2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
35 static const char *_name
= DM_NAME
;
37 static unsigned int major
= 0;
38 static unsigned int _major
= 0;
40 static DEFINE_SPINLOCK(_minor_lock
);
43 * One of these is allocated per bio.
46 struct mapped_device
*md
;
50 unsigned long start_time
;
51 spinlock_t endio_lock
;
56 * One of these is allocated per target within a bio. Hopefully
57 * this will be simplified out one day.
66 * For request-based dm.
67 * One of these is allocated per request.
69 struct dm_rq_target_io
{
70 struct mapped_device
*md
;
72 struct request
*orig
, clone
;
78 * For request-based dm.
79 * One of these is allocated per bio.
81 struct dm_rq_clone_bio_info
{
83 struct dm_rq_target_io
*tio
;
86 union map_info
*dm_get_mapinfo(struct bio
*bio
)
88 if (bio
&& bio
->bi_private
)
89 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
93 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
95 if (rq
&& rq
->end_io_data
)
96 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
99 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
101 #define MINOR_ALLOCED ((void *)-1)
104 * Bits for the md->flags field.
106 #define DMF_BLOCK_IO_FOR_SUSPEND 0
107 #define DMF_SUSPENDED 1
109 #define DMF_FREEING 3
110 #define DMF_DELETING 4
111 #define DMF_NOFLUSH_SUSPENDING 5
114 * Work processed by per-device workqueue.
116 struct mapped_device
{
117 struct rw_semaphore io_lock
;
118 struct mutex suspend_lock
;
125 struct request_queue
*queue
;
127 /* Protect queue and type against concurrent access. */
128 struct mutex type_lock
;
130 struct gendisk
*disk
;
136 * A list of ios that arrived while we were suspended.
139 wait_queue_head_t wait
;
140 struct work_struct work
;
141 struct bio_list deferred
;
142 spinlock_t deferred_lock
;
145 * Processing queue (flush)
147 struct workqueue_struct
*wq
;
150 * The current mapping.
152 struct dm_table
*map
;
155 * io objects are allocated from here.
166 wait_queue_head_t eventq
;
168 struct list_head uevent_list
;
169 spinlock_t uevent_lock
; /* Protect access to uevent_list */
172 * freeze/thaw support require holding onto a super block
174 struct super_block
*frozen_sb
;
175 struct block_device
*bdev
;
177 /* forced geometry settings */
178 struct hd_geometry geometry
;
180 /* For saving the address of __make_request for request based dm */
181 make_request_fn
*saved_make_request_fn
;
186 /* zero-length flush that will be cloned and submitted to targets */
187 struct bio flush_bio
;
191 * For mempools pre-allocation at the table loading time.
193 struct dm_md_mempools
{
200 static struct kmem_cache
*_io_cache
;
201 static struct kmem_cache
*_tio_cache
;
202 static struct kmem_cache
*_rq_tio_cache
;
203 static struct kmem_cache
*_rq_bio_info_cache
;
205 static int __init
local_init(void)
209 /* allocate a slab for the dm_ios */
210 _io_cache
= KMEM_CACHE(dm_io
, 0);
214 /* allocate a slab for the target ios */
215 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
217 goto out_free_io_cache
;
219 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
221 goto out_free_tio_cache
;
223 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
224 if (!_rq_bio_info_cache
)
225 goto out_free_rq_tio_cache
;
227 r
= dm_uevent_init();
229 goto out_free_rq_bio_info_cache
;
232 r
= register_blkdev(_major
, _name
);
234 goto out_uevent_exit
;
243 out_free_rq_bio_info_cache
:
244 kmem_cache_destroy(_rq_bio_info_cache
);
245 out_free_rq_tio_cache
:
246 kmem_cache_destroy(_rq_tio_cache
);
248 kmem_cache_destroy(_tio_cache
);
250 kmem_cache_destroy(_io_cache
);
255 static void local_exit(void)
257 kmem_cache_destroy(_rq_bio_info_cache
);
258 kmem_cache_destroy(_rq_tio_cache
);
259 kmem_cache_destroy(_tio_cache
);
260 kmem_cache_destroy(_io_cache
);
261 unregister_blkdev(_major
, _name
);
266 DMINFO("cleaned up");
269 static int (*_inits
[])(void) __initdata
= {
279 static void (*_exits
[])(void) = {
289 static int __init
dm_init(void)
291 const int count
= ARRAY_SIZE(_inits
);
295 for (i
= 0; i
< count
; i
++) {
310 static void __exit
dm_exit(void)
312 int i
= ARRAY_SIZE(_exits
);
319 * Block device functions
321 int dm_deleting_md(struct mapped_device
*md
)
323 return test_bit(DMF_DELETING
, &md
->flags
);
326 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
328 struct mapped_device
*md
;
330 spin_lock(&_minor_lock
);
332 md
= bdev
->bd_disk
->private_data
;
336 if (test_bit(DMF_FREEING
, &md
->flags
) ||
337 dm_deleting_md(md
)) {
343 atomic_inc(&md
->open_count
);
346 spin_unlock(&_minor_lock
);
348 return md
? 0 : -ENXIO
;
351 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
353 struct mapped_device
*md
= disk
->private_data
;
355 spin_lock(&_minor_lock
);
357 atomic_dec(&md
->open_count
);
360 spin_unlock(&_minor_lock
);
365 int dm_open_count(struct mapped_device
*md
)
367 return atomic_read(&md
->open_count
);
371 * Guarantees nothing is using the device before it's deleted.
