dm: allow uninterruptible wait for pending io
[linux-2.6/x86.git] / fs / btrfs / ctree.c
blobdbb7241246335373dde1fa8597744faec6748942
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_key *ins_key,
30 struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root, struct extent_buffer *dst,
33 struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root,
36 struct extent_buffer *dst_buf,
37 struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 struct btrfs_path *path, int level, int slot);
41 struct btrfs_path *btrfs_alloc_path(void)
43 struct btrfs_path *path;
44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 if (path)
46 path->reada = 1;
47 return path;
51 * set all locked nodes in the path to blocking locks. This should
52 * be done before scheduling
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
56 int i;
57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 if (p->nodes[i] && p->locks[i])
59 btrfs_set_lock_blocking(p->nodes[i]);
64 * reset all the locked nodes in the patch to spinning locks.
66 * held is used to keep lockdep happy, when lockdep is enabled
67 * we set held to a blocking lock before we go around and
68 * retake all the spinlocks in the path. You can safely use NULL
69 * for held
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72 struct extent_buffer *held)
74 int i;
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 /* lockdep really cares that we take all of these spinlocks
78 * in the right order. If any of the locks in the path are not
79 * currently blocking, it is going to complain. So, make really
80 * really sure by forcing the path to blocking before we clear
81 * the path blocking.
83 if (held)
84 btrfs_set_lock_blocking(held);
85 btrfs_set_path_blocking(p);
86 #endif
88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89 if (p->nodes[i] && p->locks[i])
90 btrfs_clear_lock_blocking(p->nodes[i]);
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 if (held)
95 btrfs_clear_lock_blocking(held);
96 #endif
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
102 btrfs_release_path(NULL, p);
103 kmem_cache_free(btrfs_path_cachep, p);
107 * path release drops references on the extent buffers in the path
108 * and it drops any locks held by this path
110 * It is safe to call this on paths that no locks or extent buffers held.
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
114 int i;
116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117 p->slots[i] = 0;
118 if (!p->nodes[i])
119 continue;
120 if (p->locks[i]) {
121 btrfs_tree_unlock(p->nodes[i]);
122 p->locks[i] = 0;
124 free_extent_buffer(p->nodes[i]);
125 p->nodes[i] = NULL;
130 * safely gets a reference on the root node of a tree. A lock
131 * is not taken, so a concurrent writer may put a different node
132 * at the root of the tree. See btrfs_lock_root_node for the
133 * looping required.
135 * The extent buffer returned by this has a reference taken, so
136 * it won't disappear. It may stop being the root of the tree
137 * at any time because there are no locks held.
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
141 struct extent_buffer *eb;
142 spin_lock(&root->node_lock);
143 eb = root->node;
144 extent_buffer_get(eb);
145 spin_unlock(&root->node_lock);
146 return eb;
149 /* loop around taking references on and locking the root node of the
150 * tree until you end up with a lock on the root. A locked buffer
151 * is returned, with a reference held.
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
155 struct extent_buffer *eb;
157 while (1) {
158 eb = btrfs_root_node(root);
159 btrfs_tree_lock(eb);
161 spin_lock(&root->node_lock);
162 if (eb == root->node) {
163 spin_unlock(&root->node_lock);
164 break;
166 spin_unlock(&root->node_lock);
168 btrfs_tree_unlock(eb);
169 free_extent_buffer(eb);
171 return eb;
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175 * put onto a simple dirty list. transaction.c walks this to make sure they
176 * get properly updated on disk.
178 static void add_root_to_dirty_list(struct btrfs_root *root)
180 if (root->track_dirty && list_empty(&root->dirty_list)) {
181 list_add(&root->dirty_list,
182 &root->fs_info->dirty_cowonly_roots);
187 * used by snapshot creation to make a copy of a root for a tree with
188 * a given objectid. The buffer with the new root node is returned in
189 * cow_ret, and this func returns zero on success or a negative error code.
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192 struct btrfs_root *root,
193 struct extent_buffer *buf,
194 struct extent_buffer **cow_ret, u64 new_root_objectid)
196 struct extent_buffer *cow;
197 u32 nritems;
198 int ret = 0;
199 int level;
200 struct btrfs_root *new_root;
202 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
203 if (!new_root)
204 return -ENOMEM;
206 memcpy(new_root, root, sizeof(*new_root));
207 new_root->root_key.objectid = new_root_objectid;
209 WARN_ON(root->ref_cows && trans->transid !=
210 root->fs_info->running_transaction->transid);
211 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
213 level = btrfs_header_level(buf);
214 nritems = btrfs_header_nritems(buf);
216 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
217 new_root_objectid, trans->transid,
218 level, buf->start, 0);
219 if (IS_ERR(cow)) {
220 kfree(new_root);
221 return PTR_ERR(cow);
224 copy_extent_buffer(cow, buf, 0, 0, cow->len);
225 btrfs_set_header_bytenr(cow, cow->start);
226 btrfs_set_header_generation(cow, trans->transid);
227 btrfs_set_header_owner(cow, new_root_objectid);
228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
230 write_extent_buffer(cow, root->fs_info->fsid,
231 (unsigned long)btrfs_header_fsid(cow),
232 BTRFS_FSID_SIZE);
234 WARN_ON(btrfs_header_generation(buf) > trans->transid);
235 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
236 kfree(new_root);
238 if (ret)
239 return ret;
241 btrfs_mark_buffer_dirty(cow);
242 *cow_ret = cow;
243 return 0;
247 * does the dirty work in cow of a single block. The parent block (if
248 * supplied) is updated to point to the new cow copy. The new buffer is marked
249 * dirty and returned locked. If you modify the block it needs to be marked
250 * dirty again.
252 * search_start -- an allocation hint for the new block
254 * empty_size -- a hint that you plan on doing more cow. This is the size in
255 * bytes the allocator should try to find free next to the block it returns.
256 * This is just a hint and may be ignored by the allocator.
258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259 struct btrfs_root *root,
260 struct extent_buffer *buf,
261 struct extent_buffer *parent, int parent_slot,
262 struct extent_buffer **cow_ret,
263 u64 search_start, u64 empty_size)
265 u64 parent_start;
266 struct extent_buffer *cow;
267 u32 nritems;
268 int ret = 0;
269 int level;
270 int unlock_orig = 0;
272 if (*cow_ret == buf)
273 unlock_orig = 1;
275 btrfs_assert_tree_locked(buf);
277 if (parent)
278 parent_start = parent->start;
279 else
280 parent_start = 0;
282 WARN_ON(root->ref_cows && trans->transid !=
283 root->fs_info->running_transaction->transid);
284 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
286 level = btrfs_header_level(buf);
287 nritems = btrfs_header_nritems(buf);
289 cow = btrfs_alloc_free_block(trans, root, buf->len,
290 parent_start, root->root_key.objectid,
291 trans->transid, level,
292 search_start, empty_size);
293 if (IS_ERR(cow))
294 return PTR_ERR(cow);
296 /* cow is set to blocking by btrfs_init_new_buffer */
298 copy_extent_buffer(cow, buf, 0, 0, cow->len);
299 btrfs_set_header_bytenr(cow, cow->start);
300 btrfs_set_header_generation(cow, trans->transid);
301 btrfs_set_header_owner(cow, root->root_key.objectid);
302 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
304 write_extent_buffer(cow, root->fs_info->fsid,
305 (unsigned long)btrfs_header_fsid(cow),
306 BTRFS_FSID_SIZE);
308 WARN_ON(btrfs_header_generation(buf) > trans->transid);
309 if (btrfs_header_generation(buf) != trans->transid) {
310 u32 nr_extents;
311 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
312 if (ret)
313 return ret;
315 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
316 WARN_ON(ret);
317 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
319 * There are only two places that can drop reference to
320 * tree blocks owned by living reloc trees, one is here,
321 * the other place is btrfs_drop_subtree. In both places,
322 * we check reference count while tree block is locked.
323 * Furthermore, if reference count is one, it won't get
324 * increased by someone else.
326 u32 refs;
327 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
328 buf->len, &refs);
329 BUG_ON(ret);
330 if (refs == 1) {
331 ret = btrfs_update_ref(trans, root, buf, cow,
332 0, nritems);
333 clean_tree_block(trans, root, buf);
334 } else {
335 ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
337 BUG_ON(ret);
338 } else {
339 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
340 if (ret)
341 return ret;
342 clean_tree_block(trans, root, buf);
345 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
346 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
347 WARN_ON(ret);
350 if (buf == root->node) {
351 WARN_ON(parent && parent != buf);
353 spin_lock(&root->node_lock);
354 root->node = cow;
355 extent_buffer_get(cow);
356 spin_unlock(&root->node_lock);
358 if (buf != root->commit_root) {
359 btrfs_free_extent(trans, root, buf->start,
360 buf->len, buf->start,
361 root->root_key.objectid,
362 btrfs_header_generation(buf),
363 level, 1);
365 free_extent_buffer(buf);
366 add_root_to_dirty_list(root);
367 } else {
368 btrfs_set_node_blockptr(parent, parent_slot,
369 cow->start);
370 WARN_ON(trans->transid == 0);
371 btrfs_set_node_ptr_generation(parent, parent_slot,
372 trans->transid);
373 btrfs_mark_buffer_dirty(parent);
374 WARN_ON(btrfs_header_generation(parent) != trans->transid);
375 btrfs_free_extent(trans, root, buf->start, buf->len,
376 parent_start, btrfs_header_owner(parent),
377 btrfs_header_generation(parent), level, 1);
379 if (unlock_orig)
380 btrfs_tree_unlock(buf);
381 free_extent_buffer(buf);
382 btrfs_mark_buffer_dirty(cow);
383 *cow_ret = cow;
384 return 0;
388 * cows a single block, see __btrfs_cow_block for the real work.
389 * This version of it has extra checks so that a block isn't cow'd more than
390 * once per transaction, as long as it hasn't been written yet
392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
393 struct btrfs_root *root, struct extent_buffer *buf,
394 struct extent_buffer *parent, int parent_slot,
395 struct extent_buffer **cow_ret)
397 u64 search_start;
398 int ret;
400 if (trans->transaction != root->fs_info->running_transaction) {
401 printk(KERN_CRIT "trans %llu running %llu\n",
402 (unsigned long long)trans->transid,
403 (unsigned long long)
404 root->fs_info->running_transaction->transid);
405 WARN_ON(1);
407 if (trans->transid != root->fs_info->generation) {
408 printk(KERN_CRIT "trans %llu running %llu\n",
409 (unsigned long long)trans->transid,
410 (unsigned long long)root->fs_info->generation);
411 WARN_ON(1);
414 if (btrfs_header_generation(buf) == trans->transid &&
415 btrfs_header_owner(buf) == root->root_key.objectid &&
416 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
417 *cow_ret = buf;
418 return 0;
421 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
423 if (parent)
424 btrfs_set_lock_blocking(parent);
425 btrfs_set_lock_blocking(buf);
427 ret = __btrfs_cow_block(trans, root, buf, parent,
428 parent_slot, cow_ret, search_start, 0);
429 return ret;
433 * helper function for defrag to decide if two blocks pointed to by a
434 * node are actually close by
436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
438 if (blocknr < other && other - (blocknr + blocksize) < 32768)
439 return 1;
440 if (blocknr > other && blocknr - (other + blocksize) < 32768)
441 return 1;
442 return 0;
446 * compare two keys in a memcmp fashion
448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
450 struct btrfs_key k1;
452 btrfs_disk_key_to_cpu(&k1, disk);
454 if (k1.objectid > k2->objectid)
455 return 1;
456 if (k1.objectid < k2->objectid)
457 return -1;
458 if (k1.type > k2->type)
459 return 1;
460 if (k1.type < k2->type)
461 return -1;
462 if (k1.offset > k2->offset)
463 return 1;
464 if (k1.offset < k2->offset)
465 return -1;
466 return 0;
470 * same as comp_keys only with two btrfs_key's
472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
474 if (k1->objectid > k2->objectid)
475 return 1;
476 if (k1->objectid < k2->objectid)
477 return -1;
478 if (k1->type > k2->type)
479 return 1;
480 if (k1->type < k2->type)
481 return -1;
482 if (k1->offset > k2->offset)
483 return 1;
484 if (k1->offset < k2->offset)
485 return -1;
486 return 0;
490 * this is used by the defrag code to go through all the
491 * leaves pointed to by a node and reallocate them so that
492 * disk order is close to key order
494 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
495 struct btrfs_root *root, struct extent_buffer *parent,
496 int start_slot, int cache_only, u64 *last_ret,
497 struct btrfs_key *progress)
499 struct extent_buffer *cur;
500 u64 blocknr;
501 u64 gen;
502 u64 search_start = *last_ret;
503 u64 last_block = 0;
504 u64 other;
505 u32 parent_nritems;
506 int end_slot;
507 int i;
508 int err = 0;
509 int parent_level;
510 int uptodate;
511 u32 blocksize;
512 int progress_passed = 0;
513 struct btrfs_disk_key disk_key;
515 parent_level = btrfs_header_level(parent);
516 if (cache_only && parent_level != 1)
517 return 0;
519 if (trans->transaction != root->fs_info->running_transaction)
520 WARN_ON(1);
521 if (trans->transid != root->fs_info->generation)
522 WARN_ON(1);
524 parent_nritems = btrfs_header_nritems(parent);
525 blocksize = btrfs_level_size(root, parent_level - 1);
526 end_slot = parent_nritems;
528 if (parent_nritems == 1)
529 return 0;
531 btrfs_set_lock_blocking(parent);
533 for (i = start_slot; i < end_slot; i++) {
534 int close = 1;
536 if (!parent->map_token) {
537 map_extent_buffer(parent,
538 btrfs_node_key_ptr_offset(i),
539 sizeof(struct btrfs_key_ptr),
540 &parent->map_token, &parent->kaddr,
541 &parent->map_start, &parent->map_len,
542 KM_USER1);
544 btrfs_node_key(parent, &disk_key, i);
545 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
546 continue;
548 progress_passed = 1;
549 blocknr = btrfs_node_blockptr(parent, i);
550 gen = btrfs_node_ptr_generation(parent, i);
551 if (last_block == 0)
552 last_block = blocknr;
554 if (i > 0) {
555 other = btrfs_node_blockptr(parent, i - 1);
556 close = close_blocks(blocknr, other, blocksize);
558 if (!close && i < end_slot - 2) {
559 other = btrfs_node_blockptr(parent, i + 1);
560 close = close_blocks(blocknr, other, blocksize);
562 if (close) {
563 last_block = blocknr;
564 continue;
566 if (parent->map_token) {
567 unmap_extent_buffer(parent, parent->map_token,
568 KM_USER1);
569 parent->map_token = NULL;
572 cur = btrfs_find_tree_block(root, blocknr, blocksize);
573 if (cur)
574 uptodate = btrfs_buffer_uptodate(cur, gen);
575 else
576 uptodate = 0;
577 if (!cur || !uptodate) {
578 if (cache_only) {
579 free_extent_buffer(cur);
580 continue;
582 if (!cur) {
583 cur = read_tree_block(root, blocknr,
584 blocksize, gen);
585 } else if (!uptodate) {
586 btrfs_read_buffer(cur, gen);
589 if (search_start == 0)
590 search_start = last_block;
592 btrfs_tree_lock(cur);
593 btrfs_set_lock_blocking(cur);
594 err = __btrfs_cow_block(trans, root, cur, parent, i,
595 &cur, search_start,
596 min(16 * blocksize,
597 (end_slot - i) * blocksize));
598 if (err) {
599 btrfs_tree_unlock(cur);
600 free_extent_buffer(cur);
601 break;
603 search_start = cur->start;
604 last_block = cur->start;
605 *last_ret = search_start;
606 btrfs_tree_unlock(cur);
607 free_extent_buffer(cur);
609 if (parent->map_token) {
610 unmap_extent_buffer(parent, parent->map_token,
611 KM_USER1);
612 parent->map_token = NULL;
614 return err;
618 * The leaf data grows from end-to-front in the node.
