qla3xxx: bugfix: Move link state machine into a worker thread
[linux-2.6/x86.git] / mm / slub.c
blob84f59fde1a10d83a78c4cfca6d08f5705da5021e
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
111 static inline int SlabFrozen(struct page *page)
113 return page->flags & FROZEN;
116 static inline void SetSlabFrozen(struct page *page)
118 page->flags |= FROZEN;
121 static inline void ClearSlabFrozen(struct page *page)
123 page->flags &= ~FROZEN;
126 static inline int SlabDebug(struct page *page)
128 return page->flags & SLABDEBUG;
131 static inline void SetSlabDebug(struct page *page)
133 page->flags |= SLABDEBUG;
136 static inline void ClearSlabDebug(struct page *page)
138 page->flags &= ~SLABDEBUG;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
152 #if PAGE_SHIFT <= 12
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
160 #else
163 * Large page machines are customarily able to handle larger
164 * page orders.
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
169 #endif
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 2
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size() L1_CACHE_BYTES
211 #endif
213 static int kmem_size = sizeof(struct kmem_cache);
215 #ifdef CONFIG_SMP
216 static struct notifier_block slab_notifier;
217 #endif
219 static enum {
220 DOWN, /* No slab functionality available */
221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
222 UP, /* Everything works but does not show up in sysfs */
223 SYSFS /* Sysfs up */
224 } slab_state = DOWN;
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock);
228 static LIST_HEAD(slab_caches);
231 * Tracking user of a slab.
233 struct track {
234 void *addr; /* Called from address */
235 int cpu; /* Was running on cpu */
236 int pid; /* Pid context */
237 unsigned long when; /* When did the operation occur */
240 enum track_item { TRACK_ALLOC, TRACK_FREE };
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache *);
244 static int sysfs_slab_alias(struct kmem_cache *, const char *);
245 static void sysfs_slab_remove(struct kmem_cache *);
246 #else
247 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
249 { return 0; }
250 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
251 #endif
253 /********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
257 int slab_is_available(void)
259 return slab_state >= UP;
262 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
264 #ifdef CONFIG_NUMA
265 return s->node[node];
266 #else
267 return &s->local_node;
268 #endif
271 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
273 #ifdef CONFIG_SMP
274 return s->cpu_slab[cpu];
275 #else
276 return &s->cpu_slab;
277 #endif
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 struct page *page, const void *object)
283 void *base;
285 if (!object)
286 return 1;
288 base = page_address(page);
289 if (object < base || object >= base + s->objects * s->size ||
290 (object - base) % s->size) {
291 return 0;
294 return 1;
298 * Slow version of get and set free pointer.
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
306 return *(void **)(object + s->offset);
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
311 *(void **)(object + s->offset) = fp;
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 __p += (__s)->size)
319 /* Scan freelist */
320 #define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
326 return (p - addr) / s->size;
329 #ifdef CONFIG_SLUB_DEBUG
331 * Debug settings:
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
335 #else
336 static int slub_debug;
337 #endif
339 static char *slub_debug_slabs;
342 * Object debugging
344 static void print_section(char *text, u8 *addr, unsigned int length)
346 int i, offset;
347 int newline = 1;
348 char ascii[17];
350 ascii[16] = 0;
352 for (i = 0; i < length; i++) {
353 if (newline) {
354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355 newline = 0;
357 printk(" %02x", addr[i]);
358 offset = i % 16;
359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 if (offset == 15) {
361 printk(" %s\n",ascii);
362 newline = 1;
365 if (!newline) {
366 i %= 16;
367 while (i < 16) {
368 printk(" ");
369 ascii[i] = ' ';
370 i++;
372 printk(" %s\n", ascii);
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 enum track_item alloc)
379 struct track *p;
381 if (s->offset)
382 p = object + s->offset + sizeof(void *);
383 else
384 p = object + s->inuse;
386 return p + alloc;
389 static void set_track(struct kmem_cache *s, void *object,
390 enum track_item alloc, void *addr)
392 struct track *p;
394 if (s->offset)
395 p = object + s->offset + sizeof(void *);
396 else
397 p = object + s->inuse;
399 p += alloc;
400 if (addr) {
401 p->addr = addr;
402 p->cpu = smp_processor_id();
403 p->pid = current ? current->pid : -1;
404 p->when = jiffies;
405 } else
406 memset(p, 0, sizeof(struct track));
409 static void init_tracking(struct kmem_cache *s, void *object)
411 if (!(s->flags & SLAB_STORE_USER))
412 return;
414 set_track(s, object, TRACK_FREE, NULL);
415 set_track(s, object, TRACK_ALLOC, NULL);
418 static void print_track(const char *s, struct track *t)
420 if (!t->addr)
421 return;
423 printk(KERN_ERR "INFO: %s in ", s);
424 __print_symbol("%s", (unsigned long)t->addr);
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
428 static void print_tracking(struct kmem_cache *s, void *object)
430 if (!(s->flags & SLAB_STORE_USER))
431 return;
433 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 print_track("Freed", get_track(s, object, TRACK_FREE));
437 static void print_page_info(struct page *page)
439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page, page->inuse, page->freelist, page->flags);
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
446 va_list args;
447 char buf[100];
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "========================================"
453 "=====================================\n");
454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 printk(KERN_ERR "----------------------------------------"
456 "-------------------------------------\n\n");
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
461 va_list args;
462 char buf[100];
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
472 unsigned int off; /* Offset of last byte */
473 u8 *addr = page_address(page);
475 print_tracking(s, p);
477 print_page_info(page);
479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p, p - addr, get_freepointer(s, p));
482 if (p > addr + 16)
483 print_section("Bytes b4", p - 16, 16);
485 print_section("Object", p, min(s->objsize, 128));
487 if (s->flags & SLAB_RED_ZONE)
488 print_section("Redzone", p + s->objsize,
489 s->inuse - s->objsize);
491 if (s->offset)
492 off = s->offset + sizeof(void *);
493 else
494 off = s->inuse;
496 if (s->flags & SLAB_STORE_USER)
497 off += 2 * sizeof(struct track);
499 if (off != s->size)
500 /* Beginning of the filler is the free pointer */
501 print_section("Padding", p + off, s->size - off);
503 dump_stack();
506 static void object_err(struct kmem_cache *s, struct page *page,
507 u8 *object, char *reason)
509 slab_bug(s, reason);
510 print_trailer(s, page, object);
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
515 va_list args;
516 char buf[100];
518 va_start(args, fmt);
519 vsnprintf(buf, sizeof(buf), fmt, args);
520 va_end(args);
521 slab_bug(s, fmt);
522 print_page_info(page);
523 dump_stack();
526 static void init_object(struct kmem_cache *s, void *object, int active)
528 u8 *p = object;
530 if (s->flags & __OBJECT_POISON) {
531 memset(p, POISON_FREE, s->objsize - 1);
532 p[s->objsize -1] = POISON_END;
535 if (s->flags & SLAB_RED_ZONE)
536 memset(p + s->objsize,
537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 s->inuse - s->objsize);
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
543 while (bytes) {
544 if (*start != (u8)value)
545 return start;
546 start++;
547 bytes--;
549 return NULL;
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 void *from, void *to)
555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 memset(from, data, to - from);
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 u8 *object, char *what,
561 u8* start, unsigned int value, unsigned int bytes)
563 u8 *fault;
564 u8 *end;
566 fault = check_bytes(start, value, bytes);
567 if (!fault)
568 return 1;
570 end = start + bytes;
571 while (end > fault && end[-1] == value)
572 end--;
574 slab_bug(s, "%s overwritten", what);
575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault, end - 1, fault[0], value);
577 print_trailer(s, page, object);
579 restore_bytes(s, what, value, fault, end);
580 return 0;
584 * Object layout:
586 * object address
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 0xa5 (POISON_END)
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
596 * Padding is extended by another word if Redzoning is enabled and
597 * objsize == inuse.
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
602 * object + s->inuse
603 * Meta data starts here.
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
611 * Padding is done using 0x5a (POISON_INUSE)
613 * object + s->size
614 * Nothing is used beyond s->size.
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
623 unsigned long off = s->inuse; /* The end of info */
625 if (s->offset)
626 /* Freepointer is placed after the object. */
627 off += sizeof(void *);
629 if (s->flags & SLAB_STORE_USER)
630 /* We also have user information there */
631 off += 2 * sizeof(struct track);
633 if (s->size == off)
634 return 1;
636 return check_bytes_and_report(s, page, p, "Object padding",
637 p + off, POISON_INUSE, s->size - off);
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
642 u8 *start;
643 u8 *fault;
644 u8 *end;
645 int length;
646 int remainder;
648 if (!(s->flags & SLAB_POISON))
649 return 1;
651 start = page_address(page);
652 end = start + (PAGE_SIZE << s->order);
653 length = s->objects * s->size;
654 remainder = end - (start + length);
655 if (!remainder)
656 return 1;
658 fault = check_bytes(start + length, POISON_INUSE, remainder);
659 if (!fault)
660 return 1;
661 while (end > fault && end[-1] == POISON_INUSE)
662 end--;
664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 print_section("Padding", start, length);
667 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 return 0;
671 static int check_object(struct kmem_cache *s, struct page *page,
672 void *object, int active)
674 u8 *p = object;
675 u8 *endobject = object + s->objsize;
677 if (s->flags & SLAB_RED_ZONE) {
678 unsigned int red =
679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
681 if (!check_bytes_and_report(s, page, object, "Redzone",
682 endobject, red, s->inuse - s->objsize))
683 return 0;
684 } else {
685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 POISON_INUSE, s->inuse - s->objsize);
690 if (s->flags & SLAB_POISON) {
691 if (!active && (s->flags & __OBJECT_POISON) &&
692 (!check_bytes_and_report(s, page, p, "Poison", p,
693 POISON_FREE, s->objsize - 1) ||
694 !check_bytes_and_report(s, page, p, "Poison",
695 p + s->objsize -1, POISON_END, 1)))
696 return 0;
698 * check_pad_bytes cleans up on its own.
700 check_pad_bytes(s, page, p);
703 if (!s->offset && active)
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
708 return 1;
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 object_err(s, page, p, "Freepointer corrupt");
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
716 * another error because the object count is now wrong.
718 set_freepointer(s, p, NULL);
719 return 0;
721 return 1;
724 static int check_slab(struct kmem_cache *s, struct page *page)
726 VM_BUG_ON(!irqs_disabled());
728 if (!PageSlab(page)) {
729 slab_err(s, page, "Not a valid slab page");
730 return 0;
732 if (page->inuse > s->objects) {
733 slab_err(s, page, "inuse %u > max %u",
734 s->name, page->inuse, s->objects);
735 return 0;
737 /* Slab_pad_check fixes things up after itself */
738 slab_pad_check(s, page);
739 return 1;
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
748 int nr = 0;
749 void *fp = page->freelist;
750 void *object = NULL;
752 while (fp && nr <= s->objects) {
753 if (fp == search)
754 return 1;
755 if (!check_valid_pointer(s, page, fp)) {
756 if (object) {
757 object_err(s, page, object,
758 "Freechain corrupt");
759 set_freepointer(s, object, NULL);
760 break;
761 } else {
762 slab_err(s, page, "Freepointer corrupt");
763 page->freelist = NULL;
764 page->inuse = s->objects;
765 slab_fix(s, "Freelist cleared");
766 return 0;
768 break;
770 object = fp;
771 fp = get_freepointer(s, object);
772 nr++;
775 if (page->inuse != s->objects - nr) {
776 slab_err(s, page, "Wrong object count. Counter is %d but "
777 "counted were %d", page->inuse, s->objects - nr);
778 page->inuse = s->objects - nr;
779 slab_fix(s, "Object count adjusted.");
781 return search == NULL;
784 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
786 if (s->flags & SLAB_TRACE) {
787 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
788 s->name,
789 alloc ? "alloc" : "free",
790 object, page->inuse,
791 page->freelist);
793 if (!alloc)
794 print_section("Object", (void *)object, s->objsize);
796 dump_stack();
801 * Tracking of fully allocated slabs for debugging purposes.
