2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/spinlock.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
35 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/sections.h>
40 /* Per cpu memory for storing cpu states in case of system crash. */
41 note_buf_t
* crash_notes
;
43 /* vmcoreinfo stuff */
44 unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
45 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
46 size_t vmcoreinfo_size
;
47 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
49 /* Location of the reserved area for the crash kernel */
50 struct resource crashk_res
= {
51 .name
= "Crash kernel",
54 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
57 int kexec_should_crash(struct task_struct
*p
)
59 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
65 * When kexec transitions to the new kernel there is a one-to-one
66 * mapping between physical and virtual addresses. On processors
67 * where you can disable the MMU this is trivial, and easy. For
68 * others it is still a simple predictable page table to setup.
70 * In that environment kexec copies the new kernel to its final
71 * resting place. This means I can only support memory whose
72 * physical address can fit in an unsigned long. In particular
73 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
74 * If the assembly stub has more restrictive requirements
75 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
76 * defined more restrictively in <asm/kexec.h>.
78 * The code for the transition from the current kernel to the
79 * the new kernel is placed in the control_code_buffer, whose size
80 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
81 * page of memory is necessary, but some architectures require more.
82 * Because this memory must be identity mapped in the transition from
83 * virtual to physical addresses it must live in the range
84 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
87 * The assembly stub in the control code buffer is passed a linked list
88 * of descriptor pages detailing the source pages of the new kernel,
89 * and the destination addresses of those source pages. As this data
90 * structure is not used in the context of the current OS, it must
93 * The code has been made to work with highmem pages and will use a
94 * destination page in its final resting place (if it happens
95 * to allocate it). The end product of this is that most of the
96 * physical address space, and most of RAM can be used.
98 * Future directions include:
99 * - allocating a page table with the control code buffer identity
100 * mapped, to simplify machine_kexec and make kexec_on_panic more
105 * KIMAGE_NO_DEST is an impossible destination address..., for
106 * allocating pages whose destination address we do not care about.
108 #define KIMAGE_NO_DEST (-1UL)
110 static int kimage_is_destination_range(struct kimage
*image
,
111 unsigned long start
, unsigned long end
);
112 static struct page
*kimage_alloc_page(struct kimage
*image
,
116 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
117 unsigned long nr_segments
,
118 struct kexec_segment __user
*segments
)
120 size_t segment_bytes
;
121 struct kimage
*image
;
125 /* Allocate a controlling structure */
127 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
132 image
->entry
= &image
->head
;
133 image
->last_entry
= &image
->head
;
134 image
->control_page
= ~0; /* By default this does not apply */
135 image
->start
= entry
;
136 image
->type
= KEXEC_TYPE_DEFAULT
;
138 /* Initialize the list of control pages */
139 INIT_LIST_HEAD(&image
->control_pages
);
141 /* Initialize the list of destination pages */
142 INIT_LIST_HEAD(&image
->dest_pages
);
144 /* Initialize the list of unuseable pages */
145 INIT_LIST_HEAD(&image
->unuseable_pages
);
147 /* Read in the segments */
148 image
->nr_segments
= nr_segments
;
149 segment_bytes
= nr_segments
* sizeof(*segments
);
150 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
155 * Verify we have good destination addresses. The caller is
156 * responsible for making certain we don't attempt to load
157 * the new image into invalid or reserved areas of RAM. This
158 * just verifies it is an address we can use.
160 * Since the kernel does everything in page size chunks ensure
161 * the destination addreses are page aligned. Too many
162 * special cases crop of when we don't do this. The most
163 * insidious is getting overlapping destination addresses
164 * simply because addresses are changed to page size
167 result
= -EADDRNOTAVAIL
;
168 for (i
= 0; i
< nr_segments
; i
++) {
169 unsigned long mstart
, mend
;
171 mstart
= image
->segment
[i
].mem
;
172 mend
= mstart
+ image
->segment
[i
].memsz
;
173 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
175 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
179 /* Verify our destination addresses do not overlap.
180 * If we alloed overlapping destination addresses
181 * through very weird things can happen with no
182 * easy explanation as one segment stops on another.
