md: don't allow arrays to contain devices with bad blocks.
[linux-2.6/x86.git] / drivers / md / raid5.c
blob719445004dd992b95792127aa42f1c3e1680abfd
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
61 * Stripe cache
64 #define NR_STRIPES 256
65 #define STRIPE_SIZE PAGE_SIZE
66 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD 1
69 #define BYPASS_THRESHOLD 1
70 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK (NR_HASH - 1)
73 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
75 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
84 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
86 * The following can be used to debug the driver
88 #define RAID5_PARANOIA 1
89 #if RAID5_PARANOIA && defined(CONFIG_SMP)
90 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 #else
92 # define CHECK_DEVLOCK()
93 #endif
95 #ifdef DEBUG
96 #define inline
97 #define __inline__
98 #endif
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 static inline int raid5_bi_phys_segments(struct bio *bio)
106 return bio->bi_phys_segments & 0xffff;
109 static inline int raid5_bi_hw_segments(struct bio *bio)
111 return (bio->bi_phys_segments >> 16) & 0xffff;
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 unsigned short val = raid5_bi_hw_segments(bio);
124 --val;
125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 return val;
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
146 static inline int raid6_next_disk(int disk, int raid_disks)
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
160 int slot = *count;
162 if (sh->ddf_layout)
163 (*count)++;
164 if (idx == sh->pd_idx)
165 return syndrome_disks;
166 if (idx == sh->qd_idx)
167 return syndrome_disks + 1;
168 if (!sh->ddf_layout)
169 (*count)++;
170 return slot;
173 static void return_io(struct bio *return_bi)
175 struct bio *bi = return_bi;
176 while (bi) {
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
181 bio_endio(bi, 0);
182 bi = return_bi;
186 static void print_raid5_conf (raid5_conf_t *conf);
188 static int stripe_operations_active(struct stripe_head *sh)
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 if (atomic_dec_and_test(&sh->count)) {
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 if (test_bit(STRIPE_DELAYED, &sh->state))
202 list_add_tail(&sh->lru, &conf->delayed_list);
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 else {
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
218 atomic_dec(&conf->active_stripes);
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
221 wake_up(&conf->wait_for_stripe);
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
229 static void release_stripe(struct stripe_head *sh)
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
239 static inline void remove_hash(struct stripe_head *sh)
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
244 hlist_del_init(&sh->hash);
247 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
254 CHECK_DEVLOCK();
255 hlist_add_head(&sh->hash, hp);
259 /* find an idle stripe, make sure it is unhashed, and return it. */
260 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273 out:
274 return sh;
277 static void shrink_buffers(struct stripe_head *sh)
279 struct page *p;
280 int i;
281 int num = sh->raid_conf->pool_size;
283 for (i = 0; i < num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
292 static int grow_buffers(struct stripe_head *sh)
294 int i;
295 int num = sh->raid_conf->pool_size;
297 for (i = 0; i < num; i++) {
298 struct page *page;
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
303 sh->dev[i].page = page;
305 return 0;
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 raid5_conf_t *conf = sh->raid_conf;
315 int i;
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 BUG_ON(stripe_operations_active(sh));
321 CHECK_DEVLOCK();
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh->sector);
325 remove_hash(sh);
327 sh->generation = conf->generation - previous;
328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 sh->sector = sector;
330 stripe_set_idx(sector, conf, previous, sh);
331 sh->state = 0;
334 for (i = sh->disks; i--; ) {
335 struct r5dev *dev = &sh->dev[i];
337 if (dev->toread || dev->read || dev->towrite || dev->written ||
338 test_bit(R5_LOCKED, &dev->flags)) {
339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh->sector, i, dev->toread,
341 dev->read, dev->towrite, dev->written,
342 test_bit(R5_LOCKED, &dev->flags));
343 WARN_ON(1);
345 dev->flags = 0;
346 raid5_build_block(sh, i, previous);
348 insert_hash(conf, sh);
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
354 struct stripe_head *sh;
355 struct hlist_node *hn;
357 CHECK_DEVLOCK();
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 if (sh->sector == sector && sh->generation == generation)
361 return sh;
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 return NULL;
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
379 static int has_failed(raid5_conf_t *conf)
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
433 static struct stripe_head *
434 get_active_stripe(raid5_conf_t *conf, sector_t sector,
435 int previous, int noblock, int noquiesce)
437 struct stripe_head *sh;
439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441 spin_lock_irq(&conf->device_lock);
443 do {
444 wait_event_lock_irq(conf->wait_for_stripe,
445 conf->quiesce == 0 || noquiesce,
446 conf->device_lock, /* nothing */);
447 sh = __find_stripe(conf, sector, conf->generation - previous);
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
459 || !conf->inactive_blocked),
460 conf->device_lock,
462 conf->inactive_blocked = 0;
463 } else
464 init_stripe(sh, sector, previous);
465 } else {
466 if (atomic_read(&sh->count)) {
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
474 BUG();
475 list_del_init(&sh->lru);
478 } while (sh == NULL);
480 if (sh)
481 atomic_inc(&sh->count);
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
487 static void
488 raid5_end_read_request(struct bio *bi, int error);
489 static void
490 raid5_end_write_request(struct bio *bi, int error);
492 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
497 might_sleep();
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 rw = READ;
510 else
511 continue;
513 bi = &sh->dev[i].req;
515 bi->bi_rw = rw;
516 if (rw & WRITE)
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
529 if (rdev) {
530 if (s->syncing || s->expanding || s->expanded)
531 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533 set_bit(STRIPE_IO_STARTED, &sh->state);
535 bi->bi_bdev = rdev->bdev;
536 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
537 __func__, (unsigned long long)sh->sector,
538 bi->bi_rw, i);
539 atomic_inc(&sh->count);
540 bi->bi_sector = sh->sector + rdev->data_offset;
541 bi->bi_flags = 1 << BIO_UPTODATE;
542 bi->bi_vcnt = 1;
543 bi->bi_max_vecs = 1;
544 bi->bi_idx = 0;
545 bi->bi_io_vec = &sh->dev[i].vec;
546 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
547 bi->bi_io_vec[0].bv_offset = 0;
548 bi->bi_size = STRIPE_SIZE;
549 bi->bi_next = NULL;
550 generic_make_request(bi);
551 } else {
552 if (rw & WRITE)
553 set_bit(STRIPE_DEGRADED, &sh->state);
554 pr_debug("skip op %ld on disc %d for sector %llu\n",
555 bi->bi_rw, i, (unsigned long long)sh->sector);
556 clear_bit(R5_LOCKED, &sh->dev[i].flags);
557 set_bit(STRIPE_HANDLE, &sh->state);
562 static struct dma_async_tx_descriptor *
563 async_copy_data(int frombio, struct bio *bio, struct page *page,
564 sector_t sector, struct dma_async_tx_descriptor *tx)
566 struct bio_vec *bvl;
567 struct page *bio_page;
568 int i;
569 int page_offset;
570 struct async_submit_ctl submit;
571 enum async_tx_flags flags = 0;
573 if (bio->bi_sector >= sector)
574 page_offset = (signed)(bio->bi_sector - sector) * 512;
575 else
576 page_offset = (signed)(sector - bio->bi_sector) * -512;
578 if (frombio)
579 flags |= ASYNC_TX_FENCE;
580 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
582 bio_for_each_segment(bvl, bio, i) {
583 int len = bvl->bv_len;
584 int clen;
585 int b_offset = 0;
587 if (page_offset < 0) {
588 b_offset = -page_offset;
589 page_offset += b_offset;
590 len -= b_offset;
593 if (len > 0 && page_offset + len > STRIPE_SIZE)
594 clen = STRIPE_SIZE - page_offset;
595 else
596 clen = len;
598 if (clen > 0) {
599 b_offset += bvl->bv_offset;
600 bio_page = bvl->bv_page;
601 if (frombio)
602 tx = async_memcpy(page, bio_page, page_offset,
603 b_offset, clen, &submit);
604 else
605 tx = async_memcpy(bio_page, page, b_offset,
606 page_offset, clen, &submit);
608 /* chain the operations */
609 submit.depend_tx = tx;
611 if (clen < len) /* hit end of page */
612 break;
613 page_offset += len;
616 return tx;
619 static void ops_complete_biofill(void *stripe_head_ref)
621 struct stripe_head *sh = stripe_head_ref;
622 struct bio *return_bi = NULL;
623 raid5_conf_t *conf = sh->raid_conf;
624 int i;
626 pr_debug("%s: stripe %llu\n", __func__,
627 (unsigned long long)sh->sector);
629 /* clear completed biofills */
630 spin_lock_irq(&conf->device_lock);
631 for (i = sh->disks; i--; ) {
632 struct r5dev *dev = &sh->dev[i];
634 /* acknowledge completion of a biofill operation */
635 /* and check if we need to reply to a read request,
636 * new R5_Wantfill requests are held off until
637 * !STRIPE_BIOFILL_RUN
639 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
640 struct bio *rbi, *rbi2;
642 BUG_ON(!dev->read);
643 rbi = dev->read;
644 dev->read = NULL;
645 while (rbi && rbi->bi_sector <
646 dev->sector + STRIPE_SECTORS) {
647 rbi2 = r5_next_bio(rbi, dev->sector);
648 if (!raid5_dec_bi_phys_segments(rbi)) {
649 rbi->bi_next = return_bi;
650 return_bi = rbi;
652 rbi = rbi2;
656 spin_unlock_irq(&conf->device_lock);
657 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
659 return_io(return_bi);
661 set_bit(STRIPE_HANDLE, &sh->state);
662 release_stripe(sh);
665 static void ops_run_biofill(struct stripe_head *sh)
667 struct dma_async_tx_descriptor *tx = NULL;
668 raid5_conf_t *conf = sh->raid_conf;
669 struct async_submit_ctl submit;
670 int i;
672 pr_debug("%s: stripe %llu\n", __func__,
673 (unsigned long long)sh->sector);
675 for (i = sh->disks; i--; ) {
676 struct r5dev *dev = &sh->dev[i];
677 if (test_bit(R5_Wantfill, &dev->flags)) {
678 struct bio *rbi;
679 spin_lock_irq(&conf->device_lock);
680 dev->read = rbi = dev->toread;
681 dev->toread = NULL;
682 spin_unlock_irq(&conf->device_lock);
683 while (rbi && rbi->bi_sector <
684 dev->sector + STRIPE_SECTORS) {
685 tx = async_copy_data(0, rbi, dev->page,
686 dev->sector, tx);
687 rbi = r5_next_bio(rbi, dev->sector);
692 atomic_inc(&sh->count);
693 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
694 async_trigger_callback(&submit);
697 static void mark_target_uptodate(struct stripe_head *sh, int target)
699 struct r5dev *tgt;
701 if (target < 0)
702 return;
704 tgt = &sh->dev[target];
705 set_bit(R5_UPTODATE, &tgt->flags);
706 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
707 clear_bit(R5_Wantcompute, &tgt->flags);
710 static void ops_complete_compute(void *stripe_head_ref)
712 struct stripe_head *sh = stripe_head_ref;
714 pr_debug("%s: stripe %llu\n", __func__,
715 (unsigned long long)sh->sector);
717 /* mark the computed target(s) as uptodate */
718 mark_target_uptodate(sh, sh->ops.target);
719 mark_target_uptodate(sh, sh->ops.target2);
721 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
722 if (sh->check_state == check_state_compute_run)
723 sh->check_state = check_state_compute_result;
724 set_bit(STRIPE_HANDLE, &sh->state);
725 release_stripe(sh);
728 /* return a pointer to the address conversion region of the scribble buffer */
729 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
730 struct raid5_percpu *percpu)
732 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
735 static struct dma_async_tx_descriptor *
736 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
738 int disks = sh->disks;
739 struct page **xor_srcs = percpu->scribble;
740 int target = sh->ops.target;
741 struct r5dev *tgt = &sh->dev[target];
742 struct page *xor_dest = tgt->page;
743 int count = 0;
744 struct dma_async_tx_descriptor *tx;
745 struct async_submit_ctl submit;
746 int i;
748 pr_debug("%s: stripe %llu block: %d\n",
749 __func__, (unsigned long long)sh->sector, target);
750 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
752 for (i = disks; i--; )
753 if (i != target)
754 xor_srcs[count++] = sh->dev[i].page;
756 atomic_inc(&sh->count);
758 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
759 ops_complete_compute, sh, to_addr_conv(sh, percpu));
760 if (unlikely(count == 1))
761 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
762 else
763 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
765 return tx;
768 /* set_syndrome_sources - populate source buffers for gen_syndrome
769 * @srcs - (struct page *) array of size sh->disks
770 * @sh - stripe_head to parse
772 * Populates srcs in proper layout order for the stripe and returns the
773 * 'count' of sources to be used in a call to async_gen_syndrome. The P
774 * destination buffer is recorded in srcs[count] and the Q destination
775 * is recorded in srcs[count+1]].
777 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
779 int disks = sh->disks;
780 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
781 int d0_idx = raid6_d0(sh);
782 int count;
783 int i;
785 for (i = 0; i < disks; i++)
786 srcs[i] = NULL;
788 count = 0;
789 i = d0_idx;
790 do {
791 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
793 srcs[slot] = sh->dev[i].page;
794 i = raid6_next_disk(i, disks);
795 } while (i != d0_idx);
797 return syndrome_disks;
800 static struct dma_async_tx_descriptor *
801 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
803 int disks = sh->disks;
804 struct page **blocks = percpu->scribble;
805 int target;
806 int qd_idx = sh->qd_idx;
807 struct dma_async_tx_descriptor *tx;
808 struct async_submit_ctl submit;
809 struct r5dev *tgt;
810 struct page *dest;
811 int i;
812 int count;
814 if (sh->ops.target < 0)
815 target = sh->ops.target2;
816 else if (sh->ops.target2 < 0)
817 target = sh->ops.target;
818 else
819 /* we should only have one valid target */
820 BUG();
821 BUG_ON(target < 0);
822 pr_debug("%s: stripe %llu block: %d\n",
823 __func__, (unsigned long long)sh->sector, target);
825 tgt = &sh->dev[target];
826 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
827 dest = tgt->page;
829 atomic_inc(&sh->count);
831 if (target == qd_idx) {
832 count = set_syndrome_sources(blocks, sh);
833 blocks[count] = NULL; /* regenerating p is not necessary */
834 BUG_ON(blocks[count+1] != dest); /* q should already be set */
835 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
836 ops_complete_compute, sh,
837 to_addr_conv(sh, percpu));
838 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
839 } else {
840 /* Compute any data- or p-drive using XOR */
841 count = 0;
842 for (i = disks; i-- ; ) {
843 if (i == target || i == qd_idx)
844 continue;
845 blocks[count++] = sh->dev[i].page;
848 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
849 NULL, ops_complete_compute, sh,
850 to_addr_conv(sh, percpu));
851 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
854 return tx;
857 static struct dma_async_tx_descriptor *
858 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
860 int i, count, disks = sh->disks;
861 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
862 int d0_idx = raid6_d0(sh);
863 int faila = -1, failb = -1;
864 int target = sh->ops.target;
865 int target2 = sh->ops.target2;
866 struct r5dev *tgt = &sh->dev[target];
867 struct r5dev *tgt2 = &sh->dev[target2];
868 struct dma_async_tx_descriptor *tx;
869 struct page **blocks = percpu->scribble;
870 struct async_submit_ctl submit;
872 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
873 __func__, (unsigned long long)sh->sector, target, target2);
874 BUG_ON(target < 0 || target2 < 0);
875 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
876 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
878 /* we need to open-code set_syndrome_sources to handle the
879 * slot number conversion for 'faila' and 'failb'
881 for (i = 0; i < disks ; i++)
882 blocks[i] = NULL;
883 count = 0;
884 i = d0_idx;
885 do {
886 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
888 blocks[slot] = sh->dev[i].page;
890 if (i == target)
891 faila = slot;
892 if (i == target2)
893 failb = slot;
894 i = raid6_next_disk(i, disks);
895 } while (i != d0_idx);
897 BUG_ON(faila == failb);
898 if (failb < faila)
899 swap(faila, failb);
900 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
901 __func__, (unsigned long long)sh->sector, faila, failb);
903 atomic_inc(&sh->count);
905 if (failb == syndrome_disks+1) {
906 /* Q disk is one of the missing disks */
907 if (faila == syndrome_disks) {
908 /* Missing P+Q, just recompute */
909 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
910 ops_complete_compute, sh,
911 to_addr_conv(sh, percpu));
912 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
913 STRIPE_SIZE, &submit);
914 } else {
915 struct page *dest;
916 int data_target;
917 int qd_idx = sh->qd_idx;
919 /* Missing D+Q: recompute D from P, then recompute Q */
920 if (target == qd_idx)
921 data_target = target2;
922 else
923 data_target = target;
925 count = 0;
926 for (i = disks; i-- ; ) {
927 if (i == data_target || i == qd_idx)
928 continue;
929 blocks[count++] = sh->dev[i].page;
931 dest = sh->dev[data_target].page;
932 init_async_submit(&submit,
933 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
934 NULL, NULL, NULL,
935 to_addr_conv(sh, percpu));
936 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
937 &submit);
939 count = set_syndrome_sources(blocks, sh);
940 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
941 ops_complete_compute, sh,
942 to_addr_conv(sh, percpu));
943 return async_gen_syndrome(blocks, 0, count+2,
944 STRIPE_SIZE, &submit);
946 } else {
947 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
948 ops_complete_compute, sh,
949 to_addr_conv(sh, percpu));
950 if (failb == syndrome_disks) {
951 /* We're missing D+P. */
952 return async_raid6_datap_recov(syndrome_disks+2,
953 STRIPE_SIZE, faila,
954 blocks, &submit);
955 } else {
956 /* We're missing D+D. */
957 return async_raid6_2data_recov(syndrome_disks+2,
958 STRIPE_SIZE, faila, failb,
959 blocks, &submit);
965 static void ops_complete_prexor(void *stripe_head_ref)
967 struct stripe_head *sh = stripe_head_ref;
969 pr_debug("%s: stripe %llu\n", __func__,
970 (unsigned long long)sh->sector);
973 static struct dma_async_tx_descriptor *
974 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
975 struct dma_async_tx_descriptor *tx)
977 int disks = sh->disks;
978 struct page **xor_srcs = percpu->scribble;
979 int count = 0, pd_idx = sh->pd_idx, i;
980 struct async_submit_ctl submit;
982 /* existing parity data subtracted */
983 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
985 pr_debug("%s: stripe %llu\n", __func__,
986 (unsigned long long)sh->sector);
988 for (i = disks; i--; ) {
989 struct r5dev *dev = &sh->dev[i];
990 /* Only process blocks that are known to be uptodate */
991 if (test_bit(R5_Wantdrain, &dev->flags))
992 xor_srcs[count++] = dev->page;
995 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
996 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
997 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
999 return tx;
1002 static struct dma_async_tx_descriptor *
1003 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1005 int disks = sh->disks;
1006 int i;
1008 pr_debug("%s: stripe %llu\n", __func__,
1009 (unsigned long long)sh->sector);
1011 for (i = disks; i--; ) {
1012 struct r5dev *dev = &sh->dev[i];