803 static void add_full(struct kmem_cache_node *n, struct page *page)
805 spin_lock(&n->list_lock);
806 list_add(&page->lru, &n->full);
807 spin_unlock(&n->list_lock);
810 static void remove_full(struct kmem_cache *s, struct page *page)
812 struct kmem_cache_node *n;
814 if (!(s->flags & SLAB_STORE_USER))
815 return;
817 n = get_node(s, page_to_nid(page));
819 spin_lock(&n->list_lock);
820 list_del(&page->lru);
821 spin_unlock(&n->list_lock);
824 static void setup_object_debug(struct kmem_cache *s, struct page *page,
825 void *object)
827 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
828 return;
830 init_object(s, object, 0);
831 init_tracking(s, object);
834 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
835 void *object, void *addr)
837 if (!check_slab(s, page))
838 goto bad;
840 if (object && !on_freelist(s, page, object)) {
841 object_err(s, page, object, "Object already allocated");
842 goto bad;
845 if (!check_valid_pointer(s, page, object)) {
846 object_err(s, page, object, "Freelist Pointer check fails");
847 goto bad;
850 if (object && !check_object(s, page, object, 0))
851 goto bad;
853 /* Success perform special debug activities for allocs */
854 if (s->flags & SLAB_STORE_USER)
855 set_track(s, object, TRACK_ALLOC, addr);
856 trace(s, page, object, 1);
857 init_object(s, object, 1);
858 return 1;
860 bad:
861 if (PageSlab(page)) {
863 * If this is a slab page then lets do the best we can
864 * to avoid issues in the future. Marking all objects
865 * as used avoids touching the remaining objects.
867 slab_fix(s, "Marking all objects used");
868 page->inuse = s->objects;
869 page->freelist = NULL;
871 return 0;
874 static int free_debug_processing(struct kmem_cache *s, struct page *page,
875 void *object, void *addr)
877 if (!check_slab(s, page))
878 goto fail;
880 if (!check_valid_pointer(s, page, object)) {
881 slab_err(s, page, "Invalid object pointer 0x%p", object);
882 goto fail;
885 if (on_freelist(s, page, object)) {
886 object_err(s, page, object, "Object already free");
887 goto fail;
890 if (!check_object(s, page, object, 1))
891 return 0;
893 if (unlikely(s != page->slab)) {
894 if (!PageSlab(page))
895 slab_err(s, page, "Attempt to free object(0x%p) "
896 "outside of slab", object);
897 else
898 if (!page->slab) {
899 printk(KERN_ERR
900 "SLUB <none>: no slab for object 0x%p.\n",
901 object);
902 dump_stack();
904 else
905 object_err(s, page, object,
906 "page slab pointer corrupt.");
907 goto fail;
910 /* Special debug activities for freeing objects */
911 if (!SlabFrozen(page) && !page->freelist)
912 remove_full(s, page);
913 if (s->flags & SLAB_STORE_USER)
914 set_track(s, object, TRACK_FREE, addr);
915 trace(s, page, object, 0);
916 init_object(s, object, 0);
917 return 1;
919 fail:
920 slab_fix(s, "Object at 0x%p not freed", object);
921 return 0;
924 static int __init setup_slub_debug(char *str)
926 slub_debug = DEBUG_DEFAULT_FLAGS;
927 if (*str++ != '=' || !*str)
929 * No options specified. Switch on full debugging.
931 goto out;
933 if (*str == ',')
935 * No options but restriction on slabs. This means full
936 * debugging for slabs matching a pattern.
938 goto check_slabs;
940 slub_debug = 0;
941 if (*str == '-')
943 * Switch off all debugging measures.
945 goto out;
948 * Determine which debug features should be switched on
950 for ( ;*str && *str != ','; str++) {
951 switch (tolower(*str)) {
952 case 'f':
953 slub_debug |= SLAB_DEBUG_FREE;
954 break;
955 case 'z':
956 slub_debug |= SLAB_RED_ZONE;
957 break;
958 case 'p':
959 slub_debug |= SLAB_POISON;
960 break;
961 case 'u':
962 slub_debug |= SLAB_STORE_USER;
963 break;
964 case 't':
965 slub_debug |= SLAB_TRACE;
966 break;
967 default:
968 printk(KERN_ERR "slub_debug option '%c' "
969 "unknown. skipped\n",*str);
973 check_slabs:
974 if (*str == ',')
975 slub_debug_slabs = str + 1;
976 out:
977 return 1;
980 __setup("slub_debug", setup_slub_debug);
982 static unsigned long kmem_cache_flags(unsigned long objsize,
983 unsigned long flags, const char *name,
984 void (*ctor)(struct kmem_cache *, void *))
987 * The page->offset field is only 16 bit wide. This is an offset
988 * in units of words from the beginning of an object. If the slab
989 * size is bigger then we cannot move the free pointer behind the
990 * object anymore.
992 * On 32 bit platforms the limit is 256k. On 64bit platforms
993 * the limit is 512k.
995 * Debugging or ctor may create a need to move the free
996 * pointer. Fail if this happens.
998 if (objsize >= 65535 * sizeof(void *)) {
999 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1000 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1001 BUG_ON(ctor);
1002 } else {
1004 * Enable debugging if selected on the kernel commandline.
1006 if (slub_debug && (!slub_debug_slabs ||
1007 strncmp(slub_debug_slabs, name,
1008 strlen(slub_debug_slabs)) == 0))
1009 flags |= slub_debug;
1012 return flags;
1014 #else
1015 static inline void setup_object_debug(struct kmem_cache *s,
1016 struct page *page, void *object) {}
1018 static inline int alloc_debug_processing(struct kmem_cache *s,
1019 struct page *page, void *object, void *addr) { return 0; }
1021 static inline int free_debug_processing(struct kmem_cache *s,
1022 struct page *page, void *object, void *addr) { return 0; }
1024 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1025 { return 1; }
1026 static inline int check_object(struct kmem_cache *s, struct page *page,
1027 void *object, int active) { return 1; }
1028 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1029 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1030 unsigned long flags, const char *name,
1031 void (*ctor)(struct kmem_cache *, void *))
1033 return flags;
1035 #define slub_debug 0
1036 #endif
1038 * Slab allocation and freeing
1040 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1042 struct page * page;
1043 int pages = 1 << s->order;
1045 if (s->order)
1046 flags |= __GFP_COMP;
1048 if (s->flags & SLAB_CACHE_DMA)
1049 flags |= SLUB_DMA;
1051 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1052 flags |= __GFP_RECLAIMABLE;
1054 if (node == -1)
1055 page = alloc_pages(flags, s->order);
1056 else
1057 page = alloc_pages_node(node, flags, s->order);
1059 if (!page)
1060 return NULL;
1062 mod_zone_page_state(page_zone(page),
1063 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1064 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1065 pages);
1067 return page;
1070 static void setup_object(struct kmem_cache *s, struct page *page,
1071 void *object)
1073 setup_object_debug(s, page, object);
1074 if (unlikely(s->ctor))
1075 s->ctor(s, object);
1078 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1080 struct page *page;
1081 struct kmem_cache_node *n;
1082 void *start;
1083 void *end;
1084 void *last;
1085 void *p;
1087 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1089 page = allocate_slab(s,
1090 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1091 if (!page)
1092 goto out;
1094 n = get_node(s, page_to_nid(page));
1095 if (n)
1096 atomic_long_inc(&n->nr_slabs);
1097 page->slab = s;
1098 page->flags |= 1 << PG_slab;
1099 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1100 SLAB_STORE_USER | SLAB_TRACE))
1101 SetSlabDebug(page);
1103 start = page_address(page);
1104 end = start + s->objects * s->size;
1106 if (unlikely(s->flags & SLAB_POISON))
1107 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1109 last = start;
1110 for_each_object(p, s, start) {
1111 setup_object(s, page, last);
1112 set_freepointer(s, last, p);
1113 last = p;
1115 setup_object(s, page, last);
1116 set_freepointer(s, last, NULL);
1118 page->freelist = start;
1119 page->inuse = 0;
1120 out:
1121 return page;
1124 static void __free_slab(struct kmem_cache *s, struct page *page)
1126 int pages = 1 << s->order;
1128 if (unlikely(SlabDebug(page))) {
1129 void *p;
1131 slab_pad_check(s, page);
1132 for_each_object(p, s, page_address(page))
1133 check_object(s, page, p, 0);
1134 ClearSlabDebug(page);
1137 mod_zone_page_state(page_zone(page),
1138 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1139 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1140 - pages);
1142 __free_pages(page, s->order);
1145 static void rcu_free_slab(struct rcu_head *h)
1147 struct page *page;
1149 page = container_of((struct list_head *)h, struct page, lru);
1150 __free_slab(page->slab, page);
1153 static void free_slab(struct kmem_cache *s, struct page *page)
1155 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1157 * RCU free overloads the RCU head over the LRU
1159 struct rcu_head *head = (void *)&page->lru;
1161 call_rcu(head, rcu_free_slab);
1162 } else
1163 __free_slab(s, page);
1166 static void discard_slab(struct kmem_cache *s, struct page *page)
1168 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1170 atomic_long_dec(&n->nr_slabs);
1171 reset_page_mapcount(page);
1172 __ClearPageSlab(page);
1173 free_slab(s, page);
1177 * Per slab locking using the pagelock
1179 static __always_inline void slab_lock(struct page *page)
1181 bit_spin_lock(PG_locked, &page->flags);
1184 static __always_inline void slab_unlock(struct page *page)
1186 bit_spin_unlock(PG_locked, &page->flags);
1189 static __always_inline int slab_trylock(struct page *page)
1191 int rc = 1;
1193 rc = bit_spin_trylock(PG_locked, &page->flags);
1194 return rc;
1198 * Management of partially allocated slabs
1200 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1202 spin_lock(&n->list_lock);
1203 n->nr_partial++;
1204 list_add_tail(&page->lru, &n->partial);
1205 spin_unlock(&n->list_lock);
1208 static void add_partial(struct kmem_cache_node *n, struct page *page)
1210 spin_lock(&n->list_lock);
1211 n->nr_partial++;
1212 list_add(&page->lru, &n->partial);
1213 spin_unlock(&n->list_lock);
1216 static void remove_partial(struct kmem_cache *s,
1217 struct page *page)
1219 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1221 spin_lock(&n->list_lock);
1222 list_del(&page->lru);
1223 n->nr_partial--;
1224 spin_unlock(&n->list_lock);
1228 * Lock slab and remove from the partial list.
1230 * Must hold list_lock.
1232 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1234 if (slab_trylock(page)) {
1235 list_del(&page->lru);
1236 n->nr_partial--;
1237 SetSlabFrozen(page);
1238 return 1;
1240 return 0;
1244 * Try to allocate a partial slab from a specific node.
1246 static struct page *get_partial_node(struct kmem_cache_node *n)
1248 struct page *page;
1251 * Racy check. If we mistakenly see no partial slabs then we
1252 * just allocate an empty slab. If we mistakenly try to get a
1253 * partial slab and there is none available then get_partials()
1254 * will return NULL.
1256 if (!n || !n->nr_partial)
1257 return NULL;
1259 spin_lock(&n->list_lock);
1260 list_for_each_entry(page, &n->partial, lru)
1261 if (lock_and_freeze_slab(n, page))
1262 goto out;
1263 page = NULL;
1264 out:
1265 spin_unlock(&n->list_lock);
1266 return page;
1270 * Get a page from somewhere. Search in increasing NUMA distances.
1272 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1274 #ifdef CONFIG_NUMA
1275 struct zonelist *zonelist;
1276 struct zone **z;
1277 struct page *page;
1280 * The defrag ratio allows a configuration of the tradeoffs between
1281 * inter node defragmentation and node local allocations. A lower
1282 * defrag_ratio increases the tendency to do local allocations
1283 * instead of attempting to obtain partial slabs from other nodes.