373 int dm_lock_for_deletion(struct mapped_device
*md
)
377 spin_lock(&_minor_lock
);
379 if (dm_open_count(md
))
382 set_bit(DMF_DELETING
, &md
->flags
);
384 spin_unlock(&_minor_lock
);
389 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
391 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
393 return dm_get_geometry(md
, geo
);
396 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
397 unsigned int cmd
, unsigned long arg
)
399 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
400 struct dm_table
*map
= dm_get_live_table(md
);
401 struct dm_target
*tgt
;
404 if (!map
|| !dm_table_get_size(map
))
407 /* We only support devices that have a single target */
408 if (dm_table_get_num_targets(map
) != 1)
411 tgt
= dm_table_get_target(map
, 0);
413 if (dm_suspended_md(md
)) {
418 if (tgt
->type
->ioctl
)
419 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
427 static struct dm_io
*alloc_io(struct mapped_device
*md
)
429 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
432 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
434 mempool_free(io
, md
->io_pool
);
437 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
439 mempool_free(tio
, md
->tio_pool
);
442 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
445 return mempool_alloc(md
->tio_pool
, gfp_mask
);
448 static void free_rq_tio(struct dm_rq_target_io
*tio
)
450 mempool_free(tio
, tio
->md
->tio_pool
);
453 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
455 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
458 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
460 mempool_free(info
, info
->tio
->md
->io_pool
);
463 static int md_in_flight(struct mapped_device
*md
)
465 return atomic_read(&md
->pending
[READ
]) +
466 atomic_read(&md
->pending
[WRITE
]);
469 static void start_io_acct(struct dm_io
*io
)
471 struct mapped_device
*md
= io
->md
;
473 int rw
= bio_data_dir(io
->bio
);
475 io
->start_time
= jiffies
;
477 cpu
= part_stat_lock();
478 part_round_stats(cpu
, &dm_disk(md
)->part0
);
480 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
481 atomic_inc_return(&md
->pending
[rw
]));
484 static void end_io_acct(struct dm_io
*io
)
486 struct mapped_device
*md
= io
->md
;
487 struct bio
*bio
= io
->bio
;
488 unsigned long duration
= jiffies
- io
->start_time
;
490 int rw
= bio_data_dir(bio
);
492 cpu
= part_stat_lock();
493 part_round_stats(cpu
, &dm_disk(md
)->part0
);
494 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
498 * After this is decremented the bio must not be touched if it is
501 pending
= atomic_dec_return(&md
->pending
[rw
]);
502 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
503 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
505 /* nudge anyone waiting on suspend queue */
511 * Add the bio to the list of deferred io.
513 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
517 spin_lock_irqsave(&md
->deferred_lock
, flags
);
518 bio_list_add(&md
->deferred
, bio
);
519 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
520 queue_work(md
->wq
, &md
->work
);
524 * Everyone (including functions in this file), should use this
525 * function to access the md->map field, and make sure they call
526 * dm_table_put() when finished.
528 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
533 read_lock_irqsave(&md
->map_lock
, flags
);
537 read_unlock_irqrestore(&md
->map_lock
, flags
);
543 * Get the geometry associated with a dm device
545 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
553 * Set the geometry of a device.
555 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
557 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
559 if (geo
->start
> sz
) {
560 DMWARN("Start sector is beyond the geometry limits.");
569 /*-----------------------------------------------------------------
571 * A more elegant soln is in the works that uses the queue
572 * merge fn, unfortunately there are a couple of changes to
573 * the block layer that I want to make for this. So in the
574 * interests of getting something for people to use I give
575 * you this clearly demarcated crap.
576 *---------------------------------------------------------------*/
578 static int __noflush_suspending(struct mapped_device
*md
)
580 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
584 * Decrements the number of outstanding ios that a bio has been
585 * cloned into, completing the original io if necc.
587 static void dec_pending(struct dm_io
*io
, int error
)
592 struct mapped_device
*md
= io
->md
;
594 /* Push-back supersedes any I/O errors */
595 if (unlikely(error
)) {
596 spin_lock_irqsave(&io
->endio_lock
, flags
);
597 if (!(io
->error
> 0 && __noflush_suspending(md
)))
599 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
602 if (atomic_dec_and_test(&io
->io_count
)) {
603 if (io
->error
== DM_ENDIO_REQUEUE
) {
605 * Target requested pushing back the I/O.
607 spin_lock_irqsave(&md
->deferred_lock
, flags
);
608 if (__noflush_suspending(md
))
609 bio_list_add_head(&md
->deferred
, io
->bio
);
611 /* noflush suspend was interrupted. */
613 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
616 io_error
= io
->error
;
621 if (io_error
== DM_ENDIO_REQUEUE
)
624 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
626 * Preflush done for flush with data, reissue
629 bio
->bi_rw
&= ~REQ_FLUSH
;
632 /* done with normal IO or empty flush */
633 trace_block_bio_complete(md
->queue
, bio
, io_error
);
634 bio_endio(bio
, io_error
);
639 static void clone_endio(struct bio
*bio
, int error
)
642 struct dm_target_io
*tio
= bio
->bi_private
;
643 struct dm_io
*io
= tio
->io
;
644 struct mapped_device
*md
= tio
->io
->md
;
645 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
647 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
651 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
652 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
654 * error and requeue request are handled
658 else if (r
== DM_ENDIO_INCOMPLETE
)
659 /* The target will handle the io */
662 DMWARN("unimplemented target endio return value: %d", r
);
668 * Store md for cleanup instead of tio which is about to get freed.
670 bio
->bi_private
= md
->bs
;
674 dec_pending(io
, error
);
678 * Partial completion handling for request-based dm
680 static void end_clone_bio(struct bio
*clone
, int error
)
682 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
683 struct dm_rq_target_io
*tio
= info
->tio
;
684 struct bio
*bio
= info
->orig
;
685 unsigned int nr_bytes
= info
->orig
->bi_size
;
691 * An error has already been detected on the request.
692 * Once error occurred, just let clone->end_io() handle
698 * Don't notice the error to the upper layer yet.
699 * The error handling decision is made by the target driver,
700 * when the request is completed.
707 * I/O for the bio successfully completed.
708 * Notice the data completion to the upper layer.
712 * bios are processed from the head of the list.
713 * So the completing bio should always be rq->bio.
714 * If it's not, something wrong is happening.
716 if (tio
->orig
->bio
!= bio
)
717 DMERR("bio completion is going in the middle of the request");
720 * Update the original request.
721 * Do not use blk_end_request() here, because it may complete
722 * the original request before the clone, and break the ordering.
724 blk_update_request(tio
->orig
, 0, nr_bytes
);
728 * Don't touch any member of the md after calling this function because
729 * the md may be freed in dm_put() at the end of this function.
730 * Or do dm_get() before calling this function and dm_put() later.
732 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
734 atomic_dec(&md
->pending
[rw
]);
736 /* nudge anyone waiting on suspend queue */
737 if (!md_in_flight(md
))
741 blk_run_queue(md
->queue
);
744 * dm_put() must be at the end of this function. See the comment above
749 static void free_rq_clone(struct request
*clone
)
751 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
753 blk_rq_unprep_clone(clone
);
758 * Complete the clone and the original request.
759 * Must be called without queue lock.
761 static void dm_end_request(struct request
*clone
, int error
)
763 int rw
= rq_data_dir(clone
);
764 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
765 struct mapped_device
*md
= tio
->md
;
766 struct request
*rq
= tio
->orig
;
768 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
769 rq
->errors
= clone
->errors
;
770 rq
->resid_len
= clone
->resid_len
;
774 * We are using the sense buffer of the original
776 * So setting the length of the sense data is enough.