1013 struct bio *chosen;
1015 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1016 struct bio *wbi;
1018 spin_lock_irq(&sh->raid_conf->device_lock);
1019 chosen = dev->towrite;
1020 dev->towrite = NULL;
1021 BUG_ON(dev->written);
1022 wbi = dev->written = chosen;
1023 spin_unlock_irq(&sh->raid_conf->device_lock);
1025 while (wbi && wbi->bi_sector <
1026 dev->sector + STRIPE_SECTORS) {
1027 if (wbi->bi_rw & REQ_FUA)
1028 set_bit(R5_WantFUA, &dev->flags);
1029 tx = async_copy_data(1, wbi, dev->page,
1030 dev->sector, tx);
1031 wbi = r5_next_bio(wbi, dev->sector);
1036 return tx;
1039 static void ops_complete_reconstruct(void *stripe_head_ref)
1041 struct stripe_head *sh = stripe_head_ref;
1042 int disks = sh->disks;
1043 int pd_idx = sh->pd_idx;
1044 int qd_idx = sh->qd_idx;
1045 int i;
1046 bool fua = false;
1048 pr_debug("%s: stripe %llu\n", __func__,
1049 (unsigned long long)sh->sector);
1051 for (i = disks; i--; )
1052 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1054 for (i = disks; i--; ) {
1055 struct r5dev *dev = &sh->dev[i];
1057 if (dev->written || i == pd_idx || i == qd_idx) {
1058 set_bit(R5_UPTODATE, &dev->flags);
1059 if (fua)
1060 set_bit(R5_WantFUA, &dev->flags);
1064 if (sh->reconstruct_state == reconstruct_state_drain_run)
1065 sh->reconstruct_state = reconstruct_state_drain_result;
1066 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1067 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1068 else {
1069 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1070 sh->reconstruct_state = reconstruct_state_result;
1073 set_bit(STRIPE_HANDLE, &sh->state);
1074 release_stripe(sh);
1077 static void
1078 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1079 struct dma_async_tx_descriptor *tx)
1081 int disks = sh->disks;
1082 struct page **xor_srcs = percpu->scribble;
1083 struct async_submit_ctl submit;
1084 int count = 0, pd_idx = sh->pd_idx, i;
1085 struct page *xor_dest;
1086 int prexor = 0;
1087 unsigned long flags;
1089 pr_debug("%s: stripe %llu\n", __func__,
1090 (unsigned long long)sh->sector);
1092 /* check if prexor is active which means only process blocks
1093 * that are part of a read-modify-write (written)
1095 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1096 prexor = 1;
1097 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1098 for (i = disks; i--; ) {
1099 struct r5dev *dev = &sh->dev[i];
1100 if (dev->written)
1101 xor_srcs[count++] = dev->page;
1103 } else {
1104 xor_dest = sh->dev[pd_idx].page;
1105 for (i = disks; i--; ) {
1106 struct r5dev *dev = &sh->dev[i];
1107 if (i != pd_idx)
1108 xor_srcs[count++] = dev->page;
1112 /* 1/ if we prexor'd then the dest is reused as a source
1113 * 2/ if we did not prexor then we are redoing the parity
1114 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1115 * for the synchronous xor case
1117 flags = ASYNC_TX_ACK |
1118 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1120 atomic_inc(&sh->count);
1122 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1123 to_addr_conv(sh, percpu));
1124 if (unlikely(count == 1))
1125 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1126 else
1127 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1130 static void
1131 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1132 struct dma_async_tx_descriptor *tx)
1134 struct async_submit_ctl submit;
1135 struct page **blocks = percpu->scribble;
1136 int count;
1138 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1140 count = set_syndrome_sources(blocks, sh);
1142 atomic_inc(&sh->count);
1144 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1145 sh, to_addr_conv(sh, percpu));
1146 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1149 static void ops_complete_check(void *stripe_head_ref)
1151 struct stripe_head *sh = stripe_head_ref;
1153 pr_debug("%s: stripe %llu\n", __func__,
1154 (unsigned long long)sh->sector);
1156 sh->check_state = check_state_check_result;
1157 set_bit(STRIPE_HANDLE, &sh->state);
1158 release_stripe(sh);
1161 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1163 int disks = sh->disks;
1164 int pd_idx = sh->pd_idx;
1165 int qd_idx = sh->qd_idx;
1166 struct page *xor_dest;
1167 struct page **xor_srcs = percpu->scribble;
1168 struct dma_async_tx_descriptor *tx;
1169 struct async_submit_ctl submit;
1170 int count;
1171 int i;
1173 pr_debug("%s: stripe %llu\n", __func__,
1174 (unsigned long long)sh->sector);
1176 count = 0;
1177 xor_dest = sh->dev[pd_idx].page;
1178 xor_srcs[count++] = xor_dest;
1179 for (i = disks; i--; ) {
1180 if (i == pd_idx || i == qd_idx)
1181 continue;
1182 xor_srcs[count++] = sh->dev[i].page;
1185 init_async_submit(&submit, 0, NULL, NULL, NULL,
1186 to_addr_conv(sh, percpu));
1187 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1188 &sh->ops.zero_sum_result, &submit);
1190 atomic_inc(&sh->count);
1191 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1192 tx = async_trigger_callback(&submit);
1195 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1197 struct page **srcs = percpu->scribble;
1198 struct async_submit_ctl submit;
1199 int count;
1201 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1202 (unsigned long long)sh->sector, checkp);
1204 count = set_syndrome_sources(srcs, sh);
1205 if (!checkp)
1206 srcs[count] = NULL;
1208 atomic_inc(&sh->count);
1209 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1210 sh, to_addr_conv(sh, percpu));
1211 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1212 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1215 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1217 int overlap_clear = 0, i, disks = sh->disks;
1218 struct dma_async_tx_descriptor *tx = NULL;
1219 raid5_conf_t *conf = sh->raid_conf;
1220 int level = conf->level;
1221 struct raid5_percpu *percpu;
1222 unsigned long cpu;
1224 cpu = get_cpu();
1225 percpu = per_cpu_ptr(conf->percpu, cpu);
1226 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1227 ops_run_biofill(sh);
1228 overlap_clear++;
1231 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1232 if (level < 6)
1233 tx = ops_run_compute5(sh, percpu);
1234 else {
1235 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1236 tx = ops_run_compute6_1(sh, percpu);
1237 else
1238 tx = ops_run_compute6_2(sh, percpu);
1240 /* terminate the chain if reconstruct is not set to be run */
1241 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1242 async_tx_ack(tx);
1245 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1246 tx = ops_run_prexor(sh, percpu, tx);
1248 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1249 tx = ops_run_biodrain(sh, tx);
1250 overlap_clear++;
1253 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1254 if (level < 6)
1255 ops_run_reconstruct5(sh, percpu, tx);
1256 else
1257 ops_run_reconstruct6(sh, percpu, tx);
1260 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1261 if (sh->check_state == check_state_run)
1262 ops_run_check_p(sh, percpu);
1263 else if (sh->check_state == check_state_run_q)
1264 ops_run_check_pq(sh, percpu, 0);
1265 else if (sh->check_state == check_state_run_pq)
1266 ops_run_check_pq(sh, percpu, 1);
1267 else
1268 BUG();
1271 if (overlap_clear)
1272 for (i = disks; i--; ) {
1273 struct r5dev *dev = &sh->dev[i];
1274 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1275 wake_up(&sh->raid_conf->wait_for_overlap);
1277 put_cpu();
1280 #ifdef CONFIG_MULTICORE_RAID456
1281 static void async_run_ops(void *param, async_cookie_t cookie)
1283 struct stripe_head *sh = param;
1284 unsigned long ops_request = sh->ops.request;
1286 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1287 wake_up(&sh->ops.wait_for_ops);
1289 __raid_run_ops(sh, ops_request);
1290 release_stripe(sh);
1293 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1295 /* since handle_stripe can be called outside of raid5d context
1296 * we need to ensure sh->ops.request is de-staged before another
1297 * request arrives
1299 wait_event(sh->ops.wait_for_ops,
1300 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1301 sh->ops.request = ops_request;
1303 atomic_inc(&sh->count);
1304 async_schedule(async_run_ops, sh);
1306 #else
1307 #define raid_run_ops __raid_run_ops
1308 #endif
1310 static int grow_one_stripe(raid5_conf_t *conf)
1312 struct stripe_head *sh;
1313 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1314 if (!sh)
1315 return 0;
1317 sh->raid_conf = conf;
1318 #ifdef CONFIG_MULTICORE_RAID456
1319 init_waitqueue_head(&sh->ops.wait_for_ops);
1320 #endif
1322 if (grow_buffers(sh)) {
1323 shrink_buffers(sh);
1324 kmem_cache_free(conf->slab_cache, sh);
1325 return 0;
1327 /* we just created an active stripe so... */
1328 atomic_set(&sh->count, 1);
1329 atomic_inc(&conf->active_stripes);
1330 INIT_LIST_HEAD(&sh->lru);
1331 release_stripe(sh);
1332 return 1;
1335 static int grow_stripes(raid5_conf_t *conf, int num)
1337 struct kmem_cache *sc;
1338 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1340 if (conf->mddev->gendisk)
1341 sprintf(conf->cache_name[0],
1342 "raid%d-%s", conf->level, mdname(conf->mddev));
1343 else
1344 sprintf(conf->cache_name[0],
1345 "raid%d-%p", conf->level, conf->mddev);
1346 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1348 conf->active_name = 0;
1349 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1350 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1351 0, 0, NULL);
1352 if (!sc)
1353 return 1;
1354 conf->slab_cache = sc;
1355 conf->pool_size = devs;
1356 while (num--)
1357 if (!grow_one_stripe(conf))
1358 return 1;
1359 return 0;
1363 * scribble_len - return the required size of the scribble region
1364 * @num - total number of disks in the array
1366 * The size must be enough to contain:
1367 * 1/ a struct page pointer for each device in the array +2
1368 * 2/ room to convert each entry in (1) to its corresponding dma
1369 * (dma_map_page()) or page (page_address()) address.
1371 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1372 * calculate over all devices (not just the data blocks), using zeros in place
1373 * of the P and Q blocks.
1375 static size_t scribble_len(int num)
1377 size_t len;
1379 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1381 return len;
1384 static int resize_stripes(raid5_conf_t *conf, int newsize)
1386 /* Make all the stripes able to hold 'newsize' devices.
1387 * New slots in each stripe get 'page' set to a new page.
1389 * This happens in stages:
1390 * 1/ create a new kmem_cache and allocate the required number of
1391 * stripe_heads.
1392 * 2/ gather all the old stripe_heads and tranfer the pages across
1393 * to the new stripe_heads. This will have the side effect of
1394 * freezing the array as once all stripe_heads have been collected,
1395 * no IO will be possible. Old stripe heads are freed once their
1396 * pages have been transferred over, and the old kmem_cache is
1397 * freed when all stripes are done.
1398 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1399 * we simple return a failre status - no need to clean anything up.
1400 * 4/ allocate new pages for the new slots in the new stripe_heads.
1401 * If this fails, we don't bother trying the shrink the
1402 * stripe_heads down again, we just leave them as they are.
1403 * As each stripe_head is processed the new one is released into
1404 * active service.
1406 * Once step2 is started, we cannot afford to wait for a write,
1407 * so we use GFP_NOIO allocations.
1409 struct stripe_head *osh, *nsh;
1410 LIST_HEAD(newstripes);
1411 struct disk_info *ndisks;
1412 unsigned long cpu;
1413 int err;
1414 struct kmem_cache *sc;
1415 int i;
1417 if (newsize <= conf->pool_size)
1418 return 0; /* never bother to shrink */
1420 err = md_allow_write(conf->mddev);
1421 if (err)
1422 return err;
1424 /* Step 1 */
1425 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1426 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427 0, 0, NULL);
1428 if (!sc)
1429 return -ENOMEM;
1431 for (i = conf->max_nr_stripes; i; i--) {
1432 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1433 if (!nsh)
1434 break;
1436 nsh->raid_conf = conf;
1437 #ifdef CONFIG_MULTICORE_RAID456
1438 init_waitqueue_head(&nsh->ops.wait_for_ops);
1439 #endif
1441 list_add(&nsh->lru, &newstripes);
1443 if (i) {
1444 /* didn't get enough, give up */
1445 while (!list_empty(&newstripes)) {
1446 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1447 list_del(&nsh->lru);
1448 kmem_cache_free(sc, nsh);
1450 kmem_cache_destroy(sc);
1451 return -ENOMEM;
1453 /* Step 2 - Must use GFP_NOIO now.
1454 * OK, we have enough stripes, start collecting inactive
1455 * stripes and copying them over
1457 list_for_each_entry(nsh, &newstripes, lru) {
1458 spin_lock_irq(&conf->device_lock);
1459 wait_event_lock_irq(conf->wait_for_stripe,
1460 !list_empty(&conf->inactive_list),
1461 conf->device_lock,
1463 osh = get_free_stripe(conf);
1464 spin_unlock_irq(&conf->device_lock);
1465 atomic_set(&nsh->count, 1);
1466 for(i=0; i<conf->pool_size; i++)
1467 nsh->dev[i].page = osh->dev[i].page;
1468 for( ; i<newsize; i++)
1469 nsh->dev[i].page = NULL;
1470 kmem_cache_free(conf->slab_cache, osh);
1472 kmem_cache_destroy(conf->slab_cache);
1474 /* Step 3.
1475 * At this point, we are holding all the stripes so the array
1476 * is completely stalled, so now is a good time to resize
1477 * conf->disks and the scribble region
1479 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1480 if (ndisks) {
1481 for (i=0; i<conf->raid_disks; i++)
1482 ndisks[i] = conf->disks[i];
1483 kfree(conf->disks);
1484 conf->disks = ndisks;
1485 } else
1486 err = -ENOMEM;
1488 get_online_cpus();
1489 conf->scribble_len = scribble_len(newsize);
1490 for_each_present_cpu(cpu) {
1491 struct raid5_percpu *percpu;
1492 void *scribble;
1494 percpu = per_cpu_ptr(conf->percpu, cpu);
1495 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1497 if (scribble) {
1498 kfree(percpu->scribble);
1499 percpu->scribble = scribble;
1500 } else {
1501 err = -ENOMEM;
1502 break;
1505 put_online_cpus();
1507 /* Step 4, return new stripes to service */
1508 while(!list_empty(&newstripes)) {
1509 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510 list_del_init(&nsh->lru);
1512 for (i=conf->raid_disks; i < newsize; i++)
1513 if (nsh->dev[i].page == NULL) {
1514 struct page *p = alloc_page(GFP_NOIO);
1515 nsh->dev[i].page = p;
1516 if (!p)
1517 err = -ENOMEM;
1519 release_stripe(nsh);
1521 /* critical section pass, GFP_NOIO no longer needed */
1523 conf->slab_cache = sc;
1524 conf->active_name = 1-conf->active_name;
1525 conf->pool_size = newsize;
1526 return err;
1529 static int drop_one_stripe(raid5_conf_t *conf)
1531 struct stripe_head *sh;
1533 spin_lock_irq(&conf->device_lock);
1534 sh = get_free_stripe(conf);
1535 spin_unlock_irq(&conf->device_lock);
1536 if (!sh)
1537 return 0;
1538 BUG_ON(atomic_read(&sh->count));
1539 shrink_buffers(sh);
1540 kmem_cache_free(conf->slab_cache, sh);
1541 atomic_dec(&conf->active_stripes);
1542 return 1;
1545 static void shrink_stripes(raid5_conf_t *conf)
1547 while (drop_one_stripe(conf))
1550 if (conf->slab_cache)
1551 kmem_cache_destroy(conf->slab_cache);
1552 conf->slab_cache = NULL;
1555 static void raid5_end_read_request(struct bio * bi, int error)
1557 struct stripe_head *sh = bi->bi_private;
1558 raid5_conf_t *conf = sh->raid_conf;
1559 int disks = sh->disks, i;
1560 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561 char b[BDEVNAME_SIZE];
1562 mdk_rdev_t *rdev;
1565 for (i=0 ; i<disks; i++)
1566 if (bi == &sh->dev[i].req)
1567 break;
1569 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1571 uptodate);
1572 if (i == disks) {
1573 BUG();
1574 return;
1577 if (uptodate) {
1578 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580 rdev = conf->disks[i].rdev;
1581 printk_ratelimited(
1582 KERN_INFO
1583 "md/raid:%s: read error corrected"
1584 " (%lu sectors at %llu on %s)\n",
1585 mdname(conf->mddev), STRIPE_SECTORS,
1586 (unsigned long long)(sh->sector
1587 + rdev->data_offset),
1588 bdevname(rdev->bdev, b));
1589 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1590 clear_bit(R5_ReadError, &sh->dev[i].flags);
1591 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1593 if (atomic_read(&conf->disks[i].rdev->read_errors))
1594 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1595 } else {
1596 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597 int retry = 0;
1598 rdev = conf->disks[i].rdev;
1600 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601 atomic_inc(&rdev->read_errors);
1602 if (conf->mddev->degraded >= conf->max_degraded)
1603 printk_ratelimited(
1604 KERN_WARNING
1605 "md/raid:%s: read error not correctable "
1606 "(sector %llu on %s).\n",
1607 mdname(conf->mddev),
1608 (unsigned long long)(sh->sector
1609 + rdev->data_offset),
1610 bdn);
1611 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1612 /* Oh, no!!! */
1613 printk_ratelimited(
1614 KERN_WARNING
1615 "md/raid:%s: read error NOT corrected!! "
1616 "(sector %llu on %s).\n",
1617 mdname(conf->mddev),
1618 (unsigned long long)(sh->sector
1619 + rdev->data_offset),
1620 bdn);
1621 else if (atomic_read(&rdev->read_errors)
1622 > conf->max_nr_stripes)
1623 printk(KERN_WARNING
1624 "md/raid:%s: Too many read errors, failing device %s.\n",
1625 mdname(conf->mddev), bdn);
1626 else
1627 retry = 1;
1628 if (retry)
1629 set_bit(R5_ReadError, &sh->dev[i].flags);
1630 else {
1631 clear_bit(R5_ReadError, &sh->dev[i].flags);
1632 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633 md_error(conf->mddev, rdev);
1636 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638 set_bit(STRIPE_HANDLE, &sh->state);
1639 release_stripe(sh);
1642 static void raid5_end_write_request(struct bio *bi, int error)
1644 struct stripe_head *sh = bi->bi_private;
1645 raid5_conf_t *conf = sh->raid_conf;
1646 int disks = sh->disks, i;
1647 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1649 for (i=0 ; i<disks; i++)
1650 if (bi == &sh->dev[i].req)
1651 break;
1653 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655 uptodate);
1656 if (i == disks) {
1657 BUG();
1658 return;
1661 if (!uptodate)
1662 md_error(conf->mddev, conf->disks[i].rdev);
1664 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1666 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667 set_bit(STRIPE_HANDLE, &sh->state);
1668 release_stripe(sh);
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1676 struct r5dev *dev = &sh->dev[i];
1678 bio_init(&dev->req);
1679 dev->req.bi_io_vec = &dev->vec;
1680 dev->req.bi_vcnt++;
1681 dev->req.bi_max_vecs++;
1682 dev->vec.bv_page = dev->page;
1683 dev->vec.bv_len = STRIPE_SIZE;
1684 dev->vec.bv_offset = 0;
1686 dev->req.bi_sector = sh->sector;
1687 dev->req.bi_private = sh;
1689 dev->flags = 0;
1690 dev->sector = compute_blocknr(sh, i, previous);
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1695 char b[BDEVNAME_SIZE];
1696 raid5_conf_t *conf = mddev->private;
1697 pr_debug("raid456: error called\n");
1699 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700 unsigned long flags;
1701 spin_lock_irqsave(&conf->device_lock, flags);
1702 mddev->degraded++;
1703 spin_unlock_irqrestore(&conf->device_lock, flags);
1705 * if recovery was running, make sure it aborts.
1707 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1709 set_bit(Faulty, &rdev->flags);
1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 printk(KERN_ALERT
1712 "md/raid:%s: Disk failure on %s, disabling device.\n"
1713 "md/raid:%s: Operation continuing on %d devices.\n",
1714 mdname(mddev),
1715 bdevname(rdev->bdev, b),
1716 mdname(mddev),
1717 conf->raid_disks - mddev->degraded);
1721 * Input: a 'big' sector number,
1722 * Output: index of the data and parity disk, and the sector # in them.