1285 * If the defrag_ratio is set to 0 then kmalloc() always
1286 * returns node local objects. If the ratio is higher then kmalloc()
1287 * may return off node objects because partial slabs are obtained
1288 * from other nodes and filled up.
1290 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1291 * defrag_ratio = 1000) then every (well almost) allocation will
1292 * first attempt to defrag slab caches on other nodes. This means
1293 * scanning over all nodes to look for partial slabs which may be
1294 * expensive if we do it every time we are trying to find a slab
1295 * with available objects.
1297 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1298 return NULL;
1300 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1301 ->node_zonelists[gfp_zone(flags)];
1302 for (z = zonelist->zones; *z; z++) {
1303 struct kmem_cache_node *n;
1305 n = get_node(s, zone_to_nid(*z));
1307 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1308 n->nr_partial > MIN_PARTIAL) {
1309 page = get_partial_node(n);
1310 if (page)
1311 return page;
1314 #endif
1315 return NULL;
1319 * Get a partial page, lock it and return it.
1321 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1323 struct page *page;
1324 int searchnode = (node == -1) ? numa_node_id() : node;
1326 page = get_partial_node(get_node(s, searchnode));
1327 if (page || (flags & __GFP_THISNODE))
1328 return page;
1330 return get_any_partial(s, flags);
1334 * Move a page back to the lists.
1336 * Must be called with the slab lock held.
1338 * On exit the slab lock will have been dropped.
1340 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1342 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1344 ClearSlabFrozen(page);
1345 if (page->inuse) {
1347 if (page->freelist)
1348 add_partial(n, page);
1349 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1350 add_full(n, page);
1351 slab_unlock(page);
1353 } else {
1354 if (n->nr_partial < MIN_PARTIAL) {
1356 * Adding an empty slab to the partial slabs in order
1357 * to avoid page allocator overhead. This slab needs
1358 * to come after the other slabs with objects in
1359 * order to fill them up. That way the size of the
1360 * partial list stays small. kmem_cache_shrink can
1361 * reclaim empty slabs from the partial list.
1363 add_partial_tail(n, page);
1364 slab_unlock(page);
1365 } else {
1366 slab_unlock(page);
1367 discard_slab(s, page);
1373 * Remove the cpu slab
1375 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1377 struct page *page = c->page;
1379 * Merge cpu freelist into freelist. Typically we get here
1380 * because both freelists are empty. So this is unlikely
1381 * to occur.
1383 while (unlikely(c->freelist)) {
1384 void **object;
1386 /* Retrieve object from cpu_freelist */
1387 object = c->freelist;
1388 c->freelist = c->freelist[c->offset];
1390 /* And put onto the regular freelist */
1391 object[c->offset] = page->freelist;
1392 page->freelist = object;
1393 page->inuse--;
1395 c->page = NULL;
1396 unfreeze_slab(s, page);
1399 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1401 slab_lock(c->page);
1402 deactivate_slab(s, c);
1406 * Flush cpu slab.
1407 * Called from IPI handler with interrupts disabled.
1409 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1411 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1413 if (likely(c && c->page))
1414 flush_slab(s, c);
1417 static void flush_cpu_slab(void *d)
1419 struct kmem_cache *s = d;
1421 __flush_cpu_slab(s, smp_processor_id());
1424 static void flush_all(struct kmem_cache *s)
1426 #ifdef CONFIG_SMP
1427 on_each_cpu(flush_cpu_slab, s, 1, 1);
1428 #else
1429 unsigned long flags;
1431 local_irq_save(flags);
1432 flush_cpu_slab(s);
1433 local_irq_restore(flags);
1434 #endif
1438 * Check if the objects in a per cpu structure fit numa
1439 * locality expectations.
1441 static inline int node_match(struct kmem_cache_cpu *c, int node)
1443 #ifdef CONFIG_NUMA
1444 if (node != -1 && c->node != node)
1445 return 0;
1446 #endif
1447 return 1;
1451 * Slow path. The lockless freelist is empty or we need to perform
1452 * debugging duties.
1454 * Interrupts are disabled.
1456 * Processing is still very fast if new objects have been freed to the
1457 * regular freelist. In that case we simply take over the regular freelist
1458 * as the lockless freelist and zap the regular freelist.
1460 * If that is not working then we fall back to the partial lists. We take the
1461 * first element of the freelist as the object to allocate now and move the
1462 * rest of the freelist to the lockless freelist.
1464 * And if we were unable to get a new slab from the partial slab lists then
1465 * we need to allocate a new slab. This is slowest path since we may sleep.
1467 static void *__slab_alloc(struct kmem_cache *s,
1468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1470 void **object;
1471 struct page *new;
1473 if (!c->page)
1474 goto new_slab;
1476 slab_lock(c->page);
1477 if (unlikely(!node_match(c, node)))
1478 goto another_slab;
1479 load_freelist:
1480 object = c->page->freelist;
1481 if (unlikely(!object))
1482 goto another_slab;
1483 if (unlikely(SlabDebug(c->page)))
1484 goto debug;
1486 object = c->page->freelist;
1487 c->freelist = object[c->offset];
1488 c->page->inuse = s->objects;
1489 c->page->freelist = NULL;
1490 c->node = page_to_nid(c->page);
1491 slab_unlock(c->page);
1492 return object;
1494 another_slab:
1495 deactivate_slab(s, c);
1497 new_slab:
1498 new = get_partial(s, gfpflags, node);
1499 if (new) {
1500 c->page = new;
1501 goto load_freelist;
1504 if (gfpflags & __GFP_WAIT)
1505 local_irq_enable();
1507 new = new_slab(s, gfpflags, node);
1509 if (gfpflags & __GFP_WAIT)
1510 local_irq_disable();
1512 if (new) {
1513 c = get_cpu_slab(s, smp_processor_id());
1514 if (c->page)
1515 flush_slab(s, c);
1516 slab_lock(new);
1517 SetSlabFrozen(new);
1518 c->page = new;
1519 goto load_freelist;
1521 return NULL;
1522 debug:
1523 object = c->page->freelist;
1524 if (!alloc_debug_processing(s, c->page, object, addr))
1525 goto another_slab;
1527 c->page->inuse++;
1528 c->page->freelist = object[c->offset];
1529 c->node = -1;
1530 slab_unlock(c->page);
1531 return object;
1535 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1536 * have the fastpath folded into their functions. So no function call
1537 * overhead for requests that can be satisfied on the fastpath.
1539 * The fastpath works by first checking if the lockless freelist can be used.
1540 * If not then __slab_alloc is called for slow processing.
1542 * Otherwise we can simply pick the next object from the lockless free list.
1544 static void __always_inline *slab_alloc(struct kmem_cache *s,
1545 gfp_t gfpflags, int node, void *addr)
1547 void **object;
1548 unsigned long flags;
1549 struct kmem_cache_cpu *c;
1551 local_irq_save(flags);
1552 c = get_cpu_slab(s, smp_processor_id());
1553 if (unlikely(!c->freelist || !node_match(c, node)))
1555 object = __slab_alloc(s, gfpflags, node, addr, c);
1557 else {
1558 object = c->freelist;
1559 c->freelist = object[c->offset];
1561 local_irq_restore(flags);
1563 if (unlikely((gfpflags & __GFP_ZERO) && object))
1564 memset(object, 0, c->objsize);
1566 return object;
1569 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1571 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1573 EXPORT_SYMBOL(kmem_cache_alloc);
1575 #ifdef CONFIG_NUMA
1576 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1578 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1580 EXPORT_SYMBOL(kmem_cache_alloc_node);
1581 #endif
1584 * Slow patch handling. This may still be called frequently since objects
1585 * have a longer lifetime than the cpu slabs in most processing loads.
1587 * So we still attempt to reduce cache line usage. Just take the slab
1588 * lock and free the item. If there is no additional partial page
1589 * handling required then we can return immediately.
1591 static void __slab_free(struct kmem_cache *s, struct page *page,
1592 void *x, void *addr, unsigned int offset)
1594 void *prior;
1595 void **object = (void *)x;
1597 slab_lock(page);
1599 if (unlikely(SlabDebug(page)))
1600 goto debug;
1601 checks_ok:
1602 prior = object[offset] = page->freelist;
1603 page->freelist = object;
1604 page->inuse--;
1606 if (unlikely(SlabFrozen(page)))
1607 goto out_unlock;
1609 if (unlikely(!page->inuse))
1610 goto slab_empty;
1613 * Objects left in the slab. If it
1614 * was not on the partial list before
1615 * then add it.
1617 if (unlikely(!prior))
1618 add_partial(get_node(s, page_to_nid(page)), page);
1620 out_unlock:
1621 slab_unlock(page);
1622 return;
1624 slab_empty:
1625 if (prior)
1627 * Slab still on the partial list.
1629 remove_partial(s, page);
1631 slab_unlock(page);
1632 discard_slab(s, page);
1633 return;
1635 debug:
1636 if (!free_debug_processing(s, page, x, addr))
1637 goto out_unlock;
1638 goto checks_ok;
1642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1643 * can perform fastpath freeing without additional function calls.
1645 * The fastpath is only possible if we are freeing to the current cpu slab
1646 * of this processor. This typically the case if we have just allocated
1647 * the item before.
1649 * If fastpath is not possible then fall back to __slab_free where we deal
1650 * with all sorts of special processing.
1652 static void __always_inline slab_free(struct kmem_cache *s,
1653 struct page *page, void *x, void *addr)
1655 void **object = (void *)x;
1656 unsigned long flags;
1657 struct kmem_cache_cpu *c;
1659 local_irq_save(flags);
1660 debug_check_no_locks_freed(object, s->objsize);
1661 c = get_cpu_slab(s, smp_processor_id());
1662 if (likely(page == c->page && c->node >= 0)) {
1663 object[c->offset] = c->freelist;
1664 c->freelist = object;
1665 } else
1666 __slab_free(s, page, x, addr, c->offset);
1668 local_irq_restore(flags);
1671 void kmem_cache_free(struct kmem_cache *s, void *x)
1673 struct page *page;
1675 page = virt_to_head_page(x);
1677 slab_free(s, page, x, __builtin_return_address(0));
1679 EXPORT_SYMBOL(kmem_cache_free);
1681 /* Figure out on which slab object the object resides */
1682 static struct page *get_object_page(const void *x)
1684 struct page *page = virt_to_head_page(x);
1686 if (!PageSlab(page))
1687 return NULL;
1689 return page;
1693 * Object placement in a slab is made very easy because we always start at
1694 * offset 0. If we tune the size of the object to the alignment then we can
1695 * get the required alignment by putting one properly sized object after
1696 * another.
1698 * Notice that the allocation order determines the sizes of the per cpu
1699 * caches. Each processor has always one slab available for allocations.
1700 * Increasing the allocation order reduces the number of times that slabs
1701 * must be moved on and off the partial lists and is therefore a factor in
1702 * locking overhead.
1706 * Mininum / Maximum order of slab pages. This influences locking overhead
1707 * and slab fragmentation. A higher order reduces the number of partial slabs
1708 * and increases the number of allocations possible without having to
1709 * take the list_lock.
1711 static int slub_min_order;
1712 static int slub_max_order = DEFAULT_MAX_ORDER;
1713 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1716 * Merge control. If this is set then no merging of slab caches will occur.
1717 * (Could be removed. This was introduced to pacify the merge skeptics.)
1719 static int slub_nomerge;
1722 * Calculate the order of allocation given an slab object size.
1724 * The order of allocation has significant impact on performance and other
1725 * system components. Generally order 0 allocations should be preferred since
1726 * order 0 does not cause fragmentation in the page allocator. Larger objects
1727 * be problematic to put into order 0 slabs because there may be too much
1728 * unused space left. We go to a higher order if more than 1/8th of the slab
1729 * would be wasted.
1731 * In order to reach satisfactory performance we must ensure that a minimum
1732 * number of objects is in one slab. Otherwise we may generate too much
1733 * activity on the partial lists which requires taking the list_lock. This is
1734 * less a concern for large slabs though which are rarely used.
