x86: tsc prevent time going backwards
[linux-2.6/x86.git] / arch / x86 / kernel / tsc_64.c
blob01fc9f0c39e2031e403bbf2174eaeb18d24a483c
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/interrupt.h>
4 #include <linux/init.h>
5 #include <linux/clocksource.h>
6 #include <linux/time.h>
7 #include <linux/acpi.h>
8 #include <linux/cpufreq.h>
9 #include <linux/acpi_pmtmr.h>
11 #include <asm/hpet.h>
12 #include <asm/timex.h>
13 #include <asm/timer.h>
14 #include <asm/vgtod.h>
16 static int notsc __initdata = 0;
18 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
19 EXPORT_SYMBOL(cpu_khz);
20 unsigned int tsc_khz;
21 EXPORT_SYMBOL(tsc_khz);
23 /* Accelerators for sched_clock()
24 * convert from cycles(64bits) => nanoseconds (64bits)
25 * basic equation:
26 * ns = cycles / (freq / ns_per_sec)
27 * ns = cycles * (ns_per_sec / freq)
28 * ns = cycles * (10^9 / (cpu_khz * 10^3))
29 * ns = cycles * (10^6 / cpu_khz)
31 * Then we use scaling math (suggested by george@mvista.com) to get:
32 * ns = cycles * (10^6 * SC / cpu_khz) / SC
33 * ns = cycles * cyc2ns_scale / SC
35 * And since SC is a constant power of two, we can convert the div
36 * into a shift.
38 * We can use khz divisor instead of mhz to keep a better precision, since
39 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
40 * (mathieu.desnoyers@polymtl.ca)
42 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
44 DEFINE_PER_CPU(unsigned long, cyc2ns);
46 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
48 unsigned long flags, prev_scale, *scale;
49 unsigned long long tsc_now, ns_now;
51 local_irq_save(flags);
52 sched_clock_idle_sleep_event();
54 scale = &per_cpu(cyc2ns, cpu);
56 rdtscll(tsc_now);
57 ns_now = __cycles_2_ns(tsc_now);
59 prev_scale = *scale;
60 if (cpu_khz)
61 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
63 sched_clock_idle_wakeup_event(0);
64 local_irq_restore(flags);
67 unsigned long long native_sched_clock(void)
69 unsigned long a = 0;
71 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
72 * which means it is not completely exact and may not be monotonous
73 * between CPUs. But the errors should be too small to matter for
74 * scheduling purposes.
77 rdtscll(a);
78 return cycles_2_ns(a);
81 /* We need to define a real function for sched_clock, to override the
82 weak default version */
83 #ifdef CONFIG_PARAVIRT
84 unsigned long long sched_clock(void)
86 return paravirt_sched_clock();
88 #else
89 unsigned long long
90 sched_clock(void) __attribute__((alias("native_sched_clock")));
91 #endif
94 static int tsc_unstable;
96 int check_tsc_unstable(void)
98 return tsc_unstable;
100 EXPORT_SYMBOL_GPL(check_tsc_unstable);
102 #ifdef CONFIG_CPU_FREQ
104 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
105 * changes.
107 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
108 * not that important because current Opteron setups do not support
109 * scaling on SMP anyroads.
111 * Should fix up last_tsc too. Currently gettimeofday in the
112 * first tick after the change will be slightly wrong.
115 static unsigned int ref_freq;
116 static unsigned long loops_per_jiffy_ref;
117 static unsigned long tsc_khz_ref;
119 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
120 void *data)
122 struct cpufreq_freqs *freq = data;
123 unsigned long *lpj, dummy;
125 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
126 return 0;
128 lpj = &dummy;
129 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
130 #ifdef CONFIG_SMP
131 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
132 #else
133 lpj = &boot_cpu_data.loops_per_jiffy;
134 #endif
136 if (!ref_freq) {
137 ref_freq = freq->old;
138 loops_per_jiffy_ref = *lpj;
139 tsc_khz_ref = tsc_khz;
141 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
142 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
143 (val == CPUFREQ_RESUMECHANGE)) {
144 *lpj =
145 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
147 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
148 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
149 mark_tsc_unstable("cpufreq changes");
152 preempt_disable();
153 set_cyc2ns_scale(tsc_khz_ref, smp_processor_id());
154 preempt_enable();
156 return 0;
159 static struct notifier_block time_cpufreq_notifier_block = {
160 .notifier_call = time_cpufreq_notifier
163 static int __init cpufreq_tsc(void)
165 cpufreq_register_notifier(&time_cpufreq_notifier_block,
166 CPUFREQ_TRANSITION_NOTIFIER);
167 return 0;
170 core_initcall(cpufreq_tsc);
172 #endif
174 #define MAX_RETRIES 5
175 #define SMI_TRESHOLD 50000
