time: ntp: simplify ntp_update_offset_fll()
[linux-2.6/x86.git] / kernel / time / ntp.c
blob5202dde2f0af59d890d0ae086df77cb63c34776f
1 /*
2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
19 * NTP timekeeping variables:
22 /* USER_HZ period (usecs): */
23 unsigned long tick_usec = TICK_USEC;
25 /* ACTHZ period (nsecs): */
26 unsigned long tick_nsec;
28 u64 tick_length;
29 static u64 tick_length_base;
31 static struct hrtimer leap_timer;
33 #define MAX_TICKADJ 500LL /* usecs */
34 #define MAX_TICKADJ_SCALED \
35 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
38 * phase-lock loop variables
42 * clock synchronization status
44 * (TIME_ERROR prevents overwriting the CMOS clock)
46 static int time_state = TIME_OK;
48 /* clock status bits: */
49 int time_status = STA_UNSYNC;
51 /* TAI offset (secs): */
52 static long time_tai;
54 /* time adjustment (nsecs): */
55 static s64 time_offset;
57 /* pll time constant: */
58 static long time_constant = 2;
60 /* maximum error (usecs): */
61 long time_maxerror = NTP_PHASE_LIMIT;
63 /* estimated error (usecs): */
64 long time_esterror = NTP_PHASE_LIMIT;
66 /* frequency offset (scaled nsecs/secs): */
67 static s64 time_freq;
69 /* time at last adjustment (secs): */
70 static long time_reftime;
72 long time_adjust;
74 static long ntp_tick_adj;
77 * NTP methods:
81 * Update (tick_length, tick_length_base, tick_nsec), based
82 * on (tick_usec, ntp_tick_adj, time_freq):
84 static void ntp_update_frequency(void)
86 u64 second_length;
87 u64 new_base;
89 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
90 << NTP_SCALE_SHIFT;
92 second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
93 second_length += time_freq;
95 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
96 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
99 * Don't wait for the next second_overflow, apply
100 * the change to the tick length immediately:
102 tick_length += new_base - tick_length_base;
103 tick_length_base = new_base;
106 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
108 time_status &= ~STA_MODE;
110 if (secs < MINSEC)
111 return 0;
113 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
114 return 0;
116 time_status |= STA_MODE;
118 return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
121 static void ntp_update_offset(long offset)
123 s64 freq_adj;
124 s64 offset64;
125 long secs;
127 if (!(time_status & STA_PLL))
128 return;
130 if (!(time_status & STA_NANO))
131 offset *= NSEC_PER_USEC;
134 * Scale the phase adjustment and
135 * clamp to the operating range.
137 offset = min(offset, MAXPHASE);
138 offset = max(offset, -MAXPHASE);
141 * Select how the frequency is to be controlled
142 * and in which mode (PLL or FLL).
144 if (time_status & STA_FREQHOLD || time_reftime == 0)
145 time_reftime = xtime.tv_sec;
147 secs = xtime.tv_sec - time_reftime;
148 time_reftime = xtime.tv_sec;
150 offset64 = offset;
151 freq_adj = (offset64 * secs) <<
152 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
154 freq_adj += ntp_update_offset_fll(offset64, secs);
156 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
158 time_freq = max(freq_adj, -MAXFREQ_SCALED);
160 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
164 * ntp_clear - Clears the NTP state variables
166 * Must be called while holding a write on the xtime_lock
168 void ntp_clear(void)
170 time_adjust = 0; /* stop active adjtime() */
171 time_status |= STA_UNSYNC;
172 time_maxerror = NTP_PHASE_LIMIT;
173 time_esterror = NTP_PHASE_LIMIT;
175 ntp_update_frequency();
177 tick_length = tick_length_base;
178 time_offset = 0;
182 * Leap second processing. If in leap-insert state at the end of the
183 * day, the system clock is set back one second; if in leap-delete
184 * state, the system clock is set ahead one second.