185 for (i
= 0; i
< nr_segments
; i
++) {
186 unsigned long mstart
, mend
;
189 mstart
= image
->segment
[i
].mem
;
190 mend
= mstart
+ image
->segment
[i
].memsz
;
191 for (j
= 0; j
< i
; j
++) {
192 unsigned long pstart
, pend
;
193 pstart
= image
->segment
[j
].mem
;
194 pend
= pstart
+ image
->segment
[j
].memsz
;
195 /* Do the segments overlap ? */
196 if ((mend
> pstart
) && (mstart
< pend
))
201 /* Ensure our buffer sizes are strictly less than
202 * our memory sizes. This should always be the case,
203 * and it is easier to check up front than to be surprised
207 for (i
= 0; i
< nr_segments
; i
++) {
208 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
223 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
224 unsigned long nr_segments
,
225 struct kexec_segment __user
*segments
)
228 struct kimage
*image
;
230 /* Allocate and initialize a controlling structure */
232 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
239 * Find a location for the control code buffer, and add it
240 * the vector of segments so that it's pages will also be
241 * counted as destination pages.
244 image
->control_code_page
= kimage_alloc_control_pages(image
,
245 get_order(KEXEC_CONTROL_CODE_SIZE
));
246 if (!image
->control_code_page
) {
247 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
251 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
252 if (!image
->swap_page
) {
253 printk(KERN_ERR
"Could not allocate swap buffer\n");
267 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
268 unsigned long nr_segments
,
269 struct kexec_segment __user
*segments
)
272 struct kimage
*image
;
276 /* Verify we have a valid entry point */
277 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
278 result
= -EADDRNOTAVAIL
;
282 /* Allocate and initialize a controlling structure */
283 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
287 /* Enable the special crash kernel control page
290 image
->control_page
= crashk_res
.start
;
291 image
->type
= KEXEC_TYPE_CRASH
;
294 * Verify we have good destination addresses. Normally
295 * the caller is responsible for making certain we don't
296 * attempt to load the new image into invalid or reserved
297 * areas of RAM. But crash kernels are preloaded into a
298 * reserved area of ram. We must ensure the addresses
299 * are in the reserved area otherwise preloading the
300 * kernel could corrupt things.
302 result
= -EADDRNOTAVAIL
;
303 for (i
= 0; i
< nr_segments
; i
++) {
304 unsigned long mstart
, mend
;
306 mstart
= image
->segment
[i
].mem
;
307 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
308 /* Ensure we are within the crash kernel limits */
309 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
314 * Find a location for the control code buffer, and add
315 * the vector of segments so that it's pages will also be
316 * counted as destination pages.
319 image
->control_code_page
= kimage_alloc_control_pages(image
,
320 get_order(KEXEC_CONTROL_CODE_SIZE
));
321 if (!image
->control_code_page
) {
322 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
336 static int kimage_is_destination_range(struct kimage
*image
,
342 for (i
= 0; i
< image
->nr_segments
; i
++) {
343 unsigned long mstart
, mend
;
345 mstart
= image
->segment
[i
].mem
;
346 mend
= mstart
+ image
->segment
[i
].memsz
;
347 if ((end
> mstart
) && (start
< mend
))
354 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
358 pages
= alloc_pages(gfp_mask
, order
);
360 unsigned int count
, i
;
361 pages
->mapping
= NULL
;
362 set_page_private(pages
, order
);
364 for (i
= 0; i
< count
; i
++)
365 SetPageReserved(pages
+ i
);
371 static void kimage_free_pages(struct page
*page
)
373 unsigned int order
, count
, i
;
375 order
= page_private(page
);
377 for (i
= 0; i
< count
; i
++)
378 ClearPageReserved(page
+ i
);
379 __free_pages(page
, order
);
382 static void kimage_free_page_list(struct list_head
*list
)
384 struct list_head
*pos
, *next
;
386 list_for_each_safe(pos
, next
, list
) {
389 page
= list_entry(pos
, struct page
, lru
);
390 list_del(&page
->lru
);
391 kimage_free_pages(page
);
395 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
398 /* Control pages are special, they are the intermediaries
399 * that are needed while we copy the rest of the pages
400 * to their final resting place. As such they must
401 * not conflict with either the destination addresses
402 * or memory the kernel is already using.
