intel-iommu: Cope with yet another BIOS screwup causing crashes
[linux-2.6/x86.git] / drivers / pci / intel-iommu.c
blobd36fa80aaa5256d072224366d0ffffc6d7932483
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
61 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67 are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
70 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
75 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
77 static inline unsigned long page_to_dma_pfn(struct page *pg)
79 return mm_to_dma_pfn(page_to_pfn(pg));
81 static inline unsigned long virt_to_dma_pfn(void *p)
83 return page_to_dma_pfn(virt_to_page(p));
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu **g_iommus;
89 static int rwbf_quirk;
92 * 0: Present
93 * 1-11: Reserved
94 * 12-63: Context Ptr (12 - (haw-1))
95 * 64-127: Reserved
97 struct root_entry {
98 u64 val;
99 u64 rsvd1;
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry *root)
104 return (root->val & 1);
106 static inline void set_root_present(struct root_entry *root)
108 root->val |= 1;
110 static inline void set_root_value(struct root_entry *root, unsigned long value)
112 root->val |= value & VTD_PAGE_MASK;
115 static inline struct context_entry *
116 get_context_addr_from_root(struct root_entry *root)
118 return (struct context_entry *)
119 (root_present(root)?phys_to_virt(
120 root->val & VTD_PAGE_MASK) :
121 NULL);
125 * low 64 bits:
126 * 0: present
127 * 1: fault processing disable
128 * 2-3: translation type
129 * 12-63: address space root
130 * high 64 bits:
131 * 0-2: address width
132 * 3-6: aval
133 * 8-23: domain id
135 struct context_entry {
136 u64 lo;
137 u64 hi;
140 static inline bool context_present(struct context_entry *context)
142 return (context->lo & 1);
144 static inline void context_set_present(struct context_entry *context)
146 context->lo |= 1;
149 static inline void context_set_fault_enable(struct context_entry *context)
151 context->lo &= (((u64)-1) << 2) | 1;
154 static inline void context_set_translation_type(struct context_entry *context,
155 unsigned long value)
157 context->lo &= (((u64)-1) << 4) | 3;
158 context->lo |= (value & 3) << 2;
161 static inline void context_set_address_root(struct context_entry *context,
162 unsigned long value)
164 context->lo |= value & VTD_PAGE_MASK;
167 static inline void context_set_address_width(struct context_entry *context,
168 unsigned long value)
170 context->hi |= value & 7;
173 static inline void context_set_domain_id(struct context_entry *context,
174 unsigned long value)
176 context->hi |= (value & ((1 << 16) - 1)) << 8;
179 static inline void context_clear_entry(struct context_entry *context)
181 context->lo = 0;
182 context->hi = 0;
186 * 0: readable
187 * 1: writable
188 * 2-6: reserved
189 * 7: super page
190 * 8-10: available
191 * 11: snoop behavior
192 * 12-63: Host physcial address
194 struct dma_pte {
195 u64 val;
198 static inline void dma_clear_pte(struct dma_pte *pte)
200 pte->val = 0;
203 static inline void dma_set_pte_readable(struct dma_pte *pte)
205 pte->val |= DMA_PTE_READ;
208 static inline void dma_set_pte_writable(struct dma_pte *pte)
210 pte->val |= DMA_PTE_WRITE;
213 static inline void dma_set_pte_snp(struct dma_pte *pte)
215 pte->val |= DMA_PTE_SNP;
218 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
220 pte->val = (pte->val & ~3) | (prot & 3);
223 static inline u64 dma_pte_addr(struct dma_pte *pte)
225 #ifdef CONFIG_64BIT
226 return pte->val & VTD_PAGE_MASK;
227 #else
228 /* Must have a full atomic 64-bit read */
229 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
230 #endif
233 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
235 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
238 static inline bool dma_pte_present(struct dma_pte *pte)
240 return (pte->val & 3) != 0;
243 static inline int first_pte_in_page(struct dma_pte *pte)
245 return !((unsigned long)pte & ~VTD_PAGE_MASK);
249 * This domain is a statically identity mapping domain.
250 * 1. This domain creats a static 1:1 mapping to all usable memory.
251 * 2. It maps to each iommu if successful.