778 rq
->sense_len
= clone
->sense_len
;
781 free_rq_clone(clone
);
782 blk_end_request_all(rq
, error
);
783 rq_completed(md
, rw
, true);
786 static void dm_unprep_request(struct request
*rq
)
788 struct request
*clone
= rq
->special
;
791 rq
->cmd_flags
&= ~REQ_DONTPREP
;
793 free_rq_clone(clone
);
797 * Requeue the original request of a clone.
799 void dm_requeue_unmapped_request(struct request
*clone
)
801 int rw
= rq_data_dir(clone
);
802 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
803 struct mapped_device
*md
= tio
->md
;
804 struct request
*rq
= tio
->orig
;
805 struct request_queue
*q
= rq
->q
;
808 dm_unprep_request(rq
);
810 spin_lock_irqsave(q
->queue_lock
, flags
);
811 blk_requeue_request(q
, rq
);
812 spin_unlock_irqrestore(q
->queue_lock
, flags
);
814 rq_completed(md
, rw
, 0);
816 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
818 static void __stop_queue(struct request_queue
*q
)
823 static void stop_queue(struct request_queue
*q
)
827 spin_lock_irqsave(q
->queue_lock
, flags
);
829 spin_unlock_irqrestore(q
->queue_lock
, flags
);
832 static void __start_queue(struct request_queue
*q
)
834 if (blk_queue_stopped(q
))
838 static void start_queue(struct request_queue
*q
)
842 spin_lock_irqsave(q
->queue_lock
, flags
);
844 spin_unlock_irqrestore(q
->queue_lock
, flags
);
847 static void dm_done(struct request
*clone
, int error
, bool mapped
)
850 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
851 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
853 if (mapped
&& rq_end_io
)
854 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
857 /* The target wants to complete the I/O */
858 dm_end_request(clone
, r
);
859 else if (r
== DM_ENDIO_INCOMPLETE
)
860 /* The target will handle the I/O */
862 else if (r
== DM_ENDIO_REQUEUE
)
863 /* The target wants to requeue the I/O */
864 dm_requeue_unmapped_request(clone
);
866 DMWARN("unimplemented target endio return value: %d", r
);
872 * Request completion handler for request-based dm
874 static void dm_softirq_done(struct request
*rq
)
877 struct request
*clone
= rq
->completion_data
;
878 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
880 if (rq
->cmd_flags
& REQ_FAILED
)
883 dm_done(clone
, tio
->error
, mapped
);
887 * Complete the clone and the original request with the error status
888 * through softirq context.
890 static void dm_complete_request(struct request
*clone
, int error
)
892 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
893 struct request
*rq
= tio
->orig
;
896 rq
->completion_data
= clone
;
897 blk_complete_request(rq
);
901 * Complete the not-mapped clone and the original request with the error status
902 * through softirq context.
903 * Target's rq_end_io() function isn't called.
904 * This may be used when the target's map_rq() function fails.
906 void dm_kill_unmapped_request(struct request
*clone
, int error
)
908 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
909 struct request
*rq
= tio
->orig
;
911 rq
->cmd_flags
|= REQ_FAILED
;
912 dm_complete_request(clone
, error
);
914 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
917 * Called with the queue lock held
919 static void end_clone_request(struct request
*clone
, int error
)
922 * For just cleaning up the information of the queue in which
923 * the clone was dispatched.
924 * The clone is *NOT* freed actually here because it is alloced from
925 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
927 __blk_put_request(clone
->q
, clone
);
930 * Actual request completion is done in a softirq context which doesn't
931 * hold the queue lock. Otherwise, deadlock could occur because:
932 * - another request may be submitted by the upper level driver
933 * of the stacking during the completion
934 * - the submission which requires queue lock may be done
937 dm_complete_request(clone
, error
);
941 * Return maximum size of I/O possible at the supplied sector up to the current
944 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
946 sector_t target_offset
= dm_target_offset(ti
, sector
);
948 return ti
->len
- target_offset
;
951 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
953 sector_t len
= max_io_len_target_boundary(sector
, ti
);
956 * Does the target need to split even further ?
960 sector_t offset
= dm_target_offset(ti
, sector
);
961 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
970 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
971 struct dm_target_io
*tio
)
975 struct mapped_device
*md
;
977 clone
->bi_end_io
= clone_endio
;
978 clone
->bi_private
= tio
;
981 * Map the clone. If r == 0 we don't need to do
982 * anything, the target has assumed ownership of
985 atomic_inc(&tio
->io
->io_count
);
986 sector
= clone
->bi_sector
;
987 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
988 if (r
== DM_MAPIO_REMAPPED
) {
989 /* the bio has been remapped so dispatch it */
991 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
992 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
994 generic_make_request(clone
);
995 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
996 /* error the io and bail out, or requeue it if needed */
998 dec_pending(tio
->io
, r
);
1000 * Store bio_set for cleanup.
1002 clone
->bi_private
= md
->bs
;
1006 DMWARN("unimplemented target map return value: %d", r
);
1012 struct mapped_device
*md
;
1013 struct dm_table
*map
;
1017 sector_t sector_count
;
1021 static void dm_bio_destructor(struct bio
*bio
)
1023 struct bio_set
*bs
= bio
->bi_private
;
1029 * Creates a little bio that just does part of a bvec.
1031 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1032 unsigned short idx
, unsigned int offset
,
1033 unsigned int len
, struct bio_set
*bs
)
1036 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1038 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1039 clone
->bi_destructor
= dm_bio_destructor
;
1040 *clone
->bi_io_vec
= *bv
;
1042 clone
->bi_sector
= sector
;
1043 clone
->bi_bdev
= bio
->bi_bdev
;
1044 clone
->bi_rw
= bio
->bi_rw
;
1046 clone
->bi_size
= to_bytes(len
);
1047 clone
->bi_io_vec
->bv_offset
= offset
;
1048 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1049 clone
->bi_flags
|= 1 << BIO_CLONED
;
1051 if (bio_integrity(bio
)) {
1052 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1053 bio_integrity_trim(clone
,
1054 bio_sector_offset(bio
, idx
, offset
), len
);
1061 * Creates a bio that consists of range of complete bvecs.
1063 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1064 unsigned short idx
, unsigned short bv_count
,
1065 unsigned int len
, struct bio_set
*bs
)
1069 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1070 __bio_clone(clone
, bio
);
1071 clone
->bi_destructor
= dm_bio_destructor
;
1072 clone
->bi_sector
= sector
;
1073 clone
->bi_idx
= idx
;
1074 clone
->bi_vcnt
= idx
+ bv_count
;
1075 clone
->bi_size
= to_bytes(len
);
1076 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1078 if (bio_integrity(bio
)) {
1079 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1081 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1082 bio_integrity_trim(clone
,
1083 bio_sector_offset(bio
, idx
, 0), len
);
1089 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1090 struct dm_target
*ti
)
1092 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1096 memset(&tio
->info
, 0, sizeof(tio
->info
));
1101 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1102 unsigned request_nr
, sector_t len
)
1104 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1107 tio
->info
.target_request_nr
= request_nr
;
1110 * Discard requests require the bio's inline iovecs be initialized.
