[CRYPTO] drivers/Kconfig: Remove "default m"s
[linux-2.6/x86.git] / arch / mips / kernel / smtc.c
blobf09404377ef18397840c6dba44f4cd00449b8493
1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/cpumask.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/module.h>
10 #include <asm/cpu.h>
11 #include <asm/processor.h>
12 #include <asm/atomic.h>
13 #include <asm/system.h>
14 #include <asm/hardirq.h>
15 #include <asm/hazards.h>
16 #include <asm/irq.h>
17 #include <asm/mmu_context.h>
18 #include <asm/smp.h>
19 #include <asm/mipsregs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/time.h>
22 #include <asm/addrspace.h>
23 #include <asm/smtc.h>
24 #include <asm/smtc_ipi.h>
25 #include <asm/smtc_proc.h>
28 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
29 * in do_IRQ. These are passed in setup_irq_smtc() and stored
30 * in this table.
32 unsigned long irq_hwmask[NR_IRQS];
34 #define LOCK_MT_PRA() \
35 local_irq_save(flags); \
36 mtflags = dmt()
38 #define UNLOCK_MT_PRA() \
39 emt(mtflags); \
40 local_irq_restore(flags)
42 #define LOCK_CORE_PRA() \
43 local_irq_save(flags); \
44 mtflags = dvpe()
46 #define UNLOCK_CORE_PRA() \
47 evpe(mtflags); \
48 local_irq_restore(flags)
51 * Data structures purely associated with SMTC parallelism
56 * Table for tracking ASIDs whose lifetime is prolonged.
59 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
62 * Clock interrupt "latch" buffers, per "CPU"
65 unsigned int ipi_timer_latch[NR_CPUS];
68 * Number of InterProcessor Interupt (IPI) message buffers to allocate
71 #define IPIBUF_PER_CPU 4
73 static struct smtc_ipi_q IPIQ[NR_CPUS];
74 static struct smtc_ipi_q freeIPIq;
77 /* Forward declarations */
79 void ipi_decode(struct smtc_ipi *);
80 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
81 static void setup_cross_vpe_interrupts(unsigned int nvpe);
82 void init_smtc_stats(void);
84 /* Global SMTC Status */
86 unsigned int smtc_status = 0;
88 /* Boot command line configuration overrides */
90 static int ipibuffers = 0;
91 static int nostlb = 0;
92 static int asidmask = 0;
93 unsigned long smtc_asid_mask = 0xff;
95 static int __init ipibufs(char *str)
97 get_option(&str, &ipibuffers);
98 return 1;
101 static int __init stlb_disable(char *s)
103 nostlb = 1;
104 return 1;
107 static int __init asidmask_set(char *str)
109 get_option(&str, &asidmask);
110 switch (asidmask) {
111 case 0x1:
112 case 0x3:
113 case 0x7:
114 case 0xf:
115 case 0x1f:
116 case 0x3f:
117 case 0x7f:
118 case 0xff:
119 smtc_asid_mask = (unsigned long)asidmask;
120 break;
121 default:
122 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
124 return 1;
127 __setup("ipibufs=", ipibufs);
128 __setup("nostlb", stlb_disable);
129 __setup("asidmask=", asidmask_set);
131 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
133 static int hang_trig = 0;
135 static int __init hangtrig_enable(char *s)
137 hang_trig = 1;
138 return 1;
142 __setup("hangtrig", hangtrig_enable);
144 #define DEFAULT_BLOCKED_IPI_LIMIT 32
146 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
148 static int __init tintq(char *str)
150 get_option(&str, &timerq_limit);
151 return 1;
154 __setup("tintq=", tintq);
156 static int imstuckcount[2][8];
157 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
158 static int vpemask[2][8] = {
159 {0, 0, 1, 0, 0, 0, 0, 1},
160 {0, 0, 0, 0, 0, 0, 0, 1}
162 int tcnoprog[NR_CPUS];
163 static atomic_t idle_hook_initialized = {0};
164 static int clock_hang_reported[NR_CPUS];
166 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
168 /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
170 void __init sanitize_tlb_entries(void)
172 printk("Deprecated sanitize_tlb_entries() invoked\n");
177 * Configure shared TLB - VPC configuration bit must be set by caller
180 static void smtc_configure_tlb(void)
182 int i,tlbsiz,vpes;
183 unsigned long mvpconf0;
184 unsigned long config1val;
186 /* Set up ASID preservation table */
187 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
188 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
189 smtc_live_asid[vpes][i] = 0;
192 mvpconf0 = read_c0_mvpconf0();
194 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
195 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
196 /* If we have multiple VPEs, try to share the TLB */
197 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
199 * If TLB sizing is programmable, shared TLB
200 * size is the total available complement.
