4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
39 static inline __attribute__((format(printf
, 1, 2)))
40 void no_printk(const char *fmt
, ...)
45 #define kenter(FMT, ...) \
46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #define kenter(FMT, ...) \
53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
62 unsigned long max_mapnr
;
63 unsigned long num_physpages
;
64 unsigned long highest_memmap_pfn
;
65 struct percpu_counter vm_committed_as
;
66 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
67 int sysctl_overcommit_ratio
= 50; /* default is 50% */
68 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
69 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
70 int heap_stack_gap
= 0;
72 atomic_long_t mmap_pages_allocated
;
74 EXPORT_SYMBOL(mem_map
);
75 EXPORT_SYMBOL(num_physpages
);
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache
*vm_region_jar
;
79 struct rb_root nommu_region_tree
= RB_ROOT
;
80 DECLARE_RWSEM(nommu_region_sem
);
82 const struct vm_operations_struct generic_file_vm_ops
= {
86 * Return the total memory allocated for this pointer, not
87 * just what the caller asked for.
89 * Doesn't have to be accurate, i.e. may have races.
91 unsigned int kobjsize(const void *objp
)
96 * If the object we have should not have ksize performed on it,
99 if (!objp
|| !virt_addr_valid(objp
))
102 page
= virt_to_head_page(objp
);
105 * If the allocator sets PageSlab, we know the pointer came from
112 * If it's not a compound page, see if we have a matching VMA
113 * region. This test is intentionally done in reverse order,
114 * so if there's no VMA, we still fall through and hand back
115 * PAGE_SIZE for 0-order pages.
117 if (!PageCompound(page
)) {
118 struct vm_area_struct
*vma
;
120 vma
= find_vma(current
->mm
, (unsigned long)objp
);
122 return vma
->vm_end
- vma
->vm_start
;
126 * The ksize() function is only guaranteed to work for pointers
127 * returned by kmalloc(). So handle arbitrary pointers here.
129 return PAGE_SIZE
<< compound_order(page
);
132 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
133 unsigned long start
, int nr_pages
, unsigned int foll_flags
,
134 struct page
**pages
, struct vm_area_struct
**vmas
)
136 struct vm_area_struct
*vma
;
137 unsigned long vm_flags
;
140 /* calculate required read or write permissions.
141 * If FOLL_FORCE is set, we only require the "MAY" flags.
143 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
144 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
145 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
146 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
148 for (i
= 0; i
< nr_pages
; i
++) {
149 vma
= find_vma(mm
, start
);
151 goto finish_or_fault
;
153 /* protect what we can, including chardevs */
154 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
155 !(vm_flags
& vma
->vm_flags
))
156 goto finish_or_fault
;
159 pages
[i
] = virt_to_page(start
);
161 page_cache_get(pages
[i
]);
171 return i
? : -EFAULT
;
175 * get a list of pages in an address range belonging to the specified process
176 * and indicate the VMA that covers each page
177 * - this is potentially dodgy as we may end incrementing the page count of a
178 * slab page or a secondary page from a compound page
179 * - don't permit access to VMAs that don't support it, such as I/O mappings
181 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
182 unsigned long start
, int nr_pages
, int write
, int force
,
183 struct page
**pages
, struct vm_area_struct
**vmas
)
192 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
194 EXPORT_SYMBOL(get_user_pages
);
197 * follow_pfn - look up PFN at a user virtual address
198 * @vma: memory mapping
199 * @address: user virtual address
200 * @pfn: location to store found PFN
202 * Only IO mappings and raw PFN mappings are allowed.
204 * Returns zero and the pfn at @pfn on success, -ve otherwise.
206 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
209 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
212 *pfn
= address
>> PAGE_SHIFT
;
215 EXPORT_SYMBOL(follow_pfn
);
217 DEFINE_RWLOCK(vmlist_lock
);
218 struct vm_struct
*vmlist
;
220 void vfree(const void *addr
)
224 EXPORT_SYMBOL(vfree
);
226 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
229 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230 * returns only a logical address.
232 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
234 EXPORT_SYMBOL(__vmalloc
);
236 void *vmalloc_user(unsigned long size
)
240 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
243 struct vm_area_struct
*vma
;
245 down_write(¤t
->mm
->mmap_sem
);
246 vma
= find_vma(current
->mm
, (unsigned long)ret
);
248 vma
->vm_flags
|= VM_USERMAP
;
249 up_write(¤t
->mm
->mmap_sem
);
254 EXPORT_SYMBOL(vmalloc_user
);
256 struct page
*vmalloc_to_page(const void *addr
)
258 return virt_to_page(addr
);
260 EXPORT_SYMBOL(vmalloc_to_page
);
262 unsigned long vmalloc_to_pfn(const void *addr
)
264 return page_to_pfn(virt_to_page(addr
));
266 EXPORT_SYMBOL(vmalloc_to_pfn
);
268 long vread(char *buf
, char *addr
, unsigned long count
)
270 memcpy(buf
, addr
, count
);
274 long vwrite(char *buf
, char *addr
, unsigned long count
)
276 /* Don't allow overflow */
277 if ((unsigned long) addr
+ count
< count
)
278 count
= -(unsigned long) addr
;
280 memcpy(addr
, buf
, count
);
285 * vmalloc - allocate virtually continguos memory
287 * @size: allocation size
289 * Allocate enough pages to cover @size from the page level
290 * allocator and map them into continguos kernel virtual space.