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725 int previous, int *dd_idx,
1726 struct stripe_head *sh)
1728 sector_t stripe, stripe2;
1729 sector_t chunk_number;
1730 unsigned int chunk_offset;
1731 int pd_idx, qd_idx;
1732 int ddf_layout = 0;
1733 sector_t new_sector;
1734 int algorithm = previous ? conf->prev_algo
1735 : conf->algorithm;
1736 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737 : conf->chunk_sectors;
1738 int raid_disks = previous ? conf->previous_raid_disks
1739 : conf->raid_disks;
1740 int data_disks = raid_disks - conf->max_degraded;
1742 /* First compute the information on this sector */
1745 * Compute the chunk number and the sector offset inside the chunk
1747 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748 chunk_number = r_sector;
1751 * Compute the stripe number
1753 stripe = chunk_number;
1754 *dd_idx = sector_div(stripe, data_disks);
1755 stripe2 = stripe;
1757 * Select the parity disk based on the user selected algorithm.
1759 pd_idx = qd_idx = -1;
1760 switch(conf->level) {
1761 case 4:
1762 pd_idx = data_disks;
1763 break;
1764 case 5:
1765 switch (algorithm) {
1766 case ALGORITHM_LEFT_ASYMMETRIC:
1767 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768 if (*dd_idx >= pd_idx)
1769 (*dd_idx)++;
1770 break;
1771 case ALGORITHM_RIGHT_ASYMMETRIC:
1772 pd_idx = sector_div(stripe2, raid_disks);
1773 if (*dd_idx >= pd_idx)
1774 (*dd_idx)++;
1775 break;
1776 case ALGORITHM_LEFT_SYMMETRIC:
1777 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779 break;
1780 case ALGORITHM_RIGHT_SYMMETRIC:
1781 pd_idx = sector_div(stripe2, raid_disks);
1782 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783 break;
1784 case ALGORITHM_PARITY_0:
1785 pd_idx = 0;
1786 (*dd_idx)++;
1787 break;
1788 case ALGORITHM_PARITY_N:
1789 pd_idx = data_disks;
1790 break;
1791 default:
1792 BUG();
1794 break;
1795 case 6:
1797 switch (algorithm) {
1798 case ALGORITHM_LEFT_ASYMMETRIC:
1799 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 qd_idx = pd_idx + 1;
1801 if (pd_idx == raid_disks-1) {
1802 (*dd_idx)++; /* Q D D D P */
1803 qd_idx = 0;
1804 } else if (*dd_idx >= pd_idx)
1805 (*dd_idx) += 2; /* D D P Q D */
1806 break;
1807 case ALGORITHM_RIGHT_ASYMMETRIC:
1808 pd_idx = sector_div(stripe2, raid_disks);
1809 qd_idx = pd_idx + 1;
1810 if (pd_idx == raid_disks-1) {
1811 (*dd_idx)++; /* Q D D D P */
1812 qd_idx = 0;
1813 } else if (*dd_idx >= pd_idx)
1814 (*dd_idx) += 2; /* D D P Q D */
1815 break;
1816 case ALGORITHM_LEFT_SYMMETRIC:
1817 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818 qd_idx = (pd_idx + 1) % raid_disks;
1819 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820 break;
1821 case ALGORITHM_RIGHT_SYMMETRIC:
1822 pd_idx = sector_div(stripe2, raid_disks);
1823 qd_idx = (pd_idx + 1) % raid_disks;
1824 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825 break;
1827 case ALGORITHM_PARITY_0:
1828 pd_idx = 0;
1829 qd_idx = 1;
1830 (*dd_idx) += 2;
1831 break;
1832 case ALGORITHM_PARITY_N:
1833 pd_idx = data_disks;
1834 qd_idx = data_disks + 1;
1835 break;
1837 case ALGORITHM_ROTATING_ZERO_RESTART:
1838 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839 * of blocks for computing Q is different.
1841 pd_idx = sector_div(stripe2, raid_disks);
1842 qd_idx = pd_idx + 1;
1843 if (pd_idx == raid_disks-1) {
1844 (*dd_idx)++; /* Q D D D P */
1845 qd_idx = 0;
1846 } else if (*dd_idx >= pd_idx)
1847 (*dd_idx) += 2; /* D D P Q D */
1848 ddf_layout = 1;
1849 break;
1851 case ALGORITHM_ROTATING_N_RESTART:
1852 /* Same a left_asymmetric, by first stripe is
1853 * D D D P Q rather than
1854 * Q D D D P
1856 stripe2 += 1;
1857 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858 qd_idx = pd_idx + 1;
1859 if (pd_idx == raid_disks-1) {
1860 (*dd_idx)++; /* Q D D D P */
1861 qd_idx = 0;
1862 } else if (*dd_idx >= pd_idx)
1863 (*dd_idx) += 2; /* D D P Q D */
1864 ddf_layout = 1;
1865 break;
1867 case ALGORITHM_ROTATING_N_CONTINUE:
1868 /* Same as left_symmetric but Q is before P */
1869 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872 ddf_layout = 1;
1873 break;
1875 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876 /* RAID5 left_asymmetric, with Q on last device */
1877 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878 if (*dd_idx >= pd_idx)
1879 (*dd_idx)++;
1880 qd_idx = raid_disks - 1;
1881 break;
1883 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884 pd_idx = sector_div(stripe2, raid_disks-1);
1885 if (*dd_idx >= pd_idx)
1886 (*dd_idx)++;
1887 qd_idx = raid_disks - 1;
1888 break;
1890 case ALGORITHM_LEFT_SYMMETRIC_6:
1891 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893 qd_idx = raid_disks - 1;
1894 break;
1896 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897 pd_idx = sector_div(stripe2, raid_disks-1);
1898 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899 qd_idx = raid_disks - 1;
1900 break;
1902 case ALGORITHM_PARITY_0_6:
1903 pd_idx = 0;
1904 (*dd_idx)++;
1905 qd_idx = raid_disks - 1;
1906 break;
1908 default:
1909 BUG();
1911 break;
1914 if (sh) {
1915 sh->pd_idx = pd_idx;
1916 sh->qd_idx = qd_idx;
1917 sh->ddf_layout = ddf_layout;
1920 * Finally, compute the new sector number
1922 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923 return new_sector;
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1929 raid5_conf_t *conf = sh->raid_conf;
1930 int raid_disks = sh->disks;
1931 int data_disks = raid_disks - conf->max_degraded;
1932 sector_t new_sector = sh->sector, check;
1933 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934 : conf->chunk_sectors;
1935 int algorithm = previous ? conf->prev_algo
1936 : conf->algorithm;
1937 sector_t stripe;
1938 int chunk_offset;
1939 sector_t chunk_number;
1940 int dummy1, dd_idx = i;
1941 sector_t r_sector;
1942 struct stripe_head sh2;
1945 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946 stripe = new_sector;
1948 if (i == sh->pd_idx)
1949 return 0;
1950 switch(conf->level) {
1951 case 4: break;
1952 case 5:
1953 switch (algorithm) {
1954 case ALGORITHM_LEFT_ASYMMETRIC:
1955 case ALGORITHM_RIGHT_ASYMMETRIC:
1956 if (i > sh->pd_idx)
1957 i--;
1958 break;
1959 case ALGORITHM_LEFT_SYMMETRIC:
1960 case ALGORITHM_RIGHT_SYMMETRIC:
1961 if (i < sh->pd_idx)
1962 i += raid_disks;
1963 i -= (sh->pd_idx + 1);
1964 break;
1965 case ALGORITHM_PARITY_0:
1966 i -= 1;
1967 break;
1968 case ALGORITHM_PARITY_N:
1969 break;
1970 default:
1971 BUG();
1973 break;
1974 case 6:
1975 if (i == sh->qd_idx)
1976 return 0; /* It is the Q disk */
1977 switch (algorithm) {
1978 case ALGORITHM_LEFT_ASYMMETRIC:
1979 case ALGORITHM_RIGHT_ASYMMETRIC:
1980 case ALGORITHM_ROTATING_ZERO_RESTART:
1981 case ALGORITHM_ROTATING_N_RESTART:
1982 if (sh->pd_idx == raid_disks-1)
1983 i--; /* Q D D D P */
1984 else if (i > sh->pd_idx)
1985 i -= 2; /* D D P Q D */
1986 break;
1987 case ALGORITHM_LEFT_SYMMETRIC:
1988 case ALGORITHM_RIGHT_SYMMETRIC:
1989 if (sh->pd_idx == raid_disks-1)
1990 i--; /* Q D D D P */
1991 else {
1992 /* D D P Q D */
1993 if (i < sh->pd_idx)
1994 i += raid_disks;
1995 i -= (sh->pd_idx + 2);
1997 break;
1998 case ALGORITHM_PARITY_0:
1999 i -= 2;
2000 break;
2001 case ALGORITHM_PARITY_N:
2002 break;
2003 case ALGORITHM_ROTATING_N_CONTINUE:
2004 /* Like left_symmetric, but P is before Q */
2005 if (sh->pd_idx == 0)
2006 i--; /* P D D D Q */
2007 else {
2008 /* D D Q P D */
2009 if (i < sh->pd_idx)
2010 i += raid_disks;
2011 i -= (sh->pd_idx + 1);
2013 break;
2014 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016 if (i > sh->pd_idx)
2017 i--;
2018 break;
2019 case ALGORITHM_LEFT_SYMMETRIC_6:
2020 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021 if (i < sh->pd_idx)
2022 i += data_disks + 1;
2023 i -= (sh->pd_idx + 1);
2024 break;
2025 case ALGORITHM_PARITY_0_6:
2026 i -= 1;
2027 break;
2028 default:
2029 BUG();
2031 break;
2034 chunk_number = stripe * data_disks + i;
2035 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2037 check = raid5_compute_sector(conf, r_sector,
2038 previous, &dummy1, &sh2);
2039 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040 || sh2.qd_idx != sh->qd_idx) {
2041 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042 mdname(conf->mddev));
2043 return 0;
2045 return r_sector;
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051 int rcw, int expand)
2053 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054 raid5_conf_t *conf = sh->raid_conf;
2055 int level = conf->level;
2057 if (rcw) {
2058 /* if we are not expanding this is a proper write request, and
2059 * there will be bios with new data to be drained into the
2060 * stripe cache
2062 if (!expand) {
2063 sh->reconstruct_state = reconstruct_state_drain_run;
2064 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065 } else
2066 sh->reconstruct_state = reconstruct_state_run;
2068 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2070 for (i = disks; i--; ) {
2071 struct r5dev *dev = &sh->dev[i];
2073 if (dev->towrite) {
2074 set_bit(R5_LOCKED, &dev->flags);
2075 set_bit(R5_Wantdrain, &dev->flags);
2076 if (!expand)
2077 clear_bit(R5_UPTODATE, &dev->flags);
2078 s->locked++;
2081 if (s->locked + conf->max_degraded == disks)
2082 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083 atomic_inc(&conf->pending_full_writes);
2084 } else {
2085 BUG_ON(level == 6);
2086 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2089 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2094 for (i = disks; i--; ) {
2095 struct r5dev *dev = &sh->dev[i];
2096 if (i == pd_idx)
2097 continue;
2099 if (dev->towrite &&
2100 (test_bit(R5_UPTODATE, &dev->flags) ||
2101 test_bit(R5_Wantcompute, &dev->flags))) {
2102 set_bit(R5_Wantdrain, &dev->flags);
2103 set_bit(R5_LOCKED, &dev->flags);
2104 clear_bit(R5_UPTODATE, &dev->flags);
2105 s->locked++;
2110 /* keep the parity disk(s) locked while asynchronous operations
2111 * are in flight
2113 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115 s->locked++;
2117 if (level == 6) {
2118 int qd_idx = sh->qd_idx;
2119 struct r5dev *dev = &sh->dev[qd_idx];
2121 set_bit(R5_LOCKED, &dev->flags);
2122 clear_bit(R5_UPTODATE, &dev->flags);
2123 s->locked++;
2126 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127 __func__, (unsigned long long)sh->sector,
2128 s->locked, s->ops_request);
2132 * Each stripe/dev can have one or more bion attached.
2133 * toread/towrite point to the first in a chain.
2134 * The bi_next chain must be in order.
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2138 struct bio **bip;
2139 raid5_conf_t *conf = sh->raid_conf;
2140 int firstwrite=0;
2142 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143 (unsigned long long)bi->bi_sector,
2144 (unsigned long long)sh->sector);
2147 spin_lock_irq(&conf->device_lock);
2148 if (forwrite) {
2149 bip = &sh->dev[dd_idx].towrite;
2150 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151 firstwrite = 1;
2152 } else
2153 bip = &sh->dev[dd_idx].toread;
2154 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156 goto overlap;
2157 bip = & (*bip)->bi_next;
2159 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160 goto overlap;
2162 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163 if (*bip)
2164 bi->bi_next = *bip;
2165 *bip = bi;
2166 bi->bi_phys_segments++;
2168 if (forwrite) {
2169 /* check if page is covered */
2170 sector_t sector = sh->dev[dd_idx].sector;
2171 for (bi=sh->dev[dd_idx].towrite;
2172 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173 bi && bi->bi_sector <= sector;
2174 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176 sector = bi->bi_sector + (bi->bi_size>>9);
2178 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2181 spin_unlock_irq(&conf->device_lock);
2183 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184 (unsigned long long)(*bip)->bi_sector,
2185 (unsigned long long)sh->sector, dd_idx);
2187 if (conf->mddev->bitmap && firstwrite) {
2188 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189 STRIPE_SECTORS, 0);
2190 sh->bm_seq = conf->seq_flush+1;
2191 set_bit(STRIPE_BIT_DELAY, &sh->state);
2193 return 1;
2195 overlap:
2196 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197 spin_unlock_irq(&conf->device_lock);
2198 return 0;
2201 static void end_reshape(raid5_conf_t *conf);
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204 struct stripe_head *sh)
2206 int sectors_per_chunk =
2207 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208 int dd_idx;
2209 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2212 raid5_compute_sector(conf,
2213 stripe * (disks - conf->max_degraded)
2214 *sectors_per_chunk + chunk_offset,
2215 previous,
2216 &dd_idx, sh);
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221 struct stripe_head_state *s, int disks,
2222 struct bio **return_bi)
2224 int i;
2225 for (i = disks; i--; ) {
2226 struct bio *bi;
2227 int bitmap_end = 0;
2229 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230 mdk_rdev_t *rdev;
2231 rcu_read_lock();
2232 rdev = rcu_dereference(conf->disks[i].rdev);
2233 if (rdev && test_bit(In_sync, &rdev->flags))
2234 /* multiple read failures in one stripe */
2235 md_error(conf->mddev, rdev);
2236 rcu_read_unlock();
2238 spin_lock_irq(&conf->device_lock);
2239 /* fail all writes first */
2240 bi = sh->dev[i].towrite;
2241 sh->dev[i].towrite = NULL;
2242 if (bi) {
2243 s->to_write--;
2244 bitmap_end = 1;
2247 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248 wake_up(&conf->wait_for_overlap);
2250 while (bi && bi->bi_sector <
2251 sh->dev[i].sector + STRIPE_SECTORS) {
2252 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254 if (!raid5_dec_bi_phys_segments(bi)) {
2255 md_write_end(conf->mddev);
2256 bi->bi_next = *return_bi;
2257 *return_bi = bi;
2259 bi = nextbi;
2261 /* and fail all 'written' */
2262 bi = sh->dev[i].written;
2263 sh->dev[i].written = NULL;
2264 if (bi) bitmap_end = 1;
2265 while (bi && bi->bi_sector <
2266 sh->dev[i].sector + STRIPE_SECTORS) {
2267 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269 if (!raid5_dec_bi_phys_segments(bi)) {
2270 md_write_end(conf->mddev);
2271 bi->bi_next = *return_bi;
2272 *return_bi = bi;
2274 bi = bi2;
2277 /* fail any reads if this device is non-operational and
2278 * the data has not reached the cache yet.
2280 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283 bi = sh->dev[i].toread;
2284 sh->dev[i].toread = NULL;
2285 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286 wake_up(&conf->wait_for_overlap);
2287 if (bi) s->to_read--;
2288 while (bi && bi->bi_sector <
2289 sh->dev[i].sector + STRIPE_SECTORS) {
2290 struct bio *nextbi =
2291 r5_next_bio(bi, sh->dev[i].sector);
2292 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293 if (!raid5_dec_bi_phys_segments(bi)) {
2294 bi->bi_next = *return_bi;
2295 *return_bi = bi;
2297 bi = nextbi;
2300 spin_unlock_irq(&conf->device_lock);
2301 if (bitmap_end)
2302 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303 STRIPE_SECTORS, 0, 0);
2304 /* If we were in the middle of a write the parity block might
2305 * still be locked - so just clear all R5_LOCKED flags
2307 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2310 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2311 if (atomic_dec_and_test(&conf->pending_full_writes))
2312 md_wakeup_thread(conf->mddev->thread);
2315 /* fetch_block - checks the given member device to see if its data needs
2316 * to be read or computed to satisfy a request.
2318 * Returns 1 when no more member devices need to be checked, otherwise returns
2319 * 0 to tell the loop in handle_stripe_fill to continue
2321 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2322 int disk_idx, int disks)
2324 struct r5dev *dev = &sh->dev[disk_idx];
2325 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2326 &sh->dev[s->failed_num[1]] };
2328 /* is the data in this block needed, and can we get it? */
2329 if (!test_bit(R5_LOCKED, &dev->flags) &&
2330 !test_bit(R5_UPTODATE, &dev->flags) &&
2331 (dev->toread ||
2332 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2333 s->syncing || s->expanding ||
2334 (s->failed >= 1 && fdev[0]->toread) ||
2335 (s->failed >= 2 && fdev[1]->toread) ||
2336 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2337 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2338 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2339 /* we would like to get this block, possibly by computing it,
2340 * otherwise read it if the backing disk is insync
2342 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2343 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2344 if ((s->uptodate == disks - 1) &&
2345 (s->failed && (disk_idx == s->failed_num[0] ||
2346 disk_idx == s->failed_num[1]))) {
2347 /* have disk failed, and we're requested to fetch it;
2348 * do compute it
2350 pr_debug("Computing stripe %llu block %d\n",
2351 (unsigned long long)sh->sector, disk_idx);
2352 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2353 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2354 set_bit(R5_Wantcompute, &dev->flags);
2355 sh->ops.target = disk_idx;
2356 sh->ops.target2 = -1; /* no 2nd target */
2357 s->req_compute = 1;
2358 /* Careful: from this point on 'uptodate' is in the eye
2359 * of raid_run_ops which services 'compute' operations
2360 * before writes. R5_Wantcompute flags a block that will
2361 * be R5_UPTODATE by the time it is needed for a
2362 * subsequent operation.
2364 s->uptodate++;
2365 return 1;
2366 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2367 /* Computing 2-failure is *very* expensive; only
2368 * do it if failed >= 2
2370 int other;
2371 for (other = disks; other--; ) {
2372 if (other == disk_idx)
2373 continue;
2374 if (!test_bit(R5_UPTODATE,
2375 &sh->dev[other].flags))
2376 break;
2378 BUG_ON(other < 0);
2379 pr_debug("Computing stripe %llu blocks %d,%d\n",
2380 (unsigned long long)sh->sector,
2381 disk_idx, other);
2382 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2383 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2384 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2385 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2386 sh->ops.target = disk_idx;
2387 sh->ops.target2 = other;
2388 s->uptodate += 2;
2389 s->req_compute = 1;
2390 return 1;
2391 } else if (test_bit(R5_Insync, &dev->flags)) {
2392 set_bit(R5_LOCKED, &dev->flags);
2393 set_bit(R5_Wantread, &dev->flags);
2394 s->locked++;
2395 pr_debug("Reading block %d (sync=%d)\n",
2396 disk_idx, s->syncing);
2400 return 0;
2404 * handle_stripe_fill - read or compute data to satisfy pending requests.
2406 static void handle_stripe_fill(struct stripe_head *sh,
2407 struct stripe_head_state *s,
2408 int disks)
2410 int i;
2412 /* look for blocks to read/compute, skip this if a compute
2413 * is already in flight, or if the stripe contents are in the
2414 * midst of changing due to a write
2416 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2417 !sh->reconstruct_state)
2418 for (i = disks; i--; )
2419 if (fetch_block(sh, s, i, disks))
2420 break;
2421 set_bit(STRIPE_HANDLE, &sh->state);
2425 /* handle_stripe_clean_event
2426 * any written block on an uptodate or failed drive can be returned.
