Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluet...
[linux-2.6/x86.git] / kernel / sched_rt.c
blob47ceac9e8552f309930c9f9af4d4131fd18ca8f3
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_SMP
8 static inline int rt_overloaded(struct rq *rq)
10 return atomic_read(&rq->rd->rto_count);
13 static inline void rt_set_overload(struct rq *rq)
15 if (!rq->online)
16 return;
18 cpu_set(rq->cpu, rq->rd->rto_mask);
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
26 wmb();
27 atomic_inc(&rq->rd->rto_count);
30 static inline void rt_clear_overload(struct rq *rq)
32 if (!rq->online)
33 return;
35 /* the order here really doesn't matter */
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
40 static void update_rt_migration(struct rq *rq)
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
52 #endif /* CONFIG_SMP */
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
56 return container_of(rt_se, struct task_struct, rt);
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
61 return !list_empty(&rt_se->run_list);
64 #ifdef CONFIG_RT_GROUP_SCHED
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
68 if (!rt_rq->tg)
69 return RUNTIME_INF;
71 return rt_rq->rt_runtime;
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
84 return rt_rq->rq;
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
89 return rt_se->rt_rq;
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
97 return rt_se->my_q;
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
144 return cpu_rq(smp_processor_id())->rd->span;
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
149 return cpu_online_map;
151 #endif
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
161 return &rt_rq->tg->rt_bandwidth;
164 #else /* !CONFIG_RT_GROUP_SCHED */
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
168 return rt_rq->rt_runtime;
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
181 return container_of(rt_rq, struct rq, rt);
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
189 return &rq->rt;
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
197 return NULL;
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
204 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
208 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
210 return rt_rq->rt_throttled;
213 static inline cpumask_t sched_rt_period_mask(void)
215 return cpu_online_map;
218 static inline
219 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
221 return &cpu_rq(cpu)->rt;
224 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
226 return &def_rt_bandwidth;
229 #endif /* CONFIG_RT_GROUP_SCHED */
231 #ifdef CONFIG_SMP
232 static int do_balance_runtime(struct rt_rq *rt_rq)
234 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
235 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
236 int i, weight, more = 0;
237 u64 rt_period;
239 weight = cpus_weight(rd->span);
241 spin_lock(&rt_b->rt_runtime_lock);
242 rt_period = ktime_to_ns(rt_b->rt_period);
243 for_each_cpu_mask(i, rd->span) {
244 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
245 s64 diff;
247 if (iter == rt_rq)
248 continue;
250 spin_lock(&iter->rt_runtime_lock);
251 if (iter->rt_runtime == RUNTIME_INF)
252 goto next;
254 diff = iter->rt_runtime - iter->rt_time;
255 if (diff > 0) {
256 do_div(diff, weight);
257 if (rt_rq->rt_runtime + diff > rt_period)
258 diff = rt_period - rt_rq->rt_runtime;
259 iter->rt_runtime -= diff;
260 rt_rq->rt_runtime += diff;
261 more = 1;
262 if (rt_rq->rt_runtime == rt_period) {
263 spin_unlock(&iter->rt_runtime_lock);
264 break;
267 next:
268 spin_unlock(&iter->rt_runtime_lock);
270 spin_unlock(&rt_b->rt_runtime_lock);
272 return more;
275 static void __disable_runtime(struct rq *rq)
277 struct root_domain *rd = rq->rd;
278 struct rt_rq *rt_rq;
280 if (unlikely(!scheduler_running))
281 return;
283 for_each_leaf_rt_rq(rt_rq, rq) {
284 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285 s64 want;
286 int i;