252 * 3. Each iommu mapps to this domain if successful.
254 static struct dmar_domain *si_domain;
255 static int hw_pass_through = 1;
257 /* devices under the same p2p bridge are owned in one domain */
258 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
260 /* domain represents a virtual machine, more than one devices
261 * across iommus may be owned in one domain, e.g. kvm guest.
263 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
265 /* si_domain contains mulitple devices */
266 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
268 struct dmar_domain {
269 int id; /* domain id */
270 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
272 struct list_head devices; /* all devices' list */
273 struct iova_domain iovad; /* iova's that belong to this domain */
275 struct dma_pte *pgd; /* virtual address */
276 int gaw; /* max guest address width */
278 /* adjusted guest address width, 0 is level 2 30-bit */
279 int agaw;
281 int flags; /* flags to find out type of domain */
283 int iommu_coherency;/* indicate coherency of iommu access */
284 int iommu_snooping; /* indicate snooping control feature*/
285 int iommu_count; /* reference count of iommu */
286 spinlock_t iommu_lock; /* protect iommu set in domain */
287 u64 max_addr; /* maximum mapped address */
290 /* PCI domain-device relationship */
291 struct device_domain_info {
292 struct list_head link; /* link to domain siblings */
293 struct list_head global; /* link to global list */
294 int segment; /* PCI domain */
295 u8 bus; /* PCI bus number */
296 u8 devfn; /* PCI devfn number */
297 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
298 struct intel_iommu *iommu; /* IOMMU used by this device */
299 struct dmar_domain *domain; /* pointer to domain */
302 static void flush_unmaps_timeout(unsigned long data);
304 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
306 #define HIGH_WATER_MARK 250
307 struct deferred_flush_tables {
308 int next;
309 struct iova *iova[HIGH_WATER_MARK];
310 struct dmar_domain *domain[HIGH_WATER_MARK];
313 static struct deferred_flush_tables *deferred_flush;
315 /* bitmap for indexing intel_iommus */
316 static int g_num_of_iommus;
318 static DEFINE_SPINLOCK(async_umap_flush_lock);
319 static LIST_HEAD(unmaps_to_do);
321 static int timer_on;
322 static long list_size;
324 static void domain_remove_dev_info(struct dmar_domain *domain);
326 #ifdef CONFIG_DMAR_DEFAULT_ON
327 int dmar_disabled = 0;
328 #else
329 int dmar_disabled = 1;
330 #endif /*CONFIG_DMAR_DEFAULT_ON*/
332 static int __initdata dmar_map_gfx = 1;
333 static int dmar_forcedac;
334 static int intel_iommu_strict;
336 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
337 static DEFINE_SPINLOCK(device_domain_lock);
338 static LIST_HEAD(device_domain_list);
340 static struct iommu_ops intel_iommu_ops;
342 static int __init intel_iommu_setup(char *str)
344 if (!str)
345 return -EINVAL;
346 while (*str) {
347 if (!strncmp(str, "on", 2)) {
348 dmar_disabled = 0;
349 printk(KERN_INFO "Intel-IOMMU: enabled\n");
350 } else if (!strncmp(str, "off", 3)) {
351 dmar_disabled = 1;
352 printk(KERN_INFO "Intel-IOMMU: disabled\n");
353 } else if (!strncmp(str, "igfx_off", 8)) {
354 dmar_map_gfx = 0;
355 printk(KERN_INFO
356 "Intel-IOMMU: disable GFX device mapping\n");
357 } else if (!strncmp(str, "forcedac", 8)) {
358 printk(KERN_INFO
359 "Intel-IOMMU: Forcing DAC for PCI devices\n");
360 dmar_forcedac = 1;
361 } else if (!strncmp(str, "strict", 6)) {
362 printk(KERN_INFO
363 "Intel-IOMMU: disable batched IOTLB flush\n");
364 intel_iommu_strict = 1;
367 str += strcspn(str, ",");
368 while (*str == ',')
369 str++;
371 return 0;
373 __setup("intel_iommu=", intel_iommu_setup);
375 static struct kmem_cache *iommu_domain_cache;
376 static struct kmem_cache *iommu_devinfo_cache;
377 static struct kmem_cache *iommu_iova_cache;
379 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
381 unsigned int flags;
382 void *vaddr;
384 /* trying to avoid low memory issues */
385 flags = current->flags & PF_MEMALLOC;
386 current->flags |= PF_MEMALLOC;
387 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
388 current->flags &= (~PF_MEMALLOC | flags);
389 return vaddr;
393 static inline void *alloc_pgtable_page(void)
395 unsigned int flags;
396 void *vaddr;