1736 * slub_max_order specifies the order where we begin to stop considering the
1737 * number of objects in a slab as critical. If we reach slub_max_order then
1738 * we try to keep the page order as low as possible. So we accept more waste
1739 * of space in favor of a small page order.
1741 * Higher order allocations also allow the placement of more objects in a
1742 * slab and thereby reduce object handling overhead. If the user has
1743 * requested a higher mininum order then we start with that one instead of
1744 * the smallest order which will fit the object.
1746 static inline int slab_order(int size, int min_objects,
1747 int max_order, int fract_leftover)
1749 int order;
1750 int rem;
1751 int min_order = slub_min_order;
1753 for (order = max(min_order,
1754 fls(min_objects * size - 1) - PAGE_SHIFT);
1755 order <= max_order; order++) {
1757 unsigned long slab_size = PAGE_SIZE << order;
1759 if (slab_size < min_objects * size)
1760 continue;
1762 rem = slab_size % size;
1764 if (rem <= slab_size / fract_leftover)
1765 break;
1769 return order;
1772 static inline int calculate_order(int size)
1774 int order;
1775 int min_objects;
1776 int fraction;
1779 * Attempt to find best configuration for a slab. This
1780 * works by first attempting to generate a layout with
1781 * the best configuration and backing off gradually.
1783 * First we reduce the acceptable waste in a slab. Then
1784 * we reduce the minimum objects required in a slab.
1786 min_objects = slub_min_objects;
1787 while (min_objects > 1) {
1788 fraction = 8;
1789 while (fraction >= 4) {
1790 order = slab_order(size, min_objects,
1791 slub_max_order, fraction);
1792 if (order <= slub_max_order)
1793 return order;
1794 fraction /= 2;
1796 min_objects /= 2;
1800 * We were unable to place multiple objects in a slab. Now
1801 * lets see if we can place a single object there.
1803 order = slab_order(size, 1, slub_max_order, 1);
1804 if (order <= slub_max_order)
1805 return order;
1808 * Doh this slab cannot be placed using slub_max_order.
1810 order = slab_order(size, 1, MAX_ORDER, 1);
1811 if (order <= MAX_ORDER)
1812 return order;
1813 return -ENOSYS;
1817 * Figure out what the alignment of the objects will be.
1819 static unsigned long calculate_alignment(unsigned long flags,
1820 unsigned long align, unsigned long size)
1823 * If the user wants hardware cache aligned objects then
1824 * follow that suggestion if the object is sufficiently
1825 * large.
1827 * The hardware cache alignment cannot override the
1828 * specified alignment though. If that is greater
1829 * then use it.
1831 if ((flags & SLAB_HWCACHE_ALIGN) &&
1832 size > cache_line_size() / 2)
1833 return max_t(unsigned long, align, cache_line_size());
1835 if (align < ARCH_SLAB_MINALIGN)
1836 return ARCH_SLAB_MINALIGN;
1838 return ALIGN(align, sizeof(void *));
1841 static void init_kmem_cache_cpu(struct kmem_cache *s,
1842 struct kmem_cache_cpu *c)
1844 c->page = NULL;
1845 c->freelist = NULL;
1846 c->node = 0;
1847 c->offset = s->offset / sizeof(void *);
1848 c->objsize = s->objsize;
1851 static void init_kmem_cache_node(struct kmem_cache_node *n)
1853 n->nr_partial = 0;
1854 atomic_long_set(&n->nr_slabs, 0);
1855 spin_lock_init(&n->list_lock);
1856 INIT_LIST_HEAD(&n->partial);
1857 #ifdef CONFIG_SLUB_DEBUG
1858 INIT_LIST_HEAD(&n->full);
1859 #endif
1862 #ifdef CONFIG_SMP
1864 * Per cpu array for per cpu structures.
1866 * The per cpu array places all kmem_cache_cpu structures from one processor
1867 * close together meaning that it becomes possible that multiple per cpu
1868 * structures are contained in one cacheline. This may be particularly
1869 * beneficial for the kmalloc caches.
1871 * A desktop system typically has around 60-80 slabs. With 100 here we are
1872 * likely able to get per cpu structures for all caches from the array defined
1873 * here. We must be able to cover all kmalloc caches during bootstrap.
1875 * If the per cpu array is exhausted then fall back to kmalloc
1876 * of individual cachelines. No sharing is possible then.
1878 #define NR_KMEM_CACHE_CPU 100
1880 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1881 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1883 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1884 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1886 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1887 int cpu, gfp_t flags)
1889 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1891 if (c)
1892 per_cpu(kmem_cache_cpu_free, cpu) =
1893 (void *)c->freelist;
1894 else {
1895 /* Table overflow: So allocate ourselves */
1896 c = kmalloc_node(
1897 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1898 flags, cpu_to_node(cpu));
1899 if (!c)
1900 return NULL;
1903 init_kmem_cache_cpu(s, c);
1904 return c;
1907 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1909 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1910 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1911 kfree(c);
1912 return;
1914 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1915 per_cpu(kmem_cache_cpu_free, cpu) = c;
1918 static void free_kmem_cache_cpus(struct kmem_cache *s)
1920 int cpu;
1922 for_each_online_cpu(cpu) {
1923 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1925 if (c) {
1926 s->cpu_slab[cpu] = NULL;
1927 free_kmem_cache_cpu(c, cpu);
1932 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1934 int cpu;
1936 for_each_online_cpu(cpu) {
1937 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1939 if (c)
1940 continue;
1942 c = alloc_kmem_cache_cpu(s, cpu, flags);
1943 if (!c) {
1944 free_kmem_cache_cpus(s);
1945 return 0;
1947 s->cpu_slab[cpu] = c;
1949 return 1;
1953 * Initialize the per cpu array.
1955 static void init_alloc_cpu_cpu(int cpu)
1957 int i;
1959 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1960 return;
1962 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1963 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1965 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1968 static void __init init_alloc_cpu(void)
1970 int cpu;
1972 for_each_online_cpu(cpu)
1973 init_alloc_cpu_cpu(cpu);
1976 #else
1977 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1978 static inline void init_alloc_cpu(void) {}
1980 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1982 init_kmem_cache_cpu(s, &s->cpu_slab);
1983 return 1;
1985 #endif
1987 #ifdef CONFIG_NUMA
1989 * No kmalloc_node yet so do it by hand. We know that this is the first
1990 * slab on the node for this slabcache. There are no concurrent accesses
1991 * possible.
1993 * Note that this function only works on the kmalloc_node_cache
1994 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1995 * memory on a fresh node that has no slab structures yet.
1997 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1998 int node)
2000 struct page *page;
2001 struct kmem_cache_node *n;
2003 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2005 page = new_slab(kmalloc_caches, gfpflags, node);
2007 BUG_ON(!page);
2008 if (page_to_nid(page) != node) {
2009 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2010 "node %d\n", node);
2011 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2012 "in order to be able to continue\n");
2015 n = page->freelist;
2016 BUG_ON(!n);
2017 page->freelist = get_freepointer(kmalloc_caches, n);
2018 page->inuse++;
2019 kmalloc_caches->node[node] = n;
2020 #ifdef CONFIG_SLUB_DEBUG
2021 init_object(kmalloc_caches, n, 1);
2022 init_tracking(kmalloc_caches, n);
2023 #endif
2024 init_kmem_cache_node(n);
2025 atomic_long_inc(&n->nr_slabs);
2026 add_partial(n, page);
2027 return n;
2030 static void free_kmem_cache_nodes(struct kmem_cache *s)
2032 int node;
2034 for_each_node_state(node, N_NORMAL_MEMORY) {
2035 struct kmem_cache_node *n = s->node[node];
2036 if (n && n != &s->local_node)
2037 kmem_cache_free(kmalloc_caches, n);
2038 s->node[node] = NULL;
2042 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2044 int node;
2045 int local_node;
2047 if (slab_state >= UP)
2048 local_node = page_to_nid(virt_to_page(s));
2049 else
2050 local_node = 0;
2052 for_each_node_state(node, N_NORMAL_MEMORY) {
2053 struct kmem_cache_node *n;
2055 if (local_node == node)
2056 n = &s->local_node;
2057 else {
2058 if (slab_state == DOWN) {
2059 n = early_kmem_cache_node_alloc(gfpflags,
2060 node);
2061 continue;
2063 n = kmem_cache_alloc_node(kmalloc_caches,
2064 gfpflags, node);
2066 if (!n) {
2067 free_kmem_cache_nodes(s);
2068 return 0;
2072 s->node[node] = n;
2073 init_kmem_cache_node(n);
2075 return 1;
2077 #else
2078 static void free_kmem_cache_nodes(struct kmem_cache *s)
2082 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2084 init_kmem_cache_node(&s->local_node);
2085 return 1;
2087 #endif
2090 * calculate_sizes() determines the order and the distribution of data within
2091 * a slab object.
2093 static int calculate_sizes(struct kmem_cache *s)
2095 unsigned long flags = s->flags;
2096 unsigned long size = s->objsize;
2097 unsigned long align = s->align;
2100 * Determine if we can poison the object itself. If the user of
2101 * the slab may touch the object after free or before allocation
2102 * then we should never poison the object itself.
2104 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2105 !s->ctor)
2106 s->flags |= __OBJECT_POISON;
2107 else
2108 s->flags &= ~__OBJECT_POISON;
2111 * Round up object size to the next word boundary. We can only
2112 * place the free pointer at word boundaries and this determines
2113 * the possible location of the free pointer.
2115 size = ALIGN(size, sizeof(void *));
2117 #ifdef CONFIG_SLUB_DEBUG
2119 * If we are Redzoning then check if there is some space between the
2120 * end of the object and the free pointer. If not then add an
2121 * additional word to have some bytes to store Redzone information.
2123 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2124 size += sizeof(void *);
2125 #endif
2128 * With that we have determined the number of bytes in actual use
2129 * by the object. This is the potential offset to the free pointer.
2131 s->inuse = size;
2133 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2134 s->ctor)) {
2136 * Relocate free pointer after the object if it is not
2137 * permitted to overwrite the first word of the object on
2138 * kmem_cache_free.
2140 * This is the case if we do RCU, have a constructor or
2141 * destructor or are poisoning the objects.
2143 s->offset = size;
2144 size += sizeof(void *);
2147 #ifdef CONFIG_SLUB_DEBUG
2148 if (flags & SLAB_STORE_USER)
2150 * Need to store information about allocs and frees after
2151 * the object.
2153 size += 2 * sizeof(struct track);
2155 if (flags & SLAB_RED_ZONE)
2157 * Add some empty padding so that we can catch
2158 * overwrites from earlier objects rather than let
2159 * tracking information or the free pointer be
2160 * corrupted if an user writes before the start
2161 * of the object.
2163 size += sizeof(void *);
2164 #endif
2167 * Determine the alignment based on various parameters that the
2168 * user specified and the dynamic determination of cache line size
2169 * on bootup.
2171 align = calculate_alignment(flags, align, s->objsize);
2174 * SLUB stores one object immediately after another beginning from
2175 * offset 0. In order to align the objects we have to simply size
2176 * each object to conform to the alignment.
2178 size = ALIGN(size, align);
2179 s->size = size;
2181 s->order = calculate_order(size);
2182 if (s->order < 0)
2183 return 0;
2186 * Determine the number of objects per slab
2188 s->objects = (PAGE_SIZE << s->order) / size;
2190 return !!s->objects;
2194 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2195 const char *name, size_t size,
2196 size_t align, unsigned long flags,
2197 void (*ctor)(struct kmem_cache *, void *))
2199 memset(s, 0, kmem_size);
2200 s->name = name;
2201 s->ctor = ctor;
2202 s->objsize = size;
2203 s->align = align;
2204 s->flags = kmem_cache_flags(size, flags, name, ctor);
2206 if (!calculate_sizes(s))
2207 goto error;
2209 s->refcount = 1;
2210 #ifdef CONFIG_NUMA
2211 s->defrag_ratio = 100;
2212 #endif
2213 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2214 goto error;
2216 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2217 return 1;
2218 free_kmem_cache_nodes(s);
2219 error:
2220 if (flags & SLAB_PANIC)
2221 panic("Cannot create slab %s size=%lu realsize=%u "
2222 "order=%u offset=%u flags=%lx\n",
2223 s->name, (unsigned long)size, s->size, s->order,
2224 s->offset, flags);
2225 return 0;
2229 * Check if a given pointer is valid
2231 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2233 struct page * page;
2235 page = get_object_page(object);
2237 if (!page || s != page->slab)
2238 /* No slab or wrong slab */
2239 return 0;
2241 if (!check_valid_pointer(s, page, object))
2242 return 0;
2245 * We could also check if the object is on the slabs freelist.