201 * Otherwise, we have to take the sum of all
202 * static VPE TLB entries.
204 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
205 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
207 * If there's more than one VPE, there had better
208 * be more than one TC, because we need one to bind
209 * to each VPE in turn to be able to read
210 * its configuration state!
212 settc(1);
213 /* Stop the TC from doing anything foolish */
214 write_tc_c0_tchalt(TCHALT_H);
215 mips_ihb();
216 /* No need to un-Halt - that happens later anyway */
217 for (i=0; i < vpes; i++) {
218 write_tc_c0_tcbind(i);
220 * To be 100% sure we're really getting the right
221 * information, we exit the configuration state
222 * and do an IHB after each rebinding.
224 write_c0_mvpcontrol(
225 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
226 mips_ihb();
228 * Only count if the MMU Type indicated is TLB
230 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
231 config1val = read_vpe_c0_config1();
232 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
235 /* Put core back in configuration state */
236 write_c0_mvpcontrol(
237 read_c0_mvpcontrol() | MVPCONTROL_VPC );
238 mips_ihb();
241 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
242 ehb();
245 * Setup kernel data structures to use software total,
246 * rather than read the per-VPE Config1 value. The values
247 * for "CPU 0" gets copied to all the other CPUs as part
248 * of their initialization in smtc_cpu_setup().
251 /* MIPS32 limits TLB indices to 64 */
252 if (tlbsiz > 64)
253 tlbsiz = 64;
254 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
255 smtc_status |= SMTC_TLB_SHARED;
256 local_flush_tlb_all();
258 printk("TLB of %d entry pairs shared by %d VPEs\n",
259 tlbsiz, vpes);
260 } else {
261 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
268 * Incrementally build the CPU map out of constituent MIPS MT cores,
269 * using the specified available VPEs and TCs. Plaform code needs
270 * to ensure that each MIPS MT core invokes this routine on reset,
271 * one at a time(!).
273 * This version of the build_cpu_map and prepare_cpus routines assumes
274 * that *all* TCs of a MIPS MT core will be used for Linux, and that
275 * they will be spread across *all* available VPEs (to minimise the
276 * loss of efficiency due to exception service serialization).
277 * An improved version would pick up configuration information and
278 * possibly leave some TCs/VPEs as "slave" processors.
280 * Use c0_MVPConf0 to find out how many TCs are available, setting up
281 * phys_cpu_present_map and the logical/physical mappings.
284 int __init mipsmt_build_cpu_map(int start_cpu_slot)
286 int i, ntcs;
289 * The CPU map isn't actually used for anything at this point,
290 * so it's not clear what else we should do apart from set
291 * everything up so that "logical" = "physical".
293 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
294 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
295 cpu_set(i, phys_cpu_present_map);
296 __cpu_number_map[i] = i;
297 __cpu_logical_map[i] = i;
299 /* Initialize map of CPUs with FPUs */
300 cpus_clear(mt_fpu_cpumask);
302 /* One of those TC's is the one booting, and not a secondary... */
303 printk("%i available secondary CPU TC(s)\n", i - 1);
305 return i;
309 * Common setup before any secondaries are started
310 * Make sure all CPU's are in a sensible state before we boot any of the
311 * secondaries.
313 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
314 * as possible across the available VPEs.
317 static void smtc_tc_setup(int vpe, int tc, int cpu)
319 settc(tc);
320 write_tc_c0_tchalt(TCHALT_H);
321 mips_ihb();
322 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
323 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
324 | TCSTATUS_A);
325 write_tc_c0_tccontext(0);
326 /* Bind tc to vpe */
327 write_tc_c0_tcbind(vpe);
328 /* In general, all TCs should have the same cpu_data indications */
329 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
330 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
331 if (cpu_data[0].cputype == CPU_34K)
332 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
333 cpu_data[cpu].vpe_id = vpe;
334 cpu_data[cpu].tc_id = tc;
338 void mipsmt_prepare_cpus(void)
340 int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
341 unsigned long flags;
342 unsigned long val;
343 int nipi;
344 struct smtc_ipi *pipi;
346 /* disable interrupts so we can disable MT */
347 local_irq_save(flags);
348 /* disable MT so we can configure */
349 dvpe();
350 dmt();
352 spin_lock_init(&freeIPIq.lock);
355 * We probably don't have as many VPEs as we do SMP "CPUs",
356 * but it's possible - and in any case we'll never use more!