178 * Read TSC and the reference counters. Take care of SMI disturbance
180 static unsigned long __init tsc_read_refs(unsigned long *pm,
181 unsigned long *hpet)
183 unsigned long t1, t2;
184 int i;
186 for (i = 0; i < MAX_RETRIES; i++) {
187 t1 = get_cycles();
188 if (hpet)
189 *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
190 else
191 *pm = acpi_pm_read_early();
192 t2 = get_cycles();
193 if ((t2 - t1) < SMI_TRESHOLD)
194 return t2;
196 return ULONG_MAX;
200 * tsc_calibrate - calibrate the tsc on boot
202 void __init tsc_calibrate(void)
204 unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2;
205 int hpet = is_hpet_enabled(), cpu;
207 local_irq_save(flags);
209 tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
211 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
213 outb(0xb0, 0x43);
214 outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
215 outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
216 tr1 = get_cycles();
217 while ((inb(0x61) & 0x20) == 0);
218 tr2 = get_cycles();
220 tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
222 local_irq_restore(flags);
225 * Preset the result with the raw and inaccurate PIT
226 * calibration value
228 tsc_khz = (tr2 - tr1) / 50;
230 /* hpet or pmtimer available ? */
231 if (!hpet && !pm1 && !pm2) {
232 printk(KERN_INFO "TSC calibrated against PIT\n");
233 return;
236 /* Check, whether the sampling was disturbed by an SMI */
237 if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) {
238 printk(KERN_WARNING "TSC calibration disturbed by SMI, "
239 "using PIT calibration result\n");
240 return;
243 tsc2 = (tsc2 - tsc1) * 1000000L;
245 if (hpet) {
246 printk(KERN_INFO "TSC calibrated against HPET\n");
247 if (hpet2 < hpet1)
248 hpet2 += 0x100000000;
249 hpet2 -= hpet1;
250 tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000;
251 } else {
252 printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
253 if (pm2 < pm1)
254 pm2 += ACPI_PM_OVRRUN;
255 pm2 -= pm1;
256 tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC;
259 tsc_khz = tsc2 / tsc1;
261 for_each_possible_cpu(cpu)
262 set_cyc2ns_scale(tsc_khz, cpu);
266 * Make an educated guess if the TSC is trustworthy and synchronized
267 * over all CPUs.
269 __cpuinit int unsynchronized_tsc(void)
271 if (tsc_unstable)
272 return 1;
274 #ifdef CONFIG_SMP
275 if (apic_is_clustered_box())
276 return 1;
277 #endif
279 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
280 return 0;
282 /* Assume multi socket systems are not synchronized */
283 return num_present_cpus() > 1;
286 int __init notsc_setup(char *s)
288 notsc = 1;
289 return 1;
292 __setup("notsc", notsc_setup);
294 static struct clocksource clocksource_tsc;
297 * We compare the TSC to the cycle_last value in the clocksource
298 * structure to avoid a nasty time-warp. This can be observed in a
299 * very small window right after one CPU updated cycle_last under
300 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
301 * is smaller than the cycle_last reference value due to a TSC which
302 * is slighty behind. This delta is nowhere else observable, but in
303 * that case it results in a forward time jump in the range of hours
304 * due to the unsigned delta calculation of the time keeping core
305 * code, which is necessary to support wrapping clocksources like pm
306 * timer.
308 static cycle_t read_tsc(void)
310 cycle_t ret = (cycle_t)get_cycles();
312 return ret >= clocksource_tsc.cycle_last ?
313 ret : clocksource_tsc.cycle_last;
316 static cycle_t __vsyscall_fn vread_tsc(void)
318 cycle_t ret = (cycle_t)vget_cycles();
320 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
321 ret : __vsyscall_gtod_data.clock.cycle_last;
324 static struct clocksource clocksource_tsc = {
325 .name = "tsc",
326 .rating = 300,
327 .read = read_tsc,
328 .mask = CLOCKSOURCE_MASK(64),
329 .shift = 22,
330 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
331 CLOCK_SOURCE_MUST_VERIFY,
332 .vread = vread_tsc,
335 void mark_tsc_unstable(char *reason)
337 if (!tsc_unstable) {
338 tsc_unstable = 1;
339 printk("Marking TSC unstable due to %s\n", reason);
340 /* Change only the rating, when not registered */
341 if (clocksource_tsc.mult)
342 clocksource_change_rating(&clocksource_tsc, 0);
343 else
344 clocksource_tsc.rating = 0;
347 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
349 void __init init_tsc_clocksource(void)
351 if (!notsc) {
352 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
353 clocksource_tsc.shift);
354 if (check_tsc_unstable())
355 clocksource_tsc.rating = 0;
357 clocksource_register(&clocksource_tsc);