2427 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2428 * never LOCKED, so we don't need to test 'failed' directly.
2430 static void handle_stripe_clean_event(raid5_conf_t *conf,
2431 struct stripe_head *sh, int disks, struct bio **return_bi)
2433 int i;
2434 struct r5dev *dev;
2436 for (i = disks; i--; )
2437 if (sh->dev[i].written) {
2438 dev = &sh->dev[i];
2439 if (!test_bit(R5_LOCKED, &dev->flags) &&
2440 test_bit(R5_UPTODATE, &dev->flags)) {
2441 /* We can return any write requests */
2442 struct bio *wbi, *wbi2;
2443 int bitmap_end = 0;
2444 pr_debug("Return write for disc %d\n", i);
2445 spin_lock_irq(&conf->device_lock);
2446 wbi = dev->written;
2447 dev->written = NULL;
2448 while (wbi && wbi->bi_sector <
2449 dev->sector + STRIPE_SECTORS) {
2450 wbi2 = r5_next_bio(wbi, dev->sector);
2451 if (!raid5_dec_bi_phys_segments(wbi)) {
2452 md_write_end(conf->mddev);
2453 wbi->bi_next = *return_bi;
2454 *return_bi = wbi;
2456 wbi = wbi2;
2458 if (dev->towrite == NULL)
2459 bitmap_end = 1;
2460 spin_unlock_irq(&conf->device_lock);
2461 if (bitmap_end)
2462 bitmap_endwrite(conf->mddev->bitmap,
2463 sh->sector,
2464 STRIPE_SECTORS,
2465 !test_bit(STRIPE_DEGRADED, &sh->state),
2470 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2471 if (atomic_dec_and_test(&conf->pending_full_writes))
2472 md_wakeup_thread(conf->mddev->thread);
2475 static void handle_stripe_dirtying(raid5_conf_t *conf,
2476 struct stripe_head *sh,
2477 struct stripe_head_state *s,
2478 int disks)
2480 int rmw = 0, rcw = 0, i;
2481 if (conf->max_degraded == 2) {
2482 /* RAID6 requires 'rcw' in current implementation
2483 * Calculate the real rcw later - for now fake it
2484 * look like rcw is cheaper
2486 rcw = 1; rmw = 2;
2487 } else for (i = disks; i--; ) {
2488 /* would I have to read this buffer for read_modify_write */
2489 struct r5dev *dev = &sh->dev[i];
2490 if ((dev->towrite || i == sh->pd_idx) &&
2491 !test_bit(R5_LOCKED, &dev->flags) &&
2492 !(test_bit(R5_UPTODATE, &dev->flags) ||
2493 test_bit(R5_Wantcompute, &dev->flags))) {
2494 if (test_bit(R5_Insync, &dev->flags))
2495 rmw++;
2496 else
2497 rmw += 2*disks; /* cannot read it */
2499 /* Would I have to read this buffer for reconstruct_write */
2500 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2501 !test_bit(R5_LOCKED, &dev->flags) &&
2502 !(test_bit(R5_UPTODATE, &dev->flags) ||
2503 test_bit(R5_Wantcompute, &dev->flags))) {
2504 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2505 else
2506 rcw += 2*disks;
2509 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2510 (unsigned long long)sh->sector, rmw, rcw);
2511 set_bit(STRIPE_HANDLE, &sh->state);
2512 if (rmw < rcw && rmw > 0)
2513 /* prefer read-modify-write, but need to get some data */
2514 for (i = disks; i--; ) {
2515 struct r5dev *dev = &sh->dev[i];
2516 if ((dev->towrite || i == sh->pd_idx) &&
2517 !test_bit(R5_LOCKED, &dev->flags) &&
2518 !(test_bit(R5_UPTODATE, &dev->flags) ||
2519 test_bit(R5_Wantcompute, &dev->flags)) &&
2520 test_bit(R5_Insync, &dev->flags)) {
2521 if (
2522 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2523 pr_debug("Read_old block "
2524 "%d for r-m-w\n", i);
2525 set_bit(R5_LOCKED, &dev->flags);
2526 set_bit(R5_Wantread, &dev->flags);
2527 s->locked++;
2528 } else {
2529 set_bit(STRIPE_DELAYED, &sh->state);
2530 set_bit(STRIPE_HANDLE, &sh->state);
2534 if (rcw <= rmw && rcw > 0) {
2535 /* want reconstruct write, but need to get some data */
2536 rcw = 0;
2537 for (i = disks; i--; ) {
2538 struct r5dev *dev = &sh->dev[i];
2539 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2540 i != sh->pd_idx && i != sh->qd_idx &&
2541 !test_bit(R5_LOCKED, &dev->flags) &&
2542 !(test_bit(R5_UPTODATE, &dev->flags) ||
2543 test_bit(R5_Wantcompute, &dev->flags))) {
2544 rcw++;
2545 if (!test_bit(R5_Insync, &dev->flags))
2546 continue; /* it's a failed drive */
2547 if (
2548 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2549 pr_debug("Read_old block "
2550 "%d for Reconstruct\n", i);
2551 set_bit(R5_LOCKED, &dev->flags);
2552 set_bit(R5_Wantread, &dev->flags);
2553 s->locked++;
2554 } else {
2555 set_bit(STRIPE_DELAYED, &sh->state);
2556 set_bit(STRIPE_HANDLE, &sh->state);
2561 /* now if nothing is locked, and if we have enough data,
2562 * we can start a write request
2564 /* since handle_stripe can be called at any time we need to handle the
2565 * case where a compute block operation has been submitted and then a
2566 * subsequent call wants to start a write request. raid_run_ops only
2567 * handles the case where compute block and reconstruct are requested
2568 * simultaneously. If this is not the case then new writes need to be
2569 * held off until the compute completes.
2571 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2572 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2573 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2574 schedule_reconstruction(sh, s, rcw == 0, 0);
2577 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2578 struct stripe_head_state *s, int disks)
2580 struct r5dev *dev = NULL;
2582 set_bit(STRIPE_HANDLE, &sh->state);
2584 switch (sh->check_state) {
2585 case check_state_idle:
2586 /* start a new check operation if there are no failures */
2587 if (s->failed == 0) {
2588 BUG_ON(s->uptodate != disks);
2589 sh->check_state = check_state_run;
2590 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2591 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2592 s->uptodate--;
2593 break;
2595 dev = &sh->dev[s->failed_num[0]];
2596 /* fall through */
2597 case check_state_compute_result:
2598 sh->check_state = check_state_idle;
2599 if (!dev)
2600 dev = &sh->dev[sh->pd_idx];
2602 /* check that a write has not made the stripe insync */
2603 if (test_bit(STRIPE_INSYNC, &sh->state))
2604 break;
2606 /* either failed parity check, or recovery is happening */
2607 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2608 BUG_ON(s->uptodate != disks);
2610 set_bit(R5_LOCKED, &dev->flags);
2611 s->locked++;
2612 set_bit(R5_Wantwrite, &dev->flags);
2614 clear_bit(STRIPE_DEGRADED, &sh->state);
2615 set_bit(STRIPE_INSYNC, &sh->state);
2616 break;
2617 case check_state_run:
2618 break; /* we will be called again upon completion */
2619 case check_state_check_result:
2620 sh->check_state = check_state_idle;
2622 /* if a failure occurred during the check operation, leave
2623 * STRIPE_INSYNC not set and let the stripe be handled again
2625 if (s->failed)
2626 break;
2628 /* handle a successful check operation, if parity is correct
2629 * we are done. Otherwise update the mismatch count and repair
2630 * parity if !MD_RECOVERY_CHECK
2632 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2633 /* parity is correct (on disc,
2634 * not in buffer any more)
2636 set_bit(STRIPE_INSYNC, &sh->state);
2637 else {
2638 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2639 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2640 /* don't try to repair!! */
2641 set_bit(STRIPE_INSYNC, &sh->state);
2642 else {
2643 sh->check_state = check_state_compute_run;
2644 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2645 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2646 set_bit(R5_Wantcompute,
2647 &sh->dev[sh->pd_idx].flags);
2648 sh->ops.target = sh->pd_idx;
2649 sh->ops.target2 = -1;
2650 s->uptodate++;
2653 break;
2654 case check_state_compute_run:
2655 break;
2656 default:
2657 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2658 __func__, sh->check_state,
2659 (unsigned long long) sh->sector);
2660 BUG();
2665 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2666 struct stripe_head_state *s,
2667 int disks)
2669 int pd_idx = sh->pd_idx;
2670 int qd_idx = sh->qd_idx;
2671 struct r5dev *dev;
2673 set_bit(STRIPE_HANDLE, &sh->state);
2675 BUG_ON(s->failed > 2);
2677 /* Want to check and possibly repair P and Q.
2678 * However there could be one 'failed' device, in which
2679 * case we can only check one of them, possibly using the
2680 * other to generate missing data
2683 switch (sh->check_state) {
2684 case check_state_idle:
2685 /* start a new check operation if there are < 2 failures */
2686 if (s->failed == s->q_failed) {
2687 /* The only possible failed device holds Q, so it
2688 * makes sense to check P (If anything else were failed,
2689 * we would have used P to recreate it).
2691 sh->check_state = check_state_run;
2693 if (!s->q_failed && s->failed < 2) {
2694 /* Q is not failed, and we didn't use it to generate
2695 * anything, so it makes sense to check it
2697 if (sh->check_state == check_state_run)
2698 sh->check_state = check_state_run_pq;
2699 else
2700 sh->check_state = check_state_run_q;
2703 /* discard potentially stale zero_sum_result */
2704 sh->ops.zero_sum_result = 0;
2706 if (sh->check_state == check_state_run) {
2707 /* async_xor_zero_sum destroys the contents of P */
2708 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2709 s->uptodate--;
2711 if (sh->check_state >= check_state_run &&
2712 sh->check_state <= check_state_run_pq) {
2713 /* async_syndrome_zero_sum preserves P and Q, so
2714 * no need to mark them !uptodate here
2716 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2717 break;
2720 /* we have 2-disk failure */
2721 BUG_ON(s->failed != 2);
2722 /* fall through */
2723 case check_state_compute_result:
2724 sh->check_state = check_state_idle;
2726 /* check that a write has not made the stripe insync */
2727 if (test_bit(STRIPE_INSYNC, &sh->state))
2728 break;
2730 /* now write out any block on a failed drive,
2731 * or P or Q if they were recomputed
2733 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2734 if (s->failed == 2) {
2735 dev = &sh->dev[s->failed_num[1]];
2736 s->locked++;
2737 set_bit(R5_LOCKED, &dev->flags);
2738 set_bit(R5_Wantwrite, &dev->flags);
2740 if (s->failed >= 1) {
2741 dev = &sh->dev[s->failed_num[0]];
2742 s->locked++;
2743 set_bit(R5_LOCKED, &dev->flags);
2744 set_bit(R5_Wantwrite, &dev->flags);
2746 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2747 dev = &sh->dev[pd_idx];
2748 s->locked++;
2749 set_bit(R5_LOCKED, &dev->flags);
2750 set_bit(R5_Wantwrite, &dev->flags);
2752 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2753 dev = &sh->dev[qd_idx];
2754 s->locked++;
2755 set_bit(R5_LOCKED, &dev->flags);
2756 set_bit(R5_Wantwrite, &dev->flags);
2758 clear_bit(STRIPE_DEGRADED, &sh->state);
2760 set_bit(STRIPE_INSYNC, &sh->state);
2761 break;
2762 case check_state_run:
2763 case check_state_run_q:
2764 case check_state_run_pq:
2765 break; /* we will be called again upon completion */
2766 case check_state_check_result:
2767 sh->check_state = check_state_idle;
2769 /* handle a successful check operation, if parity is correct
2770 * we are done. Otherwise update the mismatch count and repair
2771 * parity if !MD_RECOVERY_CHECK
2773 if (sh->ops.zero_sum_result == 0) {
2774 /* both parities are correct */
2775 if (!s->failed)
2776 set_bit(STRIPE_INSYNC, &sh->state);
2777 else {
2778 /* in contrast to the raid5 case we can validate
2779 * parity, but still have a failure to write
2780 * back
2782 sh->check_state = check_state_compute_result;
2783 /* Returning at this point means that we may go
2784 * off and bring p and/or q uptodate again so
2785 * we make sure to check zero_sum_result again
2786 * to verify if p or q need writeback
2789 } else {
2790 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2791 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2792 /* don't try to repair!! */
2793 set_bit(STRIPE_INSYNC, &sh->state);
2794 else {
2795 int *target = &sh->ops.target;
2797 sh->ops.target = -1;
2798 sh->ops.target2 = -1;
2799 sh->check_state = check_state_compute_run;
2800 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2801 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2802 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2803 set_bit(R5_Wantcompute,
2804 &sh->dev[pd_idx].flags);
2805 *target = pd_idx;
2806 target = &sh->ops.target2;
2807 s->uptodate++;
2809 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2810 set_bit(R5_Wantcompute,
2811 &sh->dev[qd_idx].flags);
2812 *target = qd_idx;
2813 s->uptodate++;
2817 break;
2818 case check_state_compute_run:
2819 break;
2820 default:
2821 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2822 __func__, sh->check_state,
2823 (unsigned long long) sh->sector);
2824 BUG();
2828 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2830 int i;
2832 /* We have read all the blocks in this stripe and now we need to
2833 * copy some of them into a target stripe for expand.
2835 struct dma_async_tx_descriptor *tx = NULL;
2836 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2837 for (i = 0; i < sh->disks; i++)
2838 if (i != sh->pd_idx && i != sh->qd_idx) {
2839 int dd_idx, j;
2840 struct stripe_head *sh2;
2841 struct async_submit_ctl submit;
2843 sector_t bn = compute_blocknr(sh, i, 1);
2844 sector_t s = raid5_compute_sector(conf, bn, 0,
2845 &dd_idx, NULL);
2846 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2847 if (sh2 == NULL)
2848 /* so far only the early blocks of this stripe
2849 * have been requested. When later blocks
2850 * get requested, we will try again
2852 continue;
2853 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2854 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2855 /* must have already done this block */
2856 release_stripe(sh2);
2857 continue;
2860 /* place all the copies on one channel */
2861 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2862 tx = async_memcpy(sh2->dev[dd_idx].page,
2863 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2864 &submit);
2866 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2867 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2868 for (j = 0; j < conf->raid_disks; j++)
2869 if (j != sh2->pd_idx &&
2870 j != sh2->qd_idx &&
2871 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2872 break;
2873 if (j == conf->raid_disks) {
2874 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2875 set_bit(STRIPE_HANDLE, &sh2->state);
2877 release_stripe(sh2);
2880 /* done submitting copies, wait for them to complete */
2881 if (tx) {
2882 async_tx_ack(tx);
2883 dma_wait_for_async_tx(tx);
2889 * handle_stripe - do things to a stripe.
2891 * We lock the stripe and then examine the state of various bits
2892 * to see what needs to be done.
2893 * Possible results:
2894 * return some read request which now have data
2895 * return some write requests which are safely on disc
2896 * schedule a read on some buffers
2897 * schedule a write of some buffers
2898 * return confirmation of parity correctness
2900 * buffers are taken off read_list or write_list, and bh_cache buffers
2901 * get BH_Lock set before the stripe lock is released.
2905 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2907 raid5_conf_t *conf = sh->raid_conf;
2908 int disks = sh->disks;
2909 struct r5dev *dev;
2910 int i;
2912 memset(s, 0, sizeof(*s));
2914 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2915 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2916 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2917 s->failed_num[0] = -1;
2918 s->failed_num[1] = -1;
2920 /* Now to look around and see what can be done */
2921 rcu_read_lock();
2922 spin_lock_irq(&conf->device_lock);
2923 for (i=disks; i--; ) {
2924 mdk_rdev_t *rdev;
2926 dev = &sh->dev[i];
2928 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2929 i, dev->flags, dev->toread, dev->towrite, dev->written);
2930 /* maybe we can reply to a read
2932 * new wantfill requests are only permitted while
2933 * ops_complete_biofill is guaranteed to be inactive
2935 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2936 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2937 set_bit(R5_Wantfill, &dev->flags);
2939 /* now count some things */
2940 if (test_bit(R5_LOCKED, &dev->flags))
2941 s->locked++;
2942 if (test_bit(R5_UPTODATE, &dev->flags))
2943 s->uptodate++;
2944 if (test_bit(R5_Wantcompute, &dev->flags)) {
2945 s->compute++;
2946 BUG_ON(s->compute > 2);
2949 if (test_bit(R5_Wantfill, &dev->flags))
2950 s->to_fill++;
2951 else if (dev->toread)
2952 s->to_read++;
2953 if (dev->towrite) {
2954 s->to_write++;
2955 if (!test_bit(R5_OVERWRITE, &dev->flags))
2956 s->non_overwrite++;
2958 if (dev->written)
2959 s->written++;
2960 rdev = rcu_dereference(conf->disks[i].rdev);
2961 if (s->blocked_rdev == NULL &&
2962 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2963 s->blocked_rdev = rdev;
2964 atomic_inc(&rdev->nr_pending);
2966 clear_bit(R5_Insync, &dev->flags);
2967 if (!rdev)
2968 /* Not in-sync */;
2969 else if (test_bit(In_sync, &rdev->flags))
2970 set_bit(R5_Insync, &dev->flags);
2971 else {
2972 /* in sync if before recovery_offset */
2973 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
2974 set_bit(R5_Insync, &dev->flags);
2976 if (!test_bit(R5_Insync, &dev->flags)) {
2977 /* The ReadError flag will just be confusing now */
2978 clear_bit(R5_ReadError, &dev->flags);
2979 clear_bit(R5_ReWrite, &dev->flags);
2981 if (test_bit(R5_ReadError, &dev->flags))
2982 clear_bit(R5_Insync, &dev->flags);
2983 if (!test_bit(R5_Insync, &dev->flags)) {
2984 if (s->failed < 2)
2985 s->failed_num[s->failed] = i;
2986 s->failed++;
2989 spin_unlock_irq(&conf->device_lock);
2990 rcu_read_unlock();
2993 static void handle_stripe(struct stripe_head *sh)
2995 struct stripe_head_state s;
2996 raid5_conf_t *conf = sh->raid_conf;
2997 int i;
2998 int prexor;
2999 int disks = sh->disks;
3000 struct r5dev *pdev, *qdev;
3002 clear_bit(STRIPE_HANDLE, &sh->state);
3003 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3004 /* already being handled, ensure it gets handled
3005 * again when current action finishes */
3006 set_bit(STRIPE_HANDLE, &sh->state);
3007 return;
3010 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3011 set_bit(STRIPE_SYNCING, &sh->state);
3012 clear_bit(STRIPE_INSYNC, &sh->state);
3014 clear_bit(STRIPE_DELAYED, &sh->state);
3016 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3017 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3018 (unsigned long long)sh->sector, sh->state,
3019 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3020 sh->check_state, sh->reconstruct_state);
3022 analyse_stripe(sh, &s);
3024 if (unlikely(s.blocked_rdev)) {
3025 if (s.syncing || s.expanding || s.expanded ||
3026 s.to_write || s.written) {
3027 set_bit(STRIPE_HANDLE, &sh->state);
3028 goto finish;
3030 /* There is nothing for the blocked_rdev to block */
3031 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3032 s.blocked_rdev = NULL;
3035 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3036 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3037 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3040 pr_debug("locked=%d uptodate=%d to_read=%d"
3041 " to_write=%d failed=%d failed_num=%d,%d\n",
3042 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3043 s.failed_num[0], s.failed_num[1]);
3044 /* check if the array has lost more than max_degraded devices and,
3045 * if so, some requests might need to be failed.