358 for (i=0; i<NR_CPUS; i++) {
359 IPIQ[i].head = IPIQ[i].tail = NULL;
360 spin_lock_init(&IPIQ[i].lock);
361 IPIQ[i].depth = 0;
362 ipi_timer_latch[i] = 0;
365 /* cpu_data index starts at zero */
366 cpu = 0;
367 cpu_data[cpu].vpe_id = 0;
368 cpu_data[cpu].tc_id = 0;
369 cpu++;
371 /* Report on boot-time options */
372 mips_mt_set_cpuoptions ();
373 if (vpelimit > 0)
374 printk("Limit of %d VPEs set\n", vpelimit);
375 if (tclimit > 0)
376 printk("Limit of %d TCs set\n", tclimit);
377 if (nostlb) {
378 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
380 if (asidmask)
381 printk("ASID mask value override to 0x%x\n", asidmask);
383 /* Temporary */
384 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
385 if (hang_trig)
386 printk("Logic Analyser Trigger on suspected TC hang\n");
387 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
389 /* Put MVPE's into 'configuration state' */
390 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
392 val = read_c0_mvpconf0();
393 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
394 if (vpelimit > 0 && nvpe > vpelimit)
395 nvpe = vpelimit;
396 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
397 if (ntc > NR_CPUS)
398 ntc = NR_CPUS;
399 if (tclimit > 0 && ntc > tclimit)
400 ntc = tclimit;
401 tcpervpe = ntc / nvpe;
402 slop = ntc % nvpe; /* Residual TCs, < NVPE */
404 /* Set up shared TLB */
405 smtc_configure_tlb();
407 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
409 * Set the MVP bits.
411 settc(tc);
412 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
413 if (vpe != 0)
414 printk(", ");
415 printk("VPE %d: TC", vpe);
416 for (i = 0; i < tcpervpe; i++) {
418 * TC 0 is bound to VPE 0 at reset,
419 * and is presumably executing this
420 * code. Leave it alone!
422 if (tc != 0) {
423 smtc_tc_setup(vpe,tc, cpu);
424 cpu++;
426 printk(" %d", tc);
427 tc++;
429 if (slop) {
430 if (tc != 0) {
431 smtc_tc_setup(vpe,tc, cpu);
432 cpu++;
434 printk(" %d", tc);
435 tc++;
436 slop--;
438 if (vpe != 0) {
440 * Clear any stale software interrupts from VPE's Cause
442 write_vpe_c0_cause(0);
445 * Clear ERL/EXL of VPEs other than 0
446 * and set restricted interrupt enable/mask.
448 write_vpe_c0_status((read_vpe_c0_status()
449 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
450 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
451 | ST0_IE));
453 * set config to be the same as vpe0,
454 * particularly kseg0 coherency alg
456 write_vpe_c0_config(read_c0_config());
457 /* Clear any pending timer interrupt */
458 write_vpe_c0_compare(0);
459 /* Propagate Config7 */
460 write_vpe_c0_config7(read_c0_config7());
461 write_vpe_c0_count(read_c0_count());
463 /* enable multi-threading within VPE */
464 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
465 /* enable the VPE */
466 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
470 * Pull any physically present but unused TCs out of circulation.
472 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
473 cpu_clear(tc, phys_cpu_present_map);
474 cpu_clear(tc, cpu_present_map);
475 tc++;
478 /* release config state */
479 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
481 printk("\n");
483 /* Set up coprocessor affinity CPU mask(s) */
485 for (tc = 0; tc < ntc; tc++) {
486 if (cpu_data[tc].options & MIPS_CPU_FPU)
487 cpu_set(tc, mt_fpu_cpumask);
490 /* set up ipi interrupts... */
492 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
494 setup_cross_vpe_interrupts(nvpe);
496 /* Set up queue of free IPI "messages". */
497 nipi = NR_CPUS * IPIBUF_PER_CPU;
498 if (ipibuffers > 0)
499 nipi = ipibuffers;
501 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
502 if (pipi == NULL)
503 panic("kmalloc of IPI message buffers failed\n");
504 else
505 printk("IPI buffer pool of %d buffers\n", nipi);
506 for (i = 0; i < nipi; i++) {
507 smtc_ipi_nq(&freeIPIq, pipi);
508 pipi++;
511 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
512 emt(EMT_ENABLE);
513 evpe(EVPE_ENABLE);
514 local_irq_restore(flags);
515 /* Initialize SMTC /proc statistics/diagnostics */
516 init_smtc_stats();
521 * Setup the PC, SP, and GP of a secondary processor and start it
522 * running!