1111 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1112 * and discard, so no need for concern about wasted bvec allocations.
1114 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1115 __bio_clone(clone
, ci
->bio
);
1116 clone
->bi_destructor
= dm_bio_destructor
;
1118 clone
->bi_sector
= ci
->sector
;
1119 clone
->bi_size
= to_bytes(len
);
1122 __map_bio(ti
, clone
, tio
);
1125 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1126 unsigned num_requests
, sector_t len
)
1128 unsigned request_nr
;
1130 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1131 __issue_target_request(ci
, ti
, request_nr
, len
);
1134 static int __clone_and_map_empty_flush(struct clone_info
*ci
)
1136 unsigned target_nr
= 0;
1137 struct dm_target
*ti
;
1139 BUG_ON(bio_has_data(ci
->bio
));
1140 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1141 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1147 * Perform all io with a single clone.
1149 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1151 struct bio
*clone
, *bio
= ci
->bio
;
1152 struct dm_target_io
*tio
;
1154 tio
= alloc_tio(ci
, ti
);
1155 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1156 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1158 __map_bio(ti
, clone
, tio
);
1159 ci
->sector_count
= 0;
1162 static int __clone_and_map_discard(struct clone_info
*ci
)
1164 struct dm_target
*ti
;
1168 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1169 if (!dm_target_is_valid(ti
))
1173 * Even though the device advertised discard support,
1174 * reconfiguration might have changed that since the
1175 * check was performed.
1177 if (!ti
->num_discard_requests
)
1180 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1182 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1185 } while (ci
->sector_count
-= len
);
1190 static int __clone_and_map(struct clone_info
*ci
)
1192 struct bio
*clone
, *bio
= ci
->bio
;
1193 struct dm_target
*ti
;
1194 sector_t len
= 0, max
;
1195 struct dm_target_io
*tio
;
1197 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1198 return __clone_and_map_discard(ci
);
1200 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1201 if (!dm_target_is_valid(ti
))
1204 max
= max_io_len(ci
->sector
, ti
);
1206 if (ci
->sector_count
<= max
) {
1208 * Optimise for the simple case where we can do all of
1209 * the remaining io with a single clone.
1211 __clone_and_map_simple(ci
, ti
);
1213 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1215 * There are some bvecs that don't span targets.
1216 * Do as many of these as possible.
1219 sector_t remaining
= max
;
1222 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1223 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1225 if (bv_len
> remaining
)
1228 remaining
-= bv_len
;
1232 tio
= alloc_tio(ci
, ti
);
1233 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1235 __map_bio(ti
, clone
, tio
);
1238 ci
->sector_count
-= len
;
1243 * Handle a bvec that must be split between two or more targets.
1245 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1246 sector_t remaining
= to_sector(bv
->bv_len
);
1247 unsigned int offset
= 0;
1251 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1252 if (!dm_target_is_valid(ti
))
1255 max
= max_io_len(ci
->sector
, ti
);
1258 len
= min(remaining
, max
);
1260 tio
= alloc_tio(ci
, ti
);
1261 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1262 bv
->bv_offset
+ offset
, len
,
1265 __map_bio(ti
, clone
, tio
);
1268 ci
->sector_count
-= len
;
1269 offset
+= to_bytes(len
);
1270 } while (remaining
-= len
);
1279 * Split the bio into several clones and submit it to targets.
1281 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1283 struct clone_info ci
;
1286 ci
.map
= dm_get_live_table(md
);
1287 if (unlikely(!ci
.map
)) {
1293 ci
.io
= alloc_io(md
);
1295 atomic_set(&ci
.io
->io_count
, 1);
1298 spin_lock_init(&ci
.io
->endio_lock
);
1299 ci
.sector
= bio
->bi_sector
;
1300 ci
.idx
= bio
->bi_idx
;
1302 start_io_acct(ci
.io
);
1303 if (bio
->bi_rw
& REQ_FLUSH
) {
1304 ci
.bio
= &ci
.md
->flush_bio
;
1305 ci
.sector_count
= 0;
1306 error
= __clone_and_map_empty_flush(&ci
);
1307 /* dec_pending submits any data associated with flush */
1310 ci
.sector_count
= bio_sectors(bio
);
1311 while (ci
.sector_count
&& !error
)
1312 error
= __clone_and_map(&ci
);
1315 /* drop the extra reference count */
1316 dec_pending(ci
.io
, error
);
1317 dm_table_put(ci
.map
);
1319 /*-----------------------------------------------------------------
1321 *---------------------------------------------------------------*/
1323 static int dm_merge_bvec(struct request_queue
*q
,
1324 struct bvec_merge_data
*bvm
,
1325 struct bio_vec
*biovec
)
1327 struct mapped_device
*md
= q
->queuedata
;
1328 struct dm_table
*map
= dm_get_live_table(md
);
1329 struct dm_target
*ti
;
1330 sector_t max_sectors
;
1336 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1337 if (!dm_target_is_valid(ti
))
1341 * Find maximum amount of I/O that won't need splitting
1343 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1344 (sector_t
) BIO_MAX_SECTORS
);
1345 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1350 * merge_bvec_fn() returns number of bytes
1351 * it can accept at this offset
1352 * max is precomputed maximal io size
1354 if (max_size
&& ti
->type
->merge
)
1355 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1357 * If the target doesn't support merge method and some of the devices
1358 * provided their merge_bvec method (we know this by looking at
1359 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1360 * entries. So always set max_size to 0, and the code below allows
1363 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1372 * Always allow an entire first page
1374 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1375 max_size
= biovec
->bv_len
;
1381 * The request function that just remaps the bio built up by
1384 static int _dm_request(struct request_queue
*q
, struct bio
*bio
)
1386 int rw
= bio_data_dir(bio
);
1387 struct mapped_device
*md
= q
->queuedata
;
1390 down_read(&md
->io_lock
);
1392 cpu
= part_stat_lock();
1393 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1394 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1397 /* if we're suspended, we have to queue this io for later */
1398 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1399 up_read(&md