3047 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3048 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3049 if (s.failed > conf->max_degraded && s.syncing) {
3050 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
3051 clear_bit(STRIPE_SYNCING, &sh->state);
3052 s.syncing = 0;
3056 * might be able to return some write requests if the parity blocks
3057 * are safe, or on a failed drive
3059 pdev = &sh->dev[sh->pd_idx];
3060 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3061 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3062 qdev = &sh->dev[sh->qd_idx];
3063 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3064 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3065 || conf->level < 6;
3067 if (s.written &&
3068 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3069 && !test_bit(R5_LOCKED, &pdev->flags)
3070 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3071 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3072 && !test_bit(R5_LOCKED, &qdev->flags)
3073 && test_bit(R5_UPTODATE, &qdev->flags)))))
3074 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3076 /* Now we might consider reading some blocks, either to check/generate
3077 * parity, or to satisfy requests
3078 * or to load a block that is being partially written.
3080 if (s.to_read || s.non_overwrite
3081 || (conf->level == 6 && s.to_write && s.failed)
3082 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3083 handle_stripe_fill(sh, &s, disks);
3085 /* Now we check to see if any write operations have recently
3086 * completed
3088 prexor = 0;
3089 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3090 prexor = 1;
3091 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3092 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3093 sh->reconstruct_state = reconstruct_state_idle;
3095 /* All the 'written' buffers and the parity block are ready to
3096 * be written back to disk
3098 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3099 BUG_ON(sh->qd_idx >= 0 &&
3100 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3101 for (i = disks; i--; ) {
3102 struct r5dev *dev = &sh->dev[i];
3103 if (test_bit(R5_LOCKED, &dev->flags) &&
3104 (i == sh->pd_idx || i == sh->qd_idx ||
3105 dev->written)) {
3106 pr_debug("Writing block %d\n", i);
3107 set_bit(R5_Wantwrite, &dev->flags);
3108 if (prexor)
3109 continue;
3110 if (!test_bit(R5_Insync, &dev->flags) ||
3111 ((i == sh->pd_idx || i == sh->qd_idx) &&
3112 s.failed == 0))
3113 set_bit(STRIPE_INSYNC, &sh->state);
3116 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3117 s.dec_preread_active = 1;
3120 /* Now to consider new write requests and what else, if anything
3121 * should be read. We do not handle new writes when:
3122 * 1/ A 'write' operation (copy+xor) is already in flight.
3123 * 2/ A 'check' operation is in flight, as it may clobber the parity
3124 * block.
3126 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3127 handle_stripe_dirtying(conf, sh, &s, disks);
3129 /* maybe we need to check and possibly fix the parity for this stripe
3130 * Any reads will already have been scheduled, so we just see if enough
3131 * data is available. The parity check is held off while parity
3132 * dependent operations are in flight.
3134 if (sh->check_state ||
3135 (s.syncing && s.locked == 0 &&
3136 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3137 !test_bit(STRIPE_INSYNC, &sh->state))) {
3138 if (conf->level == 6)
3139 handle_parity_checks6(conf, sh, &s, disks);
3140 else
3141 handle_parity_checks5(conf, sh, &s, disks);
3144 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3145 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3146 clear_bit(STRIPE_SYNCING, &sh->state);
3149 /* If the failed drives are just a ReadError, then we might need
3150 * to progress the repair/check process
3152 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3153 for (i = 0; i < s.failed; i++) {
3154 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3155 if (test_bit(R5_ReadError, &dev->flags)
3156 && !test_bit(R5_LOCKED, &dev->flags)
3157 && test_bit(R5_UPTODATE, &dev->flags)
3159 if (!test_bit(R5_ReWrite, &dev->flags)) {
3160 set_bit(R5_Wantwrite, &dev->flags);
3161 set_bit(R5_ReWrite, &dev->flags);
3162 set_bit(R5_LOCKED, &dev->flags);
3163 s.locked++;
3164 } else {
3165 /* let's read it back */
3166 set_bit(R5_Wantread, &dev->flags);
3167 set_bit(R5_LOCKED, &dev->flags);
3168 s.locked++;
3174 /* Finish reconstruct operations initiated by the expansion process */
3175 if (sh->reconstruct_state == reconstruct_state_result) {
3176 struct stripe_head *sh_src
3177 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3178 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3179 /* sh cannot be written until sh_src has been read.
3180 * so arrange for sh to be delayed a little
3182 set_bit(STRIPE_DELAYED, &sh->state);
3183 set_bit(STRIPE_HANDLE, &sh->state);
3184 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3185 &sh_src->state))
3186 atomic_inc(&conf->preread_active_stripes);
3187 release_stripe(sh_src);
3188 goto finish;
3190 if (sh_src)
3191 release_stripe(sh_src);
3193 sh->reconstruct_state = reconstruct_state_idle;
3194 clear_bit(STRIPE_EXPANDING, &sh->state);
3195 for (i = conf->raid_disks; i--; ) {
3196 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3197 set_bit(R5_LOCKED, &sh->dev[i].flags);
3198 s.locked++;
3202 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3203 !sh->reconstruct_state) {
3204 /* Need to write out all blocks after computing parity */
3205 sh->disks = conf->raid_disks;
3206 stripe_set_idx(sh->sector, conf, 0, sh);
3207 schedule_reconstruction(sh, &s, 1, 1);
3208 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3209 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3210 atomic_dec(&conf->reshape_stripes);
3211 wake_up(&conf->wait_for_overlap);
3212 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3215 if (s.expanding && s.locked == 0 &&
3216 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3217 handle_stripe_expansion(conf, sh);
3219 finish:
3220 /* wait for this device to become unblocked */
3221 if (unlikely(s.blocked_rdev))
3222 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3224 if (s.ops_request)
3225 raid_run_ops(sh, s.ops_request);
3227 ops_run_io(sh, &s);
3230 if (s.dec_preread_active) {
3231 /* We delay this until after ops_run_io so that if make_request
3232 * is waiting on a flush, it won't continue until the writes
3233 * have actually been submitted.
3235 atomic_dec(&conf->preread_active_stripes);
3236 if (atomic_read(&conf->preread_active_stripes) <
3237 IO_THRESHOLD)
3238 md_wakeup_thread(conf->mddev->thread);
3241 return_io(s.return_bi);
3243 clear_bit(STRIPE_ACTIVE, &sh->state);
3246 static void raid5_activate_delayed(raid5_conf_t *conf)
3248 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3249 while (!list_empty(&conf->delayed_list)) {
3250 struct list_head *l = conf->delayed_list.next;
3251 struct stripe_head *sh;
3252 sh = list_entry(l, struct stripe_head, lru);
3253 list_del_init(l);
3254 clear_bit(STRIPE_DELAYED, &sh->state);
3255 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3256 atomic_inc(&conf->preread_active_stripes);
3257 list_add_tail(&sh->lru, &conf->hold_list);
3262 static void activate_bit_delay(raid5_conf_t *conf)
3264 /* device_lock is held */
3265 struct list_head head;
3266 list_add(&head, &conf->bitmap_list);
3267 list_del_init(&conf->bitmap_list);
3268 while (!list_empty(&head)) {
3269 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3270 list_del_init(&sh->lru);
3271 atomic_inc(&sh->count);
3272 __release_stripe(conf, sh);
3276 int md_raid5_congested(mddev_t *mddev, int bits)
3278 raid5_conf_t *conf = mddev->private;
3280 /* No difference between reads and writes. Just check
3281 * how busy the stripe_cache is
3284 if (conf->inactive_blocked)
3285 return 1;
3286 if (conf->quiesce)
3287 return 1;
3288 if (list_empty_careful(&conf->inactive_list))
3289 return 1;
3291 return 0;
3293 EXPORT_SYMBOL_GPL(md_raid5_congested);
3295 static int raid5_congested(void *data, int bits)
3297 mddev_t *mddev = data;
3299 return mddev_congested(mddev, bits) ||
3300 md_raid5_congested(mddev, bits);
3303 /* We want read requests to align with chunks where possible,
3304 * but write requests don't need to.
3306 static int raid5_mergeable_bvec(struct request_queue *q,
3307 struct bvec_merge_data *bvm,
3308 struct bio_vec *biovec)
3310 mddev_t *mddev = q->queuedata;
3311 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3312 int max;
3313 unsigned int chunk_sectors = mddev->chunk_sectors;
3314 unsigned int bio_sectors = bvm->bi_size >> 9;
3316 if ((bvm->bi_rw & 1) == WRITE)
3317 return biovec->bv_len; /* always allow writes to be mergeable */
3319 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3320 chunk_sectors = mddev->new_chunk_sectors;
3321 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3322 if (max < 0) max = 0;
3323 if (max <= biovec->bv_len && bio_sectors == 0)
3324 return biovec->bv_len;
3325 else
3326 return max;
3330 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3332 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3333 unsigned int chunk_sectors = mddev->chunk_sectors;
3334 unsigned int bio_sectors = bio->bi_size >> 9;
3336 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3337 chunk_sectors = mddev->new_chunk_sectors;
3338 return chunk_sectors >=
3339 ((sector & (chunk_sectors - 1)) + bio_sectors);
3343 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3344 * later sampled by raid5d.
3346 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3348 unsigned long flags;
3350 spin_lock_irqsave(&conf->device_lock, flags);
3352 bi->bi_next = conf->retry_read_aligned_list;
3353 conf->retry_read_aligned_list = bi;
3355 spin_unlock_irqrestore(&conf->device_lock, flags);
3356 md_wakeup_thread(conf->mddev->thread);
3360 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3362 struct bio *bi;
3364 bi = conf->retry_read_aligned;
3365 if (bi) {
3366 conf->retry_read_aligned = NULL;
3367 return bi;
3369 bi = conf->retry_read_aligned_list;
3370 if(bi) {
3371 conf->retry_read_aligned_list = bi->bi_next;
3372 bi->bi_next = NULL;
3374 * this sets the active strip count to 1 and the processed
3375 * strip count to zero (upper 8 bits)
3377 bi->bi_phys_segments = 1; /* biased count of active stripes */
3380 return bi;
3385 * The "raid5_align_endio" should check if the read succeeded and if it
3386 * did, call bio_endio on the original bio (having bio_put the new bio
3387 * first).
3388 * If the read failed..
3390 static void raid5_align_endio(struct bio *bi, int error)
3392 struct bio* raid_bi = bi->bi_private;
3393 mddev_t *mddev;
3394 raid5_conf_t *conf;
3395 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3396 mdk_rdev_t *rdev;
3398 bio_put(bi);
3400 rdev = (void*)raid_bi->bi_next;
3401 raid_bi->bi_next = NULL;
3402 mddev = rdev->mddev;
3403 conf = mddev->private;
3405 rdev_dec_pending(rdev, conf->mddev);
3407 if (!error && uptodate) {
3408 bio_endio(raid_bi, 0);
3409 if (atomic_dec_and_test(&conf->active_aligned_reads))
3410 wake_up(&conf->wait_for_stripe);
3411 return;
3415 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3417 add_bio_to_retry(raid_bi, conf);
3420 static int bio_fits_rdev(struct bio *bi)
3422 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3424 if ((bi->bi_size>>9) > queue_max_sectors(q))
3425 return 0;
3426 blk_recount_segments(q, bi);
3427 if (bi->bi_phys_segments > queue_max_segments(q))
3428 return 0;
3430 if (q->merge_bvec_fn)
3431 /* it's too hard to apply the merge_bvec_fn at this stage,
3432 * just just give up
3434 return 0;
3436 return 1;
3440 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3442 raid5_conf_t *conf = mddev->private;
3443 int dd_idx;
3444 struct bio* align_bi;
3445 mdk_rdev_t *rdev;
3447 if (!in_chunk_boundary(mddev, raid_bio)) {
3448 pr_debug("chunk_aligned_read : non aligned\n");
3449 return 0;
3452 * use bio_clone_mddev to make a copy of the bio
3454 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3455 if (!align_bi)
3456 return 0;
3458 * set bi_end_io to a new function, and set bi_private to the
3459 * original bio.
3461 align_bi->bi_end_io = raid5_align_endio;
3462 align_bi->bi_private = raid_bio;
3464 * compute position
3466 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3468 &dd_idx, NULL);
3470 rcu_read_lock();
3471 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3472 if (rdev && test_bit(In_sync, &rdev->flags)) {
3473 atomic_inc(&rdev->nr_pending);
3474 rcu_read_unlock();
3475 raid_bio->bi_next = (void*)rdev;
3476 align_bi->bi_bdev = rdev->bdev;
3477 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3478 align_bi->bi_sector += rdev->data_offset;
3480 if (!bio_fits_rdev(align_bi)) {
3481 /* too big in some way */
3482 bio_put(align_bi);
3483 rdev_dec_pending(rdev, mddev);
3484 return 0;
3487 spin_lock_irq(&conf->device_lock);
3488 wait_event_lock_irq(conf->wait_for_stripe,
3489 conf->quiesce == 0,
3490 conf->device_lock, /* nothing */);
3491 atomic_inc(&conf->active_aligned_reads);
3492 spin_unlock_irq(&conf->device_lock);
3494 generic_make_request(align_bi);
3495 return 1;
3496 } else {
3497 rcu_read_unlock();
3498 bio_put(align_bi);
3499 return 0;
3503 /* __get_priority_stripe - get the next stripe to process
3505 * Full stripe writes are allowed to pass preread active stripes up until
3506 * the bypass_threshold is exceeded. In general the bypass_count
3507 * increments when the handle_list is handled before the hold_list; however, it
3508 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3509 * stripe with in flight i/o. The bypass_count will be reset when the
3510 * head of the hold_list has changed, i.e. the head was promoted to the
3511 * handle_list.
3513 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3515 struct stripe_head *sh;
3517 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3518 __func__,
3519 list_empty(&conf->handle_list) ? "empty" : "busy",
3520 list_empty(&conf->hold_list) ? "empty" : "busy",
3521 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3523 if (!list_empty(&conf->handle_list)) {
3524 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3526 if (list_empty(&conf->hold_list))
3527 conf->bypass_count = 0;
3528 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3529 if (conf->hold_list.next == conf->last_hold)
3530 conf->bypass_count++;
3531 else {
3532 conf->last_hold = conf->hold_list.next;
3533 conf->bypass_count -= conf->bypass_threshold;
3534 if (conf->bypass_count < 0)
3535 conf->bypass_count = 0;
3538 } else if (!list_empty(&conf->hold_list) &&
3539 ((conf->bypass_threshold &&
3540 conf->bypass_count > conf->bypass_threshold) ||
3541 atomic_read(&conf->pending_full_writes) == 0)) {
3542 sh = list_entry(conf->hold_list.next,
3543 typeof(*sh), lru);
3544 conf->bypass_count -= conf->bypass_threshold;
3545 if (conf->bypass_count < 0)
3546 conf->bypass_count = 0;
3547 } else
3548 return NULL;
3550 list_del_init(&sh->lru);
3551 atomic_inc(&sh->count);
3552 BUG_ON(atomic_read(&sh->count) != 1);
3553 return sh;
3556 static int make_request(mddev_t *mddev, struct bio * bi)
3558 raid5_conf_t *conf = mddev->private;
3559 int dd_idx;
3560 sector_t new_sector;
3561 sector_t logical_sector, last_sector;
3562 struct stripe_head *sh;
3563 const int rw = bio_data_dir(bi);
3564 int remaining;
3565 int plugged;
3567 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3568 md_flush_request(mddev, bi);
3569 return 0;
3572 md_write_start(mddev, bi);
3574 if (rw == READ &&
3575 mddev->reshape_position == MaxSector &&
3576 chunk_aligned_read(mddev,bi))
3577 return 0;
3579 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3580 last_sector = bi->bi_sector + (bi->bi_size>>9);
3581 bi->bi_next = NULL;
3582 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3584 plugged = mddev_check_plugged(mddev);
3585 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3586 DEFINE_WAIT(w);
3587 int disks, data_disks;
3588 int previous;
3590 retry:
3591 previous = 0;
3592 disks = conf->raid_disks;
3593 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3594 if (unlikely(conf->reshape_progress != MaxSector)) {
3595 /* spinlock is needed as reshape_progress may be
3596 * 64bit on a 32bit platform, and so it might be
3597 * possible to see a half-updated value
3598 * Of course reshape_progress could change after
3599 * the lock is dropped, so once we get a reference
3600 * to the stripe that we think it is, we will have
3601 * to check again.
3603 spin_lock_irq(&conf->device_lock);
3604 if (mddev->delta_disks < 0
3605 ? logical_sector < conf->reshape_progress
3606 : logical_sector >= conf->reshape_progress) {
3607 disks = conf->previous_raid_disks;
3608 previous = 1;
3609 } else {
3610 if (mddev->delta_disks < 0
3611 ? logical_sector < conf->reshape_safe
3612 : logical_sector >= conf->reshape_safe) {
3613 spin_unlock_irq(&conf->device_lock);
3614 schedule();
3615 goto retry;
3618 spin_unlock_irq(&conf->device_lock);
3620 data_disks = disks - conf->max_degraded;
3622 new_sector = raid5_compute_sector(conf, logical_sector,
3623 previous,
3624 &dd_idx, NULL);
3625 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3626 (unsigned long long)new_sector,
3627 (unsigned long long)logical_sector);
3629 sh = get_active_stripe(conf, new_sector, previous,
3630 (bi->bi_rw&RWA_MASK), 0);
3631 if (sh) {
3632 if (unlikely(previous)) {
3633 /* expansion might have moved on while waiting for a
3634 * stripe, so we must do the range check again.
3635 * Expansion could still move past after this
3636 * test, but as we are holding a reference to
3637 * 'sh', we know that if that happens,
3638 * STRIPE_EXPANDING will get set and the expansion
3639 * won't proceed until we finish with the stripe.
3641 int must_retry = 0;
3642 spin_lock_irq(&conf->device_lock);
3643 if (mddev->delta_disks < 0
3644 ? logical_sector >= conf->reshape_progress
3645 : logical_sector < conf->reshape_progress)
3646 /* mismatch, need to try again */
3647 must_retry = 1;
3648 spin_unlock_irq(&conf->device_lock);
3649 if (must_retry) {
3650 release_stripe(sh);
3651 schedule();
3652 goto retry;
3656 if (rw == WRITE &&
3657 logical_sector >= mddev->suspend_lo &&
3658 logical_sector < mddev->suspend_hi) {
3659 release_stripe(sh);
3660 /* As the suspend_* range is controlled by
3661 * userspace, we want an interruptible
3662 * wait.
3664 flush_signals(current);
3665 prepare_to_wait(&conf->wait_for_overlap,
3666 &w, TASK_INTERRUPTIBLE);
3667 if (logical_sector >= mddev->suspend_lo &&
3668 logical_sector < mddev->suspend_hi)
3669 schedule();
3670 goto retry;
3673 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3674 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3675 /* Stripe is busy expanding or
3676 * add failed due to overlap. Flush everything
3677 * and wait a while
3679 md_wakeup_thread(mddev->thread);
3680 release_stripe(sh);
3681 schedule();
3682 goto retry;
3684 finish_wait(&conf->wait_for_overlap, &w);
3685 set_bit(STRIPE_HANDLE, &sh->state);
3686 clear_bit(STRIPE_DELAYED, &sh->state);
3687 if ((bi->bi_rw & REQ_SYNC) &&
3688 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3689 atomic_inc(&conf->preread_active_stripes);
3690 release_stripe(sh);
3691 } else {
3692 /* cannot get stripe for read-ahead, just give-up */
3693 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3694 finish_wait(&conf->wait_for_overlap, &w);
3695 break;
3699 if (!plugged)
3700 md_wakeup_thread(mddev->thread);
3702 spin_lock_irq(&conf->device_lock);
3703 remaining = raid5_dec_bi_phys_segments(bi);
3704 spin_unlock_irq(&conf->device_lock);
3705 if (remaining == 0) {
3707 if ( rw == WRITE )
3708 md_write_end(mddev);
3710 bio_endio(bi, 0);
3713 return 0;
3716 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3718 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3720 /* reshaping is quite different to recovery/resync so it is
3721 * handled quite separately ... here.
3723 * On each call to sync_request, we gather one chunk worth of
3724 * destination stripes and flag them as expanding.
3725 * Then we find all the source stripes and request reads.