292 * For tight control over page level allocator and protection flags
293 * use __vmalloc() instead.
295 void *vmalloc(unsigned long size
)
297 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
299 EXPORT_SYMBOL(vmalloc
);
301 void *vmalloc_node(unsigned long size
, int node
)
303 return vmalloc(size
);
305 EXPORT_SYMBOL(vmalloc_node
);
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
312 * vmalloc_exec - allocate virtually contiguous, executable memory
313 * @size: allocation size
315 * Kernel-internal function to allocate enough pages to cover @size
316 * the page level allocator and map them into contiguous and
317 * executable kernel virtual space.
319 * For tight control over page level allocator and protection flags
320 * use __vmalloc() instead.
323 void *vmalloc_exec(unsigned long size
)
325 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
329 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
330 * @size: allocation size
332 * Allocate enough 32bit PA addressable pages to cover @size from the
333 * page level allocator and map them into continguos kernel virtual space.
335 void *vmalloc_32(unsigned long size
)
337 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
339 EXPORT_SYMBOL(vmalloc_32
);
342 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343 * @size: allocation size
345 * The resulting memory area is 32bit addressable and zeroed so it can be
346 * mapped to userspace without leaking data.
348 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349 * remap_vmalloc_range() are permissible.
351 void *vmalloc_32_user(unsigned long size
)
354 * We'll have to sort out the ZONE_DMA bits for 64-bit,
355 * but for now this can simply use vmalloc_user() directly.
357 return vmalloc_user(size
);
359 EXPORT_SYMBOL(vmalloc_32_user
);
361 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
368 void vunmap(const void *addr
)
372 EXPORT_SYMBOL(vunmap
);
374 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
379 EXPORT_SYMBOL(vm_map_ram
);
381 void vm_unmap_ram(const void *mem
, unsigned int count
)
385 EXPORT_SYMBOL(vm_unmap_ram
);
387 void vm_unmap_aliases(void)
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
393 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
396 void __attribute__((weak
)) vmalloc_sync_all(void)
400 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
405 EXPORT_SYMBOL(vm_insert_page
);
408 * sys_brk() for the most part doesn't need the global kernel
409 * lock, except when an application is doing something nasty
410 * like trying to un-brk an area that has already been mapped
411 * to a regular file. in this case, the unmapping will need
412 * to invoke file system routines that need the global lock.
414 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
416 struct mm_struct
*mm
= current
->mm
;
418 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
425 * Always allow shrinking brk
427 if (brk
<= mm
->brk
) {
433 * Ok, looks good - let it rip.
435 return mm
->brk
= brk
;
439 * initialise the VMA and region record slabs
441 void __init
mmap_init(void)
445 ret
= percpu_counter_init(&vm_committed_as
, 0);
447 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
451 * validate the region tree
452 * - the caller must hold the region lock
454 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
455 static noinline
void validate_nommu_regions(void)
457 struct vm_region
*region
, *last
;
458 struct rb_node
*p
, *lastp
;
460 lastp
= rb_first(&nommu_region_tree
);
464 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
465 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
466 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
468 while ((p
= rb_next(lastp
))) {
469 region
= rb_entry(p
, struct vm_region
, vm_rb
);
470 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
472 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
473 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
474 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
480 static void validate_nommu_regions(void)
486 * add a region into the global tree
488 static void add_nommu_region(struct vm_region
*region
)
490 struct vm_region
*pregion
;
491 struct rb_node
**p
, *parent
;
493 validate_nommu_regions();
496 p
= &nommu_region_tree
.rb_node
;
499 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
500 if (region
->vm_start
< pregion
->vm_start
)
502 else if (region
->vm_start
> pregion
->vm_start
)
504 else if (pregion
== region
)
510 rb_link_node(®ion
->vm_rb
, parent
, p
);
511 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
513 validate_nommu_regions();
517 * delete a region from the global tree
519 static void delete_nommu_region(struct vm_region
*region
)
521 BUG_ON(!nommu_region_tree
.rb_node
);
523 validate_nommu_regions();
524 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
525 validate_nommu_regions();
529 * free a contiguous series of pages