523 * smp_bootstrap is the place to resume from
524 * __KSTK_TOS(idle) is apparently the stack pointer
525 * (unsigned long)idle->thread_info the gp
528 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
530 extern u32 kernelsp[NR_CPUS];
531 long flags;
532 int mtflags;
534 LOCK_MT_PRA();
535 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
536 dvpe();
538 settc(cpu_data[cpu].tc_id);
540 /* pc */
541 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
543 /* stack pointer */
544 kernelsp[cpu] = __KSTK_TOS(idle);
545 write_tc_gpr_sp(__KSTK_TOS(idle));
547 /* global pointer */
548 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
550 smtc_status |= SMTC_MTC_ACTIVE;
551 write_tc_c0_tchalt(0);
552 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
553 evpe(EVPE_ENABLE);
555 UNLOCK_MT_PRA();
558 void smtc_init_secondary(void)
561 * Start timer on secondary VPEs if necessary.
562 * plat_timer_setup has already have been invoked by init/main
563 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
564 * SMTC init code assigns TCs consdecutively and in ascending order
565 * to across available VPEs.
567 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
568 ((read_c0_tcbind() & TCBIND_CURVPE)
569 != cpu_data[smp_processor_id() - 1].vpe_id)){
570 write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
573 local_irq_enable();
576 void smtc_smp_finish(void)
578 printk("TC %d going on-line as CPU %d\n",
579 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
582 void smtc_cpus_done(void)
587 * Support for SMTC-optimized driver IRQ registration
591 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
592 * in do_IRQ. These are passed in setup_irq_smtc() and stored
593 * in this table.
596 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
597 unsigned long hwmask)
599 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
600 unsigned int vpe = current_cpu_data.vpe_id;
602 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
603 #endif
604 irq_hwmask[irq] = hwmask;
606 return setup_irq(irq, new);
610 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
611 * Within a VPE one TC can interrupt another by different approaches.
612 * The easiest to get right would probably be to make all TCs except
613 * the target IXMT and set a software interrupt, but an IXMT-based
614 * scheme requires that a handler must run before a new IPI could
615 * be sent, which would break the "broadcast" loops in MIPS MT.
616 * A more gonzo approach within a VPE is to halt the TC, extract
617 * its Restart, Status, and a couple of GPRs, and program the Restart
618 * address to emulate an interrupt.
620 * Within a VPE, one can be confident that the target TC isn't in
621 * a critical EXL state when halted, since the write to the Halt
622 * register could not have issued on the writing thread if the
623 * halting thread had EXL set. So k0 and k1 of the target TC
624 * can be used by the injection code. Across VPEs, one can't
625 * be certain that the target TC isn't in a critical exception
626 * state. So we try a two-step process of sending a software
627 * interrupt to the target VPE, which either handles the event
628 * itself (if it was the target) or injects the event within
629 * the VPE.
632 static void smtc_ipi_qdump(void)
634 int i;
636 for (i = 0; i < NR_CPUS ;i++) {
637 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
638 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
639 IPIQ[i].depth);
644 * The standard atomic.h primitives don't quite do what we want
645 * here: We need an atomic add-and-return-previous-value (which
646 * could be done with atomic_add_return and a decrement) and an
647 * atomic set/zero-and-return-previous-value (which can't really
648 * be done with the atomic.h primitives). And since this is
649 * MIPS MT, we can assume that we have LL/SC.
651 static __inline__ int atomic_postincrement(unsigned int *pv)
653 unsigned long result;
655 unsigned long temp;
657 __asm__ __volatile__(
658 "1: ll %0, %2 \n"
659 " addu %1, %0, 1 \n"
660 " sc %1, %2 \n"
661 " beqz %1, 1b \n"
662 " sync \n"
663 : "=&r" (result), "=&r" (temp), "=m" (*pv)
664 : "m" (*pv)
665 : "memory");
667 return result;
670 void smtc_send_ipi(int cpu, int type, unsigned int action)
672 int tcstatus;
673 struct smtc_ipi *pipi;
674 long flags;
675 int mtflags;
677 if (cpu == smp_processor_id()) {
678 printk("Cannot Send IPI to self!\n");
679 return;
681 /* Set up a descriptor, to be delivered either promptly or queued */
682 pipi = smtc_ipi_dq(&freeIPIq);
683 if (pipi == NULL) {
684 bust_spinlocks(1);
685 mips_mt_regdump(dvpe());
686 panic("IPI Msg. Buffers Depleted\n");
688 pipi->type = type;
689 pipi->arg = (void *)action;
690 pipi->dest = cpu;
691 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
692 /* If not on same VPE, enqueue and send cross-VPE interupt */
693 smtc_ipi_nq(&IPIQ[cpu], pipi);
694 LOCK_CORE_PRA();
695 settc(cpu_data[cpu].tc_id);
696 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
697 UNLOCK_CORE_PRA();
698 } else {
700 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
701 * since ASID shootdown on the other VPE may
702 * collide with this operation.