2246 * But this would be too expensive and it seems that the main
2247 * purpose of kmem_ptr_valid is to check if the object belongs
2248 * to a certain slab.
2250 return 1;
2252 EXPORT_SYMBOL(kmem_ptr_validate);
2255 * Determine the size of a slab object
2257 unsigned int kmem_cache_size(struct kmem_cache *s)
2259 return s->objsize;
2261 EXPORT_SYMBOL(kmem_cache_size);
2263 const char *kmem_cache_name(struct kmem_cache *s)
2265 return s->name;
2267 EXPORT_SYMBOL(kmem_cache_name);
2270 * Attempt to free all slabs on a node. Return the number of slabs we
2271 * were unable to free.
2273 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2274 struct list_head *list)
2276 int slabs_inuse = 0;
2277 unsigned long flags;
2278 struct page *page, *h;
2280 spin_lock_irqsave(&n->list_lock, flags);
2281 list_for_each_entry_safe(page, h, list, lru)
2282 if (!page->inuse) {
2283 list_del(&page->lru);
2284 discard_slab(s, page);
2285 } else
2286 slabs_inuse++;
2287 spin_unlock_irqrestore(&n->list_lock, flags);
2288 return slabs_inuse;
2292 * Release all resources used by a slab cache.
2294 static inline int kmem_cache_close(struct kmem_cache *s)
2296 int node;
2298 flush_all(s);
2300 /* Attempt to free all objects */
2301 free_kmem_cache_cpus(s);
2302 for_each_node_state(node, N_NORMAL_MEMORY) {
2303 struct kmem_cache_node *n = get_node(s, node);
2305 n->nr_partial -= free_list(s, n, &n->partial);
2306 if (atomic_long_read(&n->nr_slabs))
2307 return 1;
2309 free_kmem_cache_nodes(s);
2310 return 0;
2314 * Close a cache and release the kmem_cache structure
2315 * (must be used for caches created using kmem_cache_create)
2317 void kmem_cache_destroy(struct kmem_cache *s)
2319 down_write(&slub_lock);
2320 s->refcount--;
2321 if (!s->refcount) {
2322 list_del(&s->list);
2323 up_write(&slub_lock);
2324 if (kmem_cache_close(s))
2325 WARN_ON(1);
2326 sysfs_slab_remove(s);
2327 kfree(s);
2328 } else
2329 up_write(&slub_lock);
2331 EXPORT_SYMBOL(kmem_cache_destroy);
2333 /********************************************************************
2334 * Kmalloc subsystem
2335 *******************************************************************/
2337 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2338 EXPORT_SYMBOL(kmalloc_caches);
2340 #ifdef CONFIG_ZONE_DMA
2341 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2342 #endif
2344 static int __init setup_slub_min_order(char *str)
2346 get_option (&str, &slub_min_order);
2348 return 1;
2351 __setup("slub_min_order=", setup_slub_min_order);
2353 static int __init setup_slub_max_order(char *str)
2355 get_option (&str, &slub_max_order);
2357 return 1;
2360 __setup("slub_max_order=", setup_slub_max_order);
2362 static int __init setup_slub_min_objects(char *str)
2364 get_option (&str, &slub_min_objects);
2366 return 1;
2369 __setup("slub_min_objects=", setup_slub_min_objects);
2371 static int __init setup_slub_nomerge(char *str)
2373 slub_nomerge = 1;
2374 return 1;
2377 __setup("slub_nomerge", setup_slub_nomerge);
2379 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2380 const char *name, int size, gfp_t gfp_flags)
2382 unsigned int flags = 0;
2384 if (gfp_flags & SLUB_DMA)
2385 flags = SLAB_CACHE_DMA;
2387 down_write(&slub_lock);
2388 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2389 flags, NULL))
2390 goto panic;
2392 list_add(&s->list, &slab_caches);
2393 up_write(&slub_lock);
2394 if (sysfs_slab_add(s))
2395 goto panic;
2396 return s;
2398 panic:
2399 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2402 #ifdef CONFIG_ZONE_DMA
2404 static void sysfs_add_func(struct work_struct *w)
2406 struct kmem_cache *s;
2408 down_write(&slub_lock);
2409 list_for_each_entry(s, &slab_caches, list) {
2410 if (s->flags & __SYSFS_ADD_DEFERRED) {
2411 s->flags &= ~__SYSFS_ADD_DEFERRED;
2412 sysfs_slab_add(s);
2415 up_write(&slub_lock);
2418 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2420 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2422 struct kmem_cache *s;
2423 char *text;
2424 size_t realsize;
2426 s = kmalloc_caches_dma[index];
2427 if (s)
2428 return s;
2430 /* Dynamically create dma cache */
2431 if (flags & __GFP_WAIT)
2432 down_write(&slub_lock);
2433 else {
2434 if (!down_write_trylock(&slub_lock))
2435 goto out;
2438 if (kmalloc_caches_dma[index])
2439 goto unlock_out;
2441 realsize = kmalloc_caches[index].objsize;
2442 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2443 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2445 if (!s || !text || !kmem_cache_open(s, flags, text,
2446 realsize, ARCH_KMALLOC_MINALIGN,
2447 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2448 kfree(s);
2449 kfree(text);
2450 goto unlock_out;
2453 list_add(&s->list, &slab_caches);
2454 kmalloc_caches_dma[index] = s;
2456 schedule_work(&sysfs_add_work);
2458 unlock_out:
2459 up_write(&slub_lock);
2460 out:
2461 return kmalloc_caches_dma[index];
2463 #endif
2466 * Conversion table for small slabs sizes / 8 to the index in the
2467 * kmalloc array. This is necessary for slabs < 192 since we have non power
2468 * of two cache sizes there. The size of larger slabs can be determined using
2469 * fls.
2471 static s8 size_index[24] = {
2472 3, /* 8 */
2473 4, /* 16 */
2474 5, /* 24 */
2475 5, /* 32 */
2476 6, /* 40 */
2477 6, /* 48 */
2478 6, /* 56 */
2479 6, /* 64 */
2480 1, /* 72 */
2481 1, /* 80 */
2482 1, /* 88 */
2483 1, /* 96 */
2484 7, /* 104 */
2485 7, /* 112 */
2486 7, /* 120 */
2487 7, /* 128 */
2488 2, /* 136 */
2489 2, /* 144 */
2490 2, /* 152 */
2491 2, /* 160 */
2492 2, /* 168 */
2493 2, /* 176 */
2494 2, /* 184 */
2495 2 /* 192 */
2498 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2500 int index;
2502 if (size <= 192) {
2503 if (!size)
2504 return ZERO_SIZE_PTR;
2506 index = size_index[(size - 1) / 8];
2507 } else
2508 index = fls(size - 1);
2510 #ifdef CONFIG_ZONE_DMA
2511 if (unlikely((flags & SLUB_DMA)))
2512 return dma_kmalloc_cache(index, flags);
2514 #endif
2515 return &kmalloc_caches[index];
2518 void *__kmalloc(size_t size, gfp_t flags)
2520 struct kmem_cache *s;
2522 if (unlikely(size > PAGE_SIZE / 2))
2523 return (void *)__get_free_pages(flags | __GFP_COMP,
2524 get_order(size));
2526 s = get_slab(size, flags);
2528 if (unlikely(ZERO_OR_NULL_PTR(s)))
2529 return s;
2531 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2533 EXPORT_SYMBOL(__kmalloc);
2535 #ifdef CONFIG_NUMA
2536 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2538 struct kmem_cache *s;
2540 if (unlikely(size > PAGE_SIZE / 2))
2541 return (void *)__get_free_pages(flags | __GFP_COMP,
2542 get_order(size));
2544 s = get_slab(size, flags);
2546 if (unlikely(ZERO_OR_NULL_PTR(s)))
2547 return s;
2549 return slab_alloc(s, flags, node, __builtin_return_address(0));
2551 EXPORT_SYMBOL(__kmalloc_node);
2552 #endif
2554 size_t ksize(const void *object)
2556 struct page *page;
2557 struct kmem_cache *s;
2559 BUG_ON(!object);
2560 if (unlikely(object == ZERO_SIZE_PTR))
2561 return 0;
2563 page = get_object_page(object);
2564 BUG_ON(!page);
2565 s = page->slab;
2566 BUG_ON(!s);
2569 * Debugging requires use of the padding between object
2570 * and whatever may come after it.
2572 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2573 return s->objsize;
2576 * If we have the need to store the freelist pointer
2577 * back there or track user information then we can
2578 * only use the space before that information.
2580 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2581 return s->inuse;
2584 * Else we can use all the padding etc for the allocation
2586 return s->size;
2588 EXPORT_SYMBOL(ksize);
2590 void kfree(const void *x)
2592 struct page *page;
2594 if (unlikely(ZERO_OR_NULL_PTR(x)))
2595 return;
2597 page = virt_to_head_page(x);
2598 if (unlikely(!PageSlab(page))) {
2599 put_page(page);
2600 return;
2602 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2604 EXPORT_SYMBOL(kfree);
2607 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2608 * the remaining slabs by the number of items in use. The slabs with the
2609 * most items in use come first. New allocations will then fill those up
2610 * and thus they can be removed from the partial lists.
2612 * The slabs with the least items are placed last. This results in them
2613 * being allocated from last increasing the chance that the last objects
2614 * are freed in them.
2616 int kmem_cache_shrink(struct kmem_cache *s)
2618 int node;
2619 int i;
2620 struct kmem_cache_node *n;
2621 struct page *page;
2622 struct page *t;
2623 struct list_head *slabs_by_inuse =
2624 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2625 unsigned long flags;
2627 if (!slabs_by_inuse)
2628 return -ENOMEM;
2630 flush_all(s);
2631 for_each_node_state(node, N_NORMAL_MEMORY) {
2632 n = get_node(s, node);
2634 if (!n->nr_partial)
2635 continue;
2637 for (i = 0; i < s->objects; i++)
2638 INIT_LIST_HEAD(slabs_by_inuse + i);
2640 spin_lock_irqsave(&n->list_lock, flags);
2643 * Build lists indexed by the items in use in each slab.
2645 * Note that concurrent frees may occur while we hold the
2646 * list_lock. page->inuse here is the upper limit.
2648 list_for_each_entry_safe(page, t, &n->partial, lru) {
2649 if (!page->inuse && slab_trylock(page)) {
2651 * Must hold slab lock here because slab_free
2652 * may have freed the last object and be
2653 * waiting to release the slab.
2655 list_del(&page->lru);
2656 n->nr_partial--;
2657 slab_unlock(page);
2658 discard_slab(s, page);
2659 } else {
2660 list_move(&page->lru,
2661 slabs_by_inuse + page->inuse);
2666 * Rebuild the partial list with the slabs filled up most
2667 * first and the least used slabs at the end.
2669 for (i = s->objects - 1; i >= 0; i--)
2670 list_splice(slabs_by_inuse + i, n->partial.prev);
2672 spin_unlock_irqrestore(&n->list_lock, flags);
2675 kfree(slabs_by_inuse);
2676 return 0;
2678 EXPORT_SYMBOL(kmem_cache_shrink);
2680 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2681 static int slab_mem_going_offline_callback(void *arg)
2683 struct kmem_cache *s;
2685 down_read(&slub_lock);
2686 list_for_each_entry(s, &slab_caches, list)
2687 kmem_cache_shrink(s);
2688 up_read(&slub_lock);
2690 return 0;
2693 static void slab_mem_offline_callback(void *arg)
2695 struct kmem_cache_node *n;
2696 struct kmem_cache *s;
2697 struct memory_notify *marg = arg;
2698 int offline_node;
2700 offline_node = marg->status_change_nid;
2703 * If the node still has available memory. we need kmem_cache_node
2704 * for it yet.