404 * The only case where we really need more than one of
405 * these are for architectures where we cannot disable
406 * the MMU and must instead generate an identity mapped
407 * page table for all of the memory.
409 * At worst this runs in O(N) of the image size.
411 struct list_head extra_pages
;
416 INIT_LIST_HEAD(&extra_pages
);
418 /* Loop while I can allocate a page and the page allocated
419 * is a destination page.
422 unsigned long pfn
, epfn
, addr
, eaddr
;
424 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
427 pfn
= page_to_pfn(pages
);
429 addr
= pfn
<< PAGE_SHIFT
;
430 eaddr
= epfn
<< PAGE_SHIFT
;
431 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
432 kimage_is_destination_range(image
, addr
, eaddr
)) {
433 list_add(&pages
->lru
, &extra_pages
);
439 /* Remember the allocated page... */
440 list_add(&pages
->lru
, &image
->control_pages
);
442 /* Because the page is already in it's destination
443 * location we will never allocate another page at
444 * that address. Therefore kimage_alloc_pages
445 * will not return it (again) and we don't need
446 * to give it an entry in image->segment[].
449 /* Deal with the destination pages I have inadvertently allocated.
451 * Ideally I would convert multi-page allocations into single
452 * page allocations, and add everyting to image->dest_pages.
454 * For now it is simpler to just free the pages.
456 kimage_free_page_list(&extra_pages
);
461 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
464 /* Control pages are special, they are the intermediaries
465 * that are needed while we copy the rest of the pages
466 * to their final resting place. As such they must
467 * not conflict with either the destination addresses
468 * or memory the kernel is already using.
470 * Control pages are also the only pags we must allocate
471 * when loading a crash kernel. All of the other pages
472 * are specified by the segments and we just memcpy
473 * into them directly.
475 * The only case where we really need more than one of
476 * these are for architectures where we cannot disable
477 * the MMU and must instead generate an identity mapped
478 * page table for all of the memory.
480 * Given the low demand this implements a very simple
481 * allocator that finds the first hole of the appropriate
482 * size in the reserved memory region, and allocates all
483 * of the memory up to and including the hole.
485 unsigned long hole_start
, hole_end
, size
;
489 size
= (1 << order
) << PAGE_SHIFT
;
490 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
491 hole_end
= hole_start
+ size
- 1;
492 while (hole_end
<= crashk_res
.end
) {
495 if (hole_end
> KEXEC_CONTROL_MEMORY_LIMIT
)
497 if (hole_end
> crashk_res
.end
)
499 /* See if I overlap any of the segments */
500 for (i
= 0; i
< image
->nr_segments
; i
++) {
501 unsigned long mstart
, mend
;
503 mstart
= image
->segment
[i
].mem
;
504 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
505 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
506 /* Advance the hole to the end of the segment */
507 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
508 hole_end
= hole_start
+ size
- 1;
512 /* If I don't overlap any segments I have found my hole! */
513 if (i
== image
->nr_segments
) {
514 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
519 image
->control_page
= hole_end
;
525 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
528 struct page
*pages
= NULL
;
530 switch (image
->type
) {
531 case KEXEC_TYPE_DEFAULT
:
532 pages
= kimage_alloc_normal_control_pages(image
, order
);
534 case KEXEC_TYPE_CRASH
:
535 pages
= kimage_alloc_crash_control_pages(image
, order
);
542 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
544 if (*image
->entry
!= 0)
547 if (image
->entry
== image
->last_entry
) {
548 kimage_entry_t
*ind_page
;
551 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
555 ind_page
= page_address(page
);
556 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
557 image
->entry
= ind_page
;
558 image
->last_entry
= ind_page
+
559 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
561 *image
->entry
= entry
;
568 static int kimage_set_destination(struct kimage
*image
,
569 unsigned long destination