619 * this returns the address of the start of the last item,
620 * which is the stop of the leaf data stack
622 static inline unsigned int leaf_data_end(struct btrfs_root *root,
623 struct extent_buffer *leaf)
625 u32 nr = btrfs_header_nritems(leaf);
626 if (nr == 0)
627 return BTRFS_LEAF_DATA_SIZE(root);
628 return btrfs_item_offset_nr(leaf, nr - 1);
632 * extra debugging checks to make sure all the items in a key are
633 * well formed and in the proper order
635 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
636 int level)
638 struct extent_buffer *parent = NULL;
639 struct extent_buffer *node = path->nodes[level];
640 struct btrfs_disk_key parent_key;
641 struct btrfs_disk_key node_key;
642 int parent_slot;
643 int slot;
644 struct btrfs_key cpukey;
645 u32 nritems = btrfs_header_nritems(node);
647 if (path->nodes[level + 1])
648 parent = path->nodes[level + 1];
650 slot = path->slots[level];
651 BUG_ON(nritems == 0);
652 if (parent) {
653 parent_slot = path->slots[level + 1];
654 btrfs_node_key(parent, &parent_key, parent_slot);
655 btrfs_node_key(node, &node_key, 0);
656 BUG_ON(memcmp(&parent_key, &node_key,
657 sizeof(struct btrfs_disk_key)));
658 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
659 btrfs_header_bytenr(node));
661 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
662 if (slot != 0) {
663 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
664 btrfs_node_key(node, &node_key, slot);
665 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
667 if (slot < nritems - 1) {
668 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
669 btrfs_node_key(node, &node_key, slot);
670 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
672 return 0;
676 * extra checking to make sure all the items in a leaf are
677 * well formed and in the proper order
679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
680 int level)
682 struct extent_buffer *leaf = path->nodes[level];
683 struct extent_buffer *parent = NULL;
684 int parent_slot;
685 struct btrfs_key cpukey;
686 struct btrfs_disk_key parent_key;
687 struct btrfs_disk_key leaf_key;
688 int slot = path->slots[0];
690 u32 nritems = btrfs_header_nritems(leaf);
692 if (path->nodes[level + 1])
693 parent = path->nodes[level + 1];
695 if (nritems == 0)
696 return 0;
698 if (parent) {
699 parent_slot = path->slots[level + 1];
700 btrfs_node_key(parent, &parent_key, parent_slot);
701 btrfs_item_key(leaf, &leaf_key, 0);
703 BUG_ON(memcmp(&parent_key, &leaf_key,
704 sizeof(struct btrfs_disk_key)));
705 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
706 btrfs_header_bytenr(leaf));
708 if (slot != 0 && slot < nritems - 1) {
709 btrfs_item_key(leaf, &leaf_key, slot);
710 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
711 if (comp_keys(&leaf_key, &cpukey) <= 0) {
712 btrfs_print_leaf(root, leaf);
713 printk(KERN_CRIT "slot %d offset bad key\n", slot);
714 BUG_ON(1);
716 if (btrfs_item_offset_nr(leaf, slot - 1) !=
717 btrfs_item_end_nr(leaf, slot)) {
718 btrfs_print_leaf(root, leaf);
719 printk(KERN_CRIT "slot %d offset bad\n", slot);
720 BUG_ON(1);
723 if (slot < nritems - 1) {
724 btrfs_item_key(leaf, &leaf_key, slot);
725 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
726 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
727 if (btrfs_item_offset_nr(leaf, slot) !=
728 btrfs_item_end_nr(leaf, slot + 1)) {
729 btrfs_print_leaf(root, leaf);
730 printk(KERN_CRIT "slot %d offset bad\n", slot);
731 BUG_ON(1);
734 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
735 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
736 return 0;
739 static noinline int check_block(struct btrfs_root *root,
740 struct btrfs_path *path, int level)
742 return 0;
743 if (level == 0)
744 return check_leaf(root, path, level);
745 return check_node(root, path, level);
749 * search for key in the extent_buffer. The items start at offset p,
750 * and they are item_size apart. There are 'max' items in p.
752 * the slot in the array is returned via slot, and it points to
753 * the place where you would insert key if it is not found in
754 * the array.
756 * slot may point to max if the key is bigger than all of the keys
758 static noinline int generic_bin_search(struct extent_buffer *eb,
759 unsigned long p,
760 int item_size, struct btrfs_key *key,
761 int max, int *slot)
763 int low = 0;
764 int high = max;
765 int mid;
766 int ret;
767 struct btrfs_disk_key *tmp = NULL;
768 struct btrfs_disk_key unaligned;
769 unsigned long offset;
770 char *map_token = NULL;
771 char *kaddr = NULL;
772 unsigned long map_start = 0;
773 unsigned long map_len = 0;
774 int err;
776 while (low < high) {
777 mid = (low + high) / 2;
778 offset = p + mid * item_size;
780 if (!map_token || offset < map_start ||
781 (offset + sizeof(struct btrfs_disk_key)) >
782 map_start + map_len) {
783 if (map_token) {
784 unmap_extent_buffer(eb, map_token, KM_USER0);
785 map_token = NULL;
788 err = map_private_extent_buffer(eb, offset,
789 sizeof(struct btrfs_disk_key),
790 &map_token, &kaddr,
791 &map_start, &map_len, KM_USER0);
793 if (!err) {
794 tmp = (struct btrfs_disk_key *)(kaddr + offset -
795 map_start);
796 } else {
797 read_extent_buffer(eb, &unaligned,
798 offset, sizeof(unaligned));
799 tmp = &unaligned;
802 } else {
803 tmp = (struct btrfs_disk_key *)(kaddr + offset -
804 map_start);
806 ret = comp_keys(tmp, key);
808 if (ret < 0)
809 low = mid + 1;
810 else if (ret > 0)
811 high = mid;
812 else {
813 *slot = mid;
814 if (map_token)
815 unmap_extent_buffer(eb, map_token, KM_USER0);
816 return 0;
819 *slot = low;
820 if (map_token)
821 unmap_extent_buffer(eb, map_token, KM_USER0);
822 return 1;
826 * simple bin_search frontend that does the right thing for
827 * leaves vs nodes
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830 int level, int *slot)
832 if (level == 0) {
833 return generic_bin_search(eb,
834 offsetof(struct btrfs_leaf, items),
835 sizeof(struct btrfs_item),
836 key, btrfs_header_nritems(eb),
837 slot);
838 } else {
839 return generic_bin_search(eb,
840 offsetof(struct btrfs_node, ptrs),
841 sizeof(struct btrfs_key_ptr),
842 key, btrfs_header_nritems(eb),
843 slot);
845 return -1;
848 /* given a node and slot number, this reads the blocks it points to. The
849 * extent buffer is returned with a reference taken (but unlocked).
850 * NULL is returned on error.
852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
853 struct extent_buffer *parent, int slot)
855 int level = btrfs_header_level(parent);
856 if (slot < 0)
857 return NULL;
858 if (slot >= btrfs_header_nritems(parent))
859 return NULL;
861 BUG_ON(level == 0);
863 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
864 btrfs_level_size(root, level - 1),
865 btrfs_node_ptr_generation(parent, slot));
869 * node level balancing, used to make sure nodes are in proper order for
870 * item deletion. We balance from the top down, so we have to make sure
871 * that a deletion won't leave an node completely empty later on.
873 static noinline int balance_level(struct btrfs_trans_handle *trans,
874 struct btrfs_root *root,
875 struct btrfs_path *path, int level)
877 struct extent_buffer *right = NULL;
878 struct extent_buffer *mid;
879 struct extent_buffer *left = NULL;
880 struct extent_buffer *parent = NULL;
881 int ret = 0;
882 int wret;
883 int pslot;
884 int orig_slot = path->slots[level];
885 int err_on_enospc = 0;
886 u64 orig_ptr;
888 if (level == 0)
889 return 0;
891 mid = path->nodes[level];
893 WARN_ON(!path->locks[level]);
894 WARN_ON(btrfs_header_generation(mid) != trans->transid);
896 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
898 if (level < BTRFS_MAX_LEVEL - 1)
899 parent = path->nodes[level + 1];
900 pslot = path->slots[level + 1];
903 * deal with the case where there is only one pointer in the root
904 * by promoting the node below to a root
906 if (!parent) {
907 struct extent_buffer *child;
909 if (btrfs_header_nritems(mid) != 1)
910 return 0;
912 /* promote the child to a root */
913 child = read_node_slot(root, mid, 0);
914 BUG_ON(!child);
915 btrfs_tree_lock(child);
916 btrfs_set_lock_blocking(child);
917 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918 BUG_ON(ret);
920 spin_lock(&root->node_lock);
921 root->node = child;
922 spin_unlock(&root->node_lock);
924 ret = btrfs_update_extent_ref(trans, root, child->start,
925 child->len,
926 mid->start, child->start,
927 root->root_key.objectid,
928 trans->transid, level - 1);
929 BUG_ON(ret);
931 add_root_to_dirty_list(root);
932 btrfs_tree_unlock(child);
934 path->locks[level] = 0;
935 path->nodes[level] = NULL;
936 clean_tree_block(trans, root, mid);
937 btrfs_tree_unlock(mid);
938 /* once for the path */
939 free_extent_buffer(mid);
940 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
941 mid->start, root->root_key.objectid,
942 btrfs_header_generation(mid),
943 level, 1);
944 /* once for the root ptr */
945 free_extent_buffer(mid);
946 return ret;
948 if (btrfs_header_nritems(mid) >
949 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
950 return 0;
952 if (trans->transaction->delayed_refs.flushing &&
953 btrfs_header_nritems(mid) > 2)
954 return 0;
956 if (btrfs_header_nritems(mid) < 2)
957 err_on_enospc = 1;
959 left = read_node_slot(root, parent, pslot - 1);
960 if (left) {
961 btrfs_tree_lock(left);
962 btrfs_set_lock_blocking(left);
963 wret = btrfs_cow_block(trans, root, left,
964 parent, pslot - 1, &left);
965 if (wret) {
966 ret = wret;
967 goto enospc;
970 right = read_node_slot(root, parent, pslot + 1);
971 if (right) {
972 btrfs_tree_lock(right);
973 btrfs_set_lock_blocking(right);
974 wret = btrfs_cow_block(trans, root, right,
975 parent, pslot + 1, &right);
976 if (wret) {
977 ret = wret;
978 goto enospc;
982 /* first, try to make some room in the middle buffer */
983 if (left) {
984 orig_slot += btrfs_header_nritems(left);
985 wret = push_node_left(trans, root, left, mid, 1);
986 if (wret < 0)
987 ret = wret;
988 if (btrfs_header_nritems(mid) < 2)
989 err_on_enospc = 1;
993 * then try to empty the right most buffer into the middle
995 if (right) {
996 wret = push_node_left(trans, root, mid, right, 1);
997 if (wret < 0 && wret != -ENOSPC)
998 ret = wret;
999 if (btrfs_header_nritems(right) == 0) {
1000 u64 bytenr = right->start;
1001 u64 generation = btrfs_header_generation(parent);
1002 u32 blocksize = right->len;
1004 clean_tree_block(trans, root, right);
1005 btrfs_tree_unlock(right);
1006 free_extent_buffer(right);
1007 right = NULL;
1008 wret = del_ptr(trans, root, path, level + 1, pslot +
1010 if (wret)
1011 ret = wret;
1012 wret = btrfs_free_extent(trans, root, bytenr,
1013 blocksize, parent->start,
1014 btrfs_header_owner(parent),
1015 generation, level, 1);
1016 if (wret)
1017 ret = wret;
1018 } else {
1019 struct btrfs_disk_key right_key;
1020 btrfs_node_key(right, &right_key, 0);
1021 btrfs_set_node_key(parent, &right_key, pslot + 1);
1022 btrfs_mark_buffer_dirty(parent);
1025 if (btrfs_header_nritems(mid) == 1) {
1027 * we're not allowed to leave a node with one item in the
1028 * tree during a delete. A deletion from lower in the tree
1029 * could try to delete the only pointer in this node.
1030 * So, pull some keys from the left.
1031 * There has to be a left pointer at this point because
1032 * otherwise we would have pulled some pointers from the
1033 * right
1035 BUG_ON(!left);
1036 wret = balance_node_right(trans, root, mid, left);
1037 if (wret < 0) {
1038 ret = wret;
1039 goto enospc;
1041 if (wret == 1) {
1042 wret = push_node_left(trans, root, left, mid, 1);
1043 if (wret < 0)
1044 ret = wret;
1046 BUG_ON(wret == 1);
1048 if (btrfs_header_nritems(mid) == 0) {
1049 /* we've managed to empty the middle node, drop it */
1050 u64 root_gen = btrfs_header_generation(parent);
1051 u64 bytenr = mid->start;
1052 u32 blocksize = mid->len;
1054 clean_tree_block(trans, root, mid);
1055 btrfs_tree_unlock(mid);
1056 free_extent_buffer(mid);
1057 mid = NULL;
1058 wret = del_ptr(trans, root, path, level + 1, pslot);
1059 if (wret)
1060 ret = wret;
1061 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1062 parent->start,
1063 btrfs_header_owner(parent),
1064 root_gen, level, 1);
1065 if (wret)
1066 ret = wret;
1067 } else {
1068 /* update the parent key to reflect our changes */
1069 struct btrfs_disk_key mid_key;
1070 btrfs_node_key(mid, &mid_key, 0);
1071 btrfs_set_node_key(parent, &mid_key, pslot);
1072 btrfs_mark_buffer_dirty(parent);
1075 /* update the path */
1076 if (left) {
1077 if (btrfs_header_nritems(left) > orig_slot) {
1078 extent_buffer_get(left);
1079 /* left was locked after cow */
1080 path->nodes[level] = left;
1081 path->slots[level + 1] -= 1;
1082 path->slots[level] = orig_slot;
1083 if (mid) {
1084 btrfs_tree_unlock(mid);
1085 free_extent_buffer(mid);
1087 } else {
1088 orig_slot -= btrfs_header_nritems(left);
1089 path->slots[level] = orig_slot;
1092 /* double check we haven't messed things up */
1093 check_block(root, path, level);
1094 if (orig_ptr !=
1095 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1096 BUG();
1097 enospc:
1098 if (right) {
1099 btrfs_tree_unlock(right);
1100 free_extent_buffer(right);
1102 if (left) {
1103 if (path->nodes[level] != left)
1104 btrfs_tree_unlock(left);
1105 free_extent_buffer(left);
1107 return ret;
1110 /* Node balancing for insertion. Here we only split or push nodes around
1111 * when they are completely full. This is also done top down, so we
1112 * have to be pessimistic.