704 LOCK_CORE_PRA();
705 settc(cpu_data[cpu].tc_id);
706 /* Halt the targeted TC */
707 write_tc_c0_tchalt(TCHALT_H);
708 mips_ihb();
711 * Inspect TCStatus - if IXMT is set, we have to queue
712 * a message. Otherwise, we set up the "interrupt"
713 * of the other TC
715 tcstatus = read_tc_c0_tcstatus();
717 if ((tcstatus & TCSTATUS_IXMT) != 0) {
719 * Spin-waiting here can deadlock,
720 * so we queue the message for the target TC.
722 write_tc_c0_tchalt(0);
723 UNLOCK_CORE_PRA();
724 /* Try to reduce redundant timer interrupt messages */
725 if (type == SMTC_CLOCK_TICK) {
726 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
727 smtc_ipi_nq(&freeIPIq, pipi);
728 return;
731 smtc_ipi_nq(&IPIQ[cpu], pipi);
732 } else {
733 post_direct_ipi(cpu, pipi);
734 write_tc_c0_tchalt(0);
735 UNLOCK_CORE_PRA();
741 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
743 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
745 struct pt_regs *kstack;
746 unsigned long tcstatus;
747 unsigned long tcrestart;
748 extern u32 kernelsp[NR_CPUS];
749 extern void __smtc_ipi_vector(void);
751 /* Extract Status, EPC from halted TC */
752 tcstatus = read_tc_c0_tcstatus();
753 tcrestart = read_tc_c0_tcrestart();
754 /* If TCRestart indicates a WAIT instruction, advance the PC */
755 if ((tcrestart & 0x80000000)
756 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
757 tcrestart += 4;
760 * Save on TC's future kernel stack
762 * CU bit of Status is indicator that TC was
763 * already running on a kernel stack...
765 if (tcstatus & ST0_CU0) {
766 /* Note that this "- 1" is pointer arithmetic */
767 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
768 } else {
769 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
772 kstack->cp0_epc = (long)tcrestart;
773 /* Save TCStatus */
774 kstack->cp0_tcstatus = tcstatus;
775 /* Pass token of operation to be performed kernel stack pad area */
776 kstack->pad0[4] = (unsigned long)pipi;
777 /* Pass address of function to be called likewise */
778 kstack->pad0[5] = (unsigned long)&ipi_decode;
779 /* Set interrupt exempt and kernel mode */
780 tcstatus |= TCSTATUS_IXMT;
781 tcstatus &= ~TCSTATUS_TKSU;
782 write_tc_c0_tcstatus(tcstatus);
783 ehb();
784 /* Set TC Restart address to be SMTC IPI vector */
785 write_tc_c0_tcrestart(__smtc_ipi_vector);
788 static void ipi_resched_interrupt(void)
790 /* Return from interrupt should be enough to cause scheduler check */
794 static void ipi_call_interrupt(void)
796 /* Invoke generic function invocation code in smp.c */
797 smp_call_function_interrupt();
800 void ipi_decode(struct smtc_ipi *pipi)
802 void *arg_copy = pipi->arg;
803 int type_copy = pipi->type;
804 int dest_copy = pipi->dest;
806 smtc_ipi_nq(&freeIPIq, pipi);
807 switch (type_copy) {
808 case SMTC_CLOCK_TICK:
809 irq_enter();
810 kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + cp0_compare_irq]++;
811 /* Invoke Clock "Interrupt" */
812 ipi_timer_latch[dest_copy] = 0;
813 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
814 clock_hang_reported[dest_copy] = 0;
815 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
816 local_timer_interrupt(0, NULL);
817 irq_exit();
818 break;
819 case LINUX_SMP_IPI:
820 switch ((int)arg_copy) {
821 case SMP_RESCHEDULE_YOURSELF:
822 ipi_resched_interrupt();
823 break;
824 case SMP_CALL_FUNCTION:
825 ipi_call_interrupt();
826 break;
827 default:
828 printk("Impossible SMTC IPI Argument 0x%x\n",
829 (int)arg_copy);
830 break;
832 break;
833 default:
834 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
835 break;
839 void deferred_smtc_ipi(void)
841 struct smtc_ipi *pipi;
842 unsigned long flags;
843 /* DEBUG */
844 int q = smp_processor_id();
847 * Test is not atomic, but much faster than a dequeue,
848 * and the vast majority of invocations will have a null queue.