)
573 destination
&= PAGE_MASK
;
574 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
576 image
->destination
= destination
;
582 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
587 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
589 image
->destination
+= PAGE_SIZE
;
595 static void kimage_free_extra_pages(struct kimage
*image
)
597 /* Walk through and free any extra destination pages I may have */
598 kimage_free_page_list(&image
->dest_pages
);
600 /* Walk through and free any unuseable pages I have cached */
601 kimage_free_page_list(&image
->unuseable_pages
);
604 static void kimage_terminate(struct kimage
*image
)
606 if (*image
->entry
!= 0)
609 *image
->entry
= IND_DONE
;
612 #define for_each_kimage_entry(image, ptr, entry) \
613 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
614 ptr = (entry & IND_INDIRECTION)? \
615 phys_to_virt((entry & PAGE_MASK)): ptr +1)
617 static void kimage_free_entry(kimage_entry_t entry
)
621 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
622 kimage_free_pages(page
);
625 static void kimage_free(struct kimage
*image
)
627 kimage_entry_t
*ptr
, entry
;
628 kimage_entry_t ind
= 0;
633 kimage_free_extra_pages(image
);
634 for_each_kimage_entry(image
, ptr
, entry
) {
635 if (entry
& IND_INDIRECTION
) {
636 /* Free the previous indirection page */
637 if (ind
& IND_INDIRECTION
)
638 kimage_free_entry(ind
);
639 /* Save this indirection page until we are
644 else if (entry
& IND_SOURCE
)
645 kimage_free_entry(entry
);
647 /* Free the final indirection page */
648 if (ind
& IND_INDIRECTION
)
649 kimage_free_entry(ind
);
651 /* Handle any machine specific cleanup */
652 machine_kexec_cleanup(image
);
654 /* Free the kexec control pages... */
655 kimage_free_page_list(&image
->control_pages
);
659 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
662 kimage_entry_t
*ptr
, entry
;
663 unsigned long destination
= 0;
665 for_each_kimage_entry(image
, ptr
, entry
) {
666 if (entry
& IND_DESTINATION
)
667 destination
= entry
& PAGE_MASK
;
668 else if (entry
& IND_SOURCE
) {
669 if (page
== destination
)
671 destination
+= PAGE_SIZE
;
678 static struct page
*kimage_alloc_page(struct kimage
*image
,
680 unsigned long destination
)
683 * Here we implement safeguards to ensure that a source page
684 * is not copied to its destination page before the data on
685 * the destination page is no longer useful.
687 * To do this we maintain the invariant that a source page is
688 * either its own destination page, or it is not a
689 * destination page at all.
691 * That is slightly stronger than required, but the proof
692 * that no problems will not occur is trivial, and the
693 * implementation is simply to verify.
695 * When allocating all pages normally this algorithm will run
696 * in O(N) time, but in the worst case it will run in O(N^2)
697 * time. If the runtime is a problem the data structures can
704 * Walk through the list of destination pages, and see if I
707 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
708 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
709 if (addr
== destination
) {
710 list_del(&page
->lru
);
718 /* Allocate a page, if we run out of memory give up */
719 page
= kimage_alloc_pages(gfp_mask
, 0);
722 /* If the page cannot be used file it away */
723 if (page_to_pfn(page
) >
724 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
725 list_add(&page
->lru
, &image
->unuseable_pages
);
728 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
730 /* If it is the destination page we want use it */
731 if (addr
== destination
)
734 /* If the page is not a destination page use it */
735 if (!kimage_is_destination_range(image
, addr
,
740 * I know that the page is someones destination page.
741 * See if there is already a source page for this
742 * destination page. And if so swap the source pages.
744 old
= kimage_dst_used(image
, addr
);
747 unsigned long old_addr
;
748 struct page
*old_page
;
750 old_addr
= *old
& PAGE_MASK
;
751 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
752 copy_highpage(page
, old_page
);
753 *old
= addr
| (*old
& ~PAGE_MASK
);
755 /* The old page I have found cannot be a
756 * destination page, so return it.