1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1115 struct btrfs_root *root,
1116 struct btrfs_path *path, int level)
1118 struct extent_buffer *right = NULL;
1119 struct extent_buffer *mid;
1120 struct extent_buffer *left = NULL;
1121 struct extent_buffer *parent = NULL;
1122 int ret = 0;
1123 int wret;
1124 int pslot;
1125 int orig_slot = path->slots[level];
1126 u64 orig_ptr;
1128 if (level == 0)
1129 return 1;
1131 mid = path->nodes[level];
1132 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1133 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1135 if (level < BTRFS_MAX_LEVEL - 1)
1136 parent = path->nodes[level + 1];
1137 pslot = path->slots[level + 1];
1139 if (!parent)
1140 return 1;
1142 left = read_node_slot(root, parent, pslot - 1);
1144 /* first, try to make some room in the middle buffer */
1145 if (left) {
1146 u32 left_nr;
1148 btrfs_tree_lock(left);
1149 btrfs_set_lock_blocking(left);
1151 left_nr = btrfs_header_nritems(left);
1152 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1153 wret = 1;
1154 } else {
1155 ret = btrfs_cow_block(trans, root, left, parent,
1156 pslot - 1, &left);
1157 if (ret)
1158 wret = 1;
1159 else {
1160 wret = push_node_left(trans, root,
1161 left, mid, 0);
1164 if (wret < 0)
1165 ret = wret;
1166 if (wret == 0) {
1167 struct btrfs_disk_key disk_key;
1168 orig_slot += left_nr;
1169 btrfs_node_key(mid, &disk_key, 0);
1170 btrfs_set_node_key(parent, &disk_key, pslot);
1171 btrfs_mark_buffer_dirty(parent);
1172 if (btrfs_header_nritems(left) > orig_slot) {
1173 path->nodes[level] = left;
1174 path->slots[level + 1] -= 1;
1175 path->slots[level] = orig_slot;
1176 btrfs_tree_unlock(mid);
1177 free_extent_buffer(mid);
1178 } else {
1179 orig_slot -=
1180 btrfs_header_nritems(left);
1181 path->slots[level] = orig_slot;
1182 btrfs_tree_unlock(left);
1183 free_extent_buffer(left);
1185 return 0;
1187 btrfs_tree_unlock(left);
1188 free_extent_buffer(left);
1190 right = read_node_slot(root, parent, pslot + 1);
1193 * then try to empty the right most buffer into the middle
1195 if (right) {
1196 u32 right_nr;
1198 btrfs_tree_lock(right);
1199 btrfs_set_lock_blocking(right);
1201 right_nr = btrfs_header_nritems(right);
1202 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1203 wret = 1;
1204 } else {
1205 ret = btrfs_cow_block(trans, root, right,
1206 parent, pslot + 1,
1207 &right);
1208 if (ret)
1209 wret = 1;
1210 else {
1211 wret = balance_node_right(trans, root,
1212 right, mid);
1215 if (wret < 0)
1216 ret = wret;
1217 if (wret == 0) {
1218 struct btrfs_disk_key disk_key;
1220 btrfs_node_key(right, &disk_key, 0);
1221 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1222 btrfs_mark_buffer_dirty(parent);
1224 if (btrfs_header_nritems(mid) <= orig_slot) {
1225 path->nodes[level] = right;
1226 path->slots[level + 1] += 1;
1227 path->slots[level] = orig_slot -
1228 btrfs_header_nritems(mid);
1229 btrfs_tree_unlock(mid);
1230 free_extent_buffer(mid);
1231 } else {
1232 btrfs_tree_unlock(right);
1233 free_extent_buffer(right);
1235 return 0;
1237 btrfs_tree_unlock(right);
1238 free_extent_buffer(right);
1240 return 1;
1244 * readahead one full node of leaves, finding things that are close
1245 * to the block in 'slot', and triggering ra on them.
1247 static noinline void reada_for_search(struct btrfs_root *root,
1248 struct btrfs_path *path,
1249 int level, int slot, u64 objectid)
1251 struct extent_buffer *node;
1252 struct btrfs_disk_key disk_key;
1253 u32 nritems;
1254 u64 search;
1255 u64 target;
1256 u64 nread = 0;
1257 int direction = path->reada;
1258 struct extent_buffer *eb;
1259 u32 nr;
1260 u32 blocksize;
1261 u32 nscan = 0;
1263 if (level != 1)
1264 return;
1266 if (!path->nodes[level])
1267 return;
1269 node = path->nodes[level];
1271 search = btrfs_node_blockptr(node, slot);
1272 blocksize = btrfs_level_size(root, level - 1);
1273 eb = btrfs_find_tree_block(root, search, blocksize);
1274 if (eb) {
1275 free_extent_buffer(eb);
1276 return;
1279 target = search;
1281 nritems = btrfs_header_nritems(node);
1282 nr = slot;
1283 while (1) {
1284 if (direction < 0) {
1285 if (nr == 0)
1286 break;
1287 nr--;
1288 } else if (direction > 0) {
1289 nr++;
1290 if (nr >= nritems)
1291 break;
1293 if (path->reada < 0 && objectid) {
1294 btrfs_node_key(node, &disk_key, nr);
1295 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1296 break;
1298 search = btrfs_node_blockptr(node, nr);
1299 if ((search <= target && target - search <= 65536) ||
1300 (search > target && search - target <= 65536)) {
1301 readahead_tree_block(root, search, blocksize,
1302 btrfs_node_ptr_generation(node, nr));
1303 nread += blocksize;
1305 nscan++;
1306 if ((nread > 65536 || nscan > 32))
1307 break;
1312 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1313 * cache
1315 static noinline int reada_for_balance(struct btrfs_root *root,
1316 struct btrfs_path *path, int level)
1318 int slot;
1319 int nritems;
1320 struct extent_buffer *parent;
1321 struct extent_buffer *eb;
1322 u64 gen;
1323 u64 block1 = 0;
1324 u64 block2 = 0;
1325 int ret = 0;
1326 int blocksize;
1328 parent = path->nodes[level - 1];
1329 if (!parent)
1330 return 0;
1332 nritems = btrfs_header_nritems(parent);
1333 slot = path->slots[level];
1334 blocksize = btrfs_level_size(root, level);
1336 if (slot > 0) {
1337 block1 = btrfs_node_blockptr(parent, slot - 1);
1338 gen = btrfs_node_ptr_generation(parent, slot - 1);
1339 eb = btrfs_find_tree_block(root, block1, blocksize);
1340 if (eb && btrfs_buffer_uptodate(eb, gen))
1341 block1 = 0;
1342 free_extent_buffer(eb);
1344 if (slot < nritems) {
1345 block2 = btrfs_node_blockptr(parent, slot + 1);
1346 gen = btrfs_node_ptr_generation(parent, slot + 1);
1347 eb = btrfs_find_tree_block(root, block2, blocksize);
1348 if (eb && btrfs_buffer_uptodate(eb, gen))
1349 block2 = 0;
1350 free_extent_buffer(eb);
1352 if (block1 || block2) {
1353 ret = -EAGAIN;
1354 btrfs_release_path(root, path);
1355 if (block1)
1356 readahead_tree_block(root, block1, blocksize, 0);
1357 if (block2)
1358 readahead_tree_block(root, block2, blocksize, 0);
1360 if (block1) {
1361 eb = read_tree_block(root, block1, blocksize, 0);
1362 free_extent_buffer(eb);
1364 if (block1) {
1365 eb = read_tree_block(root, block2, blocksize, 0);
1366 free_extent_buffer(eb);
1369 return ret;
1374 * when we walk down the tree, it is usually safe to unlock the higher layers
1375 * in the tree. The exceptions are when our path goes through slot 0, because
1376 * operations on the tree might require changing key pointers higher up in the
1377 * tree.
1379 * callers might also have set path->keep_locks, which tells this code to keep
1380 * the lock if the path points to the last slot in the block. This is part of
1381 * walking through the tree, and selecting the next slot in the higher block.
1383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1384 * if lowest_unlock is 1, level 0 won't be unlocked
1386 static noinline void unlock_up(struct btrfs_path *path, int level,
1387 int lowest_unlock)
1389 int i;
1390 int skip_level = level;
1391 int no_skips = 0;
1392 struct extent_buffer *t;
1394 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1395 if (!path->nodes[i])
1396 break;
1397 if (!path->locks[i])
1398 break;
1399 if (!no_skips && path->slots[i] == 0) {
1400 skip_level = i + 1;
1401 continue;
1403 if (!no_skips && path->keep_locks) {
1404 u32 nritems;
1405 t = path->nodes[i];
1406 nritems = btrfs_header_nritems(t);
1407 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1408 skip_level = i + 1;
1409 continue;
1412 if (skip_level < i && i >= lowest_unlock)
1413 no_skips = 1;
1415 t = path->nodes[i];
1416 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1417 btrfs_tree_unlock(t);
1418 path->locks[i] = 0;
1424 * This releases any locks held in the path starting at level and
1425 * going all the way up to the root.
1427 * btrfs_search_slot will keep the lock held on higher nodes in a few
1428 * corner cases, such as COW of the block at slot zero in the node. This
1429 * ignores those rules, and it should only be called when there are no
1430 * more updates to be done higher up in the tree.
1432 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1434 int i;
1436 if (path->keep_locks || path->lowest_level)
1437 return;
1439 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1440 if (!path->nodes[i])
1441 continue;
1442 if (!path->locks[i])
1443 continue;
1444 btrfs_tree_unlock(path->nodes[i]);
1445 path->locks[i] = 0;
1450 * look for key in the tree. path is filled in with nodes along the way
1451 * if key is found, we return zero and you can find the item in the leaf
1452 * level of the path (level 0)
1454 * If the key isn't found, the path points to the slot where it should
1455 * be inserted, and 1 is returned. If there are other errors during the
1456 * search a negative error number is returned.
1458 * if ins_len > 0, nodes and leaves will be split as we walk down the
1459 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1460 * possible)
1462 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1463 *root, struct btrfs_key *key, struct btrfs_path *p, int
1464 ins_len, int cow)
1466 struct extent_buffer *b;
1467 struct extent_buffer *tmp;
1468 int slot;
1469 int ret;
1470 int level;
1471 int should_reada = p->reada;
1472 int lowest_unlock = 1;
1473 int blocksize;
1474 u8 lowest_level = 0;
1475 u64 blocknr;
1476 u64 gen;
1478 lowest_level = p->lowest_level;
1479 WARN_ON(lowest_level && ins_len > 0);
1480 WARN_ON(p->nodes[0] != NULL);
1482 if (ins_len < 0)
1483 lowest_unlock = 2;
1485 again:
1486 if (p->skip_locking)
1487 b = btrfs_root_node(root);
1488 else
1489 b = btrfs_lock_root_node(root);
1491 while (b) {
1492 level = btrfs_header_level(b);
1495 * setup the path here so we can release it under lock
1496 * contention with the cow code
1498 p->nodes[level] = b;
1499 if (!p->skip_locking)
1500 p->locks[level] = 1;
1502 if (cow) {
1503 int wret;
1505 /* is a cow on this block not required */
1506 if (btrfs_header_generation(b) == trans->transid &&
1507 btrfs_header_owner(b) == root->root_key.objectid &&
1508 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1509 goto cow_done;
1511 btrfs_set_path_blocking(p);
1513 wret = btrfs_cow_block(trans, root, b,
1514 p->nodes[level + 1],
1515 p->slots[level + 1], &b);
1516 if (wret) {
1517 free_extent_buffer(b);
1518 ret = wret;
1519 goto done;
1522 cow_done:
1523 BUG_ON(!cow && ins_len);
1524 if (level != btrfs_header_level(b))
1525 WARN_ON(1);
1526 level = btrfs_header_level(b);
1528 p->nodes[level] = b;
1529 if (!p->skip_locking)
1530 p->locks[level] = 1;
1532 btrfs_clear_path_blocking(p, NULL);
1535 * we have a lock on b and as long as we aren't changing
1536 * the tree, there is no way to for the items in b to change.
1537 * It is safe to drop the lock on our parent before we
1538 * go through the expensive btree search on b.
1540 * If cow is true, then we might be changing slot zero,
1541 * which may require changing the parent. So, we can't
1542 * drop the lock until after we know which slot we're
1543 * operating on.
1545 if (!cow)
1546 btrfs_unlock_up_safe(p, level + 1);
1548 ret = check_block(root, p, level);
1549 if (ret) {
1550 ret = -1;
1551 goto done;
1554 ret = bin_search(b, key, level, &slot);
1556 if (level != 0) {
1557 if (ret && slot > 0)
1558 slot -= 1;
1559 p->slots[level] = slot;
1560 if ((p->search_for_split || ins_len > 0) &&
1561 btrfs_header_nritems(b) >=
1562 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1563 int sret;
1565 sret = reada_for_balance(root, p, level);
1566 if (sret)
1567 goto again;
1569 btrfs_set_path_blocking(p);
1570 sret = split_node(trans, root, p, level);
1571 btrfs_clear_path_blocking(p, NULL);
1573 BUG_ON(sret > 0);
1574 if (sret) {
1575 ret = sret;
1576 goto done;
1578 b = p->nodes[level];
1579 slot = p->slots[level];
1580 } else if (ins_len < 0 &&
1581 btrfs_header_nritems(b) <
1582 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1583 int sret;
1585 sret = reada_for_balance(root, p, level);
1586 if (sret)
1587 goto again;
1589 btrfs_set_path_blocking(p);
1590 sret = balance_level(trans, root, p, level);
1591 btrfs_clear_path_blocking(p, NULL);
1593 if (sret) {
1594 ret = sret;
1595 goto done;
1597 b = p->nodes[level];
1598 if (!b) {
1599 btrfs_release_path(NULL, p);
1600 goto again;
1602 slot = p->slots[level];
1603 BUG_ON(btrfs_header_nritems(b) == 1);
1605 unlock_up(p, level, lowest_unlock);
1607 /* this is only true while dropping a snapshot */
1608 if (level == lowest_level) {
1609 ret = 0;
1610 goto done;
1613 blocknr = btrfs_node_blockptr(b, slot);
1614 gen = btrfs_node_ptr_generation(b, slot);
1615 blocksize = btrfs_level_size(root, level - 1);
1617 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1618 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1619 b = tmp;
1620 } else {
1622 * reduce lock contention at high levels
1623 * of the btree by dropping locks before
1624 * we read.