3726 * As the reads complete, handle_stripe will copy the data
3727 * into the destination stripe and release that stripe.
3729 raid5_conf_t *conf = mddev->private;
3730 struct stripe_head *sh;
3731 sector_t first_sector, last_sector;
3732 int raid_disks = conf->previous_raid_disks;
3733 int data_disks = raid_disks - conf->max_degraded;
3734 int new_data_disks = conf->raid_disks - conf->max_degraded;
3735 int i;
3736 int dd_idx;
3737 sector_t writepos, readpos, safepos;
3738 sector_t stripe_addr;
3739 int reshape_sectors;
3740 struct list_head stripes;
3742 if (sector_nr == 0) {
3743 /* If restarting in the middle, skip the initial sectors */
3744 if (mddev->delta_disks < 0 &&
3745 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3746 sector_nr = raid5_size(mddev, 0, 0)
3747 - conf->reshape_progress;
3748 } else if (mddev->delta_disks >= 0 &&
3749 conf->reshape_progress > 0)
3750 sector_nr = conf->reshape_progress;
3751 sector_div(sector_nr, new_data_disks);
3752 if (sector_nr) {
3753 mddev->curr_resync_completed = sector_nr;
3754 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3755 *skipped = 1;
3756 return sector_nr;
3760 /* We need to process a full chunk at a time.
3761 * If old and new chunk sizes differ, we need to process the
3762 * largest of these
3764 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3765 reshape_sectors = mddev->new_chunk_sectors;
3766 else
3767 reshape_sectors = mddev->chunk_sectors;
3769 /* we update the metadata when there is more than 3Meg
3770 * in the block range (that is rather arbitrary, should
3771 * probably be time based) or when the data about to be
3772 * copied would over-write the source of the data at
3773 * the front of the range.
3774 * i.e. one new_stripe along from reshape_progress new_maps
3775 * to after where reshape_safe old_maps to
3777 writepos = conf->reshape_progress;
3778 sector_div(writepos, new_data_disks);
3779 readpos = conf->reshape_progress;
3780 sector_div(readpos, data_disks);
3781 safepos = conf->reshape_safe;
3782 sector_div(safepos, data_disks);
3783 if (mddev->delta_disks < 0) {
3784 writepos -= min_t(sector_t, reshape_sectors, writepos);
3785 readpos += reshape_sectors;
3786 safepos += reshape_sectors;
3787 } else {
3788 writepos += reshape_sectors;
3789 readpos -= min_t(sector_t, reshape_sectors, readpos);
3790 safepos -= min_t(sector_t, reshape_sectors, safepos);
3793 /* 'writepos' is the most advanced device address we might write.
3794 * 'readpos' is the least advanced device address we might read.
3795 * 'safepos' is the least address recorded in the metadata as having
3796 * been reshaped.
3797 * If 'readpos' is behind 'writepos', then there is no way that we can
3798 * ensure safety in the face of a crash - that must be done by userspace
3799 * making a backup of the data. So in that case there is no particular
3800 * rush to update metadata.
3801 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3802 * update the metadata to advance 'safepos' to match 'readpos' so that
3803 * we can be safe in the event of a crash.
3804 * So we insist on updating metadata if safepos is behind writepos and
3805 * readpos is beyond writepos.
3806 * In any case, update the metadata every 10 seconds.
3807 * Maybe that number should be configurable, but I'm not sure it is
3808 * worth it.... maybe it could be a multiple of safemode_delay???
3810 if ((mddev->delta_disks < 0
3811 ? (safepos > writepos && readpos < writepos)
3812 : (safepos < writepos && readpos > writepos)) ||
3813 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3814 /* Cannot proceed until we've updated the superblock... */
3815 wait_event(conf->wait_for_overlap,
3816 atomic_read(&conf->reshape_stripes)==0);
3817 mddev->reshape_position = conf->reshape_progress;
3818 mddev->curr_resync_completed = sector_nr;
3819 conf->reshape_checkpoint = jiffies;
3820 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3821 md_wakeup_thread(mddev->thread);
3822 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3823 kthread_should_stop());
3824 spin_lock_irq(&conf->device_lock);
3825 conf->reshape_safe = mddev->reshape_position;
3826 spin_unlock_irq(&conf->device_lock);
3827 wake_up(&conf->wait_for_overlap);
3828 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3831 if (mddev->delta_disks < 0) {
3832 BUG_ON(conf->reshape_progress == 0);
3833 stripe_addr = writepos;
3834 BUG_ON((mddev->dev_sectors &
3835 ~((sector_t)reshape_sectors - 1))
3836 - reshape_sectors - stripe_addr
3837 != sector_nr);
3838 } else {
3839 BUG_ON(writepos != sector_nr + reshape_sectors);
3840 stripe_addr = sector_nr;
3842 INIT_LIST_HEAD(&stripes);
3843 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3844 int j;
3845 int skipped_disk = 0;
3846 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3847 set_bit(STRIPE_EXPANDING, &sh->state);
3848 atomic_inc(&conf->reshape_stripes);
3849 /* If any of this stripe is beyond the end of the old
3850 * array, then we need to zero those blocks
3852 for (j=sh->disks; j--;) {
3853 sector_t s;
3854 if (j == sh->pd_idx)
3855 continue;
3856 if (conf->level == 6 &&
3857 j == sh->qd_idx)
3858 continue;
3859 s = compute_blocknr(sh, j, 0);
3860 if (s < raid5_size(mddev, 0, 0)) {
3861 skipped_disk = 1;
3862 continue;
3864 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3865 set_bit(R5_Expanded, &sh->dev[j].flags);
3866 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3868 if (!skipped_disk) {
3869 set_bit(STRIPE_EXPAND_READY, &sh->state);
3870 set_bit(STRIPE_HANDLE, &sh->state);
3872 list_add(&sh->lru, &stripes);
3874 spin_lock_irq(&conf->device_lock);
3875 if (mddev->delta_disks < 0)
3876 conf->reshape_progress -= reshape_sectors * new_data_disks;
3877 else
3878 conf->reshape_progress += reshape_sectors * new_data_disks;
3879 spin_unlock_irq(&conf->device_lock);
3880 /* Ok, those stripe are ready. We can start scheduling
3881 * reads on the source stripes.
3882 * The source stripes are determined by mapping the first and last
3883 * block on the destination stripes.
3885 first_sector =
3886 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3887 1, &dd_idx, NULL);
3888 last_sector =
3889 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3890 * new_data_disks - 1),
3891 1, &dd_idx, NULL);
3892 if (last_sector >= mddev->dev_sectors)
3893 last_sector = mddev->dev_sectors - 1;
3894 while (first_sector <= last_sector) {
3895 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3896 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3897 set_bit(STRIPE_HANDLE, &sh->state);
3898 release_stripe(sh);
3899 first_sector += STRIPE_SECTORS;
3901 /* Now that the sources are clearly marked, we can release
3902 * the destination stripes
3904 while (!list_empty(&stripes)) {
3905 sh = list_entry(stripes.next, struct stripe_head, lru);
3906 list_del_init(&sh->lru);
3907 release_stripe(sh);
3909 /* If this takes us to the resync_max point where we have to pause,
3910 * then we need to write out the superblock.
3912 sector_nr += reshape_sectors;
3913 if ((sector_nr - mddev->curr_resync_completed) * 2
3914 >= mddev->resync_max - mddev->curr_resync_completed) {
3915 /* Cannot proceed until we've updated the superblock... */
3916 wait_event(conf->wait_for_overlap,
3917 atomic_read(&conf->reshape_stripes) == 0);
3918 mddev->reshape_position = conf->reshape_progress;
3919 mddev->curr_resync_completed = sector_nr;
3920 conf->reshape_checkpoint = jiffies;
3921 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3922 md_wakeup_thread(mddev->thread);
3923 wait_event(mddev->sb_wait,
3924 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3925 || kthread_should_stop());
3926 spin_lock_irq(&conf->device_lock);
3927 conf->reshape_safe = mddev->reshape_position;
3928 spin_unlock_irq(&conf->device_lock);
3929 wake_up(&conf->wait_for_overlap);
3930 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3932 return reshape_sectors;
3935 /* FIXME go_faster isn't used */
3936 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3938 raid5_conf_t *conf = mddev->private;
3939 struct stripe_head *sh;
3940 sector_t max_sector = mddev->dev_sectors;
3941 sector_t sync_blocks;
3942 int still_degraded = 0;
3943 int i;
3945 if (sector_nr >= max_sector) {
3946 /* just being told to finish up .. nothing much to do */
3948 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3949 end_reshape(conf);
3950 return 0;
3953 if (mddev->curr_resync < max_sector) /* aborted */
3954 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3955 &sync_blocks, 1);
3956 else /* completed sync */
3957 conf->fullsync = 0;
3958 bitmap_close_sync(mddev->bitmap);
3960 return 0;
3963 /* Allow raid5_quiesce to complete */
3964 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
3966 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3967 return reshape_request(mddev, sector_nr, skipped);
3969 /* No need to check resync_max as we never do more than one
3970 * stripe, and as resync_max will always be on a chunk boundary,
3971 * if the check in md_do_sync didn't fire, there is no chance
3972 * of overstepping resync_max here
3975 /* if there is too many failed drives and we are trying
3976 * to resync, then assert that we are finished, because there is
3977 * nothing we can do.
3979 if (mddev->degraded >= conf->max_degraded &&
3980 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3981 sector_t rv = mddev->dev_sectors - sector_nr;
3982 *skipped = 1;
3983 return rv;
3985 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3986 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3987 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3988 /* we can skip this block, and probably more */
3989 sync_blocks /= STRIPE_SECTORS;
3990 *skipped = 1;
3991 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3995 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3997 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
3998 if (sh == NULL) {
3999 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4000 /* make sure we don't swamp the stripe cache if someone else
4001 * is trying to get access
4003 schedule_timeout_uninterruptible(1);
4005 /* Need to check if array will still be degraded after recovery/resync
4006 * We don't need to check the 'failed' flag as when that gets set,
4007 * recovery aborts.
4009 for (i = 0; i < conf->raid_disks; i++)
4010 if (conf->disks[i].rdev == NULL)
4011 still_degraded = 1;
4013 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4015 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4017 handle_stripe(sh);
4018 release_stripe(sh);
4020 return STRIPE_SECTORS;
4023 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4025 /* We may not be able to submit a whole bio at once as there
4026 * may not be enough stripe_heads available.
4027 * We cannot pre-allocate enough stripe_heads as we may need
4028 * more than exist in the cache (if we allow ever large chunks).
4029 * So we do one stripe head at a time and record in
4030 * ->bi_hw_segments how many have been done.
4032 * We *know* that this entire raid_bio is in one chunk, so
4033 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4035 struct stripe_head *sh;
4036 int dd_idx;
4037 sector_t sector, logical_sector, last_sector;
4038 int scnt = 0;
4039 int remaining;
4040 int handled = 0;
4042 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4043 sector = raid5_compute_sector(conf, logical_sector,
4044 0, &dd_idx, NULL);
4045 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4047 for (; logical_sector < last_sector;
4048 logical_sector += STRIPE_SECTORS,
4049 sector += STRIPE_SECTORS,
4050 scnt++) {
4052 if (scnt < raid5_bi_hw_segments(raid_bio))
4053 /* already done this stripe */
4054 continue;
4056 sh = get_active_stripe(conf, sector, 0, 1, 0);
4058 if (!sh) {
4059 /* failed to get a stripe - must wait */
4060 raid5_set_bi_hw_segments(raid_bio, scnt);
4061 conf->retry_read_aligned = raid_bio;
4062 return handled;
4065 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4066 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4067 release_stripe(sh);
4068 raid5_set_bi_hw_segments(raid_bio, scnt);
4069 conf->retry_read_aligned = raid_bio;
4070 return handled;
4073 handle_stripe(sh);
4074 release_stripe(sh);
4075 handled++;
4077 spin_lock_irq(&conf->device_lock);
4078 remaining = raid5_dec_bi_phys_segments(raid_bio);
4079 spin_unlock_irq(&conf->device_lock);
4080 if (remaining == 0)
4081 bio_endio(raid_bio, 0);
4082 if (atomic_dec_and_test(&conf->active_aligned_reads))
4083 wake_up(&conf->wait_for_stripe);
4084 return handled;
4089 * This is our raid5 kernel thread.
4091 * We scan the hash table for stripes which can be handled now.
4092 * During the scan, completed stripes are saved for us by the interrupt
4093 * handler, so that they will not have to wait for our next wakeup.
4095 static void raid5d(mddev_t *mddev)
4097 struct stripe_head *sh;
4098 raid5_conf_t *conf = mddev->private;
4099 int handled;
4100 struct blk_plug plug;
4102 pr_debug("+++ raid5d active\n");
4104 md_check_recovery(mddev);
4106 blk_start_plug(&plug);
4107 handled = 0;
4108 spin_lock_irq(&conf->device_lock);
4109 while (1) {
4110 struct bio *bio;
4112 if (atomic_read(&mddev->plug_cnt) == 0 &&
4113 !list_empty(&conf->bitmap_list)) {
4114 /* Now is a good time to flush some bitmap updates */
4115 conf->seq_flush++;
4116 spin_unlock_irq(&conf->device_lock);
4117 bitmap_unplug(mddev->bitmap);
4118 spin_lock_irq(&conf->device_lock);
4119 conf->seq_write = conf->seq_flush;
4120 activate_bit_delay(conf);
4122 if (atomic_read(&mddev->plug_cnt) == 0)
4123 raid5_activate_delayed(conf);
4125 while ((bio = remove_bio_from_retry(conf))) {
4126 int ok;
4127 spin_unlock_irq(&conf->device_lock);
4128 ok = retry_aligned_read(conf, bio);
4129 spin_lock_irq(&conf->device_lock);
4130 if (!ok)
4131 break;
4132 handled++;
4135 sh = __get_priority_stripe(conf);
4137 if (!sh)
4138 break;
4139 spin_unlock_irq(&conf->device_lock);
4141 handled++;
4142 handle_stripe(sh);
4143 release_stripe(sh);
4144 cond_resched();
4146 spin_lock_irq(&conf->device_lock);
4148 pr_debug("%d stripes handled\n", handled);
4150 spin_unlock_irq(&conf->device_lock);
4152 async_tx_issue_pending_all();
4153 blk_finish_plug(&plug);
4155 pr_debug("--- raid5d inactive\n");
4158 static ssize_t
4159 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4161 raid5_conf_t *conf = mddev->private;
4162 if (conf)
4163 return sprintf(page, "%d\n", conf->max_nr_stripes);
4164 else
4165 return 0;
4169 raid5_set_cache_size(mddev_t *mddev, int size)
4171 raid5_conf_t *conf = mddev->private;
4172 int err;
4174 if (size <= 16 || size > 32768)
4175 return -EINVAL;
4176 while (size < conf->max_nr_stripes) {
4177 if (drop_one_stripe(conf))
4178 conf->max_nr_stripes--;
4179 else
4180 break;
4182 err = md_allow_write(mddev);
4183 if (err)
4184 return err;
4185 while (size > conf->max_nr_stripes) {
4186 if (grow_one_stripe(conf))
4187 conf->max_nr_stripes++;
4188 else break;
4190 return 0;
4192 EXPORT_SYMBOL(raid5_set_cache_size);
4194 static ssize_t
4195 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4197 raid5_conf_t *conf = mddev->private;
4198 unsigned long new;
4199 int err;
4201 if (len >= PAGE_SIZE)
4202 return -EINVAL;
4203 if (!conf)
4204 return -ENODEV;
4206 if (strict_strtoul(page, 10, &new))
4207 return -EINVAL;
4208 err = raid5_set_cache_size(mddev, new);
4209 if (err)
4210 return err;
4211 return len;
4214 static struct md_sysfs_entry
4215 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4216 raid5_show_stripe_cache_size,
4217 raid5_store_stripe_cache_size);
4219 static ssize_t
4220 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4222 raid5_conf_t *conf = mddev->private;
4223 if (conf)
4224 return sprintf(page, "%d\n", conf->bypass_threshold);
4225 else
4226 return 0;
4229 static ssize_t
4230 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4232 raid5_conf_t *conf = mddev->private;
4233 unsigned long new;
4234 if (len >= PAGE_SIZE)
4235 return -EINVAL;
4236 if (!conf)
4237 return -ENODEV;
4239 if (strict_strtoul(page, 10, &new))
4240 return -EINVAL;
4241 if (new > conf->max_nr_stripes)
4242 return -EINVAL;
4243 conf->bypass_threshold = new;
4244 return len;
4247 static struct md_sysfs_entry
4248 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4249 S_IRUGO | S_IWUSR,
4250 raid5_show_preread_threshold,
4251 raid5_store_preread_threshold);
4253 static ssize_t
4254 stripe_cache_active_show(mddev_t *mddev, char *page)
4256 raid5_conf_t *conf = mddev->private;
4257 if (conf)
4258 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4259 else
4260 return 0;
4263 static struct md_sysfs_entry
4264 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4266 static struct attribute *raid5_attrs[] = {
4267 &raid5_stripecache_size.attr,
4268 &raid5_stripecache_active.attr,
4269 &raid5_preread_bypass_threshold.attr,
4270 NULL,
4272 static struct attribute_group raid5_attrs_group = {
4273 .name = NULL,
4274 .attrs = raid5_attrs,
4277 static sector_t
4278 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4280 raid5_conf_t *conf = mddev->private;
4282 if (!sectors)
4283 sectors = mddev->dev_sectors;
4284 if (!raid_disks)
4285 /* size is defined by the smallest of previous and new size */
4286 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4288 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4289 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4290 return sectors * (raid_disks - conf->max_degraded);
4293 static void raid5_free_percpu(raid5_conf_t *conf)
4295 struct raid5_percpu *percpu;
4296 unsigned long cpu;
4298 if (!conf->percpu)
4299 return;
4301 get_online_cpus();
4302 for_each_possible_cpu(cpu) {
4303 percpu = per_cpu_ptr(conf->percpu, cpu);
4304 safe_put_page(percpu->spare_page);
4305 kfree(percpu->scribble);
4307 #ifdef CONFIG_HOTPLUG_CPU
4308 unregister_cpu_notifier(&conf->cpu_notify);
4309 #endif
4310 put_online_cpus();
4312 free_percpu(conf->percpu);
4315 static void free_conf(raid5_conf_t *conf)
4317 shrink_stripes(conf);
4318 raid5_free_percpu(conf);
4319 kfree(conf->disks);
4320 kfree(conf->stripe_hashtbl);
4321 kfree(conf);
4324 #ifdef CONFIG_HOTPLUG_CPU
4325 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4326 void *hcpu)
4328 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4329 long cpu = (long)hcpu;
4330 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4332 switch (action) {
4333 case CPU_UP_PREPARE:
4334 case CPU_UP_PREPARE_FROZEN:
4335 if (conf->level == 6 && !percpu->spare_page)
4336 percpu->spare_page = alloc_page(GFP_KERNEL);
4337 if (!percpu->scribble)
4338 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4340 if (!percpu->scribble ||
4341 (conf->level == 6 && !percpu->spare_page)) {
4342 safe_put_page(percpu->spare_page);
4343 kfree(percpu->scribble);
4344 pr_err("%s: failed memory allocation for cpu%ld\n",
4345 __func__, cpu);
4346 return notifier_from_errno(-ENOMEM);
4348 break;
4349 case CPU_DEAD:
4350 case CPU_DEAD_FROZEN:
4351 safe_put_page(percpu->spare_page);
4352 kfree(percpu->scribble);
4353 percpu->spare_page = NULL;
4354 percpu->scribble = NULL;
4355 break;
4356 default:
4357 break;