763 /* Place the page on the destination list I
766 list_add(&page
->lru
, &image
->dest_pages
);
773 static int kimage_load_normal_segment(struct kimage
*image
,
774 struct kexec_segment
*segment
)
777 unsigned long ubytes
, mbytes
;
779 unsigned char __user
*buf
;
783 ubytes
= segment
->bufsz
;
784 mbytes
= segment
->memsz
;
785 maddr
= segment
->mem
;
787 result
= kimage_set_destination(image
, maddr
);
794 size_t uchunk
, mchunk
;
796 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
801 result
= kimage_add_page(image
, page_to_pfn(page
)
807 /* Start with a clear page */
808 memset(ptr
, 0, PAGE_SIZE
);
809 ptr
+= maddr
& ~PAGE_MASK
;
810 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
818 result
= copy_from_user(ptr
, buf
, uchunk
);
821 result
= (result
< 0) ? result
: -EIO
;
833 static int kimage_load_crash_segment(struct kimage
*image
,
834 struct kexec_segment
*segment
)
836 /* For crash dumps kernels we simply copy the data from
837 * user space to it's destination.
838 * We do things a page at a time for the sake of kmap.
841 unsigned long ubytes
, mbytes
;
843 unsigned char __user
*buf
;
847 ubytes
= segment
->bufsz
;
848 mbytes
= segment
->memsz
;
849 maddr
= segment
->mem
;
853 size_t uchunk
, mchunk
;
855 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
861 ptr
+= maddr
& ~PAGE_MASK
;
862 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
867 if (uchunk
> ubytes
) {
869 /* Zero the trailing part of the page */
870 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
872 result
= copy_from_user(ptr
, buf
, uchunk
);
873 kexec_flush_icache_page(page
);
876 result
= (result
< 0) ? result
: -EIO
;
888 static int kimage_load_segment(struct kimage
*image
,
889 struct kexec_segment
*segment
)
891 int result
= -ENOMEM
;
893 switch (image
->type
) {
894 case KEXEC_TYPE_DEFAULT
:
895 result
= kimage_load_normal_segment(image
, segment
);
897 case KEXEC_TYPE_CRASH
:
898 result
= kimage_load_crash_segment(image
, segment
);
906 * Exec Kernel system call: for obvious reasons only root may call it.
908 * This call breaks up into three pieces.
909 * - A generic part which loads the new kernel from the current
910 * address space, and very carefully places the data in the
913 * - A generic part that interacts with the kernel and tells all of
914 * the devices to shut down. Preventing on-going dmas, and placing
915 * the devices in a consistent state so a later kernel can
918 * - A machine specific part that includes the syscall number
919 * and the copies the image to it's final destination. And
920 * jumps into the image at entry.
922 * kexec does not sync, or unmount filesystems so if you need
923 * that to happen you need to do that yourself.
925 struct kimage
*kexec_image
;
926 struct kimage
*kexec_crash_image
;
928 * A home grown binary mutex.
929 * Nothing can wait so this mutex is safe to use
930 * in interrupt context :)
932 static int kexec_lock
;
934 asmlinkage
long sys_kexec_load(unsigned long entry
, unsigned long nr_segments
,
935 struct kexec_segment __user
*segments
,
938 struct kimage
**dest_image
, *image
;
942 /* We only trust the superuser with rebooting the system. */
943 if (!capable(CAP_SYS_BOOT
))
947 * Verify we have a legal set of flags
948 * This leaves us room for future extensions.
950 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
953 /* Verify we are on the appropriate architecture */
954 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
955 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
958 /* Put an artificial cap on the number
959 * of segments passed to kexec_load.
961 if (nr_segments
> KEXEC_SEGMENT_MAX
)
967 /* Because we write directly to the reserved memory
968 * region when loading crash kernels we need a mutex here to
969 * prevent multiple crash kernels from attempting to load
970 * simultaneously, and to prevent a crash kernel from loading
971 * over the top of a in use crash kernel.
973 * KISS: always take the mutex.