288 spin_lock(&rt_b->rt_runtime_lock);
289 spin_lock(&rt_rq->rt_runtime_lock);
290 if (rt_rq->rt_runtime == RUNTIME_INF ||
291 rt_rq->rt_runtime == rt_b->rt_runtime)
292 goto balanced;
293 spin_unlock(&rt_rq->rt_runtime_lock);
295 want = rt_b->rt_runtime - rt_rq->rt_runtime;
297 for_each_cpu_mask(i, rd->span) {
298 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299 s64 diff;
301 if (iter == rt_rq)
302 continue;
304 spin_lock(&iter->rt_runtime_lock);
305 if (want > 0) {
306 diff = min_t(s64, iter->rt_runtime, want);
307 iter->rt_runtime -= diff;
308 want -= diff;
309 } else {
310 iter->rt_runtime -= want;
311 want -= want;
313 spin_unlock(&iter->rt_runtime_lock);
315 if (!want)
316 break;
319 spin_lock(&rt_rq->rt_runtime_lock);
320 BUG_ON(want);
321 balanced:
322 rt_rq->rt_runtime = RUNTIME_INF;
323 spin_unlock(&rt_rq->rt_runtime_lock);
324 spin_unlock(&rt_b->rt_runtime_lock);
328 static void disable_runtime(struct rq *rq)
330 unsigned long flags;
332 spin_lock_irqsave(&rq->lock, flags);
333 __disable_runtime(rq);
334 spin_unlock_irqrestore(&rq->lock, flags);
337 static void __enable_runtime(struct rq *rq)
339 struct rt_rq *rt_rq;
341 if (unlikely(!scheduler_running))
342 return;
344 for_each_leaf_rt_rq(rt_rq, rq) {
345 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
347 spin_lock(&rt_b->rt_runtime_lock);
348 spin_lock(&rt_rq->rt_runtime_lock);
349 rt_rq->rt_runtime = rt_b->rt_runtime;
350 rt_rq->rt_time = 0;
351 spin_unlock(&rt_rq->rt_runtime_lock);
352 spin_unlock(&rt_b->rt_runtime_lock);
356 static void enable_runtime(struct rq *rq)
358 unsigned long flags;
360 spin_lock_irqsave(&rq->lock, flags);
361 __enable_runtime(rq);
362 spin_unlock_irqrestore(&rq->lock, flags);
365 static int balance_runtime(struct rt_rq *rt_rq)
367 int more = 0;
369 if (rt_rq->rt_time > rt_rq->rt_runtime) {
370 spin_unlock(&rt_rq->rt_runtime_lock);
371 more = do_balance_runtime(rt_rq);
372 spin_lock(&rt_rq->rt_runtime_lock);
375 return more;
377 #else /* !CONFIG_SMP */
378 static inline int balance_runtime(struct rt_rq *rt_rq)
380 return 0;
382 #endif /* CONFIG_SMP */
384 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
386 int i, idle = 1;
387 cpumask_t span;
389 if (rt_b->rt_runtime == RUNTIME_INF)
390 return 1;
392 span = sched_rt_period_mask();
393 for_each_cpu_mask(i, span) {
394 int enqueue = 0;
395 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
396 struct rq *rq = rq_of_rt_rq(rt_rq);
398 spin_lock(&rq->lock);
399 if (rt_rq->rt_time) {
400 u64 runtime;
402 spin_lock(&rt_rq->rt_runtime_lock);
403 if (rt_rq->rt_throttled)
404 balance_runtime(rt_rq);
405 runtime = rt_rq->rt_runtime;
406 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
407 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
408 rt_rq->rt_throttled = 0;
409 enqueue = 1;
411 if (rt_rq->rt_time || rt_rq->rt_nr_running)
412 idle = 0;
413 spin_unlock(&rt_rq->rt_runtime_lock);
414 } else if (rt_rq->rt_nr_running)
415 idle = 0;
417 if (enqueue)
418 sched_rt_rq_enqueue(rt_rq);
419 spin_unlock(&rq->lock);
422 return idle;
425 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
427 #ifdef CONFIG_RT_GROUP_SCHED
428 struct rt_rq *rt_rq = group_rt_rq(rt_se);
430 if (rt_rq)
431 return rt_rq->highest_prio;
432 #endif
434 return rt_task_of(rt_se)->prio;
437 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
439 u64 runtime = sched_rt_runtime(rt_rq);
441 if (runtime == RUNTIME_INF)
442 return 0;
444 if (rt_rq->rt_throttled)
445 return rt_rq_throttled(rt_rq);
447 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
448 return 0;
450 balance_runtime(rt_rq);
451 runtime = sched_rt_runtime(rt_rq);
452 if (runtime == RUNTIME_INF)
453 return 0;
455 if (rt_rq->rt_time > runtime) {
456 rt_rq->rt_throttled = 1;
457 if (rt_rq_throttled(rt_rq)) {
458 sched_rt_rq_dequeue(rt_rq);
459 return 1;
463 return 0;
467 * Update the current task's runtime statistics. Skip current tasks that
468 * are not in our scheduling class.