1626 if (level > 0) {
1627 btrfs_release_path(NULL, p);
1628 if (tmp)
1629 free_extent_buffer(tmp);
1630 if (should_reada)
1631 reada_for_search(root, p,
1632 level, slot,
1633 key->objectid);
1635 tmp = read_tree_block(root, blocknr,
1636 blocksize, gen);
1637 if (tmp)
1638 free_extent_buffer(tmp);
1639 goto again;
1640 } else {
1641 btrfs_set_path_blocking(p);
1642 if (tmp)
1643 free_extent_buffer(tmp);
1644 if (should_reada)
1645 reada_for_search(root, p,
1646 level, slot,
1647 key->objectid);
1648 b = read_node_slot(root, b, slot);
1651 if (!p->skip_locking) {
1652 int lret;
1654 btrfs_clear_path_blocking(p, NULL);
1655 lret = btrfs_try_spin_lock(b);
1657 if (!lret) {
1658 btrfs_set_path_blocking(p);
1659 btrfs_tree_lock(b);
1660 btrfs_clear_path_blocking(p, b);
1663 } else {
1664 p->slots[level] = slot;
1665 if (ins_len > 0 &&
1666 btrfs_leaf_free_space(root, b) < ins_len) {
1667 int sret;
1669 btrfs_set_path_blocking(p);
1670 sret = split_leaf(trans, root, key,
1671 p, ins_len, ret == 0);
1672 btrfs_clear_path_blocking(p, NULL);
1674 BUG_ON(sret > 0);
1675 if (sret) {
1676 ret = sret;
1677 goto done;
1680 if (!p->search_for_split)
1681 unlock_up(p, level, lowest_unlock);
1682 goto done;
1685 ret = 1;
1686 done:
1688 * we don't really know what they plan on doing with the path
1689 * from here on, so for now just mark it as blocking
1691 if (!p->leave_spinning)
1692 btrfs_set_path_blocking(p);
1693 return ret;
1696 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1697 struct btrfs_root *root,
1698 struct btrfs_key *node_keys,
1699 u64 *nodes, int lowest_level)
1701 struct extent_buffer *eb;
1702 struct extent_buffer *parent;
1703 struct btrfs_key key;
1704 u64 bytenr;
1705 u64 generation;
1706 u32 blocksize;
1707 int level;
1708 int slot;
1709 int key_match;
1710 int ret;
1712 eb = btrfs_lock_root_node(root);
1713 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
1714 BUG_ON(ret);
1716 btrfs_set_lock_blocking(eb);
1718 parent = eb;
1719 while (1) {
1720 level = btrfs_header_level(parent);
1721 if (level == 0 || level <= lowest_level)
1722 break;
1724 ret = bin_search(parent, &node_keys[lowest_level], level,
1725 &slot);
1726 if (ret && slot > 0)
1727 slot--;
1729 bytenr = btrfs_node_blockptr(parent, slot);
1730 if (nodes[level - 1] == bytenr)
1731 break;
1733 blocksize = btrfs_level_size(root, level - 1);
1734 generation = btrfs_node_ptr_generation(parent, slot);
1735 btrfs_node_key_to_cpu(eb, &key, slot);
1736 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1738 if (generation == trans->transid) {
1739 eb = read_tree_block(root, bytenr, blocksize,
1740 generation);
1741 btrfs_tree_lock(eb);
1742 btrfs_set_lock_blocking(eb);
1746 * if node keys match and node pointer hasn't been modified
1747 * in the running transaction, we can merge the path. for
1748 * blocks owened by reloc trees, the node pointer check is
1749 * skipped, this is because these blocks are fully controlled
1750 * by the space balance code, no one else can modify them.
1752 if (!nodes[level - 1] || !key_match ||
1753 (generation == trans->transid &&
1754 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1755 if (level == 1 || level == lowest_level + 1) {
1756 if (generation == trans->transid) {
1757 btrfs_tree_unlock(eb);
1758 free_extent_buffer(eb);
1760 break;
1763 if (generation != trans->transid) {
1764 eb = read_tree_block(root, bytenr, blocksize,
1765 generation);
1766 btrfs_tree_lock(eb);
1767 btrfs_set_lock_blocking(eb);
1770 ret = btrfs_cow_block(trans, root, eb, parent, slot,
1771 &eb);
1772 BUG_ON(ret);
1774 if (root->root_key.objectid ==
1775 BTRFS_TREE_RELOC_OBJECTID) {
1776 if (!nodes[level - 1]) {
1777 nodes[level - 1] = eb->start;
1778 memcpy(&node_keys[level - 1], &key,
1779 sizeof(node_keys[0]));
1780 } else {
1781 WARN_ON(1);
1785 btrfs_tree_unlock(parent);
1786 free_extent_buffer(parent);
1787 parent = eb;
1788 continue;
1791 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1792 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1793 btrfs_mark_buffer_dirty(parent);
1795 ret = btrfs_inc_extent_ref(trans, root,
1796 nodes[level - 1],
1797 blocksize, parent->start,
1798 btrfs_header_owner(parent),
1799 btrfs_header_generation(parent),
1800 level - 1);
1801 BUG_ON(ret);
1804 * If the block was created in the running transaction,
1805 * it's possible this is the last reference to it, so we
1806 * should drop the subtree.
1808 if (generation == trans->transid) {
1809 ret = btrfs_drop_subtree(trans, root, eb, parent);
1810 BUG_ON(ret);
1811 btrfs_tree_unlock(eb);
1812 free_extent_buffer(eb);
1813 } else {
1814 ret = btrfs_free_extent(trans, root, bytenr,
1815 blocksize, parent->start,
1816 btrfs_header_owner(parent),
1817 btrfs_header_generation(parent),
1818 level - 1, 1);
1819 BUG_ON(ret);
1821 break;
1823 btrfs_tree_unlock(parent);
1824 free_extent_buffer(parent);
1825 return 0;
1829 * adjust the pointers going up the tree, starting at level
1830 * making sure the right key of each node is points to 'key'.
1831 * This is used after shifting pointers to the left, so it stops
1832 * fixing up pointers when a given leaf/node is not in slot 0 of the
1833 * higher levels
1835 * If this fails to write a tree block, it returns -1, but continues
1836 * fixing up the blocks in ram so the tree is consistent.
1838 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1839 struct btrfs_root *root, struct btrfs_path *path,
1840 struct btrfs_disk_key *key, int level)
1842 int i;
1843 int ret = 0;
1844 struct extent_buffer *t;
1846 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1847 int tslot = path->slots[i];
1848 if (!path->nodes[i])
1849 break;
1850 t = path->nodes[i];
1851 btrfs_set_node_key(t, key, tslot);
1852 btrfs_mark_buffer_dirty(path->nodes[i]);
1853 if (tslot != 0)
1854 break;
1856 return ret;
1860 * update item key.
1862 * This function isn't completely safe. It's the caller's responsibility
1863 * that the new key won't break the order
1865 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root, struct btrfs_path *path,
1867 struct btrfs_key *new_key)
1869 struct btrfs_disk_key disk_key;
1870 struct extent_buffer *eb;
1871 int slot;
1873 eb = path->nodes[0];
1874 slot = path->slots[0];
1875 if (slot > 0) {
1876 btrfs_item_key(eb, &disk_key, slot - 1);
1877 if (comp_keys(&disk_key, new_key) >= 0)
1878 return -1;
1880 if (slot < btrfs_header_nritems(eb) - 1) {
1881 btrfs_item_key(eb, &disk_key, slot + 1);
1882 if (comp_keys(&disk_key, new_key) <= 0)
1883 return -1;
1886 btrfs_cpu_key_to_disk(&disk_key, new_key);
1887 btrfs_set_item_key(eb, &disk_key, slot);
1888 btrfs_mark_buffer_dirty(eb);
1889 if (slot == 0)
1890 fixup_low_keys(trans, root, path, &disk_key, 1);
1891 return 0;
1895 * try to push data from one node into the next node left in the
1896 * tree.
1898 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1899 * error, and > 0 if there was no room in the left hand block.
1901 static int push_node_left(struct btrfs_trans_handle *trans,
1902 struct btrfs_root *root, struct extent_buffer *dst,
1903 struct extent_buffer *src, int empty)
1905 int push_items = 0;
1906 int src_nritems;
1907 int dst_nritems;
1908 int ret = 0;
1910 src_nritems = btrfs_header_nritems(src);
1911 dst_nritems = btrfs_header_nritems(dst);
1912 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1913 WARN_ON(btrfs_header_generation(src) != trans->transid);
1914 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1916 if (!empty && src_nritems <= 8)
1917 return 1;
1919 if (push_items <= 0)
1920 return 1;
1922 if (empty) {
1923 push_items = min(src_nritems, push_items);
1924 if (push_items < src_nritems) {
1925 /* leave at least 8 pointers in the node if
1926 * we aren't going to empty it
1928 if (src_nritems - push_items < 8) {
1929 if (push_items <= 8)
1930 return 1;
1931 push_items -= 8;
1934 } else
1935 push_items = min(src_nritems - 8, push_items);
1937 copy_extent_buffer(dst, src,
1938 btrfs_node_key_ptr_offset(dst_nritems),
1939 btrfs_node_key_ptr_offset(0),
1940 push_items * sizeof(struct btrfs_key_ptr));
1942 if (push_items < src_nritems) {
1943 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1944 btrfs_node_key_ptr_offset(push_items),
1945 (src_nritems - push_items) *
1946 sizeof(struct btrfs_key_ptr));
1948 btrfs_set_header_nritems(src, src_nritems - push_items);
1949 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1950 btrfs_mark_buffer_dirty(src);
1951 btrfs_mark_buffer_dirty(dst);
1953 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1954 BUG_ON(ret);
1956 return ret;
1960 * try to push data from one node into the next node right in the
1961 * tree.
1963 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1964 * error, and > 0 if there was no room in the right hand block.
1966 * this will only push up to 1/2 the contents of the left node over
1968 static int balance_node_right(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 struct extent_buffer *dst,
1971 struct extent_buffer *src)
1973 int push_items = 0;
1974 int max_push;
1975 int src_nritems;
1976 int dst_nritems;
1977 int ret = 0;
1979 WARN_ON(btrfs_header_generation(src) != trans->transid);
1980 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1982 src_nritems = btrfs_header_nritems(src);
1983 dst_nritems = btrfs_header_nritems(dst);
1984 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1985 if (push_items <= 0)
1986 return 1;
1988 if (src_nritems < 4)
1989 return 1;
1991 max_push = src_nritems / 2 + 1;
1992 /* don't try to empty the node */
1993 if (max_push >= src_nritems)
1994 return 1;
1996 if (max_push < push_items)
1997 push_items = max_push;
1999 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2000 btrfs_node_key_ptr_offset(0),
2001 (dst_nritems) *
2002 sizeof(struct btrfs_key_ptr));
2004 copy_extent_buffer(dst, src,
2005 btrfs_node_key_ptr_offset(0),
2006 btrfs_node_key_ptr_offset(src_nritems - push_items),
2007 push_items * sizeof(struct btrfs_key_ptr));
2009 btrfs_set_header_nritems(src, src_nritems - push_items);
2010 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2012 btrfs_mark_buffer_dirty(src);
2013 btrfs_mark_buffer_dirty(dst);
2015 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2016 BUG_ON(ret);
2018 return ret;
2022 * helper function to insert a new root level in the tree.
2023 * A new node is allocated, and a single item is inserted to
2024 * point to the existing root
2026 * returns zero on success or < 0 on failure.
2028 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2029 struct btrfs_root *root,
2030 struct btrfs_path *path, int level)
2032 u64 lower_gen;
2033 struct extent_buffer *lower;
2034 struct extent_buffer *c;
2035 struct extent_buffer *old;
2036 struct btrfs_disk_key lower_key;
2037 int ret;
2039 BUG_ON(path->nodes[level]);
2040 BUG_ON(path->nodes[level-1] != root->node);
2042 lower = path->nodes[level-1];
2043 if (level == 1)
2044 btrfs_item_key(lower, &lower_key, 0);
2045 else
2046 btrfs_node_key(lower, &lower_key, 0);
2048 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2049 root->root_key.objectid, trans->transid,
2050 level, root->node->start, 0);
2051 if (IS_ERR(c))
2052 return PTR_ERR(c);
2054 memset_extent_buffer(c, 0, 0, root->nodesize);
2055 btrfs_set_header_nritems(c, 1);
2056 btrfs_set_header_level(c, level);
2057 btrfs_set_header_bytenr(c, c->start);
2058 btrfs_set_header_generation(c, trans->transid);
2059 btrfs_set_header_owner(c, root->root_key.objectid);
2061 write_extent_buffer(c, root->fs_info->fsid,
2062 (unsigned long)btrfs_header_fsid(c),
2063 BTRFS_FSID_SIZE);
2065 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2066 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2067 BTRFS_UUID_SIZE);
2069 btrfs_set_node_key(c, &lower_key, 0);
2070 btrfs_set_node_blockptr(c, 0, lower->start);
2071 lower_gen = btrfs_header_generation(lower);
2072 WARN_ON(lower_gen != trans->transid);
2074 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2076 btrfs_mark_buffer_dirty(c);
2078 spin_lock(&root->node_lock);
2079 old = root->node;
2080 root->node = c;
2081 spin_unlock(&root->node_lock);
2083 ret = btrfs_update_extent_ref(trans, root, lower->start,
2084 lower->len, lower->start, c->start,
2085 root->root_key.objectid,
2086 trans->transid, level - 1);
2087 BUG_ON(ret);
2089 /* the super has an extra ref to root->node */
2090 free_extent_buffer(old);
2092 add_root_to_dirty_list(root);
2093 extent_buffer_get(c);
2094 path->nodes[level] = c;
2095 path->locks[level] = 1;
2096 path->slots[level] = 0;
2097 return 0;
2101 * worker function to insert a single pointer in a node.
2102 * the node should have enough room for the pointer already
2104 * slot and level indicate where you want the key to go, and
2105 * blocknr is the block the key points to.
2107 * returns zero on success and < 0 on any error
2109 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2110 *root, struct btrfs_path *path, struct btrfs_disk_key
2111 *key, u64 bytenr, int slot, int level)
2113 struct extent_buffer *lower;
2114 int nritems;
2116 BUG_ON(!path->nodes[level]);
2117 lower = path->nodes[level];
2118 nritems = btrfs_header_nritems(lower);
2119 if (slot > nritems)
2120 BUG();
2121 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2122 BUG();
2123 if (slot != nritems) {
2124 memmove_extent_buffer(lower,
2125 btrfs_node_key_ptr_offset(slot + 1),
2126 btrfs_node_key_ptr_offset(slot),
2127 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2129 btrfs_set_node_key(lower, key, slot);
2130 btrfs_set_node_blockptr(lower, slot, bytenr);
2131 WARN_ON(trans->transid == 0);
2132 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2133 btrfs_set_header_nritems(lower, nritems + 1);
2134 btrfs_mark_buffer_dirty(lower);
2135 return 0;
2139 * split the node at the specified level in path in two.
2140 * The path is corrected to point to the appropriate node after the split
2142 * Before splitting this tries to make some room in the node by pushing
2143 * left and right, if either one works, it returns right away.