531 static void free_page_series(unsigned long from
, unsigned long to
)
533 for (; from
< to
; from
+= PAGE_SIZE
) {
534 struct page
*page
= virt_to_page(from
);
536 kdebug("- free %lx", from
);
537 atomic_long_dec(&mmap_pages_allocated
);
538 if (page_count(page
) != 1)
539 kdebug("free page %p: refcount not one: %d",
540 page
, page_count(page
));
546 * release a reference to a region
547 * - the caller must hold the region semaphore for writing, which this releases
548 * - the region may not have been added to the tree yet, in which case vm_top
549 * will equal vm_start
551 static void __put_nommu_region(struct vm_region
*region
)
552 __releases(nommu_region_sem
)
554 kenter("%p{%d}", region
, atomic_read(®ion
->vm_usage
));
556 BUG_ON(!nommu_region_tree
.rb_node
);
558 if (atomic_dec_and_test(®ion
->vm_usage
)) {
559 if (region
->vm_top
> region
->vm_start
)
560 delete_nommu_region(region
);
561 up_write(&nommu_region_sem
);
564 fput(region
->vm_file
);
566 /* IO memory and memory shared directly out of the pagecache
567 * from ramfs/tmpfs mustn't be released here */
568 if (region
->vm_flags
& VM_MAPPED_COPY
) {
569 kdebug("free series");
570 free_page_series(region
->vm_start
, region
->vm_top
);
572 kmem_cache_free(vm_region_jar
, region
);
574 up_write(&nommu_region_sem
);
579 * release a reference to a region
581 static void put_nommu_region(struct vm_region
*region
)
583 down_write(&nommu_region_sem
);
584 __put_nommu_region(region
);
588 * update protection on a vma
590 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
593 struct mm_struct
*mm
= vma
->vm_mm
;
594 long start
= vma
->vm_start
& PAGE_MASK
;
595 while (start
< vma
->vm_end
) {
596 protect_page(mm
, start
, flags
);
599 update_protections(mm
);
604 * add a VMA into a process's mm_struct in the appropriate place in the list
605 * and tree and add to the address space's page tree also if not an anonymous
607 * - should be called with mm->mmap_sem held writelocked
609 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
611 struct vm_area_struct
*pvma
, **pp
;
612 struct address_space
*mapping
;
613 struct rb_node
**p
, *parent
;
617 BUG_ON(!vma
->vm_region
);
622 protect_vma(vma
, vma
->vm_flags
);
624 /* add the VMA to the mapping */
626 mapping
= vma
->vm_file
->f_mapping
;
628 flush_dcache_mmap_lock(mapping
);
629 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
630 flush_dcache_mmap_unlock(mapping
);
633 /* add the VMA to the tree */
635 p
= &mm
->mm_rb
.rb_node
;
638 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
640 /* sort by: start addr, end addr, VMA struct addr in that order
641 * (the latter is necessary as we may get identical VMAs) */
642 if (vma
->vm_start
< pvma
->vm_start
)
644 else if (vma
->vm_start
> pvma
->vm_start
)
646 else if (vma
->vm_end
< pvma
->vm_end
)
648 else if (vma
->vm_end
> pvma
->vm_end
)
658 rb_link_node(&vma
->vm_rb
, parent
, p
);
659 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
661 /* add VMA to the VMA list also */
662 for (pp
= &mm
->mmap
; (pvma
= *pp
); pp
= &(*pp
)->vm_next
) {
663 if (pvma
->vm_start
> vma
->vm_start
)
665 if (pvma
->vm_start
< vma
->vm_start
)
667 if (pvma
->vm_end
< vma
->vm_end
)
676 * delete a VMA from its owning mm_struct and address space
678 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
680 struct vm_area_struct
**pp
;
681 struct address_space
*mapping
;
682 struct mm_struct
*mm
= vma
->vm_mm
;
689 if (mm
->mmap_cache
== vma
)
690 mm
->mmap_cache
= NULL
;
692 /* remove the VMA from the mapping */
694 mapping
= vma
->vm_file
->f_mapping
;
696 flush_dcache_mmap_lock(mapping
);
697 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
698 flush_dcache_mmap_unlock(mapping
);
701 /* remove from the MM's tree and list */
702 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
703 for (pp
= &mm
->mmap
; *pp
; pp
= &(*pp
)->vm_next
) {
714 * destroy a VMA record
716 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
719 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
720 vma
->vm_ops
->close(vma
);
723 if (vma
->vm_flags
& VM_EXECUTABLE
)
724 removed_exe_file_vma(mm
);
726 put_nommu_region(vma
->vm_region
);
727 kmem_cache_free(vm_area_cachep
, vma
);
731 * look up the first VMA in which addr resides, NULL if none
732 * - should be called with mm->mmap_sem at least held readlocked
734 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
736 struct vm_area_struct
*vma
;
737 struct rb_node
*n
= mm
->mm_rb
.rb_node
;
739 /* check the cache first */
740 vma
= mm
->mmap_cache
;
741 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
744 /* trawl the tree (there may be multiple mappings in which addr
746 for (n
= rb_first(&mm
->mm_rb
); n
; n
= rb_next(n
)) {
747 vma
= rb_entry(n
, struct vm_area_struct
, vm_rb
);
748 if (vma
->vm_start
> addr
)
750 if (vma
->vm_end
> addr
) {
751 mm
->mmap_cache
= vma
;
758 EXPORT_SYMBOL(find_vma
);
762 * - we don't extend stack VMAs under NOMMU conditions