398 /* trying to avoid low memory issues */
399 flags = current->flags & PF_MEMALLOC;
400 current->flags |= PF_MEMALLOC;
401 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
402 current->flags &= (~PF_MEMALLOC | flags);
403 return vaddr;
406 static inline void free_pgtable_page(void *vaddr)
408 free_page((unsigned long)vaddr);
411 static inline void *alloc_domain_mem(void)
413 return iommu_kmem_cache_alloc(iommu_domain_cache);
416 static void free_domain_mem(void *vaddr)
418 kmem_cache_free(iommu_domain_cache, vaddr);
421 static inline void * alloc_devinfo_mem(void)
423 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
426 static inline void free_devinfo_mem(void *vaddr)
428 kmem_cache_free(iommu_devinfo_cache, vaddr);
431 struct iova *alloc_iova_mem(void)
433 return iommu_kmem_cache_alloc(iommu_iova_cache);
436 void free_iova_mem(struct iova *iova)
438 kmem_cache_free(iommu_iova_cache, iova);
442 static inline int width_to_agaw(int width);
444 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
446 unsigned long sagaw;
447 int agaw = -1;
449 sagaw = cap_sagaw(iommu->cap);
450 for (agaw = width_to_agaw(max_gaw);
451 agaw >= 0; agaw--) {
452 if (test_bit(agaw, &sagaw))
453 break;
456 return agaw;
460 * Calculate max SAGAW for each iommu.
462 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
464 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
468 * calculate agaw for each iommu.
469 * "SAGAW" may be different across iommus, use a default agaw, and
470 * get a supported less agaw for iommus that don't support the default agaw.
472 int iommu_calculate_agaw(struct intel_iommu *iommu)
474 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
477 /* This functionin only returns single iommu in a domain */
478 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
480 int iommu_id;
482 /* si_domain and vm domain should not get here. */
483 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
484 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
486 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
487 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
488 return NULL;
490 return g_iommus[iommu_id];
493 static void domain_update_iommu_coherency(struct dmar_domain *domain)
495 int i;
497 domain->iommu_coherency = 1;
499 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
500 for (; i < g_num_of_iommus; ) {
501 if (!ecap_coherent(g_iommus[i]->ecap)) {
502 domain->iommu_coherency = 0;
503 break;
505 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
509 static void domain_update_iommu_snooping(struct dmar_domain *domain)
511 int i;
513 domain->iommu_snooping = 1;
515 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
516 for (; i < g_num_of_iommus; ) {
517 if (!ecap_sc_support(g_iommus[i]->ecap)) {
518 domain->iommu_snooping = 0;
519 break;
521 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
525 /* Some capabilities may be different across iommus */
526 static void domain_update_iommu_cap(struct dmar_domain *domain)
528 domain_update_iommu_coherency(domain);
529 domain_update_iommu_snooping(domain);
532 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
534 struct dmar_drhd_unit *drhd = NULL;
535 int i;
537 for_each_drhd_unit(drhd) {
538 if (drhd->ignored)
539 continue;
540 if (segment != drhd->segment)
541 continue;
543 for (i = 0; i < drhd->devices_cnt; i++) {
544 if (drhd->devices[i] &&
545 drhd->devices[i]->bus->number == bus &&
546 drhd->devices[i]->devfn == devfn)
547 return drhd->iommu;
548 if (drhd->devices[i] &&
549 drhd->devices[i]->subordinate &&
550 drhd->devices[i]->subordinate->number <= bus &&
551 drhd->devices[i]->subordinate->subordinate >= bus)
552 return drhd->iommu;
555 if (drhd->include_all)
556 return drhd->iommu;
559 return NULL;
562 static void domain_flush_cache(struct dmar_domain *domain,
563 void *addr, int size)
565 if (!domain->iommu_coherency)
566 clflush_cache_range(addr, size);
569 /* Gets context entry for a given bus and devfn */
570 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
571 u8 bus, u8 devfn)
573 struct root_entry *root;
574 struct context_entry *context;
575 unsigned long phy_addr;
576 unsigned long flags;
578 spin_lock_irqsave(&iommu->lock, flags);
579 root = &iommu->root_entry[bus];
580 context = get_context_addr_from_root(root);
581 if (!context) {