470 static void update_curr_rt(struct rq *rq)
472 struct task_struct *curr = rq->curr;
473 struct sched_rt_entity *rt_se = &curr->rt;
474 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
475 u64 delta_exec;
477 if (!task_has_rt_policy(curr))
478 return;
480 delta_exec = rq->clock - curr->se.exec_start;
481 if (unlikely((s64)delta_exec < 0))
482 delta_exec = 0;
484 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
486 curr->se.sum_exec_runtime += delta_exec;
487 curr->se.exec_start = rq->clock;
488 cpuacct_charge(curr, delta_exec);
490 for_each_sched_rt_entity(rt_se) {
491 rt_rq = rt_rq_of_se(rt_se);
493 spin_lock(&rt_rq->rt_runtime_lock);
494 rt_rq->rt_time += delta_exec;
495 if (sched_rt_runtime_exceeded(rt_rq))
496 resched_task(curr);
497 spin_unlock(&rt_rq->rt_runtime_lock);
501 static inline
502 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
504 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
505 rt_rq->rt_nr_running++;
506 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
507 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
508 struct rq *rq = rq_of_rt_rq(rt_rq);
510 rt_rq->highest_prio = rt_se_prio(rt_se);
511 #ifdef CONFIG_SMP
512 if (rq->online)
513 cpupri_set(&rq->rd->cpupri, rq->cpu,
514 rt_se_prio(rt_se));
515 #endif
517 #endif
518 #ifdef CONFIG_SMP
519 if (rt_se->nr_cpus_allowed > 1) {
520 struct rq *rq = rq_of_rt_rq(rt_rq);
522 rq->rt.rt_nr_migratory++;
525 update_rt_migration(rq_of_rt_rq(rt_rq));
526 #endif
527 #ifdef CONFIG_RT_GROUP_SCHED
528 if (rt_se_boosted(rt_se))
529 rt_rq->rt_nr_boosted++;
531 if (rt_rq->tg)
532 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
533 #else
534 start_rt_bandwidth(&def_rt_bandwidth);
535 #endif
538 static inline
539 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
541 #ifdef CONFIG_SMP
542 int highest_prio = rt_rq->highest_prio;
543 #endif
545 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
546 WARN_ON(!rt_rq->rt_nr_running);
547 rt_rq->rt_nr_running--;
548 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
549 if (rt_rq->rt_nr_running) {
550 struct rt_prio_array *array;
552 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
553 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
554 /* recalculate */
555 array = &rt_rq->active;
556 rt_rq->highest_prio =
557 sched_find_first_bit(array->bitmap);
558 } /* otherwise leave rq->highest prio alone */
559 } else
560 rt_rq->highest_prio = MAX_RT_PRIO;
561 #endif
562 #ifdef CONFIG_SMP
563 if (rt_se->nr_cpus_allowed > 1) {
564 struct rq *rq = rq_of_rt_rq(rt_rq);
565 rq->rt.rt_nr_migratory--;
568 if (rt_rq->highest_prio != highest_prio) {
569 struct rq *rq = rq_of_rt_rq(rt_rq);
571 if (rq->online)
572 cpupri_set(&rq->rd->cpupri, rq->cpu,
573 rt_rq->highest_prio);
576 update_rt_migration(rq_of_rt_rq(rt_rq));
577 #endif /* CONFIG_SMP */
578 #ifdef CONFIG_RT_GROUP_SCHED
579 if (rt_se_boosted(rt_se))
580 rt_rq->rt_nr_boosted--;
582 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
583 #endif
586 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
588 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
589 struct rt_prio_array *array = &rt_rq->active;
590 struct rt_rq *group_rq = group_rt_rq(rt_se);
591 struct list_head *queue = array->queue + rt_se_prio(rt_se);
594 * Don't enqueue the group if its throttled, or when empty.
595 * The latter is a consequence of the former when a child group
596 * get throttled and the current group doesn't have any other
597 * active members.
599 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
600 return;
602 if (rt_se->nr_cpus_allowed == 1)
603 list_add(&rt_se->run_list, queue);
604 else
605 list_add_tail(&rt_se->run_list, queue);
607 __set_bit(rt_se_prio(rt_se), array->bitmap);
609 inc_rt_tasks(rt_se, rt_rq);
612 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
614 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
615 struct rt_prio_array *array = &rt_rq->active;
617 list_del_init(&rt_se->run_list);
618 if (list_empty(array->queue + rt_se_prio(rt_se)))
619 __clear_bit(rt_se_prio(rt_se), array->bitmap);
621 dec_rt_tasks(rt_se, rt_rq);
625 * Because the prio of an upper entry depends on the lower
626 * entries, we must remove entries top - down.