2706 if (offline_node < 0)
2707 return;
2709 down_read(&slub_lock);
2710 list_for_each_entry(s, &slab_caches, list) {
2711 n = get_node(s, offline_node);
2712 if (n) {
2714 * if n->nr_slabs > 0, slabs still exist on the node
2715 * that is going down. We were unable to free them,
2716 * and offline_pages() function shoudn't call this
2717 * callback. So, we must fail.
2719 BUG_ON(atomic_long_read(&n->nr_slabs));
2721 s->node[offline_node] = NULL;
2722 kmem_cache_free(kmalloc_caches, n);
2725 up_read(&slub_lock);
2728 static int slab_mem_going_online_callback(void *arg)
2730 struct kmem_cache_node *n;
2731 struct kmem_cache *s;
2732 struct memory_notify *marg = arg;
2733 int nid = marg->status_change_nid;
2734 int ret = 0;
2737 * If the node's memory is already available, then kmem_cache_node is
2738 * already created. Nothing to do.
2740 if (nid < 0)
2741 return 0;
2744 * We are bringing a node online. No memory is availabe yet. We must
2745 * allocate a kmem_cache_node structure in order to bring the node
2746 * online.
2748 down_read(&slub_lock);
2749 list_for_each_entry(s, &slab_caches, list) {
2751 * XXX: kmem_cache_alloc_node will fallback to other nodes
2752 * since memory is not yet available from the node that
2753 * is brought up.
2755 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2756 if (!n) {
2757 ret = -ENOMEM;
2758 goto out;
2760 init_kmem_cache_node(n);
2761 s->node[nid] = n;
2763 out:
2764 up_read(&slub_lock);
2765 return ret;
2768 static int slab_memory_callback(struct notifier_block *self,
2769 unsigned long action, void *arg)
2771 int ret = 0;
2773 switch (action) {
2774 case MEM_GOING_ONLINE:
2775 ret = slab_mem_going_online_callback(arg);
2776 break;
2777 case MEM_GOING_OFFLINE:
2778 ret = slab_mem_going_offline_callback(arg);
2779 break;
2780 case MEM_OFFLINE:
2781 case MEM_CANCEL_ONLINE:
2782 slab_mem_offline_callback(arg);
2783 break;
2784 case MEM_ONLINE:
2785 case MEM_CANCEL_OFFLINE:
2786 break;
2789 ret = notifier_from_errno(ret);
2790 return ret;
2793 #endif /* CONFIG_MEMORY_HOTPLUG */
2795 /********************************************************************
2796 * Basic setup of slabs
2797 *******************************************************************/
2799 void __init kmem_cache_init(void)
2801 int i;
2802 int caches = 0;
2804 init_alloc_cpu();
2806 #ifdef CONFIG_NUMA
2808 * Must first have the slab cache available for the allocations of the
2809 * struct kmem_cache_node's. There is special bootstrap code in
2810 * kmem_cache_open for slab_state == DOWN.
2812 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2813 sizeof(struct kmem_cache_node), GFP_KERNEL);
2814 kmalloc_caches[0].refcount = -1;
2815 caches++;
2817 hotplug_memory_notifier(slab_memory_callback, 1);
2818 #endif
2820 /* Able to allocate the per node structures */
2821 slab_state = PARTIAL;
2823 /* Caches that are not of the two-to-the-power-of size */
2824 if (KMALLOC_MIN_SIZE <= 64) {
2825 create_kmalloc_cache(&kmalloc_caches[1],
2826 "kmalloc-96", 96, GFP_KERNEL);
2827 caches++;
2829 if (KMALLOC_MIN_SIZE <= 128) {
2830 create_kmalloc_cache(&kmalloc_caches[2],
2831 "kmalloc-192", 192, GFP_KERNEL);
2832 caches++;
2835 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2836 create_kmalloc_cache(&kmalloc_caches[i],
2837 "kmalloc", 1 << i, GFP_KERNEL);
2838 caches++;
2843 * Patch up the size_index table if we have strange large alignment
2844 * requirements for the kmalloc array. This is only the case for
2845 * mips it seems. The standard arches will not generate any code here.
2847 * Largest permitted alignment is 256 bytes due to the way we
2848 * handle the index determination for the smaller caches.
2850 * Make sure that nothing crazy happens if someone starts tinkering
2851 * around with ARCH_KMALLOC_MINALIGN
2853 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2854 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2856 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2857 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2859 slab_state = UP;
2861 /* Provide the correct kmalloc names now that the caches are up */
2862 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2863 kmalloc_caches[i]. name =
2864 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2866 #ifdef CONFIG_SMP
2867 register_cpu_notifier(&slab_notifier);
2868 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2869 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2870 #else
2871 kmem_size = sizeof(struct kmem_cache);
2872 #endif
2875 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2876 " CPUs=%d, Nodes=%d\n",
2877 caches, cache_line_size(),
2878 slub_min_order, slub_max_order, slub_min_objects,
2879 nr_cpu_ids, nr_node_ids);
2883 * Find a mergeable slab cache
2885 static int slab_unmergeable(struct kmem_cache *s)
2887 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2888 return 1;
2890 if (s->ctor)
2891 return 1;
2894 * We may have set a slab to be unmergeable during bootstrap.
2896 if (s->refcount < 0)
2897 return 1;
2899 return 0;
2902 static struct kmem_cache *find_mergeable(size_t size,
2903 size_t align, unsigned long flags, const char *name,
2904 void (*ctor)(struct kmem_cache *, void *))
2906 struct kmem_cache *s;
2908 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2909 return NULL;
2911 if (ctor)
2912 return NULL;
2914 size = ALIGN(size, sizeof(void *));
2915 align = calculate_alignment(flags, align, size);
2916 size = ALIGN(size, align);
2917 flags = kmem_cache_flags(size, flags, name, NULL);
2919 list_for_each_entry(s, &slab_caches, list) {
2920 if (slab_unmergeable(s))
2921 continue;
2923 if (size > s->size)
2924 continue;
2926 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2927 continue;
2929 * Check if alignment is compatible.
2930 * Courtesy of Adrian Drzewiecki
2932 if ((s->size & ~(align -1)) != s->size)
2933 continue;
2935 if (s->size - size >= sizeof(void *))
2936 continue;
2938 return s;
2940 return NULL;
2943 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2944 size_t align, unsigned long flags,
2945 void (*ctor)(struct kmem_cache *, void *))
2947 struct kmem_cache *s;
2949 down_write(&slub_lock);
2950 s = find_mergeable(size, align, flags, name, ctor);
2951 if (s) {
2952 int cpu;
2954 s->refcount++;
2956 * Adjust the object sizes so that we clear
2957 * the complete object on kzalloc.
2959 s->objsize = max(s->objsize, (int)size);
2962 * And then we need to update the object size in the
2963 * per cpu structures
2965 for_each_online_cpu(cpu)
2966 get_cpu_slab(s, cpu)->objsize = s->objsize;
2967 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2968 up_write(&slub_lock);
2969 if (sysfs_slab_alias(s, name))
2970 goto err;
2971 return s;
2973 s = kmalloc(kmem_size, GFP_KERNEL);
2974 if (s) {
2975 if (kmem_cache_open(s, GFP_KERNEL, name,
2976 size, align, flags, ctor)) {
2977 list_add(&s->list, &slab_caches);
2978 up_write(&slub_lock);
2979 if (sysfs_slab_add(s))
2980 goto err;
2981 return s;
2983 kfree(s);
2985 up_write(&slub_lock);
2987 err:
2988 if (flags & SLAB_PANIC)
2989 panic("Cannot create slabcache %s\n", name);
2990 else
2991 s = NULL;
2992 return s;
2994 EXPORT_SYMBOL(kmem_cache_create);
2996 #ifdef CONFIG_SMP
2998 * Use the cpu notifier to insure that the cpu slabs are flushed when
2999 * necessary.
3001 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3002 unsigned long action, void *hcpu)
3004 long cpu = (long)hcpu;
3005 struct kmem_cache *s;
3006 unsigned long flags;
3008 switch (action) {
3009 case CPU_UP_PREPARE:
3010 case CPU_UP_PREPARE_FROZEN:
3011 init_alloc_cpu_cpu(cpu);
3012 down_read(&slub_lock);
3013 list_for_each_entry(s, &slab_caches, list)
3014 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3015 GFP_KERNEL);
3016 up_read(&slub_lock);
3017 break;
3019 case CPU_UP_CANCELED:
3020 case CPU_UP_CANCELED_FROZEN:
3021 case CPU_DEAD:
3022 case CPU_DEAD_FROZEN:
3023 down_read(&slub_lock);
3024 list_for_each_entry(s, &slab_caches, list) {
3025 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3027 local_irq_save(flags);
3028 __flush_cpu_slab(s, cpu);
3029 local_irq_restore(flags);
3030 free_kmem_cache_cpu(c, cpu);
3031 s->cpu_slab[cpu] = NULL;
3033 up_read(&slub_lock);
3034 break;
3035 default:
3036 break;
3038 return NOTIFY_OK;
3041 static struct notifier_block __cpuinitdata slab_notifier =
3042 { &slab_cpuup_callback, NULL, 0 };
3044 #endif
3046 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3048 struct kmem_cache *s;
3050 if (unlikely(size > PAGE_SIZE / 2))
3051 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3052 get_order(size));
3053 s = get_slab(size, gfpflags);
3055 if (unlikely(ZERO_OR_NULL_PTR(s)))
3056 return s;
3058 return slab_alloc(s, gfpflags, -1, caller);
3061 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3062 int node, void *caller)
3064 struct kmem_cache *s;
3066 if (unlikely(size > PAGE_SIZE / 2))
3067 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3068 get_order(size));
3069 s = get_slab(size, gfpflags);
3071 if (unlikely(ZERO_OR_NULL_PTR(s)))
3072 return s;
3074 return slab_alloc(s, gfpflags, node, caller);
3077 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3078 static int validate_slab(struct kmem_cache *s, struct page *page,
3079 unsigned long *map)
3081 void *p;
3082 void *addr = page_address(page);
3084 if (!check_slab(s, page) ||
3085 !on_freelist(s, page, NULL))
3086 return 0;
3088 /* Now we know that a valid freelist exists */
3089 bitmap_zero(map, s->objects);
3091 for_each_free_object(p, s, page->freelist) {
3092 set_bit(slab_index(p, s, addr), map);
3093 if (!check_object(s, page, p, 0))
3094 return 0;
3097 for_each_object(p, s, addr)
3098 if (!test_bit(slab_index(p, s, addr), map))
3099 if (!check_object(s, page, p, 1))
3100 return 0;
3101 return 1;
3104 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3105 unsigned long *map)
3107 if (slab_trylock(page)) {
3108 validate_slab(s, page, map);
3109 slab_unlock(page);
3110 } else
3111 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3112 s->name, page);
3114 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3115 if (!SlabDebug(page))
3116 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3117 "on slab 0x%p\n", s->name, page);
3118 } else {
3119 if (SlabDebug(page))
3120 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3121 "slab 0x%p\n", s->name, page);
3125 static int validate_slab_node(struct kmem_cache *s,
3126 struct kmem_cache_node *n, unsigned long *map)
3128 unsigned long count = 0;
3129 struct page *page;
3130 unsigned long flags;
3132 spin_lock_irqsave(&n->list_lock, flags);
3134 list_for_each_entry(page, &n->partial, lru) {
3135 validate_slab_slab(s, page, map);
3136 count++;
3138 if (count != n->nr_partial)
3139 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3140 "counter=%ld\n", s->name, count, n->nr_partial);
3142 if (!(s->flags & SLAB_STORE_USER))
3143 goto out;
3145 list_for_each_entry(page, &n->full, lru) {
3146 validate_slab_slab(s, page, map);
3147 count++;
3149 if (count != atomic_long_read(&n->nr_slabs))
3150 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3151 "counter=%ld\n", s->name, count,
3152 atomic_long_read(&n->nr_slabs));
3154 out:
3155 spin_unlock_irqrestore(&n->list_lock, flags);
3156 return count;
3159 static long validate_slab_cache(struct kmem_cache *s)
3161 int node;
3162 unsigned long count = 0;
3163 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3164 sizeof(unsigned long), GFP_KERNEL);
3166 if (!map)
3167 return -ENOMEM;
3169 flush_all(s);
3170 for_each_node_state(node, N_NORMAL_MEMORY) {
3171 struct kmem_cache_node *n = get_node(s, node);
3173 count += validate_slab_node(s, n, map);
3175 kfree(map);
3176 return count;
3179 #ifdef SLUB_RESILIENCY_TEST
3180 static void resiliency_test(void)
3182 u8 *p;
3184 printk(KERN_ERR "SLUB resiliency testing\n");
3185 printk(KERN_ERR "-----------------------\n");
3186 printk(KERN_ERR "A. Corruption after allocation\n");
3188 p = kzalloc(16, GFP_KERNEL);
3189 p[16] = 0x12;
3190 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3191 " 0x12->0x%p\n\n", p + 16);
3193 validate_slab_cache(kmalloc_caches + 4);
3195 /* Hmmm... The next two are dangerous */
3196 p = kzalloc(32, GFP_KERNEL);
3197 p[32 + sizeof(void *)] = 0x34;
3198 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3199 " 0x34 -> -0x%p\n", p);
3200 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3202 validate_slab_cache(kmalloc_caches + 5);
3203 p = kzalloc(64, GFP_KERNEL);
3204 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3205 *p = 0x56;
3206 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3208 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3209 validate_slab_cache(kmalloc_caches + 6);
3211 printk(KERN_ERR "\nB. Corruption after free\n");
3212 p = kzalloc(128, GFP_KERNEL);
3213 kfree(p);
3214 *p = 0x78;
3215 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3216 validate_slab_cache(kmalloc_caches + 7);
3218 p = kzalloc(256, GFP_KERNEL);
3219 kfree(p);
3220 p[50] = 0x9a;
3221 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3222 validate_slab_cache(kmalloc_caches + 8);
3224 p = kzalloc(512, GFP_KERNEL);
3225 kfree(p);
3226 p[512] = 0xab;
3227 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3228 validate_slab_cache(kmalloc_caches + 9);
3230 #else
3231 static void resiliency_test(void) {};
3232 #endif
3235 * Generate lists of code addresses where slabcache objects are allocated
3236 * and freed.