186 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
188 enum hrtimer_restart res = HRTIMER_NORESTART;
190 write_seqlock(&xtime_lock);
192 switch (time_state) {
193 case TIME_OK:
194 break;
195 case TIME_INS:
196 xtime.tv_sec--;
197 wall_to_monotonic.tv_sec++;
198 time_state = TIME_OOP;
199 printk(KERN_NOTICE
200 "Clock: inserting leap second 23:59:60 UTC\n");
201 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
202 res = HRTIMER_RESTART;
203 break;
204 case TIME_DEL:
205 xtime.tv_sec++;
206 time_tai--;
207 wall_to_monotonic.tv_sec--;
208 time_state = TIME_WAIT;
209 printk(KERN_NOTICE
210 "Clock: deleting leap second 23:59:59 UTC\n");
211 break;
212 case TIME_OOP:
213 time_tai++;
214 time_state = TIME_WAIT;
215 /* fall through */
216 case TIME_WAIT:
217 if (!(time_status & (STA_INS | STA_DEL)))
218 time_state = TIME_OK;
219 break;
221 update_vsyscall(&xtime, clock);
223 write_sequnlock(&xtime_lock);
225 return res;
229 * this routine handles the overflow of the microsecond field
231 * The tricky bits of code to handle the accurate clock support
232 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
233 * They were originally developed for SUN and DEC kernels.
234 * All the kudos should go to Dave for this stuff.
236 void second_overflow(void)
238 s64 time_adj;
240 /* Bump the maxerror field */
241 time_maxerror += MAXFREQ / NSEC_PER_USEC;
242 if (time_maxerror > NTP_PHASE_LIMIT) {
243 time_maxerror = NTP_PHASE_LIMIT;
244 time_status |= STA_UNSYNC;
248 * Compute the phase adjustment for the next second. The offset is
249 * reduced by a fixed factor times the time constant.
251 tick_length = tick_length_base;
252 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
253 time_offset -= time_adj;
254 tick_length += time_adj;
256 if (!time_adjust)
257 return;
259 if (time_adjust > MAX_TICKADJ) {
260 time_adjust -= MAX_TICKADJ;
261 tick_length += MAX_TICKADJ_SCALED;
262 return;
265 if (time_adjust < -MAX_TICKADJ) {
266 time_adjust += MAX_TICKADJ;
267 tick_length -= MAX_TICKADJ_SCALED;
268 return;
271 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
272 << NTP_SCALE_SHIFT;
273 time_adjust = 0;
276 #ifdef CONFIG_GENERIC_CMOS_UPDATE
278 /* Disable the cmos update - used by virtualization and embedded */
279 int no_sync_cmos_clock __read_mostly;
281 static void sync_cmos_clock(struct work_struct *work);
283 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
285 static void sync_cmos_clock(struct work_struct *work)
287 struct timespec now, next;
288 int fail = 1;
291 * If we have an externally synchronized Linux clock, then update
292 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
293 * called as close as possible to 500 ms before the new second starts.
294 * This code is run on a timer. If the clock is set, that timer
295 * may not expire at the correct time. Thus, we adjust...
297 if (!ntp_synced()) {
299 * Not synced, exit, do not restart a timer (if one is
300 * running, let it run out).
302 return;
305 getnstimeofday(&now);
306 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
307 fail = update_persistent_clock(now);
309 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
310 if (next.tv_nsec <= 0)
311 next.tv_nsec += NSEC_PER_SEC;
313 if (!fail)
314 next.tv_sec = 659;
315 else
316 next.tv_sec = 0;
318 if (next.tv_nsec >= NSEC_PER_SEC) {
319 next.tv_sec++;
320 next.tv_nsec -= NSEC_PER_SEC;
322 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
325 static void notify_cmos_timer(void)
327 if (!no_sync_cmos_clock)
328 schedule_delayed_work(&sync_cmos_work, 0);
331 #else
332 static inline void notify_cmos_timer(void) { }
333 #endif
336 * adjtimex mainly allows reading (and writing, if superuser) of
337 * kernel time-keeping variables. used by xntpd.
339 int do_adjtimex(struct timex *txc)
341 struct timespec ts;
342 int result;
344 /* Validate the data before disabling interrupts */
345 if (txc->modes & ADJ_ADJTIME) {
346 /* singleshot must not be used with any other mode bits */
347 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
348 return -EINVAL;
349 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
350 !capable(CAP_SYS_TIME))
351 return -EPERM;
352 } else {
353 /* In order to modify anything, you gotta be super-user! */
354 if (txc->modes && !capable(CAP_SYS_TIME))
355 return -EPERM;
358 * if the quartz is off by more than 10% then
359 * something is VERY wrong!