628 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
630 struct sched_rt_entity *back = NULL;
632 for_each_sched_rt_entity(rt_se) {
633 rt_se->back = back;
634 back = rt_se;
637 for (rt_se = back; rt_se; rt_se = rt_se->back) {
638 if (on_rt_rq(rt_se))
639 __dequeue_rt_entity(rt_se);
643 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
645 dequeue_rt_stack(rt_se);
646 for_each_sched_rt_entity(rt_se)
647 __enqueue_rt_entity(rt_se);
650 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
652 dequeue_rt_stack(rt_se);
654 for_each_sched_rt_entity(rt_se) {
655 struct rt_rq *rt_rq = group_rt_rq(rt_se);
657 if (rt_rq && rt_rq->rt_nr_running)
658 __enqueue_rt_entity(rt_se);
663 * Adding/removing a task to/from a priority array:
665 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
667 struct sched_rt_entity *rt_se = &p->rt;
669 if (wakeup)
670 rt_se->timeout = 0;
672 enqueue_rt_entity(rt_se);
674 inc_cpu_load(rq, p->se.load.weight);
677 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
679 struct sched_rt_entity *rt_se = &p->rt;
681 update_curr_rt(rq);
682 dequeue_rt_entity(rt_se);
684 dec_cpu_load(rq, p->se.load.weight);
688 * Put task to the end of the run list without the overhead of dequeue
689 * followed by enqueue.
691 static
692 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
694 struct rt_prio_array *array = &rt_rq->active;
696 if (on_rt_rq(rt_se)) {
697 list_del_init(&rt_se->run_list);
698 list_add_tail(&rt_se->run_list,
699 array->queue + rt_se_prio(rt_se));
703 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
705 struct sched_rt_entity *rt_se = &p->rt;
706 struct rt_rq *rt_rq;
708 for_each_sched_rt_entity(rt_se) {
709 rt_rq = rt_rq_of_se(rt_se);
710 requeue_rt_entity(rt_rq, rt_se);
714 static void yield_task_rt(struct rq *rq)
716 requeue_task_rt(rq, rq->curr);
719 #ifdef CONFIG_SMP
720 static int find_lowest_rq(struct task_struct *task);
722 static int select_task_rq_rt(struct task_struct *p, int sync)
724 struct rq *rq = task_rq(p);
727 * If the current task is an RT task, then
728 * try to see if we can wake this RT task up on another
729 * runqueue. Otherwise simply start this RT task
730 * on its current runqueue.
732 * We want to avoid overloading runqueues. Even if
733 * the RT task is of higher priority than the current RT task.
734 * RT tasks behave differently than other tasks. If
735 * one gets preempted, we try to push it off to another queue.
736 * So trying to keep a preempting RT task on the same
737 * cache hot CPU will force the running RT task to
738 * a cold CPU. So we waste all the cache for the lower
739 * RT task in hopes of saving some of a RT task
740 * that is just being woken and probably will have
741 * cold cache anyway.
743 if (unlikely(rt_task(rq->curr)) &&
744 (p->rt.nr_cpus_allowed > 1)) {
745 int cpu = find_lowest_rq(p);
747 return (cpu == -1) ? task_cpu(p) : cpu;
751 * Otherwise, just let it ride on the affined RQ and the
752 * post-schedule router will push the preempted task away
754 return task_cpu(p);
756 #endif /* CONFIG_SMP */
759 * Preempt the current task with a newly woken task if needed:
761 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
763 if (p->prio < rq->curr->prio) {
764 resched_task(rq->curr);
765 return;
768 #ifdef CONFIG_SMP
770 * If:
772 * - the newly woken task is of equal priority to the current task
773 * - the newly woken task is non-migratable while current is migratable
774 * - current will be preempted on the next reschedule
776 * we should check to see if current can readily move to a different
777 * cpu. If so, we will reschedule to allow the push logic to try
778 * to move current somewhere else, making room for our non-migratable
779 * task.