->io_lock
);
1401 if (bio_rw(bio
) != READA
)
1408 __split_and_process_bio(md
, bio
);
1409 up_read(&md
->io_lock
);
1413 static int dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1415 struct mapped_device
*md
= q
->queuedata
;
1417 return md
->saved_make_request_fn(q
, bio
); /* call __make_request() */
1420 static int dm_request_based(struct mapped_device
*md
)
1422 return blk_queue_stackable(md
->queue
);
1425 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
1427 struct mapped_device
*md
= q
->queuedata
;
1429 if (dm_request_based(md
))
1430 return dm_make_request(q
, bio
);
1432 return _dm_request(q
, bio
);
1435 void dm_dispatch_request(struct request
*rq
)
1439 if (blk_queue_io_stat(rq
->q
))
1440 rq
->cmd_flags
|= REQ_IO_STAT
;
1442 rq
->start_time
= jiffies
;
1443 r
= blk_insert_cloned_request(rq
->q
, rq
);
1445 dm_complete_request(rq
, r
);
1447 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1449 static void dm_rq_bio_destructor(struct bio
*bio
)
1451 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1452 struct mapped_device
*md
= info
->tio
->md
;
1454 free_bio_info(info
);
1455 bio_free(bio
, md
->bs
);
1458 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1461 struct dm_rq_target_io
*tio
= data
;
1462 struct mapped_device
*md
= tio
->md
;
1463 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1468 info
->orig
= bio_orig
;
1470 bio
->bi_end_io
= end_clone_bio
;
1471 bio
->bi_private
= info
;
1472 bio
->bi_destructor
= dm_rq_bio_destructor
;
1477 static int setup_clone(struct request
*clone
, struct request
*rq
,
1478 struct dm_rq_target_io
*tio
)
1482 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1483 dm_rq_bio_constructor
, tio
);
1487 clone
->cmd
= rq
->cmd
;
1488 clone
->cmd_len
= rq
->cmd_len
;
1489 clone
->sense
= rq
->sense
;
1490 clone
->buffer
= rq
->buffer
;
1491 clone
->end_io
= end_clone_request
;
1492 clone
->end_io_data
= tio
;
1497 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1500 struct request
*clone
;
1501 struct dm_rq_target_io
*tio
;
1503 tio
= alloc_rq_tio(md
, gfp_mask
);
1511 memset(&tio
->info
, 0, sizeof(tio
->info
));
1513 clone
= &tio
->clone
;
1514 if (setup_clone(clone
, rq
, tio
)) {
1524 * Called with the queue lock held.
1526 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1528 struct mapped_device
*md
= q
->queuedata
;
1529 struct request
*clone
;
1531 if (unlikely(rq
->special
)) {
1532 DMWARN("Already has something in rq->special.");
1533 return BLKPREP_KILL
;
1536 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1538 return BLKPREP_DEFER
;
1540 rq
->special
= clone
;
1541 rq
->cmd_flags
|= REQ_DONTPREP
;
1548 * 0 : the request has been processed (not requeued)
1549 * !0 : the request has been requeued
1551 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1552 struct mapped_device
*md
)
1554 int r
, requeued
= 0;
1555 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1558 * Hold the md reference here for the in-flight I/O.
1559 * We can't rely on the reference count by device opener,
1560 * because the device may be closed during the request completion
1561 * when all bios are completed.
1562 * See the comment in rq_completed() too.
1567 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1569 case DM_MAPIO_SUBMITTED
:
1570 /* The target has taken the I/O to submit by itself later */
1572 case DM_MAPIO_REMAPPED
:
1573 /* The target has remapped the I/O so dispatch it */
1574 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1575 blk_rq_pos(tio
->orig
));
1576 dm_dispatch_request(clone
);
1578 case DM_MAPIO_REQUEUE
:
1579 /* The target wants to requeue the I/O */
1580 dm_requeue_unmapped_request(clone
);
1585 DMWARN("unimplemented target map return value: %d", r
);
1589 /* The target wants to complete the I/O */
1590 dm_kill_unmapped_request(clone
, r
);
1598 * q->request_fn for request-based dm.
1599 * Called with the queue lock held.
1601 static void dm_request_fn(struct request_queue
*q
)
1603 struct mapped_device
*md
= q
->queuedata
;
1604 struct dm_table
*map
= dm_get_live_table(md
);
1605 struct dm_target
*ti
;
1606 struct request
*rq
, *clone
;
1610 * For suspend, check blk_queue_stopped() and increment
1611 * ->pending within a single queue_lock not to increment the
1612 * number of in-flight I/Os after the queue is stopped in
1615 while (!blk_queue_stopped(q
)) {
1616 rq
= blk_peek_request(q
);
1620 /* always use block 0 to find the target for flushes for now */
1622 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1623 pos
= blk_rq_pos(rq
);
1625 ti
= dm_table_find_target(map
, pos
);
1626 BUG_ON(!dm_target_is_valid(ti
));
1628 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1631 blk_start_request(rq
);
1632 clone
= rq
->special
;
1633 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1635 spin_unlock(q
->queue_lock
);
1636 if (map_request(ti
, clone
, md
))
1639 BUG_ON(!irqs_disabled());
1640 spin_lock(q
->queue_lock
);
1646 BUG_ON(!irqs_disabled());
1647 spin_lock(q
->queue_lock
);
1650 blk_delay_queue(q
, HZ
/ 10);
1657 int dm_underlying_device_busy(struct request_queue
*q
)
1659 return blk_lld_busy(q
);
1661 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1663 static int dm_lld_busy(struct request_queue
*q
)
1666 struct mapped_device
*md
= q
->queuedata
;
1667 struct dm_table
*map
= dm_get_live_table(md
);
1669 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1672 r
= dm_table_any_busy_target(map
);
1679 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1682 struct mapped_device
*md
= congested_data
;
1683 struct dm_table
*map
;
1685 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1686 map
= dm_get_live_table(md
);
1689 * Request-based dm cares about only own queue for
1690 * the query about congestion status of request_queue
1692 if (dm_request_based(md
))
1693 r
= md
->queue
->backing_dev_info
.state
&
1696 r
= dm_table_any_congested(map
, bdi_bits
);
1705 /*-----------------------------------------------------------------
1706 * An IDR is used to keep track of allocated minor numbers.
1707 *---------------------------------------------------------------*/
1708 static DEFINE_IDR(_minor_idr
);
1710 static void free_minor(int minor
)
1712 spin_lock(&_minor_lock
);
1713 idr_remove(&_minor_idr
, minor
);
1714 spin_unlock(&_minor_lock
);
1718 * See if the device with a specific minor # is free.