582 context = (struct context_entry *)alloc_pgtable_page();
583 if (!context) {
584 spin_unlock_irqrestore(&iommu->lock, flags);
585 return NULL;
587 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
588 phy_addr = virt_to_phys((void *)context);
589 set_root_value(root, phy_addr);
590 set_root_present(root);
591 __iommu_flush_cache(iommu, root, sizeof(*root));
593 spin_unlock_irqrestore(&iommu->lock, flags);
594 return &context[devfn];
597 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
599 struct root_entry *root;
600 struct context_entry *context;
601 int ret;
602 unsigned long flags;
604 spin_lock_irqsave(&iommu->lock, flags);
605 root = &iommu->root_entry[bus];
606 context = get_context_addr_from_root(root);
607 if (!context) {
608 ret = 0;
609 goto out;
611 ret = context_present(&context[devfn]);
612 out:
613 spin_unlock_irqrestore(&iommu->lock, flags);
614 return ret;
617 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
619 struct root_entry *root;
620 struct context_entry *context;
621 unsigned long flags;
623 spin_lock_irqsave(&iommu->lock, flags);
624 root = &iommu->root_entry[bus];
625 context = get_context_addr_from_root(root);
626 if (context) {
627 context_clear_entry(&context[devfn]);
628 __iommu_flush_cache(iommu, &context[devfn], \
629 sizeof(*context));
631 spin_unlock_irqrestore(&iommu->lock, flags);
634 static void free_context_table(struct intel_iommu *iommu)
636 struct root_entry *root;
637 int i;
638 unsigned long flags;
639 struct context_entry *context;
641 spin_lock_irqsave(&iommu->lock, flags);
642 if (!iommu->root_entry) {
643 goto out;
645 for (i = 0; i < ROOT_ENTRY_NR; i++) {
646 root = &iommu->root_entry[i];
647 context = get_context_addr_from_root(root);
648 if (context)
649 free_pgtable_page(context);
651 free_pgtable_page(iommu->root_entry);
652 iommu->root_entry = NULL;
653 out:
654 spin_unlock_irqrestore(&iommu->lock, flags);
657 /* page table handling */
658 #define LEVEL_STRIDE (9)
659 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
661 static inline int agaw_to_level(int agaw)
663 return agaw + 2;
666 static inline int agaw_to_width(int agaw)
668 return 30 + agaw * LEVEL_STRIDE;
672 static inline int width_to_agaw(int width)
674 return (width - 30) / LEVEL_STRIDE;
677 static inline unsigned int level_to_offset_bits(int level)
679 return (level - 1) * LEVEL_STRIDE;
682 static inline int pfn_level_offset(unsigned long pfn, int level)
684 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
687 static inline unsigned long level_mask(int level)
689 return -1UL << level_to_offset_bits(level);
692 static inline unsigned long level_size(int level)
694 return 1UL << level_to_offset_bits(level);
697 static inline unsigned long align_to_level(unsigned long pfn, int level)
699 return (pfn + level_size(level) - 1) & level_mask(level);
702 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
703 unsigned long pfn)
705 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
706 struct dma_pte *parent, *pte = NULL;
707 int level = agaw_to_level(domain->agaw);
708 int offset;
710 BUG_ON(!domain->pgd);
711 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
712 parent = domain->pgd;
714 while (level > 0) {
715 void *tmp_page;
717 offset = pfn_level_offset(pfn, level);
718 pte = &parent[offset];
719 if (level == 1)
720 break;
722 if (!dma_pte_present(pte)) {
723 uint64_t pteval;
725 tmp_page = alloc_pgtable_page();
727 if (!tmp_page)
728 return NULL;
730 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
731 pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
732 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
733 /* Someone else set it while we were thinking; use theirs. */
734 free_pgtable_page(tmp_page);
735 } else {
736 dma_pte_addr(pte);
737 domain_flush_cache(domain, pte, sizeof(*pte));
740 parent = phys_to_virt(dma_pte_addr(pte));
741 level--;
744 return pte;
747 /* return address's pte at specific level */
748 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
749 unsigned long pfn,
750 int level)
752 struct dma_pte *parent, *pte = NULL;
753 int total = agaw_to_level(domain->agaw);
754 int offset;
756 parent = domain->pgd;
757 while (level <= total) {
758 offset = pfn_level_offset(pfn, total);
759 pte = &parent[offset];
760 if (level == total)
761 return pte;