781 if((p->prio == rq->curr->prio)
782 && p->rt.nr_cpus_allowed == 1
783 && rq->curr->rt.nr_cpus_allowed != 1) {
784 cpumask_t mask;
786 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
788 * There appears to be other cpus that can accept
789 * current, so lets reschedule to try and push it away
791 resched_task(rq->curr);
793 #endif
796 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
797 struct rt_rq *rt_rq)
799 struct rt_prio_array *array = &rt_rq->active;
800 struct sched_rt_entity *next = NULL;
801 struct list_head *queue;
802 int idx;
804 idx = sched_find_first_bit(array->bitmap);
805 BUG_ON(idx >= MAX_RT_PRIO);
807 queue = array->queue + idx;
808 next = list_entry(queue->next, struct sched_rt_entity, run_list);
810 return next;
813 static struct task_struct *pick_next_task_rt(struct rq *rq)
815 struct sched_rt_entity *rt_se;
816 struct task_struct *p;
817 struct rt_rq *rt_rq;
819 rt_rq = &rq->rt;
821 if (unlikely(!rt_rq->rt_nr_running))
822 return NULL;
824 if (rt_rq_throttled(rt_rq))
825 return NULL;
827 do {
828 rt_se = pick_next_rt_entity(rq, rt_rq);
829 BUG_ON(!rt_se);
830 rt_rq = group_rt_rq(rt_se);
831 } while (rt_rq);
833 p = rt_task_of(rt_se);
834 p->se.exec_start = rq->clock;
835 return p;
838 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
840 update_curr_rt(rq);
841 p->se.exec_start = 0;
844 #ifdef CONFIG_SMP
846 /* Only try algorithms three times */
847 #define RT_MAX_TRIES 3
849 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
850 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
852 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
854 if (!task_running(rq, p) &&
855 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
856 (p->rt.nr_cpus_allowed > 1))
857 return 1;
858 return 0;
861 /* Return the second highest RT task, NULL otherwise */
862 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
864 struct task_struct *next = NULL;
865 struct sched_rt_entity *rt_se;
866 struct rt_prio_array *array;
867 struct rt_rq *rt_rq;
868 int idx;
870 for_each_leaf_rt_rq(rt_rq, rq) {
871 array = &rt_rq->active;
872 idx = sched_find_first_bit(array->bitmap);
873 next_idx:
874 if (idx >= MAX_RT_PRIO)
875 continue;
876 if (next && next->prio < idx)
877 continue;
878 list_for_each_entry(rt_se, array->queue + idx, run_list) {
879 struct task_struct *p = rt_task_of(rt_se);
880 if (pick_rt_task(rq, p, cpu)) {
881 next = p;
882 break;
885 if (!next) {
886 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
887 goto next_idx;
891 return next;
894 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
896 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
898 int first;
900 /* "this_cpu" is cheaper to preempt than a remote processor */
901 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
902 return this_cpu;
904 first = first_cpu(*mask);
905 if (first != NR_CPUS)
906 return first;
908 return -1;
911 static int find_lowest_rq(struct task_struct *task)
913 struct sched_domain *sd;
914 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
915 int this_cpu = smp_processor_id();
916 int cpu = task_cpu(task);
918 if (task->rt.nr_cpus_allowed == 1)
919 return -1; /* No other targets possible */
921 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
922 return -1; /* No targets found */
925 * At this point we have built a mask of cpus representing the
926 * lowest priority tasks in the system. Now we want to elect
927 * the best one based on our affinity and topology.
929 * We prioritize the last cpu that the task executed on since
930 * it is most likely cache-hot in that location.
932 if (cpu_isset(cpu, *lowest_mask))
933 return cpu;
936 * Otherwise, we consult the sched_domains span maps to figure
937 * out which cpu is logically closest to our hot cache data.
939 if (this_cpu == cpu)
940 this_cpu = -1; /* Skip this_cpu opt if the same */
942 for_each_domain(cpu, sd) {
943 if (sd->flags & SD_WAKE_AFFINE) {
944 cpumask_t domain_mask;
945 int best_cpu;
947 cpus_and(domain_mask, sd->span, *lowest_mask);
949 best_cpu = pick_optimal_cpu(this_cpu,
950 &domain_mask);
951 if (best_cpu != -1)
952 return best_cpu;
957 * And finally, if there were no matches within the domains
958 * just give the caller *something* to work with from the compatible
959 * locations.
961 return pick_optimal_cpu(this_cpu, lowest_mask);
964 /* Will lock the rq it finds */
965 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
967 struct rq *lowest_rq = NULL;
968 int tries;
969 int cpu;
971 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
972 cpu = find_lowest_rq(task);
974 if ((cpu == -1) || (cpu == rq->cpu))
975 break;
977 lowest_rq = cpu_rq(cpu);
979 /* if the prio of this runqueue changed, try again */
980 if (double_lock_balance(rq, lowest_rq)) {
982 * We had to unlock the run queue. In
983 * the mean time, task could have
984 * migrated already or had its affinity changed.