850 if (IPIQ[q].head != NULL) {
851 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
852 /* ipi_decode() should be called with interrupts off */
853 local_irq_save(flags);
854 ipi_decode(pipi);
855 local_irq_restore(flags);
861 * Send clock tick to all TCs except the one executing the funtion
864 void smtc_timer_broadcast(void)
866 int cpu;
867 int myTC = cpu_data[smp_processor_id()].tc_id;
868 int myVPE = cpu_data[smp_processor_id()].vpe_id;
870 smtc_cpu_stats[smp_processor_id()].timerints++;
872 for_each_online_cpu(cpu) {
873 if (cpu_data[cpu].vpe_id == myVPE &&
874 cpu_data[cpu].tc_id != myTC)
875 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
880 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
881 * set via cross-VPE MTTR manipulation of the Cause register. It would be
882 * in some regards preferable to have external logic for "doorbell" hardware
883 * interrupts.
886 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
888 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
890 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
891 int my_tc = cpu_data[smp_processor_id()].tc_id;
892 int cpu;
893 struct smtc_ipi *pipi;
894 unsigned long tcstatus;
895 int sent;
896 long flags;
897 unsigned int mtflags;
898 unsigned int vpflags;
901 * So long as cross-VPE interrupts are done via
902 * MFTR/MTTR read-modify-writes of Cause, we need
903 * to stop other VPEs whenever the local VPE does
904 * anything similar.
906 local_irq_save(flags);
907 vpflags = dvpe();
908 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
909 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
910 irq_enable_hazard();
911 evpe(vpflags);
912 local_irq_restore(flags);
915 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
916 * queued for TCs on this VPE other than the current one.
917 * Return-from-interrupt should cause us to drain the queue
918 * for the current TC, so we ought not to have to do it explicitly here.
921 for_each_online_cpu(cpu) {
922 if (cpu_data[cpu].vpe_id != my_vpe)
923 continue;
925 pipi = smtc_ipi_dq(&IPIQ[cpu]);
926 if (pipi != NULL) {
927 if (cpu_data[cpu].tc_id != my_tc) {
928 sent = 0;
929 LOCK_MT_PRA();
930 settc(cpu_data[cpu].tc_id);
931 write_tc_c0_tchalt(TCHALT_H);
932 mips_ihb();
933 tcstatus = read_tc_c0_tcstatus();
934 if ((tcstatus & TCSTATUS_IXMT) == 0) {
935 post_direct_ipi(cpu, pipi);
936 sent = 1;
938 write_tc_c0_tchalt(0);
939 UNLOCK_MT_PRA();
940 if (!sent) {
941 smtc_ipi_req(&IPIQ[cpu], pipi);
943 } else {
945 * ipi_decode() should be called
946 * with interrupts off
948 local_irq_save(flags);
949 ipi_decode(pipi);
950 local_irq_restore(flags);
955 return IRQ_HANDLED;
958 static void ipi_irq_dispatch(void)
960 do_IRQ(cpu_ipi_irq);
963 static struct irqaction irq_ipi = {
964 .handler = ipi_interrupt,
965 .flags = IRQF_DISABLED,
966 .name = "SMTC_IPI",
967 .flags = IRQF_PERCPU
970 static void setup_cross_vpe_interrupts(unsigned int nvpe)
972 if (nvpe < 1)
973 return;
975 if (!cpu_has_vint)
976 panic("SMTC Kernel requires Vectored Interupt support");
978 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
980 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
982 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
986 * SMTC-specific hacks invoked from elsewhere in the kernel.
988 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
989 * called with interrupts disabled. We do rely on interrupts being disabled
990 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
991 * result in a recursive call to raw_local_irq_restore().
994 static void __smtc_ipi_replay(void)
996 unsigned int cpu = smp_processor_id();
999 * To the extent that we've ever turned interrupts off,
1000 * we may have accumulated deferred IPIs. This is subtle.
1001 * If we use the smtc_ipi_qdepth() macro, we'll get an
1002 * exact number - but we'll also disable interrupts
1003 * and create a window of failure where a new IPI gets
1004 * queued after we test the depth but before we re-enable
1005 * interrupts. So long as IXMT never gets set, however,
1006 * we should be OK: If we pick up something and dispatch
1007 * it here, that's great. If we see nothing, but concurrent
1008 * with this operation, another TC sends us an IPI, IXMT
1009 * is clear, and we'll handle it as a real pseudo-interrupt
1010 * and not a pseudo-pseudo interrupt.
