range.level[1]);
2133 switch (op) {
2134 case AUDIT_EQUAL:
2135 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2136 level);
2137 break;
2138 case AUDIT_NOT_EQUAL:
2139 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2140 level);
2141 break;
2142 case AUDIT_LESS_THAN:
2143 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2144 level) &&
2145 !mls_level_eq(&rule->au_ctxt.range.level[0],
2146 level));
2147 break;
2148 case AUDIT_LESS_THAN_OR_EQUAL:
2149 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2150 level);
2151 break;
2152 case AUDIT_GREATER_THAN:
2153 match = (mls_level_dom(level,
2154 &rule->au_ctxt.range.level[0]) &&
2155 !mls_level_eq(level,
2156 &rule->au_ctxt.range.level[0]));
2157 break;
2158 case AUDIT_GREATER_THAN_OR_EQUAL:
2159 match = mls_level_dom(level,
2160 &rule->au_ctxt.range.level[0]);
2161 break;
2165 out:
2166 POLICY_RDUNLOCK;
2167 return match;
2170 static int (*aurule_callback)(void) = NULL;
2172 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2173 u16 class, u32 perms, u32 *retained)
2175 int err = 0;
2177 if (event == AVC_CALLBACK_RESET && aurule_callback)
2178 err = aurule_callback();
2179 return err;
2182 static int __init aurule_init(void)
2184 int err;
2186 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2187 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2188 if (err)
2189 panic("avc_add_callback() failed, error %d\n", err);
2191 return err;
2193 __initcall(aurule_init);
2195 void selinux_audit_set_callback(int (*callback)(void))
2197 aurule_callback = callback;
2200 #ifdef CONFIG_NETLABEL
2202 * NetLabel cache structure
2204 #define NETLBL_CACHE(x) ((struct selinux_netlbl_cache *)(x))
2205 #define NETLBL_CACHE_T_NONE 0
2206 #define NETLBL_CACHE_T_SID 1
2207 #define NETLBL_CACHE_T_MLS 2
2208 struct selinux_netlbl_cache {
2209 u32 type;
2210 union {
2211 u32 sid;
2212 struct mls_range mls_label;
2213 } data;
2217 * security_netlbl_cache_free - Free the NetLabel cached data
2218 * @data: the data to free
2220 * Description:
2221 * This function is intended to be used as the free() callback inside the
2222 * netlbl_lsm_cache structure.
2225 static void security_netlbl_cache_free(const void *data)
2227 struct selinux_netlbl_cache *cache;
2229 if (data == NULL)
2230 return;
2232 cache = NETLBL_CACHE(data);
2233 switch (cache->type) {
2234 case NETLBL_CACHE_T_MLS:
2235 ebitmap_destroy(&cache->data.mls_label.level[0].cat);
2236 break;
2238 kfree(data);
2242 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2243 * @secattr: the NetLabel packet security attributes
2244 * @ctx: the SELinux context
2246 * Description:
2247 * Attempt to cache the context in @ctx, which was derived from the packet in
2248 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2249 * already been initialized.
2252 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2253 struct context *ctx)
2255 struct selinux_netlbl_cache *cache = NULL;
2257 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2258 if (secattr->cache == NULL)
2259 return;
2261 cache = kzalloc(sizeof(*cache), GFP_ATOMIC);
2262 if (cache == NULL)
2263 return;
2265 cache->type = NETLBL_CACHE_T_MLS;
2266 if (ebitmap_cpy(&cache->data.mls_label.level[0].cat,
2267 &ctx->range.level[0].cat) != 0)
2268 return;
2269 cache->data.mls_label.level[1].cat.highbit =
2270 cache->data.mls_label.level[0].cat.highbit;
2271 cache->data.mls_label.level[1].cat.node =
2272 cache->data.mls_label.level[0].cat.node;
2273 cache->data.mls_label.level[0].sens = ctx->range.level[0].sens;
2274 cache->data.mls_label.level[1].sens = ctx->range.level[0].sens;
2276 secattr->cache->free = security_netlbl_cache_free;
2277 secattr->cache->data = (void *)cache;
2278 secattr->flags |= NETLBL_SECATTR_CACHE;
2282 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2283 * @secattr: the NetLabel packet security attributes
2284 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2285 * @sid: the SELinux SID
2287 * Description:
2288 * Convert the given NetLabel security attributes in @secattr into a
2289 * SELinux SID. If the @secattr field does not contain a full SELinux
2290 * SID/context then use the context in @base_sid as the foundation. If
2291 * possibile the 'cache' field of @secattr is set and the CACHE flag is set;
2292 * this is to allow the @secattr to be used by NetLabel to cache the secattr to
2293 * SID conversion for future lookups. Returns zero on success, negative
2294 * values on failure.