2145 * returns 0 on success and < 0 on failure
2147 static noinline int split_node(struct btrfs_trans_handle *trans,
2148 struct btrfs_root *root,
2149 struct btrfs_path *path, int level)
2151 struct extent_buffer *c;
2152 struct extent_buffer *split;
2153 struct btrfs_disk_key disk_key;
2154 int mid;
2155 int ret;
2156 int wret;
2157 u32 c_nritems;
2159 c = path->nodes[level];
2160 WARN_ON(btrfs_header_generation(c) != trans->transid);
2161 if (c == root->node) {
2162 /* trying to split the root, lets make a new one */
2163 ret = insert_new_root(trans, root, path, level + 1);
2164 if (ret)
2165 return ret;
2166 } else if (!trans->transaction->delayed_refs.flushing) {
2167 ret = push_nodes_for_insert(trans, root, path, level);
2168 c = path->nodes[level];
2169 if (!ret && btrfs_header_nritems(c) <
2170 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2171 return 0;
2172 if (ret < 0)
2173 return ret;
2176 c_nritems = btrfs_header_nritems(c);
2178 split = btrfs_alloc_free_block(trans, root, root->nodesize,
2179 path->nodes[level + 1]->start,
2180 root->root_key.objectid,
2181 trans->transid, level, c->start, 0);
2182 if (IS_ERR(split))
2183 return PTR_ERR(split);
2185 btrfs_set_header_flags(split, btrfs_header_flags(c));
2186 btrfs_set_header_level(split, btrfs_header_level(c));
2187 btrfs_set_header_bytenr(split, split->start);
2188 btrfs_set_header_generation(split, trans->transid);
2189 btrfs_set_header_owner(split, root->root_key.objectid);
2190 btrfs_set_header_flags(split, 0);
2191 write_extent_buffer(split, root->fs_info->fsid,
2192 (unsigned long)btrfs_header_fsid(split),
2193 BTRFS_FSID_SIZE);
2194 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2195 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2196 BTRFS_UUID_SIZE);
2198 mid = (c_nritems + 1) / 2;
2200 copy_extent_buffer(split, c,
2201 btrfs_node_key_ptr_offset(0),
2202 btrfs_node_key_ptr_offset(mid),
2203 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2204 btrfs_set_header_nritems(split, c_nritems - mid);
2205 btrfs_set_header_nritems(c, mid);
2206 ret = 0;
2208 btrfs_mark_buffer_dirty(c);
2209 btrfs_mark_buffer_dirty(split);
2211 btrfs_node_key(split, &disk_key, 0);
2212 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2213 path->slots[level + 1] + 1,
2214 level + 1);
2215 if (wret)
2216 ret = wret;
2218 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2219 BUG_ON(ret);
2221 if (path->slots[level] >= mid) {
2222 path->slots[level] -= mid;
2223 btrfs_tree_unlock(c);
2224 free_extent_buffer(c);
2225 path->nodes[level] = split;
2226 path->slots[level + 1] += 1;
2227 } else {
2228 btrfs_tree_unlock(split);
2229 free_extent_buffer(split);
2231 return ret;
2235 * how many bytes are required to store the items in a leaf. start
2236 * and nr indicate which items in the leaf to check. This totals up the
2237 * space used both by the item structs and the item data
2239 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2241 int data_len;
2242 int nritems = btrfs_header_nritems(l);
2243 int end = min(nritems, start + nr) - 1;
2245 if (!nr)
2246 return 0;
2247 data_len = btrfs_item_end_nr(l, start);
2248 data_len = data_len - btrfs_item_offset_nr(l, end);
2249 data_len += sizeof(struct btrfs_item) * nr;
2250 WARN_ON(data_len < 0);
2251 return data_len;
2255 * The space between the end of the leaf items and
2256 * the start of the leaf data. IOW, how much room
2257 * the leaf has left for both items and data
2259 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2260 struct extent_buffer *leaf)
2262 int nritems = btrfs_header_nritems(leaf);
2263 int ret;
2264 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2265 if (ret < 0) {
2266 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2267 "used %d nritems %d\n",
2268 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2269 leaf_space_used(leaf, 0, nritems), nritems);
2271 return ret;
2274 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_path *path,
2277 int data_size, int empty,
2278 struct extent_buffer *right,
2279 int free_space, u32 left_nritems)
2281 struct extent_buffer *left = path->nodes[0];
2282 struct extent_buffer *upper = path->nodes[1];
2283 struct btrfs_disk_key disk_key;
2284 int slot;
2285 u32 i;
2286 int push_space = 0;
2287 int push_items = 0;
2288 struct btrfs_item *item;
2289 u32 nr;
2290 u32 right_nritems;
2291 u32 data_end;
2292 u32 this_item_size;
2293 int ret;
2295 if (empty)
2296 nr = 0;
2297 else
2298 nr = 1;
2300 if (path->slots[0] >= left_nritems)
2301 push_space += data_size;
2303 slot = path->slots[1];
2304 i = left_nritems - 1;
2305 while (i >= nr) {
2306 item = btrfs_item_nr(left, i);
2308 if (!empty && push_items > 0) {
2309 if (path->slots[0] > i)
2310 break;
2311 if (path->slots[0] == i) {
2312 int space = btrfs_leaf_free_space(root, left);
2313 if (space + push_space * 2 > free_space)
2314 break;
2318 if (path->slots[0] == i)
2319 push_space += data_size;
2321 if (!left->map_token) {
2322 map_extent_buffer(left, (unsigned long)item,
2323 sizeof(struct btrfs_item),
2324 &left->map_token, &left->kaddr,
2325 &left->map_start, &left->map_len,
2326 KM_USER1);
2329 this_item_size = btrfs_item_size(left, item);
2330 if (this_item_size + sizeof(*item) + push_space > free_space)
2331 break;
2333 push_items++;
2334 push_space += this_item_size + sizeof(*item);
2335 if (i == 0)
2336 break;
2337 i--;
2339 if (left->map_token) {
2340 unmap_extent_buffer(left, left->map_token, KM_USER1);
2341 left->map_token = NULL;
2344 if (push_items == 0)
2345 goto out_unlock;
2347 if (!empty && push_items == left_nritems)
2348 WARN_ON(1);
2350 /* push left to right */
2351 right_nritems = btrfs_header_nritems(right);
2353 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2354 push_space -= leaf_data_end(root, left);
2356 /* make room in the right data area */
2357 data_end = leaf_data_end(root, right);
2358 memmove_extent_buffer(right,
2359 btrfs_leaf_data(right) + data_end - push_space,
2360 btrfs_leaf_data(right) + data_end,
2361 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2363 /* copy from the left data area */
2364 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2365 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2366 btrfs_leaf_data(left) + leaf_data_end(root, left),
2367 push_space);
2369 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2370 btrfs_item_nr_offset(0),
2371 right_nritems * sizeof(struct btrfs_item));
2373 /* copy the items from left to right */
2374 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2375 btrfs_item_nr_offset(left_nritems - push_items),
2376 push_items * sizeof(struct btrfs_item));
2378 /* update the item pointers */
2379 right_nritems += push_items;
2380 btrfs_set_header_nritems(right, right_nritems);
2381 push_space = BTRFS_LEAF_DATA_SIZE(root);
2382 for (i = 0; i < right_nritems; i++) {
2383 item = btrfs_item_nr(right, i);
2384 if (!right->map_token) {
2385 map_extent_buffer(right, (unsigned long)item,
2386 sizeof(struct btrfs_item),
2387 &right->map_token, &right->kaddr,
2388 &right->map_start, &right->map_len,
2389 KM_USER1);
2391 push_space -= btrfs_item_size(right, item);
2392 btrfs_set_item_offset(right, item, push_space);
2395 if (right->map_token) {
2396 unmap_extent_buffer(right, right->map_token, KM_USER1);
2397 right->map_token = NULL;
2399 left_nritems -= push_items;
2400 btrfs_set_header_nritems(left, left_nritems);
2402 if (left_nritems)
2403 btrfs_mark_buffer_dirty(left);
2404 btrfs_mark_buffer_dirty(right);
2406 ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2407 BUG_ON(ret);
2409 btrfs_item_key(right, &disk_key, 0);
2410 btrfs_set_node_key(upper, &disk_key, slot + 1);
2411 btrfs_mark_buffer_dirty(upper);
2413 /* then fixup the leaf pointer in the path */
2414 if (path->slots[0] >= left_nritems) {
2415 path->slots[0] -= left_nritems;
2416 if (btrfs_header_nritems(path->nodes[0]) == 0)
2417 clean_tree_block(trans, root, path->nodes[0]);
2418 btrfs_tree_unlock(path->nodes[0]);
2419 free_extent_buffer(path->nodes[0]);
2420 path->nodes[0] = right;
2421 path->slots[1] += 1;
2422 } else {
2423 btrfs_tree_unlock(right);
2424 free_extent_buffer(right);
2426 return 0;
2428 out_unlock:
2429 btrfs_tree_unlock(right);
2430 free_extent_buffer(right);
2431 return 1;
2435 * push some data in the path leaf to the right, trying to free up at
2436 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2438 * returns 1 if the push failed because the other node didn't have enough
2439 * room, 0 if everything worked out and < 0 if there were major errors.
2441 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2442 *root, struct btrfs_path *path, int data_size,
2443 int empty)
2445 struct extent_buffer *left = path->nodes[0];
2446 struct extent_buffer *right;
2447 struct extent_buffer *upper;
2448 int slot;
2449 int free_space;
2450 u32 left_nritems;
2451 int ret;
2453 if (!path->nodes[1])
2454 return 1;
2456 slot = path->slots[1];
2457 upper = path->nodes[1];
2458 if (slot >= btrfs_header_nritems(upper) - 1)
2459 return 1;
2461 btrfs_assert_tree_locked(path->nodes[1]);
2463 right = read_node_slot(root, upper, slot + 1);
2464 btrfs_tree_lock(right);
2465 btrfs_set_lock_blocking(right);
2467 free_space = btrfs_leaf_free_space(root, right);
2468 if (free_space < data_size)
2469 goto out_unlock;
2471 /* cow and double check */
2472 ret = btrfs_cow_block(trans, root, right, upper,
2473 slot + 1, &right);
2474 if (ret)
2475 goto out_unlock;
2477 free_space = btrfs_leaf_free_space(root, right);
2478 if (free_space < data_size)
2479 goto out_unlock;
2481 left_nritems = btrfs_header_nritems(left);
2482 if (left_nritems == 0)
2483 goto out_unlock;
2485 return __push_leaf_right(trans, root, path, data_size, empty,
2486 right, free_space, left_nritems);
2487 out_unlock:
2488 btrfs_tree_unlock(right);
2489 free_extent_buffer(right);
2490 return 1;
2494 * push some data in the path leaf to the left, trying to free up at
2495 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2497 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2498 struct btrfs_root *root,
2499 struct btrfs_path *path, int data_size,
2500 int empty, struct extent_buffer *left,
2501 int free_space, int right_nritems)
2503 struct btrfs_disk_key disk_key;
2504 struct extent_buffer *right = path->nodes[0];
2505 int slot;
2506 int i;
2507 int push_space = 0;
2508 int push_items = 0;
2509 struct btrfs_item *item;
2510 u32 old_left_nritems;
2511 u32 nr;
2512 int ret = 0;
2513 int wret;
2514 u32 this_item_size;
2515 u32 old_left_item_size;
2517 slot = path->slots[1];
2519 if (empty)
2520 nr = right_nritems;
2521 else
2522 nr = right_nritems - 1;
2524 for (i = 0; i < nr; i++) {
2525 item = btrfs_item_nr(right, i);
2526 if (!right->map_token) {
2527 map_extent_buffer(right, (unsigned long)item,
2528 sizeof(struct btrfs_item),
2529 &right->map_token, &right->kaddr,
2530 &right->map_start, &right->map_len,
2531 KM_USER1);
2534 if (!empty && push_items > 0) {
2535 if (path->slots[0] < i)
2536 break;
2537 if (path->slots[0] == i) {
2538 int space = btrfs_leaf_free_space(root, right);
2539 if (space + push_space * 2 > free_space)
2540 break;
2544 if (path->slots[0] == i)
2545 push_space += data_size;
2547 this_item_size = btrfs_item_size(right, item);
2548 if (this_item_size + sizeof(*item) + push_space > free_space)
2549 break;
2551 push_items++;
2552 push_space += this_item_size + sizeof(*item);
2555 if (right->map_token) {
2556 unmap_extent_buffer(right, right->map_token, KM_USER1);
2557 right->map_token = NULL;
2560 if (push_items == 0) {
2561 ret = 1;
2562 goto out;
2564 if (!empty && push_items == btrfs_header_nritems(right))
2565 WARN_ON(1);
2567 /* push data from right to left */
2568 copy_extent_buffer(left, right,
2569 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2570 btrfs_item_nr_offset(0),
2571 push_items * sizeof(struct btrfs_item));
2573 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2574 btrfs_item_offset_nr(right, push_items - 1);
2576 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2577 leaf_data_end(root, left) - push_space,
2578 btrfs_leaf_data(right) +
2579 btrfs_item_offset_nr(right, push_items - 1),
2580 push_space);
2581 old_left_nritems = btrfs_header_nritems(left);
2582 BUG_ON(old_left_nritems <= 0);
2584 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2585 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2586 u32 ioff;
2588 item = btrfs_item_nr(left, i);
2589 if (!left->map_token) {
2590 map_extent_buffer(left, (unsigned long)item,
2591 sizeof(struct btrfs_item),
2592 &left->map_token, &left->kaddr,
2593 &left->map_start, &left->map_len,
2594 KM_USER1);
2597 ioff = btrfs_item_offset(left, item);
2598 btrfs_set_item_offset(left, item,
2599 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2601 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2602 if (left->map_token) {
2603 unmap_extent_buffer(left, left->map_token, KM_USER1);
2604 left->map_token = NULL;
2607 /* fixup right node */
2608 if (push_items > right_nritems) {
2609 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2610 right_nritems);
2611 WARN_ON(1);
2614 if (push_items < right_nritems) {
2615 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2616 leaf_data_end(root, right);
2617 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2618 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2619 btrfs_leaf_data(right) +
2620 leaf_data_end(root, right), push_space);
2622 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2623 btrfs_item_nr_offset(push_items),
2624 (btrfs_header_nritems(right) - push_items) *
2625 sizeof(struct btrfs_item));
2627 right_nritems -= push_items;
2628 btrfs_set_header_nritems(right, right_nritems);
2629 push_space = BTRFS_LEAF_DATA_SIZE(root);
2630 for (i = 0; i < right_nritems; i++) {
2631 item = btrfs_item_nr(right, i);
2633 if (!right->map_token) {
2634 map_extent_buffer(right, (unsigned long)item,
2635 sizeof(struct btrfs_item),
2636 &right->map_token, &right->kaddr,
2637 &right->map_start, &right->map_len,
2638 KM_USER1);
2641 push_space = push_space - btrfs_item_size(right, item);
2642 btrfs_set_item_offset(right, item, push_space);
2644 if (right->map_token) {
2645 unmap_extent_buffer(right, right->map_token, KM_USER1);
2646 right->map_token = NULL;
2649 btrfs_mark_buffer_dirty(left);
2650 if (right_nritems)
2651 btrfs_mark_buffer_dirty(right);
2653 ret = btrfs_update_ref(trans, root, right, left,
2654 old_left_nritems, push_items);
2655 BUG_ON(ret);
2657 btrfs_item_key(right, &disk_key, 0);
2658 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2659 if (wret)
2660 ret = wret;
2662 /* then fixup the leaf pointer in the path */
2663 if (path->slots[0] < push_items) {
2664 path->slots[0] += old_left_nritems;
2665 if (btrfs_header_nritems(path->nodes[0]) == 0)
2666 clean_tree_block(trans, root, path->nodes[0]);
2667 btrfs_tree_unlock(path->nodes[0]);
2668 free_extent_buffer(path->nodes[0]);
2669 path->nodes[0] = left;
2670 path->slots[1] -= 1;
2671 } else {
2672 btrfs_tree_unlock(left);
2673 free_extent_buffer(left);
2674 path->slots[0] -= push_items;
2676 BUG_ON(path->slots[0] < 0);
2677 return ret;
2678 out:
2679 btrfs_tree_unlock(left);
2680 free_extent_buffer(left);
2681 return ret;
2685 * push some data in the path leaf to the left, trying to free up at
2686 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2688 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2689 *root, struct btrfs_path *path, int data_size,
2690 int empty)
2692 struct extent_buffer *right = path->nodes[0];
2693 struct extent_buffer *left;
2694 int slot;
2695 int free_space;
2696 u32 right_nritems;
2697 int ret = 0;
2699 slot = path->slots[1];
2700 if (slot == 0)
2701 return 1;
2702 if (!path->nodes[1])
2703 return 1;
2705 right_nritems = btrfs_header_nritems(right);
2706 if (right_nritems == 0)
2707 return 1;
2709 btrfs_assert_tree_locked(path->nodes[1]);
2711 left = read_node_slot(root, path->nodes[1], slot - 1);
2712 btrfs_tree_lock(left);
2713 btrfs_set_lock_blocking(left);
2715 free_space = btrfs_leaf_free_space(root, left);
2716 if (free_space < data_size) {
2717 ret = 1;
2718 goto out;
2721 /* cow and double check */
2722 ret = btrfs_cow_block(trans, root, left,
2723 path->nodes[1], slot - 1, &left);
2724 if (ret) {
2725 /* we hit -ENOSPC, but it isn't fatal here */
2726 ret = 1;
2727 goto out;
2730 free_space = btrfs_leaf_free_space(root, left);
2731 if (free_space < data_size) {
2732 ret = 1;
2733 goto out;
2736 return __push_leaf_left(trans, root, path, data_size,
2737 empty, left, free_space, right_nritems);
2738 out:
2739 btrfs_tree_unlock(left);
2740 free_extent_buffer(left);
2741 return ret;
2745 * split the path's leaf in two, making sure there is at least data_size
2746 * available for the resulting leaf level of the path.
