xen32: create initial mappings like 64-bit
[linux-2.6/x86.git] / include / asm-x86 / spinlock.h
blob21e89bf92f1c8cd547b697fcc37021388d8115e2
1 #ifndef _X86_SPINLOCK_H_
2 #define _X86_SPINLOCK_H_
4 #include <asm/atomic.h>
5 #include <asm/rwlock.h>
6 #include <asm/page.h>
7 #include <asm/processor.h>
8 #include <linux/compiler.h>
11 * Your basic SMP spinlocks, allowing only a single CPU anywhere
13 * Simple spin lock operations. There are two variants, one clears IRQ's
14 * on the local processor, one does not.
16 * These are fair FIFO ticket locks, which are currently limited to 256
17 * CPUs.
19 * (the type definitions are in asm/spinlock_types.h)
22 #ifdef CONFIG_X86_32
23 # define LOCK_PTR_REG "a"
24 #else
25 # define LOCK_PTR_REG "D"
26 #endif
28 #if defined(CONFIG_X86_32) && \
29 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
31 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
32 * (PPro errata 66, 92)
34 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
35 #else
36 # define UNLOCK_LOCK_PREFIX
37 #endif
40 * Ticket locks are conceptually two parts, one indicating the current head of
41 * the queue, and the other indicating the current tail. The lock is acquired
42 * by atomically noting the tail and incrementing it by one (thus adding
43 * ourself to the queue and noting our position), then waiting until the head
44 * becomes equal to the the initial value of the tail.
46 * We use an xadd covering *both* parts of the lock, to increment the tail and
47 * also load the position of the head, which takes care of memory ordering
48 * issues and should be optimal for the uncontended case. Note the tail must be
49 * in the high part, because a wide xadd increment of the low part would carry
50 * up and contaminate the high part.
52 * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
53 * save some instructions and make the code more elegant. There really isn't
54 * much between them in performance though, especially as locks are out of line.
56 #if (NR_CPUS < 256)
57 static inline int __raw_spin_is_locked(raw_spinlock_t *lock)
59 int tmp = ACCESS_ONCE(lock->slock);
61 return (((tmp >> 8) & 0xff) != (tmp & 0xff));
64 static inline int __raw_spin_is_contended(raw_spinlock_t *lock)
66 int tmp = ACCESS_ONCE(lock->slock);
68 return (((tmp >> 8) & 0xff) - (tmp & 0xff)) > 1;
71 static __always_inline void __raw_spin_lock(raw_spinlock_t *lock)
73 short inc = 0x0100;
75 asm volatile (
76 LOCK_PREFIX "xaddw %w0, %1\n"
77 "1:\t"
78 "cmpb %h0, %b0\n\t"
79 "je 2f\n\t"
80 "rep ; nop\n\t"
81 "movb %1, %b0\n\t"
82 /* don't need lfence here, because loads are in-order */
83 "jmp 1b\n"
84 "2:"
85 : "+Q" (inc), "+m" (lock->slock)
87 : "memory", "cc");
90 #define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock)
92 static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock)
94 int tmp;
95 short new;
97 asm volatile("movw %2,%w0\n\t"
98 "cmpb %h0,%b0\n\t"
99 "jne 1f\n\t"
100 "movw %w0,%w1\n\t"
101 "incb %h1\n\t"
102 "lock ; cmpxchgw %w1,%2\n\t"
103 "1:"
104 "sete %b1\n\t"
105 "movzbl %b1,%0\n\t"
106 : "=&a" (tmp), "=Q" (new), "+m" (lock->slock)
108 : "memory", "cc");
110 return tmp;
113 static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock)
115 asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
116 : "+m" (lock->slock)
118 : "memory", "cc");
120 #else
121 static inline int __raw_spin_is_locked(raw_spinlock_t *lock)
123 int tmp = ACCESS_ONCE(lock->slock);
125 return (((tmp >> 16) & 0xffff) != (tmp & 0xffff));
128 static inline int __raw_spin_is_contended(raw_spinlock_t *lock)