1720 static int specific_minor(int minor
)
1724 if (minor
>= (1 << MINORBITS
))
1727 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1731 spin_lock(&_minor_lock
);
1733 if (idr_find(&_minor_idr
, minor
)) {
1738 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1743 idr_remove(&_minor_idr
, m
);
1749 spin_unlock(&_minor_lock
);
1753 static int next_free_minor(int *minor
)
1757 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1761 spin_lock(&_minor_lock
);
1763 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1767 if (m
>= (1 << MINORBITS
)) {
1768 idr_remove(&_minor_idr
, m
);
1776 spin_unlock(&_minor_lock
);
1780 static const struct block_device_operations dm_blk_dops
;
1782 static void dm_wq_work(struct work_struct
*work
);
1784 static void dm_init_md_queue(struct mapped_device
*md
)
1787 * Request-based dm devices cannot be stacked on top of bio-based dm
1788 * devices. The type of this dm device has not been decided yet.
1789 * The type is decided at the first table loading time.
1790 * To prevent problematic device stacking, clear the queue flag
1791 * for request stacking support until then.
1793 * This queue is new, so no concurrency on the queue_flags.
1795 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1797 md
->queue
->queuedata
= md
;
1798 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1799 md
->queue
->backing_dev_info
.congested_data
= md
;
1800 blk_queue_make_request(md
->queue
, dm_request
);
1801 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1802 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1803 blk_queue_flush(md
->queue
, REQ_FLUSH
| REQ_FUA
);
1807 * Allocate and initialise a blank device with a given minor.
1809 static struct mapped_device
*alloc_dev(int minor
)
1812 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1816 DMWARN("unable to allocate device, out of memory.");
1820 if (!try_module_get(THIS_MODULE
))
1821 goto bad_module_get
;
1823 /* get a minor number for the dev */
1824 if (minor
== DM_ANY_MINOR
)
1825 r
= next_free_minor(&minor
);
1827 r
= specific_minor(minor
);
1831 md
->type
= DM_TYPE_NONE
;
1832 init_rwsem(&md
->io_lock
);
1833 mutex_init(&md
->suspend_lock
);
1834 mutex_init(&md
->type_lock
);
1835 spin_lock_init(&md
->deferred_lock
);
1836 rwlock_init(&md
->map_lock
);
1837 atomic_set(&md
->holders
, 1);
1838 atomic_set(&md
->open_count
, 0);
1839 atomic_set(&md
->event_nr
, 0);
1840 atomic_set(&md
->uevent_seq
, 0);
1841 INIT_LIST_HEAD(&md
->uevent_list
);
1842 spin_lock_init(&md
->uevent_lock
);
1844 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1848 dm_init_md_queue(md
);
1850 md
->disk
= alloc_disk(1);
1854 atomic_set(&md
->pending
[0], 0);
1855 atomic_set(&md
->pending
[1], 0);
1856 init_waitqueue_head(&md
->wait
);
1857 INIT_WORK(&md
->work
, dm_wq_work
);
1858 init_waitqueue_head(&md
->eventq
);
1860 md
->disk
->major
= _major
;
1861 md
->disk
->first_minor
= minor
;
1862 md
->disk
->fops
= &dm_blk_dops
;
1863 md
->disk
->queue
= md
->queue
;
1864 md
->disk
->private_data
= md
;
1865 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1867 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1869 md
->wq
= alloc_workqueue("kdmflush",
1870 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1874 md
->bdev
= bdget_disk(md
->disk
, 0);
1878 bio_init(&md
->flush_bio
);
1879 md
->flush_bio
.bi_bdev
= md
->bdev
;
1880 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1882 /* Populate the mapping, nobody knows we exist yet */
1883 spin_lock(&_minor_lock
);
1884 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1885 spin_unlock(&_minor_lock
);
1887 BUG_ON(old_md
!= MINOR_ALLOCED
);
1892 destroy_workqueue(md
->wq
);
1894 del_gendisk(md
->disk
);
1897 blk_cleanup_queue(md
->queue
);
1901 module_put(THIS_MODULE
);
1907 static void unlock_fs(struct mapped_device
*md
);
1909 static void free_dev(struct mapped_device
*md
)
1911 int minor
= MINOR(disk_devt(md
->disk
));
1915 destroy_workqueue(md
->wq
);
1917 mempool_destroy(md
->tio_pool
);
1919 mempool_destroy(md
->io_pool
);
1921 bioset_free(md
->bs
);
1922 blk_integrity_unregister(md
->disk
);
1923 del_gendisk(md
->disk
);
1926 spin_lock(&_minor_lock
);
1927 md
->disk
->private_data
= NULL
;
1928 spin_unlock(&_minor_lock
);
1931 blk_cleanup_queue(md
->queue
);
1932 module_put(THIS_MODULE
);
1936 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1938 struct dm_md_mempools
*p
;
1940 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1941 /* the md already has necessary mempools */
1944 p
= dm_table_get_md_mempools(t
);
1945 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1947 md
->io_pool
= p
->io_pool
;
1949 md
->tio_pool
= p
->tio_pool
;
1955 /* mempool bind completed, now no need any mempools in the table */
1956 dm_table_free_md_mempools(t
);
1960 * Bind a table to the device.
1962 static void event_callback(void *context
)
1964 unsigned long flags
;
1966 struct mapped_device
*md
= (struct mapped_device
*) context
;
1968 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1969 list_splice_init(&md
->uevent_list
, &uevents
);
1970 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1972 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1974 atomic_inc(&md
->event_nr
);
1975 wake_up(&md
->eventq
);
1979 * Protected by md->suspend_lock obtained by dm_swap_table().
1981 static void __set_size(struct mapped_device
*md
, sector_t size
)
1983 set_capacity(md
->disk
, size
);
1985 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1989 * Returns old map, which caller must destroy.
1991 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
1992 struct queue_limits
*limits
)
1994 struct dm_table
*old_map
;
1995 struct request_queue
*q
= md
->queue
;
1997 unsigned long flags
;
1999 size
= dm_table_get_size(t
);
2002 * Wipe any geometry if the size of the table changed.
2004 if (size
!= get_capacity(md
->disk
))
2005 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2007 __set_size(md
, size
);
2009 dm_table_event_callback(t
, event_callback
, md
);
2012 * The queue hasn't been stopped yet, if the old table type wasn't
2013 * for request-based during suspension. So stop it to prevent
2014 * I/O mapping before resume.
2015 * This must be done before setting the queue restrictions,
2016 * because request-based dm may be run just after the setting.
2018 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2021 __bind_mempools(md
, t
);
2023 write_lock_irqsave(&md
->map_lock
, flags
);
2026 dm_table_set_restrictions(t
, q
, limits
);
2027 write_unlock_irqrestore(&md
->map_lock
, flags
);
2033 * Returns unbound table for the caller to free.