985 * Also make sure that it wasn't scheduled on its rq.
987 if (unlikely(task_rq(task) != rq ||
988 !cpu_isset(lowest_rq->cpu,
989 task->cpus_allowed) ||
990 task_running(rq, task) ||
991 !task->se.on_rq)) {
993 spin_unlock(&lowest_rq->lock);
994 lowest_rq = NULL;
995 break;
999 /* If this rq is still suitable use it. */
1000 if (lowest_rq->rt.highest_prio > task->prio)
1001 break;
1003 /* try again */
1004 spin_unlock(&lowest_rq->lock);
1005 lowest_rq = NULL;
1008 return lowest_rq;
1012 * If the current CPU has more than one RT task, see if the non
1013 * running task can migrate over to a CPU that is running a task
1014 * of lesser priority.
1016 static int push_rt_task(struct rq *rq)
1018 struct task_struct *next_task;
1019 struct rq *lowest_rq;
1020 int ret = 0;
1021 int paranoid = RT_MAX_TRIES;
1023 if (!rq->rt.overloaded)
1024 return 0;
1026 next_task = pick_next_highest_task_rt(rq, -1);
1027 if (!next_task)
1028 return 0;
1030 retry:
1031 if (unlikely(next_task == rq->curr)) {
1032 WARN_ON(1);
1033 return 0;
1037 * It's possible that the next_task slipped in of
1038 * higher priority than current. If that's the case
1039 * just reschedule current.
1041 if (unlikely(next_task->prio < rq->curr->prio)) {
1042 resched_task(rq->curr);
1043 return 0;
1046 /* We might release rq lock */
1047 get_task_struct(next_task);
1049 /* find_lock_lowest_rq locks the rq if found */
1050 lowest_rq = find_lock_lowest_rq(next_task, rq);
1051 if (!lowest_rq) {
1052 struct task_struct *task;
1054 * find lock_lowest_rq releases rq->lock
1055 * so it is possible that next_task has changed.
1056 * If it has, then try again.
1058 task = pick_next_highest_task_rt(rq, -1);
1059 if (unlikely(task != next_task) && task && paranoid--) {
1060 put_task_struct(next_task);
1061 next_task = task;
1062 goto retry;
1064 goto out;
1067 deactivate_task(rq, next_task, 0);
1068 set_task_cpu(next_task, lowest_rq->cpu);
1069 activate_task(lowest_rq, next_task, 0);
1071 resched_task(lowest_rq->curr);
1073 spin_unlock(&lowest_rq->lock);
1075 ret = 1;
1076 out:
1077 put_task_struct(next_task);
1079 return ret;
1083 * TODO: Currently we just use the second highest prio task on
1084 * the queue, and stop when it can't migrate (or there's
1085 * no more RT tasks). There may be a case where a lower
1086 * priority RT task has a different affinity than the
1087 * higher RT task. In this case the lower RT task could
1088 * possibly be able to migrate where as the higher priority
1089 * RT task could not. We currently ignore this issue.
1090 * Enhancements are welcome!
1092 static void push_rt_tasks(struct rq *rq)
1094 /* push_rt_task will return true if it moved an RT */
1095 while (push_rt_task(rq))
1099 static int pull_rt_task(struct rq *this_rq)
1101 int this_cpu = this_rq->cpu, ret = 0, cpu;
1102 struct task_struct *p, *next;
1103 struct rq *src_rq;
1105 if (likely(!rt_overloaded(this_rq)))
1106 return 0;
1108 next = pick_next_task_rt(this_rq);
1110 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1111 if (this_cpu == cpu)
1112 continue;
1114 src_rq = cpu_rq(cpu);
1116 * We can potentially drop this_rq's lock in
1117 * double_lock_balance, and another CPU could
1118 * steal our next task - hence we must cause
1119 * the caller to recalculate the next task
1120 * in that case:
1122 if (double_lock_balance(this_rq, src_rq)) {
1123 struct task_struct *old_next = next;
1125 next = pick_next_task_rt(this_rq);
1126 if (next != old_next)
1127 ret = 1;
1131 * Are there still pullable RT tasks?
1133 if (src_rq->rt.rt_nr_running <= 1)
1134 goto skip;
1136 p = pick_next_highest_task_rt(src_rq, this_cpu);
1139 * Do we have an RT task that preempts
1140 * the to-be-scheduled task?