3239 struct location {
3240 unsigned long count;
3241 void *addr;
3242 long long sum_time;
3243 long min_time;
3244 long max_time;
3245 long min_pid;
3246 long max_pid;
3247 cpumask_t cpus;
3248 nodemask_t nodes;
3251 struct loc_track {
3252 unsigned long max;
3253 unsigned long count;
3254 struct location *loc;
3257 static void free_loc_track(struct loc_track *t)
3259 if (t->max)
3260 free_pages((unsigned long)t->loc,
3261 get_order(sizeof(struct location) * t->max));
3264 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3266 struct location *l;
3267 int order;
3269 order = get_order(sizeof(struct location) * max);
3271 l = (void *)__get_free_pages(flags, order);
3272 if (!l)
3273 return 0;
3275 if (t->count) {
3276 memcpy(l, t->loc, sizeof(struct location) * t->count);
3277 free_loc_track(t);
3279 t->max = max;
3280 t->loc = l;
3281 return 1;
3284 static int add_location(struct loc_track *t, struct kmem_cache *s,
3285 const struct track *track)
3287 long start, end, pos;
3288 struct location *l;
3289 void *caddr;
3290 unsigned long age = jiffies - track->when;
3292 start = -1;
3293 end = t->count;
3295 for ( ; ; ) {
3296 pos = start + (end - start + 1) / 2;
3299 * There is nothing at "end". If we end up there
3300 * we need to add something to before end.
3302 if (pos == end)
3303 break;
3305 caddr = t->loc[pos].addr;
3306 if (track->addr == caddr) {
3308 l = &t->loc[pos];
3309 l->count++;
3310 if (track->when) {
3311 l->sum_time += age;
3312 if (age < l->min_time)
3313 l->min_time = age;
3314 if (age > l->max_time)
3315 l->max_time = age;
3317 if (track->pid < l->min_pid)
3318 l->min_pid = track->pid;
3319 if (track->pid > l->max_pid)
3320 l->max_pid = track->pid;
3322 cpu_set(track->cpu, l->cpus);
3324 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3325 return 1;
3328 if (track->addr < caddr)
3329 end = pos;
3330 else
3331 start = pos;
3335 * Not found. Insert new tracking element.
3337 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3338 return 0;
3340 l = t->loc + pos;
3341 if (pos < t->count)
3342 memmove(l + 1, l,
3343 (t->count - pos) * sizeof(struct location));
3344 t->count++;
3345 l->count = 1;
3346 l->addr = track->addr;
3347 l->sum_time = age;
3348 l->min_time = age;
3349 l->max_time = age;
3350 l->min_pid = track->pid;
3351 l->max_pid = track->pid;
3352 cpus_clear(l->cpus);
3353 cpu_set(track->cpu, l->cpus);
3354 nodes_clear(l->nodes);
3355 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3356 return 1;
3359 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3360 struct page *page, enum track_item alloc)
3362 void *addr = page_address(page);
3363 DECLARE_BITMAP(map, s->objects);
3364 void *p;
3366 bitmap_zero(map, s->objects);
3367 for_each_free_object(p, s, page->freelist)
3368 set_bit(slab_index(p, s, addr), map);
3370 for_each_object(p, s, addr)
3371 if (!test_bit(slab_index(p, s, addr), map))
3372 add_location(t, s, get_track(s, p, alloc));
3375 static int list_locations(struct kmem_cache *s, char *buf,
3376 enum track_item alloc)
3378 int n = 0;
3379 unsigned long i;
3380 struct loc_track t = { 0, 0, NULL };
3381 int node;
3383 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3384 GFP_TEMPORARY))
3385 return sprintf(buf, "Out of memory\n");
3387 /* Push back cpu slabs */
3388 flush_all(s);
3390 for_each_node_state(node, N_NORMAL_MEMORY) {
3391 struct kmem_cache_node *n = get_node(s, node);
3392 unsigned long flags;
3393 struct page *page;
3395 if (!atomic_long_read(&n->nr_slabs))
3396 continue;
3398 spin_lock_irqsave(&n->list_lock, flags);
3399 list_for_each_entry(page, &n->partial, lru)
3400 process_slab(&t, s, page, alloc);
3401 list_for_each_entry(page, &n->full, lru)
3402 process_slab(&t, s, page, alloc);
3403 spin_unlock_irqrestore(&n->list_lock, flags);
3406 for (i = 0; i < t.count; i++) {
3407 struct location *l = &t.loc[i];
3409 if (n > PAGE_SIZE - 100)
3410 break;
3411 n += sprintf(buf + n, "%7ld ", l->count);
3413 if (l->addr)
3414 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3415 else
3416 n += sprintf(buf + n, "<not-available>");
3418 if (l->sum_time != l->min_time) {
3419 unsigned long remainder;
3421 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3422 l->min_time,
3423 div_long_long_rem(l->sum_time, l->count, &remainder),
3424 l->max_time);
3425 } else
3426 n += sprintf(buf + n, " age=%ld",
3427 l->min_time);
3429 if (l->min_pid != l->max_pid)
3430 n += sprintf(buf + n, " pid=%ld-%ld",
3431 l->min_pid, l->max_pid);
3432 else
3433 n += sprintf(buf + n, " pid=%ld",
3434 l->min_pid);
3436 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3437 n < PAGE_SIZE - 60) {
3438 n += sprintf(buf + n, " cpus=");
3439 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3440 l->cpus);
3443 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3444 n < PAGE_SIZE - 60) {
3445 n += sprintf(buf + n, " nodes=");
3446 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3447 l->nodes);
3450 n += sprintf(buf + n, "\n");
3453 free_loc_track(&t);
3454 if (!t.count)
3455 n += sprintf(buf, "No data\n");
3456 return n;
3459 static unsigned long count_partial(struct kmem_cache_node *n)
3461 unsigned long flags;
3462 unsigned long x = 0;
3463 struct page *page;
3465 spin_lock_irqsave(&n->list_lock, flags);
3466 list_for_each_entry(page, &n->partial, lru)
3467 x += page->inuse;
3468 spin_unlock_irqrestore(&n->list_lock, flags);
3469 return x;
3472 enum slab_stat_type {
3473 SL_FULL,
3474 SL_PARTIAL,
3475 SL_CPU,
3476 SL_OBJECTS
3479 #define SO_FULL (1 << SL_FULL)
3480 #define SO_PARTIAL (1 << SL_PARTIAL)
3481 #define SO_CPU (1 << SL_CPU)
3482 #define SO_OBJECTS (1 << SL_OBJECTS)
3484 static unsigned long slab_objects(struct kmem_cache *s,
3485 char *buf, unsigned long flags)
3487 unsigned long total = 0;
3488 int cpu;
3489 int node;
3490 int x;
3491 unsigned long *nodes;
3492 unsigned long *per_cpu;
3494 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3495 per_cpu = nodes + nr_node_ids;
3497 for_each_possible_cpu(cpu) {
3498 struct page *page;
3499 int node;
3500 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3502 if (!c)
3503 continue;
3505 page = c->page;
3506 node = c->node;
3507 if (node < 0)
3508 continue;
3509 if (page) {
3510 if (flags & SO_CPU) {
3511 int x = 0;
3513 if (flags & SO_OBJECTS)
3514 x = page->inuse;
3515 else
3516 x = 1;
3517 total += x;
3518 nodes[node] += x;
3520 per_cpu[node]++;
3524 for_each_node_state(node, N_NORMAL_MEMORY) {
3525 struct kmem_cache_node *n = get_node(s, node);
3527 if (flags & SO_PARTIAL) {
3528 if (flags & SO_OBJECTS)
3529 x = count_partial(n);
3530 else
3531 x = n->nr_partial;
3532 total += x;
3533 nodes[node] += x;
3536 if (flags & SO_FULL) {
3537 int full_slabs = atomic_long_read(&n->nr_slabs)
3538 - per_cpu[node]
3539 - n->nr_partial;
3541 if (flags & SO_OBJECTS)
3542 x = full_slabs * s->objects;
3543 else
3544 x = full_slabs;
3545 total += x;
3546 nodes[node] += x;
3550 x = sprintf(buf, "%lu", total);
3551 #ifdef CONFIG_NUMA
3552 for_each_node_state(node, N_NORMAL_MEMORY)
3553 if (nodes[node])
3554 x += sprintf(buf + x, " N%d=%lu",
3555 node, nodes[node]);
3556 #endif
3557 kfree(nodes);
3558 return x + sprintf(buf + x, "\n");
3561 static int any_slab_objects(struct kmem_cache *s)
3563 int node;
3564 int cpu;
3566 for_each_possible_cpu(cpu) {
3567 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3569 if (c && c->page)
3570 return 1;
3573 for_each_online_node(node) {
3574 struct kmem_cache_node *n = get_node(s, node);
3576 if (!n)
3577 continue;
3579 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3580 return 1;
3582 return 0;
3585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3586 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3588 struct slab_attribute {
3589 struct attribute attr;
3590 ssize_t (*show)(struct kmem_cache *s, char *buf);
3591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3594 #define SLAB_ATTR_RO(_name) \
3595 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3597 #define SLAB_ATTR(_name) \
3598 static struct slab_attribute _name##_attr = \
3599 __ATTR(_name, 0644, _name##_show, _name##_store)
3601 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3603 return sprintf(buf, "%d\n", s->size);
3605 SLAB_ATTR_RO(slab_size);
3607 static ssize_t align_show(struct kmem_cache *s, char *buf)
3609 return sprintf(buf, "%d\n", s->align);
3611 SLAB_ATTR_RO(align);
3613 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3615 return sprintf(buf, "%d\n", s->objsize);
3617 SLAB_ATTR_RO(object_size);
3619 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3621 return sprintf(buf, "%d\n", s->objects);
3623 SLAB_ATTR_RO(objs_per_slab);
3625 static ssize_t order_show(struct kmem_cache *s, char *buf)
3627 return sprintf(buf, "%d\n", s->order);
3629 SLAB_ATTR_RO(order);
3631 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3633 if (s->ctor) {
3634 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3636 return n + sprintf(buf + n, "\n");
3638 return 0;
3640 SLAB_ATTR_RO(ctor);
3642 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3644 return sprintf(buf, "%d\n", s->refcount - 1);
3646 SLAB_ATTR_RO(aliases);
3648 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3650 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3652 SLAB_ATTR_RO(slabs);
3654 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3656 return slab_objects(s, buf, SO_PARTIAL);
3658 SLAB_ATTR_RO(partial);
3660 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3662 return slab_objects(s, buf, SO_CPU);
3664 SLAB_ATTR_RO(cpu_slabs);
3666 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3668 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3670 SLAB_ATTR_RO(objects);
3672 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3674 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3677 static ssize_t sanity_checks_store(struct kmem_cache *s,