1012 if (IPIQ[cpu].depth > 0) {
1013 while (1) {
1014 struct smtc_ipi_q *q = &IPIQ[cpu];
1015 struct smtc_ipi *pipi;
1016 extern void self_ipi(struct smtc_ipi *);
1018 spin_lock(&q->lock);
1019 pipi = __smtc_ipi_dq(q);
1020 spin_unlock(&q->lock);
1021 if (!pipi)
1022 break;
1024 self_ipi(pipi);
1025 smtc_cpu_stats[cpu].selfipis++;
1030 void smtc_ipi_replay(void)
1032 raw_local_irq_disable();
1033 __smtc_ipi_replay();
1036 EXPORT_SYMBOL(smtc_ipi_replay);
1038 void smtc_idle_loop_hook(void)
1040 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1041 int im;
1042 int flags;
1043 int mtflags;
1044 int bit;
1045 int vpe;
1046 int tc;
1047 int hook_ntcs;
1049 * printk within DMT-protected regions can deadlock,
1050 * so buffer diagnostic messages for later output.
1052 char *pdb_msg;
1053 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1055 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1056 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1057 int mvpconf0;
1058 /* Tedious stuff to just do once */
1059 mvpconf0 = read_c0_mvpconf0();
1060 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1061 if (hook_ntcs > NR_CPUS)
1062 hook_ntcs = NR_CPUS;
1063 for (tc = 0; tc < hook_ntcs; tc++) {
1064 tcnoprog[tc] = 0;
1065 clock_hang_reported[tc] = 0;
1067 for (vpe = 0; vpe < 2; vpe++)
1068 for (im = 0; im < 8; im++)
1069 imstuckcount[vpe][im] = 0;
1070 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1071 atomic_set(&idle_hook_initialized, 1000);
1072 } else {
1073 /* Someone else is initializing in parallel - let 'em finish */
1074 while (atomic_read(&idle_hook_initialized) < 1000)
1079 /* Have we stupidly left IXMT set somewhere? */
1080 if (read_c0_tcstatus() & 0x400) {
1081 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1082 ehb();
1083 printk("Dangling IXMT in cpu_idle()\n");
1086 /* Have we stupidly left an IM bit turned off? */
1087 #define IM_LIMIT 2000
1088 local_irq_save(flags);
1089 mtflags = dmt();
1090 pdb_msg = &id_ho_db_msg[0];
1091 im = read_c0_status();
1092 vpe = current_cpu_data.vpe_id;
1093 for (bit = 0; bit < 8; bit++) {
1095 * In current prototype, I/O interrupts
1096 * are masked for VPE > 0
1098 if (vpemask[vpe][bit]) {
1099 if (!(im & (0x100 << bit)))
1100 imstuckcount[vpe][bit]++;
1101 else
1102 imstuckcount[vpe][bit] = 0;
1103 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1104 set_c0_status(0x100 << bit);
1105 ehb();
1106 imstuckcount[vpe][bit] = 0;
1107 pdb_msg += sprintf(pdb_msg,
1108 "Dangling IM %d fixed for VPE %d\n", bit,
1109 vpe);
1115 * Now that we limit outstanding timer IPIs, check for hung TC
1117 for (tc = 0; tc < NR_CPUS; tc++) {
1118 /* Don't check ourself - we'll dequeue IPIs just below */
1119 if ((tc != smp_processor_id()) &&
1120 ipi_timer_latch[tc] > timerq_limit) {
1121 if (clock_hang_reported[tc] == 0) {
1122 pdb_msg += sprintf(pdb_msg,
1123 "TC %d looks hung with timer latch at %d\n",
1124 tc, ipi_timer_latch[tc]);
1125 clock_hang_reported[tc]++;
1129 emt(mtflags);
1130 local_irq_restore(flags);
1131 if (pdb_msg != &id_ho_db_msg[0])
1132 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1133 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1136 * Replay any accumulated deferred IPIs. If "Instant Replay"
1137 * is in use, there should never be any.
1139 #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1141 unsigned long flags;
1143 local_irq_save(flags);
1144 __smtc_ipi_replay();
1145 local_irq_restore(flags);
1147 #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1150 void smtc_soft_dump(void)
1152 int i;
1154 printk("Counter Interrupts taken per CPU (TC)\n");
1155 for (i=0; i < NR_CPUS; i++) {
1156 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1158 printk("Self-IPI invocations:\n");
1159 for (i=0; i < NR_CPUS; i++) {
1160 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1162 smtc_ipi_qdump();
1163 printk("Timer IPI Backlogs:\n");
1164 for (i=0; i < NR_CPUS; i++) {
1165 printk("%d: %d\n", i, ipi_timer_latch[i]);
1167 printk("%d Recoveries of \"stolen\" FPU\n",
1168 atomic_read(&smtc_fpu_recoveries));
1173 * TLB management routines special to SMTC
1176 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1178 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1179 int tlb, i;
1182 * It would be nice to be able to use a spinlock here,
1183 * but this is invoked from within TLB flush routines
1184 * that protect themselves with DVPE, so if a lock is
1185 * held by another TC, it'll never be freed.