2748 * returns 0 if all went well and < 0 on failure.
2750 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2751 struct btrfs_root *root,
2752 struct btrfs_path *path,
2753 struct extent_buffer *l,
2754 struct extent_buffer *right,
2755 int slot, int mid, int nritems)
2757 int data_copy_size;
2758 int rt_data_off;
2759 int i;
2760 int ret = 0;
2761 int wret;
2762 struct btrfs_disk_key disk_key;
2764 nritems = nritems - mid;
2765 btrfs_set_header_nritems(right, nritems);
2766 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2768 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2769 btrfs_item_nr_offset(mid),
2770 nritems * sizeof(struct btrfs_item));
2772 copy_extent_buffer(right, l,
2773 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2774 data_copy_size, btrfs_leaf_data(l) +
2775 leaf_data_end(root, l), data_copy_size);
2777 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2778 btrfs_item_end_nr(l, mid);
2780 for (i = 0; i < nritems; i++) {
2781 struct btrfs_item *item = btrfs_item_nr(right, i);
2782 u32 ioff;
2784 if (!right->map_token) {
2785 map_extent_buffer(right, (unsigned long)item,
2786 sizeof(struct btrfs_item),
2787 &right->map_token, &right->kaddr,
2788 &right->map_start, &right->map_len,
2789 KM_USER1);
2792 ioff = btrfs_item_offset(right, item);
2793 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2796 if (right->map_token) {
2797 unmap_extent_buffer(right, right->map_token, KM_USER1);
2798 right->map_token = NULL;
2801 btrfs_set_header_nritems(l, mid);
2802 ret = 0;
2803 btrfs_item_key(right, &disk_key, 0);
2804 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2805 path->slots[1] + 1, 1);
2806 if (wret)
2807 ret = wret;
2809 btrfs_mark_buffer_dirty(right);
2810 btrfs_mark_buffer_dirty(l);
2811 BUG_ON(path->slots[0] != slot);
2813 ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2814 BUG_ON(ret);
2816 if (mid <= slot) {
2817 btrfs_tree_unlock(path->nodes[0]);
2818 free_extent_buffer(path->nodes[0]);
2819 path->nodes[0] = right;
2820 path->slots[0] -= mid;
2821 path->slots[1] += 1;
2822 } else {
2823 btrfs_tree_unlock(right);
2824 free_extent_buffer(right);
2827 BUG_ON(path->slots[0] < 0);
2829 return ret;
2833 * split the path's leaf in two, making sure there is at least data_size
2834 * available for the resulting leaf level of the path.
2836 * returns 0 if all went well and < 0 on failure.
2838 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *root,
2840 struct btrfs_key *ins_key,
2841 struct btrfs_path *path, int data_size,
2842 int extend)
2844 struct extent_buffer *l;
2845 u32 nritems;
2846 int mid;
2847 int slot;
2848 struct extent_buffer *right;
2849 int ret = 0;
2850 int wret;
2851 int double_split;
2852 int num_doubles = 0;
2854 /* first try to make some room by pushing left and right */
2855 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
2856 !trans->transaction->delayed_refs.flushing) {
2857 wret = push_leaf_right(trans, root, path, data_size, 0);
2858 if (wret < 0)
2859 return wret;
2860 if (wret) {
2861 wret = push_leaf_left(trans, root, path, data_size, 0);
2862 if (wret < 0)
2863 return wret;
2865 l = path->nodes[0];
2867 /* did the pushes work? */
2868 if (btrfs_leaf_free_space(root, l) >= data_size)
2869 return 0;
2872 if (!path->nodes[1]) {
2873 ret = insert_new_root(trans, root, path, 1);
2874 if (ret)
2875 return ret;
2877 again:
2878 double_split = 0;
2879 l = path->nodes[0];
2880 slot = path->slots[0];
2881 nritems = btrfs_header_nritems(l);
2882 mid = (nritems + 1) / 2;
2884 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2885 path->nodes[1]->start,
2886 root->root_key.objectid,
2887 trans->transid, 0, l->start, 0);
2888 if (IS_ERR(right)) {
2889 BUG_ON(1);
2890 return PTR_ERR(right);
2893 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2894 btrfs_set_header_bytenr(right, right->start);
2895 btrfs_set_header_generation(right, trans->transid);
2896 btrfs_set_header_owner(right, root->root_key.objectid);
2897 btrfs_set_header_level(right, 0);
2898 write_extent_buffer(right, root->fs_info->fsid,
2899 (unsigned long)btrfs_header_fsid(right),
2900 BTRFS_FSID_SIZE);
2902 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2903 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2904 BTRFS_UUID_SIZE);
2906 if (mid <= slot) {
2907 if (nritems == 1 ||
2908 leaf_space_used(l, mid, nritems - mid) + data_size >
2909 BTRFS_LEAF_DATA_SIZE(root)) {
2910 if (slot >= nritems) {
2911 struct btrfs_disk_key disk_key;
2913 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2914 btrfs_set_header_nritems(right, 0);
2915 wret = insert_ptr(trans, root, path,
2916 &disk_key, right->start,
2917 path->slots[1] + 1, 1);
2918 if (wret)
2919 ret = wret;
2921 btrfs_tree_unlock(path->nodes[0]);
2922 free_extent_buffer(path->nodes[0]);
2923 path->nodes[0] = right;
2924 path->slots[0] = 0;
2925 path->slots[1] += 1;
2926 btrfs_mark_buffer_dirty(right);
2927 return ret;
2929 mid = slot;
2930 if (mid != nritems &&
2931 leaf_space_used(l, mid, nritems - mid) +
2932 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2933 double_split = 1;
2936 } else {
2937 if (leaf_space_used(l, 0, mid) + data_size >
2938 BTRFS_LEAF_DATA_SIZE(root)) {
2939 if (!extend && data_size && slot == 0) {
2940 struct btrfs_disk_key disk_key;
2942 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2943 btrfs_set_header_nritems(right, 0);
2944 wret = insert_ptr(trans, root, path,
2945 &disk_key,
2946 right->start,
2947 path->slots[1], 1);
2948 if (wret)
2949 ret = wret;
2950 btrfs_tree_unlock(path->nodes[0]);
2951 free_extent_buffer(path->nodes[0]);
2952 path->nodes[0] = right;
2953 path->slots[0] = 0;
2954 if (path->slots[1] == 0) {
2955 wret = fixup_low_keys(trans, root,
2956 path, &disk_key, 1);
2957 if (wret)
2958 ret = wret;
2960 btrfs_mark_buffer_dirty(right);
2961 return ret;
2962 } else if ((extend || !data_size) && slot == 0) {
2963 mid = 1;
2964 } else {
2965 mid = slot;
2966 if (mid != nritems &&
2967 leaf_space_used(l, mid, nritems - mid) +
2968 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2969 double_split = 1;
2975 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2976 BUG_ON(ret);
2978 if (double_split) {
2979 BUG_ON(num_doubles != 0);
2980 num_doubles++;
2981 goto again;
2984 return ret;
2988 * This function splits a single item into two items,
2989 * giving 'new_key' to the new item and splitting the
2990 * old one at split_offset (from the start of the item).
2992 * The path may be released by this operation. After
2993 * the split, the path is pointing to the old item. The
2994 * new item is going to be in the same node as the old one.
2996 * Note, the item being split must be smaller enough to live alone on
2997 * a tree block with room for one extra struct btrfs_item
2999 * This allows us to split the item in place, keeping a lock on the
3000 * leaf the entire time.
3002 int btrfs_split_item(struct btrfs_trans_handle *trans,
3003 struct btrfs_root *root,
3004 struct btrfs_path *path,
3005 struct btrfs_key *new_key,
3006 unsigned long split_offset)
3008 u32 item_size;
3009 struct extent_buffer *leaf;
3010 struct btrfs_key orig_key;
3011 struct btrfs_item *item;
3012 struct btrfs_item *new_item;
3013 int ret = 0;
3014 int slot;
3015 u32 nritems;
3016 u32 orig_offset;
3017 struct btrfs_disk_key disk_key;
3018 char *buf;
3020 leaf = path->nodes[0];
3021 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3022 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3023 goto split;
3025 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3026 btrfs_release_path(root, path);
3028 path->search_for_split = 1;
3029 path->keep_locks = 1;
3031 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3032 path->search_for_split = 0;
3034 /* if our item isn't there or got smaller, return now */
3035 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3036 path->slots[0])) {
3037 path->keep_locks = 0;
3038 return -EAGAIN;
3041 btrfs_set_path_blocking(path);
3042 ret = split_leaf(trans, root, &orig_key, path,
3043 sizeof(struct btrfs_item), 1);
3044 path->keep_locks = 0;
3045 BUG_ON(ret);
3047 btrfs_unlock_up_safe(path, 1);
3048 leaf = path->nodes[0];
3049 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3051 split:
3053 * make sure any changes to the path from split_leaf leave it
3054 * in a blocking state
3056 btrfs_set_path_blocking(path);
3058 item = btrfs_item_nr(leaf, path->slots[0]);
3059 orig_offset = btrfs_item_offset(leaf, item);
3060 item_size = btrfs_item_size(leaf, item);
3062 buf = kmalloc(item_size, GFP_NOFS);
3063 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3064 path->slots[0]), item_size);
3065 slot = path->slots[0] + 1;
3066 leaf = path->nodes[0];
3068 nritems = btrfs_header_nritems(leaf);
3070 if (slot != nritems) {
3071 /* shift the items */
3072 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3073 btrfs_item_nr_offset(slot),
3074 (nritems - slot) * sizeof(struct btrfs_item));
3078 btrfs_cpu_key_to_disk(&disk_key, new_key);
3079 btrfs_set_item_key(leaf, &disk_key, slot);
3081 new_item = btrfs_item_nr(leaf, slot);
3083 btrfs_set_item_offset(leaf, new_item, orig_offset);
3084 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3086 btrfs_set_item_offset(leaf, item,
3087 orig_offset + item_size - split_offset);
3088 btrfs_set_item_size(leaf, item, split_offset);
3090 btrfs_set_header_nritems(leaf, nritems + 1);
3092 /* write the data for the start of the original item */
3093 write_extent_buffer(leaf, buf,
3094 btrfs_item_ptr_offset(leaf, path->slots[0]),
3095 split_offset);
3097 /* write the data for the new item */
3098 write_extent_buffer(leaf, buf + split_offset,
3099 btrfs_item_ptr_offset(leaf, slot),
3100 item_size - split_offset);
3101 btrfs_mark_buffer_dirty(leaf);
3103 ret = 0;
3104 if (btrfs_leaf_free_space(root, leaf) < 0) {
3105 btrfs_print_leaf(root, leaf);
3106 BUG();
3108 kfree(buf);
3109 return ret;
3113 * make the item pointed to by the path smaller. new_size indicates
3114 * how small to make it, and from_end tells us if we just chop bytes
3115 * off the end of the item or if we shift the item to chop bytes off
3116 * the front.