764 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
766 return find_vma(mm
, addr
);
770 * expand a stack to a given address
771 * - not supported under NOMMU conditions
773 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
779 * look up the first VMA exactly that exactly matches addr
780 * - should be called with mm->mmap_sem at least held readlocked
782 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
786 struct vm_area_struct
*vma
;
787 struct rb_node
*n
= mm
->mm_rb
.rb_node
;
788 unsigned long end
= addr
+ len
;
790 /* check the cache first */
791 vma
= mm
->mmap_cache
;
792 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
795 /* trawl the tree (there may be multiple mappings in which addr
797 for (n
= rb_first(&mm
->mm_rb
); n
; n
= rb_next(n
)) {
798 vma
= rb_entry(n
, struct vm_area_struct
, vm_rb
);
799 if (vma
->vm_start
< addr
)
801 if (vma
->vm_start
> addr
)
803 if (vma
->vm_end
== end
) {
804 mm
->mmap_cache
= vma
;
813 * determine whether a mapping should be permitted and, if so, what sort of
814 * mapping we're capable of supporting
816 static int validate_mmap_request(struct file
*file
,
822 unsigned long *_capabilities
)
824 unsigned long capabilities
, rlen
;
825 unsigned long reqprot
= prot
;
828 /* do the simple checks first */
829 if (flags
& MAP_FIXED
) {
831 "%d: Can't do fixed-address/overlay mmap of RAM\n",
836 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
837 (flags
& MAP_TYPE
) != MAP_SHARED
)
843 /* Careful about overflows.. */
844 rlen
= PAGE_ALIGN(len
);
845 if (!rlen
|| rlen
> TASK_SIZE
)
848 /* offset overflow? */
849 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
853 /* validate file mapping requests */
854 struct address_space
*mapping
;
856 /* files must support mmap */
857 if (!file
->f_op
|| !file
->f_op
->mmap
)
860 /* work out if what we've got could possibly be shared
861 * - we support chardevs that provide their own "memory"
862 * - we support files/blockdevs that are memory backed
864 mapping
= file
->f_mapping
;
866 mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
869 if (mapping
&& mapping
->backing_dev_info
)
870 capabilities
= mapping
->backing_dev_info
->capabilities
;
873 /* no explicit capabilities set, so assume some
875 switch (file
->f_path
.dentry
->d_inode
->i_mode
& S_IFMT
) {
878 capabilities
= BDI_CAP_MAP_COPY
;
893 /* eliminate any capabilities that we can't support on this
895 if (!file
->f_op
->get_unmapped_area
)
896 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
897 if (!file
->f_op
->read
)
898 capabilities
&= ~BDI_CAP_MAP_COPY
;
900 /* The file shall have been opened with read permission. */
901 if (!(file
->f_mode
& FMODE_READ
))
904 if (flags
& MAP_SHARED
) {
905 /* do checks for writing, appending and locking */
906 if ((prot
& PROT_WRITE
) &&
907 !(file
->f_mode
& FMODE_WRITE
))
910 if (IS_APPEND(file
->f_path
.dentry
->d_inode
) &&
911 (file
->f_mode
& FMODE_WRITE
))
914 if (locks_verify_locked(file
->f_path
.dentry
->d_inode
))
917 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
920 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
921 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
922 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
924 printk("MAP_SHARED not completely supported on !MMU\n");
928 /* we mustn't privatise shared mappings */
929 capabilities
&= ~BDI_CAP_MAP_COPY
;
932 /* we're going to read the file into private memory we
934 if (!(capabilities
& BDI_CAP_MAP_COPY
))
937 /* we don't permit a private writable mapping to be
938 * shared with the backing device */
939 if (prot
& PROT_WRITE
)
940 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
943 /* handle executable mappings and implied executable
945 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
946 if (prot
& PROT_EXEC
)
949 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
950 /* handle implication of PROT_EXEC by PROT_READ */
951 if (current
->personality
& READ_IMPLIES_EXEC
) {
952 if (capabilities
& BDI_CAP_EXEC_MAP
)
956 else if ((prot
& PROT_READ
) &&
957 (prot
& PROT_EXEC
) &&
958 !(capabilities
& BDI_CAP_EXEC_MAP
)
960 /* backing file is not executable, try to copy */
961 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
965 /* anonymous mappings are always memory backed and can be
968 capabilities
= BDI_CAP_MAP_COPY
;
970 /* handle PROT_EXEC implication by PROT_READ */
971 if ((prot
& PROT_READ
) &&
972 (current
->personality
& READ_IMPLIES_EXEC
))
976 /* allow the security API to have its say */
977 ret
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
982 *_capabilities
= capabilities
;
987 * we've determined that we can make the mapping, now translate what we
988 * now know into VMA flags
990 static unsigned long determine_vm_flags(struct file
*file
,
993 unsigned long capabilities
)
995 unsigned long vm_flags
;
997 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