1187 * DVPE/DMT must not be done with interrupts enabled,
1188 * so even so most callers will already have disabled
1189 * them, let's be really careful...
1192 local_irq_save(flags);
1193 if (smtc_status & SMTC_TLB_SHARED) {
1194 mtflags = dvpe();
1195 tlb = 0;
1196 } else {
1197 mtflags = dmt();
1198 tlb = cpu_data[cpu].vpe_id;
1200 asid = asid_cache(cpu);
1202 do {
1203 if (!((asid += ASID_INC) & ASID_MASK) ) {
1204 if (cpu_has_vtag_icache)
1205 flush_icache_all();
1206 /* Traverse all online CPUs (hack requires contigous range) */
1207 for (i = 0; i < num_online_cpus(); i++) {
1209 * We don't need to worry about our own CPU, nor those of
1210 * CPUs who don't share our TLB.
1212 if ((i != smp_processor_id()) &&
1213 ((smtc_status & SMTC_TLB_SHARED) ||
1214 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1215 settc(cpu_data[i].tc_id);
1216 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1217 if (!prevhalt) {
1218 write_tc_c0_tchalt(TCHALT_H);
1219 mips_ihb();
1221 tcstat = read_tc_c0_tcstatus();
1222 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1223 if (!prevhalt)
1224 write_tc_c0_tchalt(0);
1227 if (!asid) /* fix version if needed */
1228 asid = ASID_FIRST_VERSION;
1229 local_flush_tlb_all(); /* start new asid cycle */
1231 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1234 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1236 for (i = 0; i < num_online_cpus(); i++) {
1237 if ((smtc_status & SMTC_TLB_SHARED) ||
1238 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1239 cpu_context(i, mm) = asid_cache(i) = asid;
1242 if (smtc_status & SMTC_TLB_SHARED)
1243 evpe(mtflags);
1244 else
1245 emt(mtflags);
1246 local_irq_restore(flags);
1250 * Invoked from macros defined in mmu_context.h
1251 * which must already have disabled interrupts
1252 * and done a DVPE or DMT as appropriate.
1255 void smtc_flush_tlb_asid(unsigned long asid)
1257 int entry;
1258 unsigned long ehi;
1260 entry = read_c0_wired();
1262 /* Traverse all non-wired entries */
1263 while (entry < current_cpu_data.tlbsize) {
1264 write_c0_index(entry);
1265 ehb();
1266 tlb_read();
1267 ehb();
1268 ehi = read_c0_entryhi();
1269 if ((ehi & ASID_MASK) == asid) {
1271 * Invalidate only entries with specified ASID,
1272 * makiing sure all entries differ.
1274 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1275 write_c0_entrylo0(0);
1276 write_c0_entrylo1(0);
1277 mtc0_tlbw_hazard();
1278 tlb_write_indexed();
1280 entry++;
1282 write_c0_index(PARKED_INDEX);
1283 tlbw_use_hazard();
1287 * Support for single-threading cache flush operations.
1290 static int halt_state_save[NR_CPUS];
1293 * To really, really be sure that nothing is being done
1294 * by other TCs, halt them all. This code assumes that
1295 * a DVPE has already been done, so while their Halted
1296 * state is theoretically architecturally unstable, in
1297 * practice, it's not going to change while we're looking
1298 * at it.
1301 void smtc_cflush_lockdown(void)
1303 int cpu;
1305 for_each_online_cpu(cpu) {
1306 if (cpu != smp_processor_id()) {
1307 settc(cpu_data[cpu].tc_id);
1308 halt_state_save[cpu] = read_tc_c0_tchalt();
1309 write_tc_c0_tchalt(TCHALT_H);
1312 mips_ihb();
1315 /* It would be cheating to change the cpu_online states during a flush! */
1317 void smtc_cflush_release(void)
1319 int cpu;
1322 * Start with a hazard barrier to ensure
1323 * that all CACHE ops have played through.
1325 mips_ihb();
1327 for_each_online_cpu(cpu) {
1328 if (cpu != smp_processor_id()) {
1329 settc(cpu_data[cpu].tc_id);
1330 write_tc_c0_tchalt(halt_state_save[cpu]);
1333 mips_ihb();