3118 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3119 struct btrfs_root *root,
3120 struct btrfs_path *path,
3121 u32 new_size, int from_end)
3123 int ret = 0;
3124 int slot;
3125 int slot_orig;
3126 struct extent_buffer *leaf;
3127 struct btrfs_item *item;
3128 u32 nritems;
3129 unsigned int data_end;
3130 unsigned int old_data_start;
3131 unsigned int old_size;
3132 unsigned int size_diff;
3133 int i;
3135 slot_orig = path->slots[0];
3136 leaf = path->nodes[0];
3137 slot = path->slots[0];
3139 old_size = btrfs_item_size_nr(leaf, slot);
3140 if (old_size == new_size)
3141 return 0;
3143 nritems = btrfs_header_nritems(leaf);
3144 data_end = leaf_data_end(root, leaf);
3146 old_data_start = btrfs_item_offset_nr(leaf, slot);
3148 size_diff = old_size - new_size;
3150 BUG_ON(slot < 0);
3151 BUG_ON(slot >= nritems);
3154 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3156 /* first correct the data pointers */
3157 for (i = slot; i < nritems; i++) {
3158 u32 ioff;
3159 item = btrfs_item_nr(leaf, i);
3161 if (!leaf->map_token) {
3162 map_extent_buffer(leaf, (unsigned long)item,
3163 sizeof(struct btrfs_item),
3164 &leaf->map_token, &leaf->kaddr,
3165 &leaf->map_start, &leaf->map_len,
3166 KM_USER1);
3169 ioff = btrfs_item_offset(leaf, item);
3170 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3173 if (leaf->map_token) {
3174 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3175 leaf->map_token = NULL;
3178 /* shift the data */
3179 if (from_end) {
3180 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3181 data_end + size_diff, btrfs_leaf_data(leaf) +
3182 data_end, old_data_start + new_size - data_end);
3183 } else {
3184 struct btrfs_disk_key disk_key;
3185 u64 offset;
3187 btrfs_item_key(leaf, &disk_key, slot);
3189 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3190 unsigned long ptr;
3191 struct btrfs_file_extent_item *fi;
3193 fi = btrfs_item_ptr(leaf, slot,
3194 struct btrfs_file_extent_item);
3195 fi = (struct btrfs_file_extent_item *)(
3196 (unsigned long)fi - size_diff);
3198 if (btrfs_file_extent_type(leaf, fi) ==
3199 BTRFS_FILE_EXTENT_INLINE) {
3200 ptr = btrfs_item_ptr_offset(leaf, slot);
3201 memmove_extent_buffer(leaf, ptr,
3202 (unsigned long)fi,
3203 offsetof(struct btrfs_file_extent_item,
3204 disk_bytenr));
3208 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3209 data_end + size_diff, btrfs_leaf_data(leaf) +
3210 data_end, old_data_start - data_end);
3212 offset = btrfs_disk_key_offset(&disk_key);
3213 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3214 btrfs_set_item_key(leaf, &disk_key, slot);
3215 if (slot == 0)
3216 fixup_low_keys(trans, root, path, &disk_key, 1);
3219 item = btrfs_item_nr(leaf, slot);
3220 btrfs_set_item_size(leaf, item, new_size);
3221 btrfs_mark_buffer_dirty(leaf);
3223 ret = 0;
3224 if (btrfs_leaf_free_space(root, leaf) < 0) {
3225 btrfs_print_leaf(root, leaf);
3226 BUG();
3228 return ret;
3232 * make the item pointed to by the path bigger, data_size is the new size.
3234 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3235 struct btrfs_root *root, struct btrfs_path *path,
3236 u32 data_size)
3238 int ret = 0;
3239 int slot;
3240 int slot_orig;
3241 struct extent_buffer *leaf;
3242 struct btrfs_item *item;
3243 u32 nritems;
3244 unsigned int data_end;
3245 unsigned int old_data;
3246 unsigned int old_size;
3247 int i;
3249 slot_orig = path->slots[0];
3250 leaf = path->nodes[0];
3252 nritems = btrfs_header_nritems(leaf);
3253 data_end = leaf_data_end(root, leaf);
3255 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3256 btrfs_print_leaf(root, leaf);
3257 BUG();
3259 slot = path->slots[0];
3260 old_data = btrfs_item_end_nr(leaf, slot);
3262 BUG_ON(slot < 0);
3263 if (slot >= nritems) {
3264 btrfs_print_leaf(root, leaf);
3265 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3266 slot, nritems);
3267 BUG_ON(1);
3271 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3273 /* first correct the data pointers */
3274 for (i = slot; i < nritems; i++) {
3275 u32 ioff;
3276 item = btrfs_item_nr(leaf, i);
3278 if (!leaf->map_token) {
3279 map_extent_buffer(leaf, (unsigned long)item,
3280 sizeof(struct btrfs_item),
3281 &leaf->map_token, &leaf->kaddr,
3282 &leaf->map_start, &leaf->map_len,
3283 KM_USER1);
3285 ioff = btrfs_item_offset(leaf, item);
3286 btrfs_set_item_offset(leaf, item, ioff - data_size);
3289 if (leaf->map_token) {
3290 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3291 leaf->map_token = NULL;
3294 /* shift the data */
3295 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3296 data_end - data_size, btrfs_leaf_data(leaf) +
3297 data_end, old_data - data_end);
3299 data_end = old_data;
3300 old_size = btrfs_item_size_nr(leaf, slot);
3301 item = btrfs_item_nr(leaf, slot);
3302 btrfs_set_item_size(leaf, item, old_size + data_size);
3303 btrfs_mark_buffer_dirty(leaf);
3305 ret = 0;
3306 if (btrfs_leaf_free_space(root, leaf) < 0) {
3307 btrfs_print_leaf(root, leaf);
3308 BUG();
3310 return ret;
3314 * Given a key and some data, insert items into the tree.
3315 * This does all the path init required, making room in the tree if needed.
3316 * Returns the number of keys that were inserted.
3318 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3319 struct btrfs_root *root,
3320 struct btrfs_path *path,
3321 struct btrfs_key *cpu_key, u32 *data_size,
3322 int nr)
3324 struct extent_buffer *leaf;
3325 struct btrfs_item *item;
3326 int ret = 0;
3327 int slot;
3328 int i;
3329 u32 nritems;
3330 u32 total_data = 0;
3331 u32 total_size = 0;
3332 unsigned int data_end;
3333 struct btrfs_disk_key disk_key;
3334 struct btrfs_key found_key;
3336 for (i = 0; i < nr; i++) {
3337 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3338 BTRFS_LEAF_DATA_SIZE(root)) {
3339 break;
3340 nr = i;
3342 total_data += data_size[i];
3343 total_size += data_size[i] + sizeof(struct btrfs_item);
3345 BUG_ON(nr == 0);
3347 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3348 if (ret == 0)
3349 return -EEXIST;
3350 if (ret < 0)
3351 goto out;
3353 leaf = path->nodes[0];
3355 nritems = btrfs_header_nritems(leaf);
3356 data_end = leaf_data_end(root, leaf);
3358 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3359 for (i = nr; i >= 0; i--) {
3360 total_data -= data_size[i];
3361 total_size -= data_size[i] + sizeof(struct btrfs_item);
3362 if (total_size < btrfs_leaf_free_space(root, leaf))
3363 break;
3365 nr = i;
3368 slot = path->slots[0];
3369 BUG_ON(slot < 0);
3371 if (slot != nritems) {
3372 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3374 item = btrfs_item_nr(leaf, slot);
3375 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3377 /* figure out how many keys we can insert in here */
3378 total_data = data_size[0];
3379 for (i = 1; i < nr; i++) {
3380 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3381 break;
3382 total_data += data_size[i];
3384 nr = i;
3386 if (old_data < data_end) {
3387 btrfs_print_leaf(root, leaf);
3388 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3389 slot, old_data, data_end);
3390 BUG_ON(1);
3393 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3395 /* first correct the data pointers */
3396 WARN_ON(leaf->map_token);
3397 for (i = slot; i < nritems; i++) {
3398 u32 ioff;
3400 item = btrfs_item_nr(leaf, i);
3401 if (!leaf->map_token) {
3402 map_extent_buffer(leaf, (unsigned long)item,
3403 sizeof(struct btrfs_item),
3404 &leaf->map_token, &leaf->kaddr,
3405 &leaf->map_start, &leaf->map_len,
3406 KM_USER1);
3409 ioff = btrfs_item_offset(leaf, item);
3410 btrfs_set_item_offset(leaf, item, ioff - total_data);
3412 if (leaf->map_token) {
3413 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3414 leaf->map_token = NULL;
3417 /* shift the items */
3418 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3419 btrfs_item_nr_offset(slot),
3420 (nritems - slot) * sizeof(struct btrfs_item));
3422 /* shift the data */
3423 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3424 data_end - total_data, btrfs_leaf_data(leaf) +
3425 data_end, old_data - data_end);
3426 data_end = old_data;
3427 } else {
3429 * this sucks but it has to be done, if we are inserting at
3430 * the end of the leaf only insert 1 of the items, since we
3431 * have no way of knowing whats on the next leaf and we'd have
3432 * to drop our current locks to figure it out
3434 nr = 1;
3437 /* setup the item for the new data */
3438 for (i = 0; i < nr; i++) {
3439 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3440 btrfs_set_item_key(leaf, &disk_key, slot + i);
3441 item = btrfs_item_nr(leaf, slot + i);
3442 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3443 data_end -= data_size[i];
3444 btrfs_set_item_size(leaf, item, data_size[i]);
3446 btrfs_set_header_nritems(leaf, nritems + nr);
3447 btrfs_mark_buffer_dirty(leaf);
3449 ret = 0;
3450 if (slot == 0) {
3451 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3452 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3455 if (btrfs_leaf_free_space(root, leaf) < 0) {
3456 btrfs_print_leaf(root, leaf);
3457 BUG();
3459 out:
3460 if (!ret)
3461 ret = nr;
3462 return ret;
3466 * this is a helper for btrfs_insert_empty_items, the main goal here is
3467 * to save stack depth by doing the bulk of the work in a function
3468 * that doesn't call btrfs_search_slot
3470 static noinline_for_stack int
3471 setup_items_for_insert(struct btrfs_trans_handle *trans,
3472 struct btrfs_root *root, struct btrfs_path *path,
3473 struct btrfs_key *cpu_key, u32 *data_size,
3474 u32 total_data, u32 total_size, int nr)
3476 struct btrfs_item *item;
3477 int i;
3478 u32 nritems;
3479 unsigned int data_end;
3480 struct btrfs_disk_key disk_key;
3481 int ret;
3482 struct extent_buffer *leaf;
3483 int slot;
3485 leaf = path->nodes[0];
3486 slot = path->slots[0];
3488 nritems = btrfs_header_nritems(leaf);
3489 data_end = leaf_data_end(root, leaf);
3491 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3492 btrfs_print_leaf(root, leaf);
3493 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3494 total_size, btrfs_leaf_free_space(root, leaf));
3495 BUG();
3498 if (slot != nritems) {
3499 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3501 if (old_data < data_end) {
3502 btrfs_print_leaf(root, leaf);
3503 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3504 slot, old_data, data_end);
3505 BUG_ON(1);
3508 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3510 /* first correct the data pointers */
3511 WARN_ON(leaf->map_token);
3512 for (i = slot; i < nritems; i++) {
3513 u32 ioff;
3515 item = btrfs_item_nr(leaf, i);
3516 if (!leaf->map_token) {
3517 map_extent_buffer(leaf, (unsigned long)item,
3518 sizeof(struct btrfs_item),
3519 &leaf->map_token, &leaf->kaddr,
3520 &leaf->map_start, &leaf->map_len,
3521 KM_USER1);
3524 ioff = btrfs_item_offset(leaf, item);
3525 btrfs_set_item_offset(leaf, item, ioff - total_data);
3527 if (leaf->map_token) {
3528 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3529 leaf->map_token = NULL;
3532 /* shift the items */
3533 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3534 btrfs_item_nr_offset(slot),
3535 (nritems - slot) * sizeof(struct btrfs_item));
3537 /* shift the data */
3538 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3539 data_end - total_data, btrfs_leaf_data(leaf) +
3540 data_end, old_data - data_end);
3541 data_end = old_data;
3544 /* setup the item for the new data */
3545 for (i = 0; i < nr; i++) {
3546 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3547 btrfs_set_item_key(leaf, &disk_key, slot + i);
3548 item = btrfs_item_nr(leaf, slot + i);
3549 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3550 data_end -= data_size[i];
3551 btrfs_set_item_size(leaf, item, data_size[i]);
3554 btrfs_set_header_nritems(leaf, nritems + nr);
3556 ret = 0;
3557 if (slot == 0) {
3558 struct btrfs_disk_key disk_key;
3559 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3560 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3562 btrfs_unlock_up_safe(path, 1);
3563 btrfs_mark_buffer_dirty(leaf);
3565 if (btrfs_leaf_free_space(root, leaf) < 0) {
3566 btrfs_print_leaf(root, leaf);
3567 BUG();
3569 return ret;
3573 * Given a key and some data, insert items into the tree.
3574 * This does all the path init required, making room in the tree if needed.
3576 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3577 struct btrfs_root *root,
3578 struct btrfs_path *path,
3579 struct btrfs_key *cpu_key, u32 *data_size,
3580 int nr)
3582 struct extent_buffer *leaf;
3583 int ret = 0;
3584 int slot;
3585 int i;
3586 u32 total_size = 0;
3587 u32 total_data = 0;
3589 for (i = 0; i < nr; i++)
3590 total_data += data_size[i];
3592 total_size = total_data + (nr * sizeof(struct btrfs_item));
3593 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3594 if (ret == 0)
3595 return -EEXIST;
3596 if (ret < 0)
3597 goto out;
3599 leaf = path->nodes[0];
3600 slot = path->slots[0];
3601 BUG_ON(slot < 0);
3603 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3604 total_data, total_size, nr);
3606 out:
3607 return ret;
3611 * Given a key and some data, insert an item into the tree.
3612 * This does all the path init required, making room in the tree if needed.
3614 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3615 *root, struct btrfs_key *cpu_key, void *data, u32
3616 data_size)
3618 int ret = 0;
3619 struct btrfs_path *path;
3620 struct extent_buffer *leaf;
3621 unsigned long ptr;
3623 path = btrfs_alloc_path();
3624 BUG_ON(!path);
3625 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3626 if (!ret) {
3627 leaf = path->nodes[0];
3628 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3629 write_extent_buffer(leaf, data, ptr, data_size);
3630 btrfs_mark_buffer_dirty(leaf);
3632 btrfs_free_path(path);
3633 return ret;
3637 * delete the pointer from a given node.
3639 * the tree should have been previously balanced so the deletion does not
3640 * empty a node.
3642 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3643 struct btrfs_path *path, int level, int slot)
3645 struct extent_buffer *parent = path->nodes[level];
3646 u32 nritems;
3647 int ret = 0;
3648 int wret;
3650 nritems = btrfs_header_nritems(parent);
3651 if (slot != nritems - 1) {
3652 memmove_extent_buffer(parent,
3653 btrfs_node_key_ptr_offset(slot),
3654 btrfs_node_key_ptr_offset(slot + 1),
3655 sizeof(struct btrfs_key_ptr) *
3656 (nritems - slot - 1));
3658 nritems--;
3659 btrfs_set_header_nritems(parent, nritems);
3660 if (nritems == 0 && parent == root->node) {
3661 BUG_ON(btrfs_header_level(root->node) != 1);
3662 /* just turn the root into a leaf and break */
3663 btrfs_set_header_level(root->node, 0);
3664 } else if (slot == 0) {
3665 struct btrfs_disk_key disk_key;
3667 btrfs_node_key(parent, &disk_key, 0);
3668 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3669 if (wret)
3670 ret = wret;
3672 btrfs_mark_buffer_dirty(parent);
3673 return ret;
3677 * a helper function to delete the leaf pointed to by path->slots[1] and
3678 * path->nodes[1]. bytenr is the node block pointer, but since the callers
3679 * already know it, it is faster to have them pass it down than to
3680 * read it out of the node again.
3682 * This deletes the pointer in path->nodes[1] and frees the leaf
3683 * block extent. zero is returned if it all worked out, < 0 otherwise.
3685 * The path must have already been setup for deleting the leaf, including
3686 * all the proper balancing. path->nodes[1] must be locked.