4359 return NOTIFY_OK;
4361 #endif
4363 static int raid5_alloc_percpu(raid5_conf_t *conf)
4365 unsigned long cpu;
4366 struct page *spare_page;
4367 struct raid5_percpu __percpu *allcpus;
4368 void *scribble;
4369 int err;
4371 allcpus = alloc_percpu(struct raid5_percpu);
4372 if (!allcpus)
4373 return -ENOMEM;
4374 conf->percpu = allcpus;
4376 get_online_cpus();
4377 err = 0;
4378 for_each_present_cpu(cpu) {
4379 if (conf->level == 6) {
4380 spare_page = alloc_page(GFP_KERNEL);
4381 if (!spare_page) {
4382 err = -ENOMEM;
4383 break;
4385 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4387 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4388 if (!scribble) {
4389 err = -ENOMEM;
4390 break;
4392 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4394 #ifdef CONFIG_HOTPLUG_CPU
4395 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4396 conf->cpu_notify.priority = 0;
4397 if (err == 0)
4398 err = register_cpu_notifier(&conf->cpu_notify);
4399 #endif
4400 put_online_cpus();
4402 return err;
4405 static raid5_conf_t *setup_conf(mddev_t *mddev)
4407 raid5_conf_t *conf;
4408 int raid_disk, memory, max_disks;
4409 mdk_rdev_t *rdev;
4410 struct disk_info *disk;
4412 if (mddev->new_level != 5
4413 && mddev->new_level != 4
4414 && mddev->new_level != 6) {
4415 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4416 mdname(mddev), mddev->new_level);
4417 return ERR_PTR(-EIO);
4419 if ((mddev->new_level == 5
4420 && !algorithm_valid_raid5(mddev->new_layout)) ||
4421 (mddev->new_level == 6
4422 && !algorithm_valid_raid6(mddev->new_layout))) {
4423 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4424 mdname(mddev), mddev->new_layout);
4425 return ERR_PTR(-EIO);
4427 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4428 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4429 mdname(mddev), mddev->raid_disks);
4430 return ERR_PTR(-EINVAL);
4433 if (!mddev->new_chunk_sectors ||
4434 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4435 !is_power_of_2(mddev->new_chunk_sectors)) {
4436 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4437 mdname(mddev), mddev->new_chunk_sectors << 9);
4438 return ERR_PTR(-EINVAL);
4441 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4442 if (conf == NULL)
4443 goto abort;
4444 spin_lock_init(&conf->device_lock);
4445 init_waitqueue_head(&conf->wait_for_stripe);
4446 init_waitqueue_head(&conf->wait_for_overlap);
4447 INIT_LIST_HEAD(&conf->handle_list);
4448 INIT_LIST_HEAD(&conf->hold_list);
4449 INIT_LIST_HEAD(&conf->delayed_list);
4450 INIT_LIST_HEAD(&conf->bitmap_list);
4451 INIT_LIST_HEAD(&conf->inactive_list);
4452 atomic_set(&conf->active_stripes, 0);
4453 atomic_set(&conf->preread_active_stripes, 0);
4454 atomic_set(&conf->active_aligned_reads, 0);
4455 conf->bypass_threshold = BYPASS_THRESHOLD;
4457 conf->raid_disks = mddev->raid_disks;
4458 if (mddev->reshape_position == MaxSector)
4459 conf->previous_raid_disks = mddev->raid_disks;
4460 else
4461 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4462 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4463 conf->scribble_len = scribble_len(max_disks);
4465 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4466 GFP_KERNEL);
4467 if (!conf->disks)
4468 goto abort;
4470 conf->mddev = mddev;
4472 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4473 goto abort;
4475 conf->level = mddev->new_level;
4476 if (raid5_alloc_percpu(conf) != 0)
4477 goto abort;
4479 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4481 list_for_each_entry(rdev, &mddev->disks, same_set) {
4482 raid_disk = rdev->raid_disk;
4483 if (raid_disk >= max_disks
4484 || raid_disk < 0)
4485 continue;
4486 disk = conf->disks + raid_disk;
4488 disk->rdev = rdev;
4490 if (test_bit(In_sync, &rdev->flags)) {
4491 char b[BDEVNAME_SIZE];
4492 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4493 " disk %d\n",
4494 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4495 } else if (rdev->saved_raid_disk != raid_disk)
4496 /* Cannot rely on bitmap to complete recovery */
4497 conf->fullsync = 1;
4500 conf->chunk_sectors = mddev->new_chunk_sectors;
4501 conf->level = mddev->new_level;
4502 if (conf->level == 6)
4503 conf->max_degraded = 2;
4504 else
4505 conf->max_degraded = 1;
4506 conf->algorithm = mddev->new_layout;
4507 conf->max_nr_stripes = NR_STRIPES;
4508 conf->reshape_progress = mddev->reshape_position;
4509 if (conf->reshape_progress != MaxSector) {
4510 conf->prev_chunk_sectors = mddev->chunk_sectors;
4511 conf->prev_algo = mddev->layout;
4514 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4515 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4516 if (grow_stripes(conf, conf->max_nr_stripes)) {
4517 printk(KERN_ERR
4518 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4519 mdname(mddev), memory);
4520 goto abort;
4521 } else
4522 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4523 mdname(mddev), memory);
4525 conf->thread = md_register_thread(raid5d, mddev, NULL);
4526 if (!conf->thread) {
4527 printk(KERN_ERR
4528 "md/raid:%s: couldn't allocate thread.\n",
4529 mdname(mddev));
4530 goto abort;
4533 return conf;
4535 abort:
4536 if (conf) {
4537 free_conf(conf);
4538 return ERR_PTR(-EIO);
4539 } else
4540 return ERR_PTR(-ENOMEM);
4544 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4546 switch (algo) {
4547 case ALGORITHM_PARITY_0:
4548 if (raid_disk < max_degraded)
4549 return 1;
4550 break;
4551 case ALGORITHM_PARITY_N:
4552 if (raid_disk >= raid_disks - max_degraded)
4553 return 1;
4554 break;
4555 case ALGORITHM_PARITY_0_6:
4556 if (raid_disk == 0 ||
4557 raid_disk == raid_disks - 1)
4558 return 1;
4559 break;
4560 case ALGORITHM_LEFT_ASYMMETRIC_6:
4561 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4562 case ALGORITHM_LEFT_SYMMETRIC_6:
4563 case ALGORITHM_RIGHT_SYMMETRIC_6:
4564 if (raid_disk == raid_disks - 1)
4565 return 1;
4567 return 0;
4570 static int run(mddev_t *mddev)
4572 raid5_conf_t *conf;
4573 int working_disks = 0;
4574 int dirty_parity_disks = 0;
4575 mdk_rdev_t *rdev;
4576 sector_t reshape_offset = 0;
4578 if (mddev->recovery_cp != MaxSector)
4579 printk(KERN_NOTICE "md/raid:%s: not clean"
4580 " -- starting background reconstruction\n",
4581 mdname(mddev));
4582 if (mddev->reshape_position != MaxSector) {
4583 /* Check that we can continue the reshape.
4584 * Currently only disks can change, it must
4585 * increase, and we must be past the point where
4586 * a stripe over-writes itself
4588 sector_t here_new, here_old;
4589 int old_disks;
4590 int max_degraded = (mddev->level == 6 ? 2 : 1);
4592 if (mddev->new_level != mddev->level) {
4593 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4594 "required - aborting.\n",
4595 mdname(mddev));
4596 return -EINVAL;
4598 old_disks = mddev->raid_disks - mddev->delta_disks;
4599 /* reshape_position must be on a new-stripe boundary, and one
4600 * further up in new geometry must map after here in old
4601 * geometry.
4603 here_new = mddev->reshape_position;
4604 if (sector_div(here_new, mddev->new_chunk_sectors *
4605 (mddev->raid_disks - max_degraded))) {
4606 printk(KERN_ERR "md/raid:%s: reshape_position not "
4607 "on a stripe boundary\n", mdname(mddev));
4608 return -EINVAL;
4610 reshape_offset = here_new * mddev->new_chunk_sectors;
4611 /* here_new is the stripe we will write to */
4612 here_old = mddev->reshape_position;
4613 sector_div(here_old, mddev->chunk_sectors *
4614 (old_disks-max_degraded));
4615 /* here_old is the first stripe that we might need to read
4616 * from */
4617 if (mddev->delta_disks == 0) {
4618 /* We cannot be sure it is safe to start an in-place
4619 * reshape. It is only safe if user-space if monitoring
4620 * and taking constant backups.
4621 * mdadm always starts a situation like this in
4622 * readonly mode so it can take control before
4623 * allowing any writes. So just check for that.
4625 if ((here_new * mddev->new_chunk_sectors !=
4626 here_old * mddev->chunk_sectors) ||
4627 mddev->ro == 0) {
4628 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4629 " in read-only mode - aborting\n",
4630 mdname(mddev));
4631 return -EINVAL;
4633 } else if (mddev->delta_disks < 0
4634 ? (here_new * mddev->new_chunk_sectors <=
4635 here_old * mddev->chunk_sectors)
4636 : (here_new * mddev->new_chunk_sectors >=
4637 here_old * mddev->chunk_sectors)) {
4638 /* Reading from the same stripe as writing to - bad */
4639 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4640 "auto-recovery - aborting.\n",
4641 mdname(mddev));
4642 return -EINVAL;
4644 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4645 mdname(mddev));
4646 /* OK, we should be able to continue; */
4647 } else {
4648 BUG_ON(mddev->level != mddev->new_level);
4649 BUG_ON(mddev->layout != mddev->new_layout);
4650 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4651 BUG_ON(mddev->delta_disks != 0);
4654 if (mddev->private == NULL)
4655 conf = setup_conf(mddev);
4656 else
4657 conf = mddev->private;
4659 if (IS_ERR(conf))
4660 return PTR_ERR(conf);
4662 mddev->thread = conf->thread;
4663 conf->thread = NULL;
4664 mddev->private = conf;
4667 * 0 for a fully functional array, 1 or 2 for a degraded array.
4669 list_for_each_entry(rdev, &mddev->disks, same_set) {
4670 if (rdev->badblocks.count) {
4671 printk(KERN_ERR "md/raid5: cannot handle bad blocks yet\n");
4672 goto abort;
4674 if (rdev->raid_disk < 0)
4675 continue;
4676 if (test_bit(In_sync, &rdev->flags)) {
4677 working_disks++;
4678 continue;
4680 /* This disc is not fully in-sync. However if it
4681 * just stored parity (beyond the recovery_offset),
4682 * when we don't need to be concerned about the
4683 * array being dirty.
4684 * When reshape goes 'backwards', we never have
4685 * partially completed devices, so we only need
4686 * to worry about reshape going forwards.
4688 /* Hack because v0.91 doesn't store recovery_offset properly. */
4689 if (mddev->major_version == 0 &&
4690 mddev->minor_version > 90)
4691 rdev->recovery_offset = reshape_offset;
4693 if (rdev->recovery_offset < reshape_offset) {
4694 /* We need to check old and new layout */
4695 if (!only_parity(rdev->raid_disk,
4696 conf->algorithm,
4697 conf->raid_disks,
4698 conf->max_degraded))
4699 continue;
4701 if (!only_parity(rdev->raid_disk,
4702 conf->prev_algo,
4703 conf->previous_raid_disks,
4704 conf->max_degraded))
4705 continue;
4706 dirty_parity_disks++;
4709 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4710 - working_disks);
4712 if (has_failed(conf)) {
4713 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4714 " (%d/%d failed)\n",
4715 mdname(mddev), mddev->degraded, conf->raid_disks);
4716 goto abort;
4719 /* device size must be a multiple of chunk size */
4720 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4721 mddev->resync_max_sectors = mddev->dev_sectors;
4723 if (mddev->degraded > dirty_parity_disks &&
4724 mddev->recovery_cp != MaxSector) {
4725 if (mddev->ok_start_degraded)
4726 printk(KERN_WARNING
4727 "md/raid:%s: starting dirty degraded array"
4728 " - data corruption possible.\n",
4729 mdname(mddev));
4730 else {
4731 printk(KERN_ERR
4732 "md/raid:%s: cannot start dirty degraded array.\n",
4733 mdname(mddev));
4734 goto abort;
4738 if (mddev->degraded == 0)
4739 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4740 " devices, algorithm %d\n", mdname(mddev), conf->level,
4741 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4742 mddev->new_layout);
4743 else
4744 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4745 " out of %d devices, algorithm %d\n",
4746 mdname(mddev), conf->level,
4747 mddev->raid_disks - mddev->degraded,
4748 mddev->raid_disks, mddev->new_layout);
4750 print_raid5_conf(conf);
4752 if (conf->reshape_progress != MaxSector) {
4753 conf->reshape_safe = conf->reshape_progress;
4754 atomic_set(&conf->reshape_stripes, 0);
4755 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4756 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4757 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4758 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4759 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4760 "reshape");
4764 /* Ok, everything is just fine now */
4765 if (mddev->to_remove == &raid5_attrs_group)
4766 mddev->to_remove = NULL;
4767 else if (mddev->kobj.sd &&
4768 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4769 printk(KERN_WARNING
4770 "raid5: failed to create sysfs attributes for %s\n",
4771 mdname(mddev));
4772 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4774 if (mddev->queue) {
4775 int chunk_size;
4776 /* read-ahead size must cover two whole stripes, which
4777 * is 2 * (datadisks) * chunksize where 'n' is the
4778 * number of raid devices
4780 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4781 int stripe = data_disks *
4782 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4783 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4784 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4786 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4788 mddev->queue->backing_dev_info.congested_data = mddev;
4789 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4791 chunk_size = mddev->chunk_sectors << 9;
4792 blk_queue_io_min(mddev->queue, chunk_size);
4793 blk_queue_io_opt(mddev->queue, chunk_size *
4794 (conf->raid_disks - conf->max_degraded));
4796 list_for_each_entry(rdev, &mddev->disks, same_set)
4797 disk_stack_limits(mddev->gendisk, rdev->bdev,
4798 rdev->data_offset << 9);
4801 return 0;
4802 abort:
4803 md_unregister_thread(mddev->thread);
4804 mddev->thread = NULL;
4805 if (conf) {
4806 print_raid5_conf(conf);
4807 free_conf(conf);
4809 mddev->private = NULL;
4810 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4811 return -EIO;
4814 static int stop(mddev_t *mddev)
4816 raid5_conf_t *conf = mddev->private;
4818 md_unregister_thread(mddev->thread);
4819 mddev->thread = NULL;
4820 if (mddev->queue)
4821 mddev->queue->backing_dev_info.congested_fn = NULL;
4822 free_conf(conf);
4823 mddev->private = NULL;
4824 mddev->to_remove = &raid5_attrs_group;
4825 return 0;
4828 #ifdef DEBUG
4829 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4831 int i;
4833 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4834 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4835 seq_printf(seq, "sh %llu, count %d.\n",
4836 (unsigned long long)sh->sector, atomic_read(&sh->count));
4837 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4838 for (i = 0; i < sh->disks; i++) {
4839 seq_printf(seq, "(cache%d: %p %ld) ",
4840 i, sh->dev[i].page, sh->dev[i].flags);
4842 seq_printf(seq, "\n");
4845 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4847 struct stripe_head *sh;
4848 struct hlist_node *hn;
4849 int i;
4851 spin_lock_irq(&conf->device_lock);
4852 for (i = 0; i < NR_HASH; i++) {
4853 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4854 if (sh->raid_conf != conf)
4855 continue;
4856 print_sh(seq, sh);
4859 spin_unlock_irq(&conf->device_lock);
4861 #endif
4863 static void status(struct seq_file *seq, mddev_t *mddev)
4865 raid5_conf_t *conf = mddev->private;
4866 int i;
4868 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4869 mddev->chunk_sectors / 2, mddev->layout);
4870 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4871 for (i = 0; i < conf->raid_disks; i++)
4872 seq_printf (seq, "%s",
4873 conf->disks[i].rdev &&
4874 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4875 seq_printf (seq, "]");
4876 #ifdef DEBUG
4877 seq_printf (seq, "\n");
4878 printall(seq, conf);
4879 #endif
4882 static void print_raid5_conf (raid5_conf_t *conf)
4884 int i;
4885 struct disk_info *tmp;
4887 printk(KERN_DEBUG "RAID conf printout:\n");
4888 if (!conf) {
4889 printk("(conf==NULL)\n");
4890 return;
4892 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4893 conf->raid_disks,
4894 conf->raid_disks - conf->mddev->degraded);
4896 for (i = 0; i < conf->raid_disks; i++) {
4897 char b[BDEVNAME_SIZE];
4898 tmp = conf->disks + i;
4899 if (tmp->rdev)
4900 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4901 i, !test_bit(Faulty, &tmp->rdev->flags),
4902 bdevname(tmp->rdev->bdev, b));
4906 static int raid5_spare_active(mddev_t *mddev)
4908 int i;
4909 raid5_conf_t *conf = mddev->private;
4910 struct disk_info *tmp;
4911 int count = 0;
4912 unsigned long flags;
4914 for (i = 0; i < conf->raid_disks; i++) {
4915 tmp = conf->disks + i;
4916 if (tmp->rdev
4917 && tmp->rdev->recovery_offset == MaxSector
4918 && !test_bit(Faulty, &tmp->rdev->flags)
4919 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4920 count++;
4921 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
4924 spin_lock_irqsave(&conf->device_lock, flags);
4925 mddev->degraded -= count;
4926 spin_unlock_irqrestore(&conf->device_lock, flags);
4927 print_raid5_conf(conf);
4928 return count;
4931 static int raid5_remove_disk(mddev_t *mddev, int number)
4933 raid5_conf_t *conf = mddev->private;
4934 int err = 0;
4935 mdk_rdev_t *rdev;
4936 struct disk_info *p = conf->disks + number;
4938 print_raid5_conf(conf);
4939 rdev = p->rdev;
4940 if (rdev) {
4941 if (number >= conf->raid_disks &&
4942 conf->reshape_progress == MaxSector)
4943 clear_bit(In_sync, &rdev->flags);
4945 if (test_bit(In_sync, &rdev->flags) ||
4946 atomic_read(&rdev->nr_pending)) {
4947 err = -EBUSY;
4948 goto abort;
4950 /* Only remove non-faulty devices if recovery
4951 * isn't possible.
4953 if (!test_bit(Faulty, &rdev->flags) &&
4954 !has_failed(conf) &&
4955 number < conf->raid_disks) {
4956 err = -EBUSY;
4957 goto abort;
4959 p->rdev = NULL;
4960 synchronize_rcu();
4961 if (atomic_read(&rdev->nr_pending)) {
4962 /* lost the race, try later */
4963 err = -EBUSY;
4964 p->rdev = rdev;
4967 abort:
4969 print_raid5_conf(conf);
4970 return err;
4973 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4975 raid5_conf_t *conf = mddev->private;
4976 int err = -EEXIST;
4977 int disk;
4978 struct disk_info *p;
4979 int first = 0;
4980 int last = conf->raid_disks - 1;
4982 if (rdev->badblocks.count)
4983 return -EINVAL;
4985 if (has_failed(conf))
4986 /* no point adding a device */
4987 return -EINVAL;
4989 if (rdev->raid_disk >= 0)
4990 first = last = rdev->raid_disk;
4993 * find the disk ... but prefer rdev->saved_raid_disk
4994 * if possible.
4996 if (rdev->saved_raid_disk >= 0 &&
4997 rdev->saved_raid_disk >= first &&
4998 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4999 disk = rdev->saved_raid_disk;
5000 else
5001 disk = first;
5002 for ( ; disk <= last ; disk++)
5003 if ((p=conf->disks + disk)->rdev == NULL) {
5004 clear_bit(In_sync, &rdev->flags);
5005 rdev->raid_disk = disk;
5006 err = 0;
5007 if (rdev->saved_raid_disk != disk)
5008 conf->fullsync = 1;
5009 rcu_assign_pointer(p->rdev, rdev);
5010 break;
5012 print_raid5_conf(conf);
5013 return err;
5016 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5018 /* no resync is happening, and there is enough space
5019 * on all devices, so we can resize.
5020 * We need to make sure resync covers any new space.
5021 * If the array is shrinking we should possibly wait until
5022 * any io in the removed space completes, but it hardly seems
5023 * worth it.