130 int tmp = ACCESS_ONCE(lock->slock);
132 return (((tmp >> 16) & 0xffff) - (tmp & 0xffff)) > 1;
135 static __always_inline void __raw_spin_lock(raw_spinlock_t *lock)
137 int inc = 0x00010000;
138 int tmp;
140 asm volatile("lock ; xaddl %0, %1\n"
141 "movzwl %w0, %2\n\t"
142 "shrl $16, %0\n\t"
143 "1:\t"
144 "cmpl %0, %2\n\t"
145 "je 2f\n\t"
146 "rep ; nop\n\t"
147 "movzwl %1, %2\n\t"
148 /* don't need lfence here, because loads are in-order */
149 "jmp 1b\n"
150 "2:"
151 : "+Q" (inc), "+m" (lock->slock), "=r" (tmp)
153 : "memory", "cc");
156 #define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock)
158 static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock)
160 int tmp;
161 int new;
163 asm volatile("movl %2,%0\n\t"
164 "movl %0,%1\n\t"
165 "roll $16, %0\n\t"
166 "cmpl %0,%1\n\t"
167 "jne 1f\n\t"
168 "addl $0x00010000, %1\n\t"
169 "lock ; cmpxchgl %1,%2\n\t"
170 "1:"
171 "sete %b1\n\t"
172 "movzbl %b1,%0\n\t"
173 : "=&a" (tmp), "=r" (new), "+m" (lock->slock)
175 : "memory", "cc");
177 return tmp;
180 static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock)
182 asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
183 : "+m" (lock->slock)
185 : "memory", "cc");
187 #endif
189 static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock)
191 while (__raw_spin_is_locked(lock))
192 cpu_relax();
196 * Read-write spinlocks, allowing multiple readers
197 * but only one writer.
199 * NOTE! it is quite common to have readers in interrupts
200 * but no interrupt writers. For those circumstances we
201 * can "mix" irq-safe locks - any writer needs to get a
202 * irq-safe write-lock, but readers can get non-irqsafe
203 * read-locks.
205 * On x86, we implement read-write locks as a 32-bit counter
206 * with the high bit (sign) being the "contended" bit.
210 * read_can_lock - would read_trylock() succeed?
211 * @lock: the rwlock in question.
213 static inline int __raw_read_can_lock(raw_rwlock_t *lock)
215 return (int)(lock)->lock > 0;
219 * write_can_lock - would write_trylock() succeed?
220 * @lock: the rwlock in question.
222 static inline int __raw_write_can_lock(raw_rwlock_t *lock)
224 return (lock)->lock == RW_LOCK_BIAS;
227 static inline void __raw_read_lock(raw_rwlock_t *rw)
229 asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t"
230 "jns 1f\n"
231 "call __read_lock_failed\n\t"
232 "1:\n"
233 ::LOCK_PTR_REG (rw) : "memory");
236 static inline void __raw_write_lock(raw_rwlock_t *rw)
238 asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t"
239 "jz 1f\n"
240 "call __write_lock_failed\n\t"
241 "1:\n"
242 ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory");
245 static inline int __raw_read_trylock(raw_rwlock_t *lock)
247 atomic_t *count = (atomic_t *)lock;
249 atomic_dec(count);
250 if (atomic_read(count) >= 0)
251 return 1;
252 atomic_inc(count);
253 return 0;
256 static inline int __raw_write_trylock(raw_rwlock_t *lock)
258 atomic_t *count = (atomic_t *)lock;
260 if (atomic_sub_and_test(RW_LOCK_BIAS, count))
261 return 1;
262 atomic_add(RW_LOCK_BIAS, count);
263 return 0;
266 static inline void __raw_read_unlock(raw_rwlock_t *rw)
268 asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory");
271 static inline void __raw_write_unlock(raw_rwlock_t *rw)
273 asm volatile(LOCK_PREFIX "addl %1, %0"
274 : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory");
277 #define _raw_spin_relax(lock) cpu_relax()
278 #define _raw_read_relax(lock) cpu_relax()
279 #define _raw_write_relax(lock) cpu_relax()
281 #endif