763 if (!dma_pte_present(pte))
764 break;
765 parent = phys_to_virt(dma_pte_addr(pte));
766 total--;
768 return NULL;
771 /* clear last level pte, a tlb flush should be followed */
772 static void dma_pte_clear_range(struct dmar_domain *domain,
773 unsigned long start_pfn,
774 unsigned long last_pfn)
776 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
777 struct dma_pte *first_pte, *pte;
779 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
780 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
782 /* we don't need lock here; nobody else touches the iova range */
783 while (start_pfn <= last_pfn) {
784 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
785 if (!pte) {
786 start_pfn = align_to_level(start_pfn + 1, 2);
787 continue;
789 do {
790 dma_clear_pte(pte);
791 start_pfn++;
792 pte++;
793 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
795 domain_flush_cache(domain, first_pte,
796 (void *)pte - (void *)first_pte);
800 /* free page table pages. last level pte should already be cleared */
801 static void dma_pte_free_pagetable(struct dmar_domain *domain,
802 unsigned long start_pfn,
803 unsigned long last_pfn)
805 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
806 struct dma_pte *first_pte, *pte;
807 int total = agaw_to_level(domain->agaw);
808 int level;
809 unsigned long tmp;
811 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
812 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
814 /* We don't need lock here; nobody else touches the iova range */
815 level = 2;
816 while (level <= total) {
817 tmp = align_to_level(start_pfn, level);
819 /* If we can't even clear one PTE at this level, we're done */
820 if (tmp + level_size(level) - 1 > last_pfn)
821 return;
823 while (tmp + level_size(level) - 1 <= last_pfn) {
824 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
825 if (!pte) {
826 tmp = align_to_level(tmp + 1, level + 1);
827 continue;
829 do {
830 if (dma_pte_present(pte)) {
831 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
832 dma_clear_pte(pte);
834 pte++;
835 tmp += level_size(level);
836 } while (!first_pte_in_page(pte) &&
837 tmp + level_size(level) - 1 <= last_pfn);
839 domain_flush_cache(domain, first_pte,
840 (void *)pte - (void *)first_pte);
843 level++;
845 /* free pgd */
846 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
847 free_pgtable_page(domain->pgd);
848 domain->pgd = NULL;
852 /* iommu handling */
853 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
855 struct root_entry *root;
856 unsigned long flags;
858 root = (struct root_entry *)alloc_pgtable_page();
859 if (!root)
860 return -ENOMEM;
862 __iommu_flush_cache(iommu, root, ROOT_SIZE);
864 spin_lock_irqsave(&iommu->lock, flags);
865 iommu->root_entry = root;
866 spin_unlock_irqrestore(&iommu->lock, flags);
868 return 0;
871 static void iommu_set_root_entry(struct intel_iommu *iommu)
873 void *addr;
874 u32 sts;
875 unsigned long flag;
877 addr = iommu->root_entry;
879 spin_lock_irqsave(&iommu->register_lock, flag);
880 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
882 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
884 /* Make sure hardware complete it */
885 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
886 readl, (sts & DMA_GSTS_RTPS), sts);
888 spin_unlock_irqrestore(&iommu->register_lock, flag);
891 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
893 u32 val;
894 unsigned long flag;
896 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
897 return;
899 spin_lock_irqsave(&iommu->register_lock, flag);
900 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
902 /* Make sure hardware complete it */
903 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
904 readl, (!(val & DMA_GSTS_WBFS)), val);
906 spin_unlock_irqrestore(&iommu->register_lock, flag);
909 /* return value determine if we need a write buffer flush */
910 static void __iommu_flush_context(struct intel_iommu *iommu,
911 u16 did, u16 source_id, u8 function_mask,
912 u64 type)
914 u64 val = 0;
915 unsigned long flag;
917 switch (type) {
918 case DMA_CCMD_GLOBAL_INVL:
919 val = DMA_CCMD_GLOBAL_INVL;
920 break;
921 case DMA_CCMD_DOMAIN_INVL:
922 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
923 break;
924 case DMA_CCMD_DEVICE_INVL:
925 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