1142 if (p && (!next || (p->prio < next->prio))) {
1143 WARN_ON(p == src_rq->curr);
1144 WARN_ON(!p->se.on_rq);
1147 * There's a chance that p is higher in priority
1148 * than what's currently running on its cpu.
1149 * This is just that p is wakeing up and hasn't
1150 * had a chance to schedule. We only pull
1151 * p if it is lower in priority than the
1152 * current task on the run queue or
1153 * this_rq next task is lower in prio than
1154 * the current task on that rq.
1156 if (p->prio < src_rq->curr->prio ||
1157 (next && next->prio < src_rq->curr->prio))
1158 goto skip;
1160 ret = 1;
1162 deactivate_task(src_rq, p, 0);
1163 set_task_cpu(p, this_cpu);
1164 activate_task(this_rq, p, 0);
1166 * We continue with the search, just in
1167 * case there's an even higher prio task
1168 * in another runqueue. (low likelyhood
1169 * but possible)
1171 * Update next so that we won't pick a task
1172 * on another cpu with a priority lower (or equal)
1173 * than the one we just picked.
1175 next = p;
1178 skip:
1179 spin_unlock(&src_rq->lock);
1182 return ret;
1185 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1187 /* Try to pull RT tasks here if we lower this rq's prio */
1188 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1189 pull_rt_task(rq);
1192 static void post_schedule_rt(struct rq *rq)
1195 * If we have more than one rt_task queued, then
1196 * see if we can push the other rt_tasks off to other CPUS.
1197 * Note we may release the rq lock, and since
1198 * the lock was owned by prev, we need to release it
1199 * first via finish_lock_switch and then reaquire it here.
1201 if (unlikely(rq->rt.overloaded)) {
1202 spin_lock_irq(&rq->lock);
1203 push_rt_tasks(rq);
1204 spin_unlock_irq(&rq->lock);
1209 * If we are not running and we are not going to reschedule soon, we should
1210 * try to push tasks away now
1212 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1214 if (!task_running(rq, p) &&
1215 !test_tsk_need_resched(rq->curr) &&
1216 rq->rt.overloaded)
1217 push_rt_tasks(rq);
1220 static unsigned long
1221 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1222 unsigned long max_load_move,
1223 struct sched_domain *sd, enum cpu_idle_type idle,
1224 int *all_pinned, int *this_best_prio)
1226 /* don't touch RT tasks */
1227 return 0;
1230 static int
1231 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1232 struct sched_domain *sd, enum cpu_idle_type idle)
1234 /* don't touch RT tasks */
1235 return 0;
1238 static void set_cpus_allowed_rt(struct task_struct *p,
1239 const cpumask_t *new_mask)
1241 int weight = cpus_weight(*new_mask);
1243 BUG_ON(!rt_task(p));
1246 * Update the migration status of the RQ if we have an RT task
1247 * which is running AND changing its weight value.
1249 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1250 struct rq *rq = task_rq(p);
1252 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1253 rq->rt.rt_nr_migratory++;
1254 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1255 BUG_ON(!rq->rt.rt_nr_migratory);
1256 rq->rt.rt_nr_migratory--;
1259 update_rt_migration(rq);
1262 p->cpus_allowed = *new_mask;
1263 p->rt.nr_cpus_allowed = weight;
1266 /* Assumes rq->lock is held */
1267 static void rq_online_rt(struct rq *rq)
1269 if (rq->rt.overloaded)
1270 rt_set_overload(rq);
1272 __enable_runtime(rq);
1274 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1277 /* Assumes rq->lock is held */
1278 static void rq_offline_rt(struct rq *rq)
1280 if (rq->rt.overloaded)
1281 rt_clear_overload(rq);
1283 __disable_runtime(rq);
1285 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1289 * When switch from the rt queue, we bring ourselves to a position
1290 * that we might want to pull RT tasks from other runqueues.
1292 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1293 int running)
1296 * If there are other RT tasks then we will reschedule
1297 * and the scheduling of the other RT tasks will handle
1298 * the balancing. But if we are the last RT task
1299 * we may need to handle the pulling of RT tasks
1300 * now.
1302 if (!rq->rt.rt_nr_running)
1303 pull_rt_task(rq);
1305 #endif /* CONFIG_SMP */
1308 * When switching a task to RT, we may overload the runqueue
1309 * with RT tasks. In this case we try to push them off to
1310 * other runqueues.
1312 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1313 int running)
1315 int check_resched = 1;
1318 * If we are already running, then there's nothing
1319 * that needs to be done. But if we are not running
1320 * we may need to preempt the current running task.