998 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
999 /* vm_flags |= mm->def_flags; */
1001 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1002 /* attempt to share read-only copies of mapped file chunks */
1003 if (file
&& !(prot
& PROT_WRITE
))
1004 vm_flags
|= VM_MAYSHARE
;
1007 /* overlay a shareable mapping on the backing device or inode
1008 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1010 if (flags
& MAP_SHARED
)
1011 vm_flags
|= VM_MAYSHARE
| VM_SHARED
;
1012 else if ((((vm_flags
& capabilities
) ^ vm_flags
) & BDI_CAP_VMFLAGS
) == 0)
1013 vm_flags
|= VM_MAYSHARE
;
1016 /* refuse to let anyone share private mappings with this process if
1017 * it's being traced - otherwise breakpoints set in it may interfere
1018 * with another untraced process
1020 if ((flags
& MAP_PRIVATE
) && tracehook_expect_breakpoints(current
))
1021 vm_flags
&= ~VM_MAYSHARE
;
1027 * set up a shared mapping on a file (the driver or filesystem provides and
1030 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1034 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1036 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1042 /* getting an ENOSYS error indicates that direct mmap isn't
1043 * possible (as opposed to tried but failed) so we'll fall
1044 * through to making a private copy of the data and mapping
1050 * set up a private mapping or an anonymous shared mapping
1052 static int do_mmap_private(struct vm_area_struct
*vma
,
1053 struct vm_region
*region
,
1055 unsigned long capabilities
)
1058 unsigned long total
, point
, n
, rlen
;
1062 /* invoke the file's mapping function so that it can keep track of
1063 * shared mappings on devices or memory
1064 * - VM_MAYSHARE will be set if it may attempt to share
1066 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1067 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1069 /* shouldn't return success if we're not sharing */
1070 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1071 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1077 /* getting an ENOSYS error indicates that direct mmap isn't
1078 * possible (as opposed to tried but failed) so we'll try to
1079 * make a private copy of the data and map that instead */
1082 rlen
= PAGE_ALIGN(len
);
1084 /* allocate some memory to hold the mapping
1085 * - note that this may not return a page-aligned address if the object
1086 * we're allocating is smaller than a page
1088 order
= get_order(rlen
);
1089 kdebug("alloc order %d for %lx", order
, len
);
1091 pages
= alloc_pages(GFP_KERNEL
, order
);
1096 atomic_long_add(total
, &mmap_pages_allocated
);
1098 point
= rlen
>> PAGE_SHIFT
;
1100 /* we allocated a power-of-2 sized page set, so we may want to trim off
1102 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1103 while (total
> point
) {
1104 order
= ilog2(total
- point
);
1106 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1107 atomic_long_sub(n
, &mmap_pages_allocated
);
1109 set_page_refcounted(pages
+ total
);
1110 __free_pages(pages
+ total
, order
);
1114 for (point
= 1; point
< total
; point
++)
1115 set_page_refcounted(&pages
[point
]);
1117 base
= page_address(pages
);
1118 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1119 region
->vm_start
= (unsigned long) base
;
1120 region
->vm_end
= region
->vm_start
+ rlen
;
1121 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1123 vma
->vm_start
= region
->vm_start
;
1124 vma
->vm_end
= region
->vm_start
+ len
;
1127 /* read the contents of a file into the copy */
1128 mm_segment_t old_fs
;
1131 fpos
= vma
->vm_pgoff
;
1132 fpos
<<= PAGE_SHIFT
;
1136 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, rlen
, &fpos
);
1142 /* clear the last little bit */
1144 memset(base
+ ret
, 0, rlen
- ret
);
1147 /* if it's an anonymous mapping, then just clear it */
1148 memset(base
, 0, rlen
);
1154 free_page_series(region
->vm_start
, region
->vm_end
);
1155 region
->vm_start
= vma
->vm_start
= 0;
1156 region
->vm_end
= vma
->vm_end
= 0;
1161 printk("Allocation of length %lu from process %d (%s) failed\n",
1162 len
, current
->pid
, current
->comm
);
1168 * handle mapping creation for uClinux
1170 unsigned long do_mmap_pgoff(struct file
*file
,
1174 unsigned long flags
,
1175 unsigned long pgoff
)
1177 struct vm_area_struct
*vma
;
1178 struct vm_region
*region
;
1180 unsigned long capabilities
, vm_flags
, result
;
1183 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1185 /* decide whether we should attempt the mapping, and if so what sort of
1187 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1190 kleave(" = %d [val]", ret
);
1194 /* we ignore the address hint */
1197 /* we've determined that we can make the mapping, now translate what we
1198 * now know into VMA flags */
1199 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1201 /* we're going to need to record the mapping */
1202 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1204 goto error_getting_region