926 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
927 break;
928 default:
929 BUG();
931 val |= DMA_CCMD_ICC;
933 spin_lock_irqsave(&iommu->register_lock, flag);
934 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
936 /* Make sure hardware complete it */
937 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
938 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
940 spin_unlock_irqrestore(&iommu->register_lock, flag);
943 /* return value determine if we need a write buffer flush */
944 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
945 u64 addr, unsigned int size_order, u64 type)
947 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
948 u64 val = 0, val_iva = 0;
949 unsigned long flag;
951 switch (type) {
952 case DMA_TLB_GLOBAL_FLUSH:
953 /* global flush doesn't need set IVA_REG */
954 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
955 break;
956 case DMA_TLB_DSI_FLUSH:
957 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
958 break;
959 case DMA_TLB_PSI_FLUSH:
960 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
961 /* Note: always flush non-leaf currently */
962 val_iva = size_order | addr;
963 break;
964 default:
965 BUG();
967 /* Note: set drain read/write */
968 #if 0
970 * This is probably to be super secure.. Looks like we can
971 * ignore it without any impact.
973 if (cap_read_drain(iommu->cap))
974 val |= DMA_TLB_READ_DRAIN;
975 #endif
976 if (cap_write_drain(iommu->cap))
977 val |= DMA_TLB_WRITE_DRAIN;
979 spin_lock_irqsave(&iommu->register_lock, flag);
980 /* Note: Only uses first TLB reg currently */
981 if (val_iva)
982 dmar_writeq(iommu->reg + tlb_offset, val_iva);
983 dmar_writeq(iommu->reg + tlb_offset + 8, val);
985 /* Make sure hardware complete it */
986 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
987 dmar_readq, (!(val & DMA_TLB_IVT)), val);
989 spin_unlock_irqrestore(&iommu->register_lock, flag);
991 /* check IOTLB invalidation granularity */
992 if (DMA_TLB_IAIG(val) == 0)
993 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
994 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
995 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
996 (unsigned long long)DMA_TLB_IIRG(type),
997 (unsigned long long)DMA_TLB_IAIG(val));
1000 static struct device_domain_info *iommu_support_dev_iotlb(
1001 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1003 int found = 0;
1004 unsigned long flags;
1005 struct device_domain_info *info;
1006 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1008 if (!ecap_dev_iotlb_support(iommu->ecap))
1009 return NULL;
1011 if (!iommu->qi)
1012 return NULL;
1014 spin_lock_irqsave(&device_domain_lock, flags);
1015 list_for_each_entry(info, &domain->devices, link)
1016 if (info->bus == bus && info->devfn == devfn) {
1017 found = 1;
1018 break;
1020 spin_unlock_irqrestore(&device_domain_lock, flags);
1022 if (!found || !info->dev)
1023 return NULL;
1025 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1026 return NULL;
1028 if (!dmar_find_matched_atsr_unit(info->dev))
1029 return NULL;
1031 info->iommu = iommu;
1033 return info;
1036 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1038 if (!info)
1039 return;
1041 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1044 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1046 if (!info->dev || !pci_ats_enabled(info->dev))
1047 return;
1049 pci_disable_ats(info->dev);
1052 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1053 u64 addr, unsigned mask)
1055 u16 sid, qdep;
1056 unsigned long flags;
1057 struct device_domain_info *info;
1059 spin_lock_irqsave(&device_domain_lock, flags);
1060 list_for_each_entry(info, &domain->devices, link) {
1061 if (!info->dev || !pci_ats_enabled(info->dev))
1062 continue;
1064 sid = info->bus << 8 | info->devfn;
1065 qdep = pci_ats_queue_depth(info->dev);
1066 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1068 spin_unlock_irqrestore(&device_domain_lock, flags);
1071 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1072 unsigned long pfn, unsigned int pages)
1074 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1075 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1077 BUG_ON(pages == 0);
1080 * Fallback to domain selective flush if no PSI support or the size is
1081 * too big.