3678 const char *buf, size_t length)
3680 s->flags &= ~SLAB_DEBUG_FREE;
3681 if (buf[0] == '1')
3682 s->flags |= SLAB_DEBUG_FREE;
3683 return length;
3685 SLAB_ATTR(sanity_checks);
3687 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3689 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3692 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3693 size_t length)
3695 s->flags &= ~SLAB_TRACE;
3696 if (buf[0] == '1')
3697 s->flags |= SLAB_TRACE;
3698 return length;
3700 SLAB_ATTR(trace);
3702 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3704 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3707 static ssize_t reclaim_account_store(struct kmem_cache *s,
3708 const char *buf, size_t length)
3710 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3711 if (buf[0] == '1')
3712 s->flags |= SLAB_RECLAIM_ACCOUNT;
3713 return length;
3715 SLAB_ATTR(reclaim_account);
3717 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3719 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3721 SLAB_ATTR_RO(hwcache_align);
3723 #ifdef CONFIG_ZONE_DMA
3724 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3726 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3728 SLAB_ATTR_RO(cache_dma);
3729 #endif
3731 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3733 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3735 SLAB_ATTR_RO(destroy_by_rcu);
3737 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3739 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3742 static ssize_t red_zone_store(struct kmem_cache *s,
3743 const char *buf, size_t length)
3745 if (any_slab_objects(s))
3746 return -EBUSY;
3748 s->flags &= ~SLAB_RED_ZONE;
3749 if (buf[0] == '1')
3750 s->flags |= SLAB_RED_ZONE;
3751 calculate_sizes(s);
3752 return length;
3754 SLAB_ATTR(red_zone);
3756 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3758 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3761 static ssize_t poison_store(struct kmem_cache *s,
3762 const char *buf, size_t length)
3764 if (any_slab_objects(s))
3765 return -EBUSY;
3767 s->flags &= ~SLAB_POISON;
3768 if (buf[0] == '1')
3769 s->flags |= SLAB_POISON;
3770 calculate_sizes(s);
3771 return length;
3773 SLAB_ATTR(poison);
3775 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3780 static ssize_t store_user_store(struct kmem_cache *s,
3781 const char *buf, size_t length)
3783 if (any_slab_objects(s))
3784 return -EBUSY;
3786 s->flags &= ~SLAB_STORE_USER;
3787 if (buf[0] == '1')
3788 s->flags |= SLAB_STORE_USER;
3789 calculate_sizes(s);
3790 return length;
3792 SLAB_ATTR(store_user);
3794 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3796 return 0;
3799 static ssize_t validate_store(struct kmem_cache *s,
3800 const char *buf, size_t length)
3802 int ret = -EINVAL;
3804 if (buf[0] == '1') {
3805 ret = validate_slab_cache(s);
3806 if (ret >= 0)
3807 ret = length;
3809 return ret;
3811 SLAB_ATTR(validate);
3813 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3815 return 0;
3818 static ssize_t shrink_store(struct kmem_cache *s,
3819 const char *buf, size_t length)
3821 if (buf[0] == '1') {
3822 int rc = kmem_cache_shrink(s);
3824 if (rc)
3825 return rc;
3826 } else
3827 return -EINVAL;
3828 return length;
3830 SLAB_ATTR(shrink);
3832 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3834 if (!(s->flags & SLAB_STORE_USER))
3835 return -ENOSYS;
3836 return list_locations(s, buf, TRACK_ALLOC);
3838 SLAB_ATTR_RO(alloc_calls);
3840 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3842 if (!(s->flags & SLAB_STORE_USER))
3843 return -ENOSYS;
3844 return list_locations(s, buf, TRACK_FREE);
3846 SLAB_ATTR_RO(free_calls);
3848 #ifdef CONFIG_NUMA
3849 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3851 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3854 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3855 const char *buf, size_t length)
3857 int n = simple_strtoul(buf, NULL, 10);
3859 if (n < 100)
3860 s->defrag_ratio = n * 10;
3861 return length;
3863 SLAB_ATTR(defrag_ratio);
3864 #endif
3866 static struct attribute * slab_attrs[] = {
3867 &slab_size_attr.attr,
3868 &object_size_attr.attr,
3869 &objs_per_slab_attr.attr,
3870 &order_attr.attr,
3871 &objects_attr.attr,
3872 &slabs_attr.attr,
3873 &partial_attr.attr,
3874 &cpu_slabs_attr.attr,
3875 &ctor_attr.attr,
3876 &aliases_attr.attr,
3877 &align_attr.attr,
3878 &sanity_checks_attr.attr,
3879 &trace_attr.attr,
3880 &hwcache_align_attr.attr,
3881 &reclaim_account_attr.attr,
3882 &destroy_by_rcu_attr.attr,
3883 &red_zone_attr.attr,
3884 &poison_attr.attr,
3885 &store_user_attr.attr,
3886 &validate_attr.attr,
3887 &shrink_attr.attr,
3888 &alloc_calls_attr.attr,
3889 &free_calls_attr.attr,
3890 #ifdef CONFIG_ZONE_DMA
3891 &cache_dma_attr.attr,
3892 #endif
3893 #ifdef CONFIG_NUMA
3894 &defrag_ratio_attr.attr,
3895 #endif
3896 NULL
3899 static struct attribute_group slab_attr_group = {
3900 .attrs = slab_attrs,
3903 static ssize_t slab_attr_show(struct kobject *kobj,
3904 struct attribute *attr,
3905 char *buf)
3907 struct slab_attribute *attribute;
3908 struct kmem_cache *s;
3909 int err;
3911 attribute = to_slab_attr(attr);
3912 s = to_slab(kobj);
3914 if (!attribute->show)
3915 return -EIO;
3917 err = attribute->show(s, buf);
3919 return err;
3922 static ssize_t slab_attr_store(struct kobject *kobj,
3923 struct attribute *attr,
3924 const char *buf, size_t len)
3926 struct slab_attribute *attribute;
3927 struct kmem_cache *s;
3928 int err;
3930 attribute = to_slab_attr(attr);
3931 s = to_slab(kobj);
3933 if (!attribute->store)
3934 return -EIO;
3936 err = attribute->store(s, buf, len);
3938 return err;
3941 static struct sysfs_ops slab_sysfs_ops = {
3942 .show = slab_attr_show,
3943 .store = slab_attr_store,
3946 static struct kobj_type slab_ktype = {
3947 .sysfs_ops = &slab_sysfs_ops,
3950 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3952 struct kobj_type *ktype = get_ktype(kobj);
3954 if (ktype == &slab_ktype)
3955 return 1;
3956 return 0;
3959 static struct kset_uevent_ops slab_uevent_ops = {
3960 .filter = uevent_filter,
3963 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3965 #define ID_STR_LENGTH 64
3967 /* Create a unique string id for a slab cache:
3968 * format
3969 * :[flags-]size:[memory address of kmemcache]
3971 static char *create_unique_id(struct kmem_cache *s)
3973 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3974 char *p = name;
3976 BUG_ON(!name);
3978 *p++ = ':';
3980 * First flags affecting slabcache operations. We will only
3981 * get here for aliasable slabs so we do not need to support
3982 * too many flags. The flags here must cover all flags that
3983 * are matched during merging to guarantee that the id is
3984 * unique.
3986 if (s->flags & SLAB_CACHE_DMA)
3987 *p++ = 'd';
3988 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3989 *p++ = 'a';
3990 if (s->flags & SLAB_DEBUG_FREE)
3991 *p++ = 'F';
3992 if (p != name + 1)
3993 *p++ = '-';
3994 p += sprintf(p, "%07d", s->size);
3995 BUG_ON(p > name + ID_STR_LENGTH - 1);
3996 return name;
3999 static int sysfs_slab_add(struct kmem_cache *s)
4001 int err;
4002 const char *name;
4003 int unmergeable;
4005 if (slab_state < SYSFS)
4006 /* Defer until later */
4007 return 0;
4009 unmergeable = slab_unmergeable(s);
4010 if (unmergeable) {
4012 * Slabcache can never be merged so we can use the name proper.
4013 * This is typically the case for debug situations. In that
4014 * case we can catch duplicate names easily.
4016 sysfs_remove_link(&slab_subsys.kobj, s->name);
4017 name = s->name;
4018 } else {
4020 * Create a unique name for the slab as a target
4021 * for the symlinks.
4023 name = create_unique_id(s);
4026 kobj_set_kset_s(s, slab_subsys);
4027 kobject_set_name(&s->kobj, name);
4028 kobject_init(&s->kobj);
4029 err = kobject_add(&s->kobj);
4030 if (err)
4031 return err;
4033 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4034 if (err)
4035 return err;
4036 kobject_uevent(&s->kobj, KOBJ_ADD);
4037 if (!unmergeable) {
4038 /* Setup first alias */
4039 sysfs_slab_alias(s, s->name);
4040 kfree(name);
4042 return 0;
4045 static void sysfs_slab_remove(struct kmem_cache *s)
4047 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4048 kobject_del(&s->kobj);
4052 * Need to buffer aliases during bootup until sysfs becomes
4053 * available lest we loose that information.
4055 struct saved_alias {
4056 struct kmem_cache *s;
4057 const char *name;
4058 struct saved_alias *next;
4061 static struct saved_alias *alias_list;
4063 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4065 struct saved_alias *al;
4067 if (slab_state == SYSFS) {
4069 * If we have a leftover link then remove it.
4071 sysfs_remove_link(&slab_subsys.kobj, name);
4072 return sysfs_create_link(&slab_subsys.kobj,
4073 &s->kobj, name);
4076 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4077 if (!al)
4078 return -ENOMEM;
4080 al->s = s;
4081 al->name = name;
4082 al->next = alias_list;
4083 alias_list = al;
4084 return 0;
4087 static int __init slab_sysfs_init(void)
4089 struct kmem_cache *s;
4090 int err;
4092 err = subsystem_register(&slab_subsys);
4093 if (err) {
4094 printk(KERN_ERR "Cannot register slab subsystem.\n");
4095 return -ENOSYS;
4098 slab_state = SYSFS;
4100 list_for_each_entry(s, &slab_caches, list) {
4101 err = sysfs_slab_add(s);
4102 if (err)
4103 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4104 " to sysfs\n", s->name);
4107 while (alias_list) {
4108 struct saved_alias *al = alias_list;
4110 alias_list = alias_list->next;
4111 err = sysfs_slab_alias(al->s, al->name);
4112 if (err)
4113 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4114 " %s to sysfs\n", s->name);
4115 kfree(al);
4118 resiliency_test();
4119 return 0;
4122 __initcall(slab_sysfs_init);
4123 #endif