;
1206 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1208 goto error_getting_vma
;
1210 atomic_set(®ion
->vm_usage
, 1);
1211 region
->vm_flags
= vm_flags
;
1212 region
->vm_pgoff
= pgoff
;
1214 INIT_LIST_HEAD(&vma
->anon_vma_node
);
1215 vma
->vm_flags
= vm_flags
;
1216 vma
->vm_pgoff
= pgoff
;
1219 region
->vm_file
= file
;
1221 vma
->vm_file
= file
;
1223 if (vm_flags
& VM_EXECUTABLE
) {
1224 added_exe_file_vma(current
->mm
);
1225 vma
->vm_mm
= current
->mm
;
1229 down_write(&nommu_region_sem
);
1231 /* if we want to share, we need to check for regions created by other
1232 * mmap() calls that overlap with our proposed mapping
1233 * - we can only share with a superset match on most regular files
1234 * - shared mappings on character devices and memory backed files are
1235 * permitted to overlap inexactly as far as we are concerned for in
1236 * these cases, sharing is handled in the driver or filesystem rather
1239 if (vm_flags
& VM_MAYSHARE
) {
1240 struct vm_region
*pregion
;
1241 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1243 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1244 pgend
= pgoff
+ pglen
;
1246 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1247 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1249 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1252 /* search for overlapping mappings on the same file */
1253 if (pregion
->vm_file
->f_path
.dentry
->d_inode
!=
1254 file
->f_path
.dentry
->d_inode
)
1257 if (pregion
->vm_pgoff
>= pgend
)
1260 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1261 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1262 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1263 if (pgoff
>= rpgend
)
1266 /* handle inexactly overlapping matches between
1268 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1269 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1270 /* new mapping is not a subset of the region */
1271 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1272 goto sharing_violation
;
1276 /* we've found a region we can share */
1277 atomic_inc(&pregion
->vm_usage
);
1278 vma
->vm_region
= pregion
;
1279 start
= pregion
->vm_start
;
1280 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1281 vma
->vm_start
= start
;
1282 vma
->vm_end
= start
+ len
;
1284 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1285 kdebug("share copy");
1286 vma
->vm_flags
|= VM_MAPPED_COPY
;
1288 kdebug("share mmap");
1289 ret
= do_mmap_shared_file(vma
);
1291 vma
->vm_region
= NULL
;
1294 atomic_dec(&pregion
->vm_usage
);
1296 goto error_just_free
;
1299 fput(region
->vm_file
);
1300 kmem_cache_free(vm_region_jar
, region
);
1306 /* obtain the address at which to make a shared mapping
1307 * - this is the hook for quasi-memory character devices to
1308 * tell us the location of a shared mapping
1310 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1311 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1313 if (IS_ERR((void *) addr
)) {
1315 if (ret
!= (unsigned long) -ENOSYS
)
1316 goto error_just_free
;
1318 /* the driver refused to tell us where to site
1319 * the mapping so we'll have to attempt to copy
1321 ret
= (unsigned long) -ENODEV
;
1322 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1323 goto error_just_free
;
1325 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1327 vma
->vm_start
= region
->vm_start
= addr
;
1328 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1333 vma
->vm_region
= region
;
1335 /* set up the mapping
1336 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1338 if (file
&& vma
->vm_flags
& VM_SHARED
)
1339 ret
= do_mmap_shared_file(vma
);
1341 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1343 goto error_just_free
;
1344 add_nommu_region(region
);
1346 /* okay... we have a mapping; now we have to register it */
1347 result
= vma
->vm_start
;
1349 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1352 add_vma_to_mm(current
->mm
, vma
);
1354 up_write(&nommu_region_sem
);
1356 if (prot
& PROT_EXEC
)
1357 flush_icache_range(result
, result
+ len
);
1359 kleave(" = %lx", result
);
1363 up_write(&nommu_region_sem
);
1365 fput(region
->vm_file
);
1366 kmem_cache_free(vm_region_jar
, region
);
1368 if (vma
->vm_flags
& VM_EXECUTABLE
)
1369 removed_exe_file_vma(vma
->vm_mm
);
1370 kmem_cache_free(vm_area_cachep
, vma
);
1371 kleave(" = %d", ret
);
1375 up_write(&nommu_region_sem
);
1376 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1381 kmem_cache_free(vm_region_jar
, region
);
1382 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1383 " from process %d failed\n",
1388 error_getting_region
:
1389 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1390 " from process %d failed\n",
1395 EXPORT_SYMBOL(do_mmap_pgoff
);
1398 * split a vma into two pieces at address 'addr', a new vma is allocated either
1399 * for the first part or the tail.