1321 * If that current running task is also an RT task
1322 * then see if we can move to another run queue.
1324 if (!running) {
1325 #ifdef CONFIG_SMP
1326 if (rq->rt.overloaded && push_rt_task(rq) &&
1327 /* Don't resched if we changed runqueues */
1328 rq != task_rq(p))
1329 check_resched = 0;
1330 #endif /* CONFIG_SMP */
1331 if (check_resched && p->prio < rq->curr->prio)
1332 resched_task(rq->curr);
1337 * Priority of the task has changed. This may cause
1338 * us to initiate a push or pull.
1340 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1341 int oldprio, int running)
1343 if (running) {
1344 #ifdef CONFIG_SMP
1346 * If our priority decreases while running, we
1347 * may need to pull tasks to this runqueue.
1349 if (oldprio < p->prio)
1350 pull_rt_task(rq);
1352 * If there's a higher priority task waiting to run
1353 * then reschedule. Note, the above pull_rt_task
1354 * can release the rq lock and p could migrate.
1355 * Only reschedule if p is still on the same runqueue.
1357 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1358 resched_task(p);
1359 #else
1360 /* For UP simply resched on drop of prio */
1361 if (oldprio < p->prio)
1362 resched_task(p);
1363 #endif /* CONFIG_SMP */
1364 } else {
1366 * This task is not running, but if it is
1367 * greater than the current running task
1368 * then reschedule.
1370 if (p->prio < rq->curr->prio)
1371 resched_task(rq->curr);
1375 static void watchdog(struct rq *rq, struct task_struct *p)
1377 unsigned long soft, hard;
1379 if (!p->signal)
1380 return;
1382 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1383 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1385 if (soft != RLIM_INFINITY) {
1386 unsigned long next;
1388 p->rt.timeout++;
1389 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1390 if (p->rt.timeout > next)
1391 p->it_sched_expires = p->se.sum_exec_runtime;
1395 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1397 update_curr_rt(rq);
1399 watchdog(rq, p);
1402 * RR tasks need a special form of timeslice management.
1403 * FIFO tasks have no timeslices.
1405 if (p->policy != SCHED_RR)
1406 return;
1408 if (--p->rt.time_slice)
1409 return;
1411 p->rt.time_slice = DEF_TIMESLICE;
1414 * Requeue to the end of queue if we are not the only element
1415 * on the queue:
1417 if (p->rt.run_list.prev != p->rt.run_list.next) {
1418 requeue_task_rt(rq, p);
1419 set_tsk_need_resched(p);
1423 static void set_curr_task_rt(struct rq *rq)
1425 struct task_struct *p = rq->curr;
1427 p->se.exec_start = rq->clock;
1430 static const struct sched_class rt_sched_class = {
1431 .next = &fair_sched_class,
1432 .enqueue_task = enqueue_task_rt,
1433 .dequeue_task = dequeue_task_rt,
1434 .yield_task = yield_task_rt,
1435 #ifdef CONFIG_SMP
1436 .select_task_rq = select_task_rq_rt,
1437 #endif /* CONFIG_SMP */
1439 .check_preempt_curr = check_preempt_curr_rt,
1441 .pick_next_task = pick_next_task_rt,
1442 .put_prev_task = put_prev_task_rt,
1444 #ifdef CONFIG_SMP
1445 .load_balance = load_balance_rt,
1446 .move_one_task = move_one_task_rt,
1447 .set_cpus_allowed = set_cpus_allowed_rt,
1448 .rq_online = rq_online_rt,
1449 .rq_offline = rq_offline_rt,
1450 .pre_schedule = pre_schedule_rt,
1451 .post_schedule = post_schedule_rt,
1452 .task_wake_up = task_wake_up_rt,
1453 .switched_from = switched_from_rt,
1454 #endif
1456 .set_curr_task = set_curr_task_rt,
1457 .task_tick = task_tick_rt,
1459 .prio_changed = prio_changed_rt,
1460 .switched_to = switched_to_rt,
1463 #ifdef CONFIG_SCHED_DEBUG
1464 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1466 static void print_rt_stats(struct seq_file *m, int cpu)
1468 struct rt_rq *rt_rq;
1470 rcu_read_lock();
1471 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1472 print_rt_rq(m, cpu, rt_rq);
1473 rcu_read_unlock();
1475 #endif /* CONFIG_SCHED_DEBUG */