5025 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5026 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5027 mddev->raid_disks));
5028 if (mddev->array_sectors >
5029 raid5_size(mddev, sectors, mddev->raid_disks))
5030 return -EINVAL;
5031 set_capacity(mddev->gendisk, mddev->array_sectors);
5032 revalidate_disk(mddev->gendisk);
5033 if (sectors > mddev->dev_sectors &&
5034 mddev->recovery_cp > mddev->dev_sectors) {
5035 mddev->recovery_cp = mddev->dev_sectors;
5036 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5038 mddev->dev_sectors = sectors;
5039 mddev->resync_max_sectors = sectors;
5040 return 0;
5043 static int check_stripe_cache(mddev_t *mddev)
5045 /* Can only proceed if there are plenty of stripe_heads.
5046 * We need a minimum of one full stripe,, and for sensible progress
5047 * it is best to have about 4 times that.
5048 * If we require 4 times, then the default 256 4K stripe_heads will
5049 * allow for chunk sizes up to 256K, which is probably OK.
5050 * If the chunk size is greater, user-space should request more
5051 * stripe_heads first.
5053 raid5_conf_t *conf = mddev->private;
5054 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5055 > conf->max_nr_stripes ||
5056 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5057 > conf->max_nr_stripes) {
5058 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5059 mdname(mddev),
5060 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5061 / STRIPE_SIZE)*4);
5062 return 0;
5064 return 1;
5067 static int check_reshape(mddev_t *mddev)
5069 raid5_conf_t *conf = mddev->private;
5071 if (mddev->delta_disks == 0 &&
5072 mddev->new_layout == mddev->layout &&
5073 mddev->new_chunk_sectors == mddev->chunk_sectors)
5074 return 0; /* nothing to do */
5075 if (mddev->bitmap)
5076 /* Cannot grow a bitmap yet */
5077 return -EBUSY;
5078 if (has_failed(conf))
5079 return -EINVAL;
5080 if (mddev->delta_disks < 0) {
5081 /* We might be able to shrink, but the devices must
5082 * be made bigger first.
5083 * For raid6, 4 is the minimum size.
5084 * Otherwise 2 is the minimum
5086 int min = 2;
5087 if (mddev->level == 6)
5088 min = 4;
5089 if (mddev->raid_disks + mddev->delta_disks < min)
5090 return -EINVAL;
5093 if (!check_stripe_cache(mddev))
5094 return -ENOSPC;
5096 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5099 static int raid5_start_reshape(mddev_t *mddev)
5101 raid5_conf_t *conf = mddev->private;
5102 mdk_rdev_t *rdev;
5103 int spares = 0;
5104 unsigned long flags;
5106 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5107 return -EBUSY;
5109 if (!check_stripe_cache(mddev))
5110 return -ENOSPC;
5112 list_for_each_entry(rdev, &mddev->disks, same_set)
5113 if (!test_bit(In_sync, &rdev->flags)
5114 && !test_bit(Faulty, &rdev->flags))
5115 spares++;
5117 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5118 /* Not enough devices even to make a degraded array
5119 * of that size
5121 return -EINVAL;
5123 /* Refuse to reduce size of the array. Any reductions in
5124 * array size must be through explicit setting of array_size
5125 * attribute.
5127 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5128 < mddev->array_sectors) {
5129 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5130 "before number of disks\n", mdname(mddev));
5131 return -EINVAL;
5134 atomic_set(&conf->reshape_stripes, 0);
5135 spin_lock_irq(&conf->device_lock);
5136 conf->previous_raid_disks = conf->raid_disks;
5137 conf->raid_disks += mddev->delta_disks;
5138 conf->prev_chunk_sectors = conf->chunk_sectors;
5139 conf->chunk_sectors = mddev->new_chunk_sectors;
5140 conf->prev_algo = conf->algorithm;
5141 conf->algorithm = mddev->new_layout;
5142 if (mddev->delta_disks < 0)
5143 conf->reshape_progress = raid5_size(mddev, 0, 0);
5144 else
5145 conf->reshape_progress = 0;
5146 conf->reshape_safe = conf->reshape_progress;
5147 conf->generation++;
5148 spin_unlock_irq(&conf->device_lock);
5150 /* Add some new drives, as many as will fit.
5151 * We know there are enough to make the newly sized array work.
5152 * Don't add devices if we are reducing the number of
5153 * devices in the array. This is because it is not possible
5154 * to correctly record the "partially reconstructed" state of
5155 * such devices during the reshape and confusion could result.
5157 if (mddev->delta_disks >= 0) {
5158 int added_devices = 0;
5159 list_for_each_entry(rdev, &mddev->disks, same_set)
5160 if (rdev->raid_disk < 0 &&
5161 !test_bit(Faulty, &rdev->flags)) {
5162 if (raid5_add_disk(mddev, rdev) == 0) {
5163 if (rdev->raid_disk
5164 >= conf->previous_raid_disks) {
5165 set_bit(In_sync, &rdev->flags);
5166 added_devices++;
5167 } else
5168 rdev->recovery_offset = 0;
5170 if (sysfs_link_rdev(mddev, rdev))
5171 /* Failure here is OK */;
5173 } else if (rdev->raid_disk >= conf->previous_raid_disks
5174 && !test_bit(Faulty, &rdev->flags)) {
5175 /* This is a spare that was manually added */
5176 set_bit(In_sync, &rdev->flags);
5177 added_devices++;
5180 /* When a reshape changes the number of devices,
5181 * ->degraded is measured against the larger of the
5182 * pre and post number of devices.
5184 spin_lock_irqsave(&conf->device_lock, flags);
5185 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5186 - added_devices;
5187 spin_unlock_irqrestore(&conf->device_lock, flags);
5189 mddev->raid_disks = conf->raid_disks;
5190 mddev->reshape_position = conf->reshape_progress;
5191 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5193 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5194 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5195 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5196 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5197 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5198 "reshape");
5199 if (!mddev->sync_thread) {
5200 mddev->recovery = 0;
5201 spin_lock_irq(&conf->device_lock);
5202 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5203 conf->reshape_progress = MaxSector;
5204 spin_unlock_irq(&conf->device_lock);
5205 return -EAGAIN;
5207 conf->reshape_checkpoint = jiffies;
5208 md_wakeup_thread(mddev->sync_thread);
5209 md_new_event(mddev);
5210 return 0;
5213 /* This is called from the reshape thread and should make any
5214 * changes needed in 'conf'
5216 static void end_reshape(raid5_conf_t *conf)
5219 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5221 spin_lock_irq(&conf->device_lock);
5222 conf->previous_raid_disks = conf->raid_disks;
5223 conf->reshape_progress = MaxSector;
5224 spin_unlock_irq(&conf->device_lock);
5225 wake_up(&conf->wait_for_overlap);
5227 /* read-ahead size must cover two whole stripes, which is
5228 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5230 if (conf->mddev->queue) {
5231 int data_disks = conf->raid_disks - conf->max_degraded;
5232 int stripe = data_disks * ((conf->chunk_sectors << 9)
5233 / PAGE_SIZE);
5234 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5235 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5240 /* This is called from the raid5d thread with mddev_lock held.
5241 * It makes config changes to the device.
5243 static void raid5_finish_reshape(mddev_t *mddev)
5245 raid5_conf_t *conf = mddev->private;
5247 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5249 if (mddev->delta_disks > 0) {
5250 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5251 set_capacity(mddev->gendisk, mddev->array_sectors);
5252 revalidate_disk(mddev->gendisk);
5253 } else {
5254 int d;
5255 mddev->degraded = conf->raid_disks;
5256 for (d = 0; d < conf->raid_disks ; d++)
5257 if (conf->disks[d].rdev &&
5258 test_bit(In_sync,
5259 &conf->disks[d].rdev->flags))
5260 mddev->degraded--;
5261 for (d = conf->raid_disks ;
5262 d < conf->raid_disks - mddev->delta_disks;
5263 d++) {
5264 mdk_rdev_t *rdev = conf->disks[d].rdev;
5265 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5266 sysfs_unlink_rdev(mddev, rdev);
5267 rdev->raid_disk = -1;
5271 mddev->layout = conf->algorithm;
5272 mddev->chunk_sectors = conf->chunk_sectors;
5273 mddev->reshape_position = MaxSector;
5274 mddev->delta_disks = 0;
5278 static void raid5_quiesce(mddev_t *mddev, int state)
5280 raid5_conf_t *conf = mddev->private;
5282 switch(state) {
5283 case 2: /* resume for a suspend */
5284 wake_up(&conf->wait_for_overlap);
5285 break;
5287 case 1: /* stop all writes */
5288 spin_lock_irq(&conf->device_lock);
5289 /* '2' tells resync/reshape to pause so that all
5290 * active stripes can drain
5292 conf->quiesce = 2;
5293 wait_event_lock_irq(conf->wait_for_stripe,
5294 atomic_read(&conf->active_stripes) == 0 &&
5295 atomic_read(&conf->active_aligned_reads) == 0,
5296 conf->device_lock, /* nothing */);
5297 conf->quiesce = 1;
5298 spin_unlock_irq(&conf->device_lock);
5299 /* allow reshape to continue */
5300 wake_up(&conf->wait_for_overlap);
5301 break;
5303 case 0: /* re-enable writes */
5304 spin_lock_irq(&conf->device_lock);
5305 conf->quiesce = 0;
5306 wake_up(&conf->wait_for_stripe);
5307 wake_up(&conf->wait_for_overlap);
5308 spin_unlock_irq(&conf->device_lock);
5309 break;
5314 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5316 struct raid0_private_data *raid0_priv = mddev->private;
5317 sector_t sectors;
5319 /* for raid0 takeover only one zone is supported */
5320 if (raid0_priv->nr_strip_zones > 1) {
5321 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5322 mdname(mddev));
5323 return ERR_PTR(-EINVAL);
5326 sectors = raid0_priv->strip_zone[0].zone_end;
5327 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5328 mddev->dev_sectors = sectors;
5329 mddev->new_level = level;
5330 mddev->new_layout = ALGORITHM_PARITY_N;
5331 mddev->new_chunk_sectors = mddev->chunk_sectors;
5332 mddev->raid_disks += 1;
5333 mddev->delta_disks = 1;
5334 /* make sure it will be not marked as dirty */
5335 mddev->recovery_cp = MaxSector;
5337 return setup_conf(mddev);
5341 static void *raid5_takeover_raid1(mddev_t *mddev)
5343 int chunksect;
5345 if (mddev->raid_disks != 2 ||
5346 mddev->degraded > 1)
5347 return ERR_PTR(-EINVAL);
5349 /* Should check if there are write-behind devices? */
5351 chunksect = 64*2; /* 64K by default */
5353 /* The array must be an exact multiple of chunksize */
5354 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5355 chunksect >>= 1;
5357 if ((chunksect<<9) < STRIPE_SIZE)
5358 /* array size does not allow a suitable chunk size */
5359 return ERR_PTR(-EINVAL);
5361 mddev->new_level = 5;
5362 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5363 mddev->new_chunk_sectors = chunksect;
5365 return setup_conf(mddev);
5368 static void *raid5_takeover_raid6(mddev_t *mddev)
5370 int new_layout;
5372 switch (mddev->layout) {
5373 case ALGORITHM_LEFT_ASYMMETRIC_6:
5374 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5375 break;
5376 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5377 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5378 break;
5379 case ALGORITHM_LEFT_SYMMETRIC_6:
5380 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5381 break;
5382 case ALGORITHM_RIGHT_SYMMETRIC_6:
5383 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5384 break;
5385 case ALGORITHM_PARITY_0_6:
5386 new_layout = ALGORITHM_PARITY_0;
5387 break;
5388 case ALGORITHM_PARITY_N:
5389 new_layout = ALGORITHM_PARITY_N;
5390 break;
5391 default:
5392 return ERR_PTR(-EINVAL);
5394 mddev->new_level = 5;
5395 mddev->new_layout = new_layout;
5396 mddev->delta_disks = -1;
5397 mddev->raid_disks -= 1;
5398 return setup_conf(mddev);
5402 static int raid5_check_reshape(mddev_t *mddev)
5404 /* For a 2-drive array, the layout and chunk size can be changed
5405 * immediately as not restriping is needed.
5406 * For larger arrays we record the new value - after validation
5407 * to be used by a reshape pass.
5409 raid5_conf_t *conf = mddev->private;
5410 int new_chunk = mddev->new_chunk_sectors;
5412 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5413 return -EINVAL;
5414 if (new_chunk > 0) {
5415 if (!is_power_of_2(new_chunk))
5416 return -EINVAL;
5417 if (new_chunk < (PAGE_SIZE>>9))
5418 return -EINVAL;
5419 if (mddev->array_sectors & (new_chunk-1))
5420 /* not factor of array size */
5421 return -EINVAL;
5424 /* They look valid */
5426 if (mddev->raid_disks == 2) {
5427 /* can make the change immediately */
5428 if (mddev->new_layout >= 0) {
5429 conf->algorithm = mddev->new_layout;
5430 mddev->layout = mddev->new_layout;
5432 if (new_chunk > 0) {
5433 conf->chunk_sectors = new_chunk ;
5434 mddev->chunk_sectors = new_chunk;
5436 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5437 md_wakeup_thread(mddev->thread);
5439 return check_reshape(mddev);
5442 static int raid6_check_reshape(mddev_t *mddev)
5444 int new_chunk = mddev->new_chunk_sectors;
5446 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5447 return -EINVAL;
5448 if (new_chunk > 0) {
5449 if (!is_power_of_2(new_chunk))
5450 return -EINVAL;
5451 if (new_chunk < (PAGE_SIZE >> 9))
5452 return -EINVAL;
5453 if (mddev->array_sectors & (new_chunk-1))
5454 /* not factor of array size */
5455 return -EINVAL;
5458 /* They look valid */
5459 return check_reshape(mddev);
5462 static void *raid5_takeover(mddev_t *mddev)
5464 /* raid5 can take over:
5465 * raid0 - if there is only one strip zone - make it a raid4 layout
5466 * raid1 - if there are two drives. We need to know the chunk size
5467 * raid4 - trivial - just use a raid4 layout.
5468 * raid6 - Providing it is a *_6 layout
5470 if (mddev->level == 0)
5471 return raid45_takeover_raid0(mddev, 5);
5472 if (mddev->level == 1)
5473 return raid5_takeover_raid1(mddev);
5474 if (mddev->level == 4) {
5475 mddev->new_layout = ALGORITHM_PARITY_N;
5476 mddev->new_level = 5;
5477 return setup_conf(mddev);
5479 if (mddev->level == 6)
5480 return raid5_takeover_raid6(mddev);
5482 return ERR_PTR(-EINVAL);
5485 static void *raid4_takeover(mddev_t *mddev)
5487 /* raid4 can take over:
5488 * raid0 - if there is only one strip zone
5489 * raid5 - if layout is right
5491 if (mddev->level == 0)
5492 return raid45_takeover_raid0(mddev, 4);
5493 if (mddev->level == 5 &&
5494 mddev->layout == ALGORITHM_PARITY_N) {
5495 mddev->new_layout = 0;
5496 mddev->new_level = 4;
5497 return setup_conf(mddev);
5499 return ERR_PTR(-EINVAL);
5502 static struct mdk_personality raid5_personality;
5504 static void *raid6_takeover(mddev_t *mddev)
5506 /* Currently can only take over a raid5. We map the
5507 * personality to an equivalent raid6 personality
5508 * with the Q block at the end.
5510 int new_layout;
5512 if (mddev->pers != &raid5_personality)
5513 return ERR_PTR(-EINVAL);
5514 if (mddev->degraded > 1)
5515 return ERR_PTR(-EINVAL);
5516 if (mddev->raid_disks > 253)
5517 return ERR_PTR(-EINVAL);
5518 if (mddev->raid_disks < 3)
5519 return ERR_PTR(-EINVAL);
5521 switch (mddev->layout) {
5522 case ALGORITHM_LEFT_ASYMMETRIC:
5523 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5524 break;
5525 case ALGORITHM_RIGHT_ASYMMETRIC:
5526 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5527 break;
5528 case ALGORITHM_LEFT_SYMMETRIC:
5529 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5530 break;
5531 case ALGORITHM_RIGHT_SYMMETRIC:
5532 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5533 break;
5534 case ALGORITHM_PARITY_0:
5535 new_layout = ALGORITHM_PARITY_0_6;
5536 break;
5537 case ALGORITHM_PARITY_N:
5538 new_layout = ALGORITHM_PARITY_N;
5539 break;
5540 default:
5541 return ERR_PTR(-EINVAL);
5543 mddev->new_level = 6;
5544 mddev->new_layout = new_layout;
5545 mddev->delta_disks = 1;
5546 mddev->raid_disks += 1;
5547 return setup_conf(mddev);
5551 static struct mdk_personality raid6_personality =
5553 .name = "raid6",
5554 .level = 6,
5555 .owner = THIS_MODULE,
5556 .make_request = make_request,
5557 .run = run,
5558 .stop = stop,
5559 .status = status,
5560 .error_handler = error,
5561 .hot_add_disk = raid5_add_disk,
5562 .hot_remove_disk= raid5_remove_disk,
5563 .spare_active = raid5_spare_active,
5564 .sync_request = sync_request,
5565 .resize = raid5_resize,
5566 .size = raid5_size,
5567 .check_reshape = raid6_check_reshape,
5568 .start_reshape = raid5_start_reshape,
5569 .finish_reshape = raid5_finish_reshape,
5570 .quiesce = raid5_quiesce,
5571 .takeover = raid6_takeover,
5573 static struct mdk_personality raid5_personality =
5575 .name = "raid5",
5576 .level = 5,
5577 .owner = THIS_MODULE,
5578 .make_request = make_request,
5579 .run = run,
5580 .stop = stop,
5581 .status = status,
5582 .error_handler = error,
5583 .hot_add_disk = raid5_add_disk,
5584 .hot_remove_disk= raid5_remove_disk,
5585 .spare_active = raid5_spare_active,
5586 .sync_request = sync_request,
5587 .resize = raid5_resize,
5588 .size = raid5_size,
5589 .check_reshape = raid5_check_reshape,
5590 .start_reshape = raid5_start_reshape,
5591 .finish_reshape = raid5_finish_reshape,
5592 .quiesce = raid5_quiesce,
5593 .takeover = raid5_takeover,
5596 static struct mdk_personality raid4_personality =
5598 .name = "raid4",
5599 .level = 4,
5600 .owner = THIS_MODULE,
5601 .make_request = make_request,
5602 .run = run,
5603 .stop = stop,
5604 .status = status,
5605 .error_handler = error,
5606 .hot_add_disk = raid5_add_disk,
5607 .hot_remove_disk= raid5_remove_disk,
5608 .spare_active = raid5_spare_active,
5609 .sync_request = sync_request,
5610 .resize = raid5_resize,
5611 .size = raid5_size,
5612 .check_reshape = raid5_check_reshape,
5613 .start_reshape = raid5_start_reshape,
5614 .finish_reshape = raid5_finish_reshape,
5615 .quiesce = raid5_quiesce,
5616 .takeover = raid4_takeover,
5619 static int __init raid5_init(void)
5621 register_md_personality(&raid6_personality);
5622 register_md_personality(&raid5_personality);
5623 register_md_personality(&raid4_personality);
5624 return 0;
5627 static void raid5_exit(void)
5629 unregister_md_personality(&raid6_personality);
5630 unregister_md_personality(&raid5_personality);
5631 unregister_md_personality(&raid4_personality);
5634 module_init(raid5_init);
5635 module_exit(raid5_exit);
5636 MODULE_LICENSE("GPL");
5637 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5638 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5639 MODULE_ALIAS("md-raid5");
5640 MODULE_ALIAS("md-raid4");
5641 MODULE_ALIAS("md-level-5");
5642 MODULE_ALIAS("md-level-4");
5643 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5644 MODULE_ALIAS("md-raid6");
5645 MODULE_ALIAS("md-level-6");
5647 /* This used to be two separate modules, they were: */
5648 MODULE_ALIAS("raid5");
5649 MODULE_ALIAS("raid6");