3688 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3689 struct btrfs_root *root,
3690 struct btrfs_path *path, u64 bytenr)
3692 int ret;
3693 u64 root_gen = btrfs_header_generation(path->nodes[1]);
3694 u64 parent_start = path->nodes[1]->start;
3695 u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3697 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3698 if (ret)
3699 return ret;
3702 * btrfs_free_extent is expensive, we want to make sure we
3703 * aren't holding any locks when we call it
3705 btrfs_unlock_up_safe(path, 0);
3707 ret = btrfs_free_extent(trans, root, bytenr,
3708 btrfs_level_size(root, 0),
3709 parent_start, parent_owner,
3710 root_gen, 0, 1);
3711 return ret;
3714 * delete the item at the leaf level in path. If that empties
3715 * the leaf, remove it from the tree
3717 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3718 struct btrfs_path *path, int slot, int nr)
3720 struct extent_buffer *leaf;
3721 struct btrfs_item *item;
3722 int last_off;
3723 int dsize = 0;
3724 int ret = 0;
3725 int wret;
3726 int i;
3727 u32 nritems;
3729 leaf = path->nodes[0];
3730 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3732 for (i = 0; i < nr; i++)
3733 dsize += btrfs_item_size_nr(leaf, slot + i);
3735 nritems = btrfs_header_nritems(leaf);
3737 if (slot + nr != nritems) {
3738 int data_end = leaf_data_end(root, leaf);
3740 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3741 data_end + dsize,
3742 btrfs_leaf_data(leaf) + data_end,
3743 last_off - data_end);
3745 for (i = slot + nr; i < nritems; i++) {
3746 u32 ioff;
3748 item = btrfs_item_nr(leaf, i);
3749 if (!leaf->map_token) {
3750 map_extent_buffer(leaf, (unsigned long)item,
3751 sizeof(struct btrfs_item),
3752 &leaf->map_token, &leaf->kaddr,
3753 &leaf->map_start, &leaf->map_len,
3754 KM_USER1);
3756 ioff = btrfs_item_offset(leaf, item);
3757 btrfs_set_item_offset(leaf, item, ioff + dsize);
3760 if (leaf->map_token) {
3761 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3762 leaf->map_token = NULL;
3765 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3766 btrfs_item_nr_offset(slot + nr),
3767 sizeof(struct btrfs_item) *
3768 (nritems - slot - nr));
3770 btrfs_set_header_nritems(leaf, nritems - nr);
3771 nritems -= nr;
3773 /* delete the leaf if we've emptied it */
3774 if (nritems == 0) {
3775 if (leaf == root->node) {
3776 btrfs_set_header_level(leaf, 0);
3777 } else {
3778 ret = btrfs_del_leaf(trans, root, path, leaf->start);
3779 BUG_ON(ret);
3781 } else {
3782 int used = leaf_space_used(leaf, 0, nritems);
3783 if (slot == 0) {
3784 struct btrfs_disk_key disk_key;
3786 btrfs_item_key(leaf, &disk_key, 0);
3787 wret = fixup_low_keys(trans, root, path,
3788 &disk_key, 1);
3789 if (wret)
3790 ret = wret;
3793 /* delete the leaf if it is mostly empty */
3794 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
3795 !trans->transaction->delayed_refs.flushing) {
3796 /* push_leaf_left fixes the path.
3797 * make sure the path still points to our leaf
3798 * for possible call to del_ptr below
3800 slot = path->slots[1];
3801 extent_buffer_get(leaf);
3803 btrfs_set_path_blocking(path);
3804 wret = push_leaf_left(trans, root, path, 1, 1);
3805 if (wret < 0 && wret != -ENOSPC)
3806 ret = wret;
3808 if (path->nodes[0] == leaf &&
3809 btrfs_header_nritems(leaf)) {
3810 wret = push_leaf_right(trans, root, path, 1, 1);
3811 if (wret < 0 && wret != -ENOSPC)
3812 ret = wret;
3815 if (btrfs_header_nritems(leaf) == 0) {
3816 path->slots[1] = slot;
3817 ret = btrfs_del_leaf(trans, root, path,
3818 leaf->start);
3819 BUG_ON(ret);
3820 free_extent_buffer(leaf);
3821 } else {
3822 /* if we're still in the path, make sure
3823 * we're dirty. Otherwise, one of the
3824 * push_leaf functions must have already
3825 * dirtied this buffer
3827 if (path->nodes[0] == leaf)
3828 btrfs_mark_buffer_dirty(leaf);
3829 free_extent_buffer(leaf);
3831 } else {
3832 btrfs_mark_buffer_dirty(leaf);
3835 return ret;
3839 * search the tree again to find a leaf with lesser keys
3840 * returns 0 if it found something or 1 if there are no lesser leaves.
3841 * returns < 0 on io errors.
3843 * This may release the path, and so you may lose any locks held at the
3844 * time you call it.
3846 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3848 struct btrfs_key key;
3849 struct btrfs_disk_key found_key;
3850 int ret;
3852 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3854 if (key.offset > 0)
3855 key.offset--;
3856 else if (key.type > 0)
3857 key.type--;
3858 else if (key.objectid > 0)
3859 key.objectid--;
3860 else
3861 return 1;
3863 btrfs_release_path(root, path);
3864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3865 if (ret < 0)
3866 return ret;
3867 btrfs_item_key(path->nodes[0], &found_key, 0);
3868 ret = comp_keys(&found_key, &key);
3869 if (ret < 0)
3870 return 0;
3871 return 1;
3875 * A helper function to walk down the tree starting at min_key, and looking
3876 * for nodes or leaves that are either in cache or have a minimum
3877 * transaction id. This is used by the btree defrag code, and tree logging
3879 * This does not cow, but it does stuff the starting key it finds back
3880 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3881 * key and get a writable path.
3883 * This does lock as it descends, and path->keep_locks should be set
3884 * to 1 by the caller.
3886 * This honors path->lowest_level to prevent descent past a given level
3887 * of the tree.
3889 * min_trans indicates the oldest transaction that you are interested
3890 * in walking through. Any nodes or leaves older than min_trans are
3891 * skipped over (without reading them).
3893 * returns zero if something useful was found, < 0 on error and 1 if there
3894 * was nothing in the tree that matched the search criteria.
3896 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3897 struct btrfs_key *max_key,
3898 struct btrfs_path *path, int cache_only,
3899 u64 min_trans)
3901 struct extent_buffer *cur;
3902 struct btrfs_key found_key;
3903 int slot;
3904 int sret;
3905 u32 nritems;
3906 int level;
3907 int ret = 1;
3909 WARN_ON(!path->keep_locks);
3910 again:
3911 cur = btrfs_lock_root_node(root);
3912 level = btrfs_header_level(cur);
3913 WARN_ON(path->nodes[level]);
3914 path->nodes[level] = cur;
3915 path->locks[level] = 1;
3917 if (btrfs_header_generation(cur) < min_trans) {
3918 ret = 1;
3919 goto out;
3921 while (1) {
3922 nritems = btrfs_header_nritems(cur);
3923 level = btrfs_header_level(cur);
3924 sret = bin_search(cur, min_key, level, &slot);
3926 /* at the lowest level, we're done, setup the path and exit */
3927 if (level == path->lowest_level) {
3928 if (slot >= nritems)
3929 goto find_next_key;
3930 ret = 0;
3931 path->slots[level] = slot;
3932 btrfs_item_key_to_cpu(cur, &found_key, slot);
3933 goto out;
3935 if (sret && slot > 0)
3936 slot--;
3938 * check this node pointer against the cache_only and
3939 * min_trans parameters. If it isn't in cache or is too
3940 * old, skip to the next one.
3942 while (slot < nritems) {
3943 u64 blockptr;
3944 u64 gen;
3945 struct extent_buffer *tmp;
3946 struct btrfs_disk_key disk_key;
3948 blockptr = btrfs_node_blockptr(cur, slot);
3949 gen = btrfs_node_ptr_generation(cur, slot);
3950 if (gen < min_trans) {
3951 slot++;
3952 continue;
3954 if (!cache_only)
3955 break;
3957 if (max_key) {
3958 btrfs_node_key(cur, &disk_key, slot);
3959 if (comp_keys(&disk_key, max_key) >= 0) {
3960 ret = 1;
3961 goto out;
3965 tmp = btrfs_find_tree_block(root, blockptr,
3966 btrfs_level_size(root, level - 1));
3968 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3969 free_extent_buffer(tmp);
3970 break;
3972 if (tmp)
3973 free_extent_buffer(tmp);
3974 slot++;
3976 find_next_key:
3978 * we didn't find a candidate key in this node, walk forward
3979 * and find another one
3981 if (slot >= nritems) {
3982 path->slots[level] = slot;
3983 btrfs_set_path_blocking(path);
3984 sret = btrfs_find_next_key(root, path, min_key, level,
3985 cache_only, min_trans);
3986 if (sret == 0) {
3987 btrfs_release_path(root, path);
3988 goto again;
3989 } else {
3990 goto out;
3993 /* save our key for returning back */
3994 btrfs_node_key_to_cpu(cur, &found_key, slot);
3995 path->slots[level] = slot;
3996 if (level == path->lowest_level) {
3997 ret = 0;
3998 unlock_up(path, level, 1);
3999 goto out;
4001 btrfs_set_path_blocking(path);
4002 cur = read_node_slot(root, cur, slot);
4004 btrfs_tree_lock(cur);
4006 path->locks[level - 1] = 1;
4007 path->nodes[level - 1] = cur;
4008 unlock_up(path, level, 1);
4009 btrfs_clear_path_blocking(path, NULL);
4011 out:
4012 if (ret == 0)
4013 memcpy(min_key, &found_key, sizeof(found_key));
4014 btrfs_set_path_blocking(path);
4015 return ret;
4019 * this is similar to btrfs_next_leaf, but does not try to preserve
4020 * and fixup the path. It looks for and returns the next key in the
4021 * tree based on the current path and the cache_only and min_trans
4022 * parameters.
4024 * 0 is returned if another key is found, < 0 if there are any errors
4025 * and 1 is returned if there are no higher keys in the tree
4027 * path->keep_locks should be set to 1 on the search made before
4028 * calling this function.
4030 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4031 struct btrfs_key *key, int lowest_level,
4032 int cache_only, u64 min_trans)
4034 int level = lowest_level;
4035 int slot;
4036 struct extent_buffer *c;
4038 WARN_ON(!path->keep_locks);
4039 while (level < BTRFS_MAX_LEVEL) {
4040 if (!path->nodes[level])
4041 return 1;
4043 slot = path->slots[level] + 1;
4044 c = path->nodes[level];
4045 next:
4046 if (slot >= btrfs_header_nritems(c)) {
4047 level++;
4048 if (level == BTRFS_MAX_LEVEL)
4049 return 1;
4050 continue;
4052 if (level == 0)
4053 btrfs_item_key_to_cpu(c, key, slot);
4054 else {
4055 u64 blockptr = btrfs_node_blockptr(c, slot);
4056 u64 gen = btrfs_node_ptr_generation(c, slot);
4058 if (cache_only) {
4059 struct extent_buffer *cur;
4060 cur = btrfs_find_tree_block(root, blockptr,
4061 btrfs_level_size(root, level - 1));
4062 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4063 slot++;
4064 if (cur)
4065 free_extent_buffer(cur);
4066 goto next;
4068 free_extent_buffer(cur);
4070 if (gen < min_trans) {
4071 slot++;
4072 goto next;
4074 btrfs_node_key_to_cpu(c, key, slot);
4076 return 0;
4078 return 1;
4082 * search the tree again to find a leaf with greater keys
4083 * returns 0 if it found something or 1 if there are no greater leaves.
4084 * returns < 0 on io errors.
4086 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4088 int slot;
4089 int level = 1;
4090 struct extent_buffer *c;
4091 struct extent_buffer *next = NULL;
4092 struct btrfs_key key;
4093 u32 nritems;
4094 int ret;
4096 nritems = btrfs_header_nritems(path->nodes[0]);
4097 if (nritems == 0)
4098 return 1;
4100 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4102 btrfs_release_path(root, path);
4103 path->keep_locks = 1;
4104 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4105 path->keep_locks = 0;
4107 if (ret < 0)
4108 return ret;
4110 btrfs_set_path_blocking(path);
4111 nritems = btrfs_header_nritems(path->nodes[0]);
4113 * by releasing the path above we dropped all our locks. A balance
4114 * could have added more items next to the key that used to be
4115 * at the very end of the block. So, check again here and
4116 * advance the path if there are now more items available.
4118 if (nritems > 0 && path->slots[0] < nritems - 1) {
4119 path->slots[0]++;
4120 goto done;
4123 while (level < BTRFS_MAX_LEVEL) {
4124 if (!path->nodes[level])
4125 return 1;
4127 slot = path->slots[level] + 1;
4128 c = path->nodes[level];
4129 if (slot >= btrfs_header_nritems(c)) {
4130 level++;
4131 if (level == BTRFS_MAX_LEVEL)
4132 return 1;
4133 continue;
4136 if (next) {
4137 btrfs_tree_unlock(next);
4138 free_extent_buffer(next);
4141 /* the path was set to blocking above */
4142 if (level == 1 && (path->locks[1] || path->skip_locking) &&
4143 path->reada)
4144 reada_for_search(root, path, level, slot, 0);
4146 next = read_node_slot(root, c, slot);
4147 if (!path->skip_locking) {
4148 btrfs_assert_tree_locked(c);
4149 btrfs_tree_lock(next);
4150 btrfs_set_lock_blocking(next);
4152 break;
4154 path->slots[level] = slot;
4155 while (1) {
4156 level--;
4157 c = path->nodes[level];
4158 if (path->locks[level])
4159 btrfs_tree_unlock(c);
4160 free_extent_buffer(c);
4161 path->nodes[level] = next;
4162 path->slots[level] = 0;
4163 if (!path->skip_locking)
4164 path->locks[level] = 1;
4165 if (!level)
4166 break;
4168 btrfs_set_path_blocking(path);
4169 if (level == 1 && path->locks[1] && path->reada)
4170 reada_for_search(root, path, level, slot, 0);
4171 next = read_node_slot(root, next, 0);
4172 if (!path->skip_locking) {
4173 btrfs_assert_tree_locked(path->nodes[level]);
4174 btrfs_tree_lock(next);
4175 btrfs_set_lock_blocking(next);
4178 done:
4179 unlock_up(path, 0, 1);
4180 return 0;
4184 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4185 * searching until it gets past min_objectid or finds an item of 'type'
4187 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4189 int btrfs_previous_item(struct btrfs_root *root,
4190 struct btrfs_path *path, u64 min_objectid,
4191 int type)
4193 struct btrfs_key found_key;
4194 struct extent_buffer *leaf;
4195 u32 nritems;
4196 int ret;
4198 while (1) {
4199 if (path->slots[0] == 0) {
4200 btrfs_set_path_blocking(path);
4201 ret = btrfs_prev_leaf(root, path);
4202 if (ret != 0)
4203 return ret;
4204 } else {
4205 path->slots[0]--;
4207 leaf = path->nodes[0];
4208 nritems = btrfs_header_nritems(leaf);
4209 if (nritems == 0)
4210 return 1;
4211 if (path->slots[0] == nritems)
4212 path->slots[0]--;
4214 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4215 if (found_key.type == type)
4216 return 0;
4217 if (found_key.objectid < min_objectid)
4218 break;
4219 if (found_key.objectid == min_objectid &&
4220 found_key.type < type)
4221 break;
4223 return 1;