1082 * PSI requires page size to be 2 ^ x, and the base address is naturally
1083 * aligned to the size
1085 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1086 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1087 DMA_TLB_DSI_FLUSH);
1088 else
1089 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1090 DMA_TLB_PSI_FLUSH);
1093 * In caching mode, domain ID 0 is reserved for non-present to present
1094 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1096 if (!cap_caching_mode(iommu->cap) || did)
1097 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1100 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1102 u32 pmen;
1103 unsigned long flags;
1105 spin_lock_irqsave(&iommu->register_lock, flags);
1106 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1107 pmen &= ~DMA_PMEN_EPM;
1108 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1110 /* wait for the protected region status bit to clear */
1111 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1112 readl, !(pmen & DMA_PMEN_PRS), pmen);
1114 spin_unlock_irqrestore(&iommu->register_lock, flags);
1117 static int iommu_enable_translation(struct intel_iommu *iommu)
1119 u32 sts;
1120 unsigned long flags;
1122 spin_lock_irqsave(&iommu->register_lock, flags);
1123 iommu->gcmd |= DMA_GCMD_TE;
1124 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1126 /* Make sure hardware complete it */
1127 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1128 readl, (sts & DMA_GSTS_TES), sts);
1130 spin_unlock_irqrestore(&iommu->register_lock, flags);
1131 return 0;
1134 static int iommu_disable_translation(struct intel_iommu *iommu)
1136 u32 sts;
1137 unsigned long flag;
1139 spin_lock_irqsave(&iommu->register_lock, flag);
1140 iommu->gcmd &= ~DMA_GCMD_TE;
1141 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1143 /* Make sure hardware complete it */
1144 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1145 readl, (!(sts & DMA_GSTS_TES)), sts);
1147 spin_unlock_irqrestore(&iommu->register_lock, flag);
1148 return 0;
1152 static int iommu_init_domains(struct intel_iommu *iommu)
1154 unsigned long ndomains;
1155 unsigned long nlongs;
1157 ndomains = cap_ndoms(iommu->cap);
1158 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1159 nlongs = BITS_TO_LONGS(ndomains);
1161 spin_lock_init(&iommu->lock);
1163 /* TBD: there might be 64K domains,
1164 * consider other allocation for future chip
1166 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1167 if (!iommu->domain_ids) {
1168 printk(KERN_ERR "Allocating domain id array failed\n");
1169 return -ENOMEM;
1171 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1172 GFP_KERNEL);
1173 if (!iommu->domains) {
1174 printk(KERN_ERR "Allocating domain array failed\n");
1175 return -ENOMEM;
1179 * if Caching mode is set, then invalid translations are tagged
1180 * with domainid 0. Hence we need to pre-allocate it.