1401 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1402 unsigned long addr
, int new_below
)
1404 struct vm_area_struct
*new;
1405 struct vm_region
*region
;
1406 unsigned long npages
;
1410 /* we're only permitted to split anonymous regions that have a single
1413 atomic_read(&vma
->vm_region
->vm_usage
) != 1)
1416 if (mm
->map_count
>= sysctl_max_map_count
)
1419 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1423 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1425 kmem_cache_free(vm_region_jar
, region
);
1429 /* most fields are the same, copy all, and then fixup */
1431 *region
= *vma
->vm_region
;
1432 new->vm_region
= region
;
1434 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1437 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1439 region
->vm_start
= new->vm_start
= addr
;
1440 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1443 if (new->vm_ops
&& new->vm_ops
->open
)
1444 new->vm_ops
->open(new);
1446 delete_vma_from_mm(vma
);
1447 down_write(&nommu_region_sem
);
1448 delete_nommu_region(vma
->vm_region
);
1450 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1451 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1453 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1454 vma
->vm_region
->vm_top
= addr
;
1456 add_nommu_region(vma
->vm_region
);
1457 add_nommu_region(new->vm_region
);
1458 up_write(&nommu_region_sem
);
1459 add_vma_to_mm(mm
, vma
);
1460 add_vma_to_mm(mm
, new);
1465 * shrink a VMA by removing the specified chunk from either the beginning or
1468 static int shrink_vma(struct mm_struct
*mm
,
1469 struct vm_area_struct
*vma
,
1470 unsigned long from
, unsigned long to
)
1472 struct vm_region
*region
;
1476 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1478 delete_vma_from_mm(vma
);
1479 if (from
> vma
->vm_start
)
1483 add_vma_to_mm(mm
, vma
);
1485 /* cut the backing region down to size */
1486 region
= vma
->vm_region
;
1487 BUG_ON(atomic_read(®ion
->vm_usage
) != 1);
1489 down_write(&nommu_region_sem
);
1490 delete_nommu_region(region
);
1491 if (from
> region
->vm_start
) {
1492 to
= region
->vm_top
;
1493 region
->vm_top
= region
->vm_end
= from
;
1495 region
->vm_start
= to
;
1497 add_nommu_region(region
);
1498 up_write(&nommu_region_sem
);
1500 free_page_series(from
, to
);
1506 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1507 * VMA, though it need not cover the whole VMA
1509 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1511 struct vm_area_struct
*vma
;
1513 unsigned long end
= start
+ len
;
1516 kenter(",%lx,%zx", start
, len
);
1521 /* find the first potentially overlapping VMA */
1522 vma
= find_vma(mm
, start
);
1524 static int limit
= 0;
1527 "munmap of memory not mmapped by process %d"
1528 " (%s): 0x%lx-0x%lx\n",
1529 current
->pid
, current
->comm
,
1530 start
, start
+ len
- 1);
1536 /* we're allowed to split an anonymous VMA but not a file-backed one */
1539 if (start
> vma
->vm_start
) {
1540 kleave(" = -EINVAL [miss]");
1543 if (end
== vma
->vm_end
)
1544 goto erase_whole_vma
;
1545 rb
= rb_next(&vma
->vm_rb
);
1546 vma
= rb_entry(rb
, struct vm_area_struct
, vm_rb
);
1548 kleave(" = -EINVAL [split file]");
1551 /* the chunk must be a subset of the VMA found */
1552 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1553 goto erase_whole_vma
;
1554 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1555 kleave(" = -EINVAL [superset]");
1558 if (start
& ~PAGE_MASK
) {
1559 kleave(" = -EINVAL [unaligned start]");
1562 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1563 kleave(" = -EINVAL [unaligned split]");
1566 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1567 ret
= split_vma(mm
, vma
, start
, 1);
1569 kleave(" = %d [split]", ret
);
1573 return shrink_vma(mm
, vma
, start
, end
);
1577 delete_vma_from_mm(vma
);
1578 delete_vma(mm
, vma
);
1582 EXPORT_SYMBOL(do_munmap
);
1584 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1587 struct mm_struct
*mm
= current
->mm
;
1589 down_write(&mm
->mmap_sem
);
1590 ret
= do_munmap(mm
, addr
, len
);
1591 up_write(&mm
->mmap_sem
);
1596 * release all the mappings made in a process's VM space
1598 void exit_mmap(struct mm_struct
*mm
)
1600 struct vm_area_struct
*vma
;
1609 while ((vma
= mm
->mmap
)) {
1610 mm
->mmap
= vma
->vm_next
;
1611 delete_vma_from_mm(vma
);
1612 delete_vma(mm
, vma
);
1618 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1624 * expand (or shrink) an existing mapping, potentially moving it at the same
1625 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1627 * under NOMMU conditions, we only permit changing a mapping's size, and only
1628 * as long as it stays within the region allocated by do_mmap_private() and the
1629 * block is not shareable
1631 * MREMAP_FIXED is not supported under NOMMU conditions
1633 unsigned long do_mremap(unsigned long addr
,
1634 unsigned long old_len
, unsigned long new_len
,
1635 unsigned long flags
, unsigned long new_addr
)
1637 struct vm_area_struct
*vma
;
1639 /* insanity checks first */
1640 if (old_len
== 0 || new_len
== 0)
1641 return (unsigned long) -EINVAL
;
1643 if (addr
& ~PAGE_MASK
)
1646 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1647 return (unsigned long) -EINVAL
;
1649 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1651 return (unsigned long) -EINVAL