2035 static struct dm_table
*__unbind(struct mapped_device
*md
)
2037 struct dm_table
*map
= md
->map
;
2038 unsigned long flags
;
2043 dm_table_event_callback(map
, NULL
, NULL
);
2044 write_lock_irqsave(&md
->map_lock
, flags
);
2046 write_unlock_irqrestore(&md
->map_lock
, flags
);
2052 * Constructor for a new device.
2054 int dm_create(int minor
, struct mapped_device
**result
)
2056 struct mapped_device
*md
;
2058 md
= alloc_dev(minor
);
2069 * Functions to manage md->type.
2070 * All are required to hold md->type_lock.
2072 void dm_lock_md_type(struct mapped_device
*md
)
2074 mutex_lock(&md
->type_lock
);
2077 void dm_unlock_md_type(struct mapped_device
*md
)
2079 mutex_unlock(&md
->type_lock
);
2082 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2087 unsigned dm_get_md_type(struct mapped_device
*md
)
2093 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2095 static int dm_init_request_based_queue(struct mapped_device
*md
)
2097 struct request_queue
*q
= NULL
;
2099 if (md
->queue
->elevator
)
2102 /* Fully initialize the queue */
2103 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2108 md
->saved_make_request_fn
= md
->queue
->make_request_fn
;
2109 dm_init_md_queue(md
);
2110 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2111 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2112 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2114 elv_register_queue(md
->queue
);
2120 * Setup the DM device's queue based on md's type
2122 int dm_setup_md_queue(struct mapped_device
*md
)
2124 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2125 !dm_init_request_based_queue(md
)) {
2126 DMWARN("Cannot initialize queue for request-based mapped device");
2133 static struct mapped_device
*dm_find_md(dev_t dev
)
2135 struct mapped_device
*md
;
2136 unsigned minor
= MINOR(dev
);
2138 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2141 spin_lock(&_minor_lock
);
2143 md
= idr_find(&_minor_idr
, minor
);
2144 if (md
&& (md
== MINOR_ALLOCED
||
2145 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2146 dm_deleting_md(md
) ||
2147 test_bit(DMF_FREEING
, &md
->flags
))) {
2153 spin_unlock(&_minor_lock
);
2158 struct mapped_device
*dm_get_md(dev_t dev
)
2160 struct mapped_device
*md
= dm_find_md(dev
);
2168 void *dm_get_mdptr(struct mapped_device
*md
)
2170 return md
->interface_ptr
;
2173 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2175 md
->interface_ptr
= ptr
;
2178 void dm_get(struct mapped_device
*md
)
2180 atomic_inc(&md
->holders
);
2181 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2184 const char *dm_device_name(struct mapped_device
*md
)
2188 EXPORT_SYMBOL_GPL(dm_device_name
);
2190 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2192 struct dm_table
*map
;
2196 spin_lock(&_minor_lock
);
2197 map
= dm_get_live_table(md
);
2198 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2199 set_bit(DMF_FREEING
, &md
->flags
);
2200 spin_unlock(&_minor_lock
);
2202 if (!dm_suspended_md(md
)) {
2203 dm_table_presuspend_targets(map
);
2204 dm_table_postsuspend_targets(map
);
2208 * Rare, but there may be I/O requests still going to complete,
2209 * for example. Wait for all references to disappear.
2210 * No one should increment the reference count of the mapped_device,
2211 * after the mapped_device state becomes DMF_FREEING.
2214 while (atomic_read(&md
->holders
))
2216 else if (atomic_read(&md
->holders
))
2217 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2218 dm_device_name(md
), atomic_read(&md
->holders
));
2222 dm_table_destroy(__unbind(md
));
2226 void dm_destroy(struct mapped_device
*md
)
2228 __dm_destroy(md
, true);
2231 void dm_destroy_immediate(struct mapped_device
*md
)
2233 __dm_destroy(md
, false);
2236 void dm_put(struct mapped_device
*md
)
2238 atomic_dec(&md
->holders
);
2240 EXPORT_SYMBOL_GPL(dm_put
);
2242 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2245 DECLARE_WAITQUEUE(wait
, current
);
2247 add_wait_queue(&md
->wait
, &wait
);
2250 set_current_state(interruptible
);
2253 if (!md_in_flight(md
))
2256 if (interruptible
== TASK_INTERRUPTIBLE
&&
2257 signal_pending(current
)) {
2264 set_current_state(TASK_RUNNING
);
2266 remove_wait_queue(&md
->wait
, &wait
);
2272 * Process the deferred bios
2274 static void dm_wq_work(struct work_struct
*work
)
2276 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2280 down_read(&md
->io_lock
);
2282 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2283 spin_lock_irq(&md
->deferred_lock
);
2284 c
= bio_list_pop(&md
->deferred
);
2285 spin_unlock_irq(&md
->deferred_lock
);
2290 up_read(&md
->io_lock
);
2292 if (dm_request_based(md
))
2293 generic_make_request(c
);
2295 __split_and_process_bio(md
, c
);
2297 down_read(&md
->io_lock
);
2300 up_read(&md
->io_lock
);
2303 static void dm_queue_flush(struct mapped_device
*md
)
2305 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2306 smp_mb__after_clear_bit();
2307 queue_work(md
->wq
, &md
->work
);
2311 * Swap in a new table, returning the old one for the caller to destroy.
2313 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2315 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2316 struct queue_limits limits
;
2319 mutex_lock(&md
->suspend_lock
);
2321 /* device must be suspended */
2322 if (!dm_suspended_md(md
))
2325 r
= dm_calculate_queue_limits(table
, &limits
);
2331 map
= __bind(md
, table
, &limits
);
2334 mutex_unlock(&md
->suspend_lock
);
2339 * Functions to lock and unlock any filesystem running on the
2342 static int lock_fs(struct mapped_device
*md
)
2346 WARN_ON(md
->frozen_sb
);
2348 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2349 if (IS_ERR(md
->frozen_sb
)) {
2350 r
= PTR_ERR(md
->frozen_sb
);
2351 md
->frozen_sb
= NULL
;
2355 set_bit(DMF_FROZEN
, &md
->flags
);
2360 static void unlock_fs(struct mapped_device
*md
)
2362 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2365 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2366 md
->frozen_sb
= NULL
;
2367 clear_bit(DMF_FROZEN
, &md
->flags
);
2371 * We need to be able to change a mapping table under a mounted
2372 * filesystem. For example we might want to move some data in
2373 * the background. Before the table can be swapped with
2374 * dm_bind_table, dm_suspend must be called to flush any in
2375 * flight bios and ensure that any further io gets deferred.