361 if (txc->modes & ADJ_TICK &&
362 (txc->tick < 900000/USER_HZ ||
363 txc->tick > 1100000/USER_HZ))
364 return -EINVAL;
366 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
367 hrtimer_cancel(&leap_timer);
370 getnstimeofday(&ts);
372 write_seqlock_irq(&xtime_lock);
374 /* If there are input parameters, then process them */
375 if (txc->modes & ADJ_ADJTIME) {
376 long save_adjust = time_adjust;
378 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
379 /* adjtime() is independent from ntp_adjtime() */
380 time_adjust = txc->offset;
381 ntp_update_frequency();
383 txc->offset = save_adjust;
384 goto adj_done;
386 if (txc->modes) {
387 long sec;
389 if (txc->modes & ADJ_STATUS) {
390 if ((time_status & STA_PLL) &&
391 !(txc->status & STA_PLL)) {
392 time_state = TIME_OK;
393 time_status = STA_UNSYNC;
395 /* only set allowed bits */
396 time_status &= STA_RONLY;
397 time_status |= txc->status & ~STA_RONLY;
399 switch (time_state) {
400 case TIME_OK:
401 start_timer:
402 sec = ts.tv_sec;
403 if (time_status & STA_INS) {
404 time_state = TIME_INS;
405 sec += 86400 - sec % 86400;
406 hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
407 } else if (time_status & STA_DEL) {
408 time_state = TIME_DEL;
409 sec += 86400 - (sec + 1) % 86400;
410 hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
412 break;
413 case TIME_INS:
414 case TIME_DEL:
415 time_state = TIME_OK;
416 goto start_timer;
417 break;
418 case TIME_WAIT:
419 if (!(time_status & (STA_INS | STA_DEL)))
420 time_state = TIME_OK;
421 break;
422 case TIME_OOP:
423 hrtimer_restart(&leap_timer);
424 break;
428 if (txc->modes & ADJ_NANO)
429 time_status |= STA_NANO;
430 if (txc->modes & ADJ_MICRO)
431 time_status &= ~STA_NANO;
433 if (txc->modes & ADJ_FREQUENCY) {
434 time_freq = (s64)txc->freq * PPM_SCALE;
435 time_freq = min(time_freq, MAXFREQ_SCALED);
436 time_freq = max(time_freq, -MAXFREQ_SCALED);
439 if (txc->modes & ADJ_MAXERROR)
440 time_maxerror = txc->maxerror;
441 if (txc->modes & ADJ_ESTERROR)
442 time_esterror = txc->esterror;
444 if (txc->modes & ADJ_TIMECONST) {
445 time_constant = txc->constant;
446 if (!(time_status & STA_NANO))
447 time_constant += 4;
448 time_constant = min(time_constant, (long)MAXTC);
449 time_constant = max(time_constant, 0l);
452 if (txc->modes & ADJ_TAI && txc->constant > 0)
453 time_tai = txc->constant;
455 if (txc->modes & ADJ_OFFSET)
456 ntp_update_offset(txc->offset);
457 if (txc->modes & ADJ_TICK)
458 tick_usec = txc->tick;
460 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
461 ntp_update_frequency();
464 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
465 NTP_SCALE_SHIFT);
466 if (!(time_status & STA_NANO))
467 txc->offset /= NSEC_PER_USEC;
469 adj_done:
470 result = time_state; /* mostly `TIME_OK' */
471 if (time_status & (STA_UNSYNC|STA_CLOCKERR))
472 result = TIME_ERROR;
474 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
475 (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT);
476 txc->maxerror = time_maxerror;
477 txc->esterror = time_esterror;
478 txc->status = time_status;
479 txc->constant = time_constant;
480 txc->precision = 1;
481 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
482 txc->tick = tick_usec;
483 txc->tai = time_tai;
485 /* PPS is not implemented, so these are zero */
486 txc->ppsfreq = 0;
487 txc->jitter = 0;
488 txc->shift = 0;
489 txc->stabil = 0;
490 txc->jitcnt = 0;
491 txc->calcnt = 0;
492 txc->errcnt = 0;
493 txc->stbcnt = 0;
494 write_sequnlock_irq(&xtime_lock);
496 txc->time.tv_sec = ts.tv_sec;
497 txc->time.tv_usec = ts.tv_nsec;
498 if (!(time_status & STA_NANO))
499 txc->time.tv_usec /= NSEC_PER_USEC;
501 notify_cmos_timer();
503 return result;
506 static int __init ntp_tick_adj_setup(char *str)
508 ntp_tick_adj = simple_strtol(str, NULL, 0);
509 return 1;
512 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
514 void __init ntp_init(void)
516 ntp_clear();
517 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
518 leap_timer.function = ntp_leap_second;