;
1653 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1654 return (unsigned long) -EFAULT
;
1656 if (vma
->vm_flags
& VM_MAYSHARE
)
1657 return (unsigned long) -EPERM
;
1659 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1660 return (unsigned long) -ENOMEM
;
1662 /* all checks complete - do it */
1663 vma
->vm_end
= vma
->vm_start
+ new_len
;
1664 return vma
->vm_start
;
1666 EXPORT_SYMBOL(do_mremap
);
1668 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1669 unsigned long, new_len
, unsigned long, flags
,
1670 unsigned long, new_addr
)
1674 down_write(¤t
->mm
->mmap_sem
);
1675 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1676 up_write(¤t
->mm
->mmap_sem
);
1680 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1681 unsigned int foll_flags
)
1686 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long from
,
1687 unsigned long to
, unsigned long size
, pgprot_t prot
)
1689 vma
->vm_start
= vma
->vm_pgoff
<< PAGE_SHIFT
;
1692 EXPORT_SYMBOL(remap_pfn_range
);
1694 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1695 unsigned long pgoff
)
1697 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1699 if (!(vma
->vm_flags
& VM_USERMAP
))
1702 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1703 vma
->vm_end
= vma
->vm_start
+ size
;
1707 EXPORT_SYMBOL(remap_vmalloc_range
);
1709 void swap_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1713 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1714 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1719 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1723 void unmap_mapping_range(struct address_space
*mapping
,
1724 loff_t
const holebegin
, loff_t
const holelen
,
1728 EXPORT_SYMBOL(unmap_mapping_range
);
1731 * ask for an unmapped area at which to create a mapping on a file
1733 unsigned long get_unmapped_area(struct file
*file
, unsigned long addr
,
1734 unsigned long len
, unsigned long pgoff
,
1735 unsigned long flags
)
1737 unsigned long (*get_area
)(struct file
*, unsigned long, unsigned long,
1738 unsigned long, unsigned long);
1740 get_area
= current
->mm
->get_unmapped_area
;
1741 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1742 get_area
= file
->f_op
->get_unmapped_area
;
1747 return get_area(file
, addr
, len
, pgoff
, flags
);
1749 EXPORT_SYMBOL(get_unmapped_area
);
1752 * Check that a process has enough memory to allocate a new virtual
1753 * mapping. 0 means there is enough memory for the allocation to
1754 * succeed and -ENOMEM implies there is not.
1756 * We currently support three overcommit policies, which are set via the
1757 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1759 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1760 * Additional code 2002 Jul 20 by Robert Love.
1762 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1764 * Note this is a helper function intended to be used by LSMs which
1765 * wish to use this logic.
1767 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1769 unsigned long free
, allowed
;
1771 vm_acct_memory(pages
);
1774 * Sometimes we want to use more memory than we have
1776 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1779 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1782 free
= global_page_state(NR_FILE_PAGES
);
1783 free
+= nr_swap_pages
;
1786 * Any slabs which are created with the
1787 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1788 * which are reclaimable, under pressure. The dentry
1789 * cache and most inode caches should fall into this
1791 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1794 * Leave the last 3% for root
1803 * nr_free_pages() is very expensive on large systems,
1804 * only call if we're about to fail.
1806 n
= nr_free_pages();
1809 * Leave reserved pages. The pages are not for anonymous pages.
1811 if (n
<= totalreserve_pages
)
1814 n
-= totalreserve_pages
;
1817 * Leave the last 3% for root
1829 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1831 * Leave the last 3% for root
1834 allowed
-= allowed
/ 32;
1835 allowed
+= total_swap_pages
;
1837 /* Don't let a single process grow too big:
1838 leave 3% of the size of this process for other processes */
1840 allowed
-= mm
->total_vm
/ 32;
1842 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1846 vm_unacct_memory(pages
);
1851 int in_gate_area_no_task(unsigned long addr
)
1856 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1861 EXPORT_SYMBOL(filemap_fault
);
1864 * Access another process' address space.
1865 * - source/target buffer must be kernel space
1867 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
1869 struct vm_area_struct
*vma
;
1870 struct mm_struct
*mm
;
1872 if (addr
+ len
< addr
)
1875 mm
= get_task_mm(tsk
);
1879 down_read(&mm
->mmap_sem
);
1881 /* the access must start within one of the target process's mappings */
1882 vma
= find_vma(mm
, addr
);
1884 /* don't overrun this mapping */
1885 if (addr
+ len
>= vma
->vm_end
)
1886 len
= vma
->vm_end
- addr
;
1888 /* only read or write mappings where it is permitted */
1889 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1890 len
-= copy_to_user((void *) addr
, buf
, len
);
1891 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1892 len
-= copy_from_user(buf
, (void *) addr
, len
);
1899 up_read(&mm
->mmap_sem
);