975 locked
= xchg(&kexec_lock
, 1);
979 dest_image
= &kexec_image
;
980 if (flags
& KEXEC_ON_CRASH
)
981 dest_image
= &kexec_crash_image
;
982 if (nr_segments
> 0) {
985 /* Loading another kernel to reboot into */
986 if ((flags
& KEXEC_ON_CRASH
) == 0)
987 result
= kimage_normal_alloc(&image
, entry
,
988 nr_segments
, segments
);
989 /* Loading another kernel to switch to if this one crashes */
990 else if (flags
& KEXEC_ON_CRASH
) {
991 /* Free any current crash dump kernel before
994 kimage_free(xchg(&kexec_crash_image
, NULL
));
995 result
= kimage_crash_alloc(&image
, entry
,
996 nr_segments
, segments
);
1001 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1002 image
->preserve_context
= 1;
1003 result
= machine_kexec_prepare(image
);
1007 for (i
= 0; i
< nr_segments
; i
++) {
1008 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1012 kimage_terminate(image
);
1014 /* Install the new kernel, and Uninstall the old */
1015 image
= xchg(dest_image
, image
);
1018 locked
= xchg(&kexec_lock
, 0); /* Release the mutex */
1025 #ifdef CONFIG_COMPAT
1026 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1027 unsigned long nr_segments
,
1028 struct compat_kexec_segment __user
*segments
,
1029 unsigned long flags
)
1031 struct compat_kexec_segment in
;
1032 struct kexec_segment out
, __user
*ksegments
;
1033 unsigned long i
, result
;
1035 /* Don't allow clients that don't understand the native
1036 * architecture to do anything.
1038 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1041 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1044 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1045 for (i
=0; i
< nr_segments
; i
++) {
1046 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1050 out
.buf
= compat_ptr(in
.buf
);
1051 out
.bufsz
= in
.bufsz
;
1053 out
.memsz
= in
.memsz
;
1055 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1060 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1064 void crash_kexec(struct pt_regs
*regs
)
1069 /* Take the kexec_lock here to prevent sys_kexec_load
1070 * running on one cpu from replacing the crash kernel
1071 * we are using after a panic on a different cpu.
1073 * If the crash kernel was not located in a fixed area
1074 * of memory the xchg(&kexec_crash_image) would be
1075 * sufficient. But since I reuse the memory...
1077 locked
= xchg(&kexec_lock
, 1);
1079 if (kexec_crash_image
) {
1080 struct pt_regs fixed_regs
;
1081 crash_setup_regs(&fixed_regs
, regs
);
1082 crash_save_vmcoreinfo();
1083 machine_crash_shutdown(&fixed_regs
);
1084 machine_kexec(kexec_crash_image
);
1086 locked
= xchg(&kexec_lock
, 0);
1091 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1094 struct elf_note note
;
1096 note
.n_namesz
= strlen(name
) + 1;
1097 note
.n_descsz
= data_len
;
1099 memcpy(buf
, ¬e
, sizeof(note
));
1100 buf
+= (sizeof(note
) + 3)/4;
1101 memcpy(buf
, name
, note
.n_namesz
);
1102 buf
+= (note
.n_namesz
+ 3)/4;
1103 memcpy(buf
, data
, note
.n_descsz
);
1104 buf
+= (note
.n_descsz
+ 3)/4;
1109 static void final_note(u32
*buf
)
1111 struct elf_note note
;
1116 memcpy(buf
, ¬e
, sizeof(note
));
1119 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1121 struct elf_prstatus prstatus
;
1124 if ((cpu
< 0) || (cpu
>= NR_CPUS
))
1127 /* Using ELF notes here is opportunistic.
1128 * I need a well defined structure format
1129 * for the data I pass, and I need tags
1130 * on the data to indicate what information I have
1131 * squirrelled away. ELF notes happen to provide
1132 * all of that, so there is no need to invent something new.
1134 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1137 memset(&prstatus
, 0, sizeof(prstatus
));
1138 prstatus
.pr_pid
= current
->pid
;
1139 elf_core_copy_regs(&prstatus
.pr_reg
, regs
);
1140 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1141 &prstatus
, sizeof(prstatus
));
1145 static int __init
crash_notes_memory_init(void)
1147 /* Allocate memory for saving cpu registers. */
1148 crash_notes
= alloc_percpu(note_buf_t
);
1150 printk("Kexec: Memory allocation for saving cpu register"
1151 " states failed\n");
1156 module_init(crash_notes_memory_init
)
1160 * parsing the "crashkernel" commandline
1162 * this code is intended to be called from architecture specific code
1167 * This function parses command lines in the format
1169 * crashkernel=ramsize-range:size[,...][@offset]
1171 * The function returns 0 on success and -EINVAL on failure.