2297 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2298 u32 base_sid,
2299 u32 *sid)
2301 int rc = -EIDRM;
2302 struct context *ctx;
2303 struct context ctx_new;
2304 struct selinux_netlbl_cache *cache;
2306 if (!ss_initialized) {
2307 *sid = SECSID_NULL;
2308 return 0;
2311 POLICY_RDLOCK;
2313 if (secattr->flags & NETLBL_SECATTR_CACHE) {
2314 cache = NETLBL_CACHE(secattr->cache->data);
2315 switch (cache->type) {
2316 case NETLBL_CACHE_T_SID:
2317 *sid = cache->data.sid;
2318 rc = 0;
2319 break;
2320 case NETLBL_CACHE_T_MLS:
2321 ctx = sidtab_search(&sidtab, base_sid);
2322 if (ctx == NULL)
2323 goto netlbl_secattr_to_sid_return;
2325 ctx_new.user = ctx->user;
2326 ctx_new.role = ctx->role;
2327 ctx_new.type = ctx->type;
2328 ctx_new.range.level[0].sens =
2329 cache->data.mls_label.level[0].sens;
2330 ctx_new.range.level[0].cat.highbit =
2331 cache->data.mls_label.level[0].cat.highbit;
2332 ctx_new.range.level[0].cat.node =
2333 cache->data.mls_label.level[0].cat.node;
2334 ctx_new.range.level[1].sens =
2335 cache->data.mls_label.level[1].sens;
2336 ctx_new.range.level[1].cat.highbit =
2337 cache->data.mls_label.level[1].cat.highbit;
2338 ctx_new.range.level[1].cat.node =
2339 cache->data.mls_label.level[1].cat.node;
2341 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2342 break;
2343 default:
2344 goto netlbl_secattr_to_sid_return;
2346 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2347 ctx = sidtab_search(&sidtab, base_sid);
2348 if (ctx == NULL)
2349 goto netlbl_secattr_to_sid_return;
2351 ctx_new.user = ctx->user;
2352 ctx_new.role = ctx->role;
2353 ctx_new.type = ctx->type;
2354 mls_import_netlbl_lvl(&ctx_new, secattr);
2355 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2356 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2357 secattr->mls_cat) != 0)
2358 goto netlbl_secattr_to_sid_return;
2359 ctx_new.range.level[1].cat.highbit =
2360 ctx_new.range.level[0].cat.highbit;
2361 ctx_new.range.level[1].cat.node =
2362 ctx_new.range.level[0].cat.node;
2363 } else {
2364 ebitmap_init(&ctx_new.range.level[0].cat);
2365 ebitmap_init(&ctx_new.range.level[1].cat);
2367 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2368 goto netlbl_secattr_to_sid_return_cleanup;
2370 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2371 if (rc != 0)
2372 goto netlbl_secattr_to_sid_return_cleanup;
2374 security_netlbl_cache_add(secattr, &ctx_new);
2376 ebitmap_destroy(&ctx_new.range.level[0].cat);
2377 } else {
2378 *sid = SECSID_NULL;
2379 rc = 0;
2382 netlbl_secattr_to_sid_return:
2383 POLICY_RDUNLOCK;
2384 return rc;
2385 netlbl_secattr_to_sid_return_cleanup:
2386 ebitmap_destroy(&ctx_new.range.level[0].cat);
2387 goto netlbl_secattr_to_sid_return;
2391 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2392 * @sid: the SELinux SID
2393 * @secattr: the NetLabel packet security attributes
2395 * Description:
2396 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2397 * Returns zero on success, negative values on failure.
2400 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2402 int rc = -ENOENT;
2403 struct context *ctx;
2405 netlbl_secattr_init(secattr);
2407 if (!ss_initialized)
2408 return 0;
2410 POLICY_RDLOCK;
2411 ctx = sidtab_search(&sidtab, sid);
2412 if (ctx == NULL)
2413 goto netlbl_sid_to_secattr_failure;
2414 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2415 GFP_ATOMIC);
2416 secattr->flags |= NETLBL_SECATTR_DOMAIN;
2417 mls_export_netlbl_lvl(ctx, secattr);
2418 rc = mls_export_netlbl_cat(ctx, secattr);
2419 if (rc != 0)
2420 goto netlbl_sid_to_secattr_failure;
2421 POLICY_RDUNLOCK;
2423 return 0;
2425 netlbl_sid_to_secattr_failure:
2426 POLICY_RDUNLOCK;
2427 netlbl_secattr_destroy(secattr);
2428 return rc;
2430 #endif /* CONFIG_NETLABEL */