2378 * Suspend mechanism in request-based dm.
2380 * 1. Flush all I/Os by lock_fs() if needed.
2381 * 2. Stop dispatching any I/O by stopping the request_queue.
2382 * 3. Wait for all in-flight I/Os to be completed or requeued.
2384 * To abort suspend, start the request_queue.
2386 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2388 struct dm_table
*map
= NULL
;
2390 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2391 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2393 mutex_lock(&md
->suspend_lock
);
2395 if (dm_suspended_md(md
)) {
2400 map
= dm_get_live_table(md
);
2403 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2404 * This flag is cleared before dm_suspend returns.
2407 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2409 /* This does not get reverted if there's an error later. */
2410 dm_table_presuspend_targets(map
);
2413 * Flush I/O to the device.
2414 * Any I/O submitted after lock_fs() may not be flushed.
2415 * noflush takes precedence over do_lockfs.
2416 * (lock_fs() flushes I/Os and waits for them to complete.)
2418 if (!noflush
&& do_lockfs
) {
2425 * Here we must make sure that no processes are submitting requests
2426 * to target drivers i.e. no one may be executing
2427 * __split_and_process_bio. This is called from dm_request and
2430 * To get all processes out of __split_and_process_bio in dm_request,
2431 * we take the write lock. To prevent any process from reentering
2432 * __split_and_process_bio from dm_request and quiesce the thread
2433 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2434 * flush_workqueue(md->wq).
2436 down_write(&md
->io_lock
);
2437 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2438 up_write(&md
->io_lock
);
2441 * Stop md->queue before flushing md->wq in case request-based
2442 * dm defers requests to md->wq from md->queue.
2444 if (dm_request_based(md
))
2445 stop_queue(md
->queue
);
2447 flush_workqueue(md
->wq
);
2450 * At this point no more requests are entering target request routines.
2451 * We call dm_wait_for_completion to wait for all existing requests
2454 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2456 down_write(&md
->io_lock
);
2458 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2459 up_write(&md
->io_lock
);
2461 /* were we interrupted ? */
2465 if (dm_request_based(md
))
2466 start_queue(md
->queue
);
2469 goto out
; /* pushback list is already flushed, so skip flush */
2473 * If dm_wait_for_completion returned 0, the device is completely
2474 * quiescent now. There is no request-processing activity. All new
2475 * requests are being added to md->deferred list.
2478 set_bit(DMF_SUSPENDED
, &md
->flags
);
2480 dm_table_postsuspend_targets(map
);
2486 mutex_unlock(&md
->suspend_lock
);
2490 int dm_resume(struct mapped_device
*md
)
2493 struct dm_table
*map
= NULL
;
2495 mutex_lock(&md
->suspend_lock
);
2496 if (!dm_suspended_md(md
))
2499 map
= dm_get_live_table(md
);
2500 if (!map
|| !dm_table_get_size(map
))
2503 r
= dm_table_resume_targets(map
);
2510 * Flushing deferred I/Os must be done after targets are resumed
2511 * so that mapping of targets can work correctly.
2512 * Request-based dm is queueing the deferred I/Os in its request_queue.
2514 if (dm_request_based(md
))
2515 start_queue(md
->queue
);
2519 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2524 mutex_unlock(&md
->suspend_lock
);
2529 /*-----------------------------------------------------------------
2530 * Event notification.
2531 *---------------------------------------------------------------*/
2532 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2535 char udev_cookie
[DM_COOKIE_LENGTH
];
2536 char *envp
[] = { udev_cookie
, NULL
};
2539 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2541 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2542 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2543 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2548 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2550 return atomic_add_return(1, &md
->uevent_seq
);
2553 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2555 return atomic_read(&md
->event_nr
);
2558 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2560 return wait_event_interruptible(md
->eventq
,
2561 (event_nr
!= atomic_read(&md
->event_nr
)));
2564 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2566 unsigned long flags
;
2568 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2569 list_add(elist
, &md
->uevent_list
);
2570 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2574 * The gendisk is only valid as long as you have a reference
2577 struct gendisk
*dm_disk(struct mapped_device
*md
)
2582 struct kobject
*dm_kobject(struct mapped_device
*md
)
2588 * struct mapped_device should not be exported outside of dm.c
2589 * so use this check to verify that kobj is part of md structure
2591 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2593 struct mapped_device
*md
;
2595 md
= container_of(kobj
, struct mapped_device
, kobj
);
2596 if (&md
->kobj
!= kobj
)
2599 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2607 int dm_suspended_md(struct mapped_device
*md
)
2609 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2612 int dm_suspended(struct dm_target
*ti
)
2614 return dm_suspended_md(dm_table_get_md(ti
->table
));
2616 EXPORT_SYMBOL_GPL(dm_suspended
);
2618 int dm_noflush_suspending(struct dm_target
*ti
)
2620 return __noflush_suspending(dm_table_get_md(ti
->table
));
2622 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2624 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
)
2626 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2627 unsigned int pool_size
= (type
== DM_TYPE_BIO_BASED
) ? 16 : MIN_IOS
;
2632 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2633 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2634 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2635 if (!pools
->io_pool
)
2636 goto free_pools_and_out
;
2638 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2639 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2640 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2641 if (!pools
->tio_pool
)
2642 goto free_io_pool_and_out
;
2644 pools
->bs
= bioset_create(pool_size
, 0);
2646 goto free_tio_pool_and_out
;
2648 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2649 goto free_bioset_and_out
;
2653 free_bioset_and_out
:
2654 bioset_free(pools
->bs
);
2656 free_tio_pool_and_out
:
2657 mempool_destroy(pools
->tio_pool
);
2659 free_io_pool_and_out
:
2660 mempool_destroy(pools
->io_pool
);
2668 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2674 mempool_destroy(pools
->io_pool
);
2676 if (pools
->tio_pool
)
2677 mempool_destroy(pools
->tio_pool
);
2680 bioset_free(pools
->bs
);
2685 static const struct block_device_operations dm_blk_dops
= {
2686 .open
= dm_blk_open
,
2687 .release
= dm_blk_close
,
2688 .ioctl
= dm_blk_ioctl
,
2689 .getgeo
= dm_blk_getgeo
,
2690 .owner
= THIS_MODULE
2693 EXPORT_SYMBOL(dm_get_mapinfo
);
2698 module_init(dm_init
);
2699 module_exit(dm_exit
);
2701 module_param(major
, uint
, 0);
2702 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2703 MODULE_DESCRIPTION(DM_NAME
" driver");
2704 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2705 MODULE_LICENSE("GPL");