1173 static int __init
parse_crashkernel_mem(char *cmdline
,
1174 unsigned long long system_ram
,
1175 unsigned long long *crash_size
,
1176 unsigned long long *crash_base
)
1178 char *cur
= cmdline
, *tmp
;
1180 /* for each entry of the comma-separated list */
1182 unsigned long long start
, end
= ULLONG_MAX
, size
;
1184 /* get the start of the range */
1185 start
= memparse(cur
, &tmp
);
1187 pr_warning("crashkernel: Memory value expected\n");
1192 pr_warning("crashkernel: '-' expected\n");
1197 /* if no ':' is here, than we read the end */
1199 end
= memparse(cur
, &tmp
);
1201 pr_warning("crashkernel: Memory "
1202 "value expected\n");
1207 pr_warning("crashkernel: end <= start\n");
1213 pr_warning("crashkernel: ':' expected\n");
1218 size
= memparse(cur
, &tmp
);
1220 pr_warning("Memory value expected\n");
1224 if (size
>= system_ram
) {
1225 pr_warning("crashkernel: invalid size\n");
1230 if (system_ram
>= start
&& system_ram
< end
) {
1234 } while (*cur
++ == ',');
1236 if (*crash_size
> 0) {
1237 while (*cur
!= ' ' && *cur
!= '@')
1241 *crash_base
= memparse(cur
, &tmp
);
1243 pr_warning("Memory value expected "
1254 * That function parses "simple" (old) crashkernel command lines like
1256 * crashkernel=size[@offset]
1258 * It returns 0 on success and -EINVAL on failure.
1260 static int __init
parse_crashkernel_simple(char *cmdline
,
1261 unsigned long long *crash_size
,
1262 unsigned long long *crash_base
)
1264 char *cur
= cmdline
;
1266 *crash_size
= memparse(cmdline
, &cur
);
1267 if (cmdline
== cur
) {
1268 pr_warning("crashkernel: memory value expected\n");
1273 *crash_base
= memparse(cur
+1, &cur
);
1279 * That function is the entry point for command line parsing and should be
1280 * called from the arch-specific code.
1282 int __init
parse_crashkernel(char *cmdline
,
1283 unsigned long long system_ram
,
1284 unsigned long long *crash_size
,
1285 unsigned long long *crash_base
)
1287 char *p
= cmdline
, *ck_cmdline
= NULL
;
1288 char *first_colon
, *first_space
;
1290 BUG_ON(!crash_size
|| !crash_base
);
1294 /* find crashkernel and use the last one if there are more */
1295 p
= strstr(p
, "crashkernel=");
1298 p
= strstr(p
+1, "crashkernel=");
1304 ck_cmdline
+= 12; /* strlen("crashkernel=") */
1307 * if the commandline contains a ':', then that's the extended
1308 * syntax -- if not, it must be the classic syntax
1310 first_colon
= strchr(ck_cmdline
, ':');
1311 first_space
= strchr(ck_cmdline
, ' ');
1312 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1313 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1314 crash_size
, crash_base
);
1316 return parse_crashkernel_simple(ck_cmdline
, crash_size
,
1324 void crash_save_vmcoreinfo(void)
1328 if (!vmcoreinfo_size
)
1331 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1333 buf
= (u32
*)vmcoreinfo_note
;
1335 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1341 void vmcoreinfo_append_str(const char *fmt
, ...)
1347 va_start(args
, fmt
);
1348 r
= vsnprintf(buf
, sizeof(buf
), fmt
, args
);
1351 if (r
+ vmcoreinfo_size
> vmcoreinfo_max_size
)
1352 r
= vmcoreinfo_max_size
- vmcoreinfo_size
;
1354 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1356 vmcoreinfo_size
+= r
;
1360 * provide an empty default implementation here -- architecture
1361 * code may override this
1363 void __attribute__ ((weak
)) arch_crash_save_vmcoreinfo(void)
1366 unsigned long __attribute__ ((weak
)) paddr_vmcoreinfo_note(void)
1368 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1371 static int __init
crash_save_vmcoreinfo_init(void)
1373 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1374 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1376 VMCOREINFO_SYMBOL(init_uts_ns
);
1377 VMCOREINFO_SYMBOL(node_online_map
);
1378 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1379 VMCOREINFO_SYMBOL(_stext
);
1381 #ifndef CONFIG_NEED_MULTIPLE_NODES
1382 VMCOREINFO_SYMBOL(mem_map
);
1383 VMCOREINFO_SYMBOL(contig_page_data
);
1385 #ifdef CONFIG_SPARSEMEM
1386 VMCOREINFO_SYMBOL(mem_section
);
1387 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1388 VMCOREINFO_STRUCT_SIZE(mem_section
);
1389 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1391 VMCOREINFO_STRUCT_SIZE(page
);
1392 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1393 VMCOREINFO_STRUCT_SIZE(zone
);
1394 VMCOREINFO_STRUCT_SIZE(free_area
);
1395 VMCOREINFO_STRUCT_SIZE(list_head
);
1396 VMCOREINFO_SIZE(nodemask_t
);
1397 VMCOREINFO_OFFSET(page
, flags
);
1398 VMCOREINFO_OFFSET(page
, _count
);
1399 VMCOREINFO_OFFSET(page
, mapping
);
1400 VMCOREINFO_OFFSET(page
, lru
);
1401 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1402 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1403 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1404 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1406 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1407 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1408 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1409 VMCOREINFO_OFFSET(zone
, free_area
);
1410 VMCOREINFO_OFFSET(zone
, vm_stat
);
1411 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1412 VMCOREINFO_OFFSET(free_area
, free_list
);
1413 VMCOREINFO_OFFSET(list_head
, next
);
1414 VMCOREINFO_OFFSET(list_head
, prev
);
1415 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1416 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1417 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1418 VMCOREINFO_NUMBER(PG_lru
);
1419 VMCOREINFO_NUMBER(PG_private
);
1420 VMCOREINFO_NUMBER(PG_swapcache
);
1422 arch_crash_save_vmcoreinfo();
1427 module_init(crash_save_vmcoreinfo_init
)
1430 * kernel_kexec - reboot the system
1432 * Move into place and start executing a preloaded standalone
1433 * executable. If nothing was preloaded return an error.
1435 int kernel_kexec(void)
1439 if (xchg(&kexec_lock
, 1))
1446 if (kexec_image
->preserve_context
) {
1447 #ifdef CONFIG_KEXEC_JUMP
1448 mutex_lock(&pm_mutex
);
1449 pm_prepare_console();
1450 error
= freeze_processes();
1453 goto Restore_console
;
1456 error
= device_suspend(PMSG_FREEZE
);
1458 goto Resume_console
;
1459 error
= disable_nonboot_cpus();
1461 goto Resume_devices
;
1462 local_irq_disable();
1463 /* At this point, device_suspend() has been called,
1464 * but *not* device_power_down(). We *must*
1465 * device_power_down() now. Otherwise, drivers for
1466 * some devices (e.g. interrupt controllers) become
1467 * desynchronized with the actual state of the
1468 * hardware at resume time, and evil weirdness ensues.
1470 error
= device_power_down(PMSG_FREEZE
);
1473 save_processor_state();
1476 blocking_notifier_call_chain(&reboot_notifier_list
,
1478 system_state
= SYSTEM_RESTART
;
1481 printk(KERN_EMERG
"Starting new kernel\n");
1485 machine_kexec(kexec_image
);
1487 if (kexec_image
->preserve_context
) {
1488 #ifdef CONFIG_KEXEC_JUMP
1489 restore_processor_state();
1490 device_power_up(PMSG_RESTORE
);
1493 enable_nonboot_cpus();
1495 device_resume(PMSG_RESTORE
);
1500 pm_restore_console();
1501 mutex_unlock(&pm_mutex
);
1506 if (!xchg(&kexec_lock
, 0))