1182 if (cap_caching_mode(iommu->cap))
1183 set_bit(0, iommu->domain_ids);
1184 return 0;
1188 static void domain_exit(struct dmar_domain *domain);
1189 static void vm_domain_exit(struct dmar_domain *domain);
1191 void free_dmar_iommu(struct intel_iommu *iommu)
1193 struct dmar_domain *domain;
1194 int i;
1195 unsigned long flags;
1197 if ((iommu->domains) && (iommu->domain_ids)) {
1198 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1199 for (; i < cap_ndoms(iommu->cap); ) {
1200 domain = iommu->domains[i];
1201 clear_bit(i, iommu->domain_ids);
1203 spin_lock_irqsave(&domain->iommu_lock, flags);
1204 if (--domain->iommu_count == 0) {
1205 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1206 vm_domain_exit(domain);
1207 else
1208 domain_exit(domain);
1210 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1212 i = find_next_bit(iommu->domain_ids,
1213 cap_ndoms(iommu->cap), i+1);
1217 if (iommu->gcmd & DMA_GCMD_TE)
1218 iommu_disable_translation(iommu);
1220 if (iommu->irq) {
1221 set_irq_data(iommu->irq, NULL);
1222 /* This will mask the irq */
1223 free_irq(iommu->irq, iommu);
1224 destroy_irq(iommu->irq);
1227 kfree(iommu->domains);
1228 kfree(iommu->domain_ids);
1230 g_iommus[iommu->seq_id] = NULL;
1232 /* if all iommus are freed, free g_iommus */
1233 for (i = 0; i < g_num_of_iommus; i++) {
1234 if (g_iommus[i])
1235 break;
1238 if (i == g_num_of_iommus)
1239 kfree(g_iommus);
1241 /* free context mapping */
1242 free_context_table(iommu);
1245 static struct dmar_domain *alloc_domain(void)
1247 struct dmar_domain *domain;
1249 domain = alloc_domain_mem();
1250 if (!domain)
1251 return NULL;
1253 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1254 domain->flags = 0;
1256 return domain;
1259 static int iommu_attach_domain(struct dmar_domain *domain,
1260 struct intel_iommu *iommu)
1262 int num;
1263 unsigned long ndomains;
1264 unsigned long flags;
1266 ndomains = cap_ndoms(iommu->cap);
1268 spin_lock_irqsave(&iommu->lock, flags);
1270 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1271 if (num >= ndomains) {
1272 spin_unlock_irqrestore(&iommu->lock, flags);
1273 printk(KERN_ERR "IOMMU: no free domain ids\n");
1274 return -ENOMEM;
1277 domain->id = num;
1278 set_bit(num, iommu->domain_ids);
1279 set_bit(iommu->seq_id, &domain->iommu_bmp);
1280 iommu->domains[num] = domain;
1281 spin_unlock_irqrestore(&iommu->lock, flags);
1283 return 0;
1286 static void iommu_detach_domain(struct dmar_domain *domain,
1287 struct intel_iommu *iommu)
1289 unsigned long flags;
1290 int num, ndomains;
1291 int found = 0;
1293 spin_lock_irqsave(&iommu->lock, flags);
1294 ndomains = cap_ndoms(iommu->cap);
1295 num = find_first_bit(iommu->domain_ids, ndomains);
1296 for (; num < ndomains; ) {
1297 if (iommu->domains[num] == domain) {
1298 found = 1;
1299 break;
1301 num = find_next_bit(iommu->domain_ids,
1302 cap_ndoms(iommu->cap), num+1);
1305 if (found) {
1306 clear_bit(num, iommu->domain_ids);
1307 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1308 iommu->domains[num] = NULL;
1310 spin_unlock_irqrestore(&iommu->lock, flags);
1313 static struct iova_domain reserved_iova_list;
1314 static struct lock_class_key reserved_rbtree_key;
1316 static void dmar_init_reserved_ranges(void)
1318 struct pci_dev *pdev = NULL;
1319 struct iova *iova;
1320 int i;
1322 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1324 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1325 &reserved_rbtree_key);
1327 /* IOAPIC ranges shouldn't be accessed by DMA */
1328 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1329 IOVA_PFN(IOAPIC_RANGE_END));
1330 if (!iova)
1331 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1333 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1334 for_each_pci_dev(pdev) {
1335 struct resource *r;
1337 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1338 r = &pdev->resource[i];
1339 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1340 continue;
1341 iova = reserve_iova(&reserved_iova_list,
1342 IOVA_PFN(r->start),
1343 IOVA_PFN(r->end));
1344 if (!iova)
1345 printk(KERN_ERR "Reserve iova failed\n");
1351 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1353 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1356 static inline int guestwidth_to_adjustwidth(int gaw)
1358 int agaw;
1359 int r = (gaw - 12) % 9;
1361 if (r == 0)
1362 agaw = gaw;
1363 else
1364 agaw = gaw + 9 - r;
1365 if (agaw > 64)
1366 agaw = 64;
1367 return agaw;
1370 static int domain_init(struct dmar_domain *domain, int guest_width)
1372 struct intel_iommu *iommu;
1373 int adjust_width, agaw;
1374 unsigned long sagaw;
1376 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1377 spin_lock_init(&domain->iommu_lock);
1379 domain_reserve_special_ranges(domain);
1381 /* calculate AGAW */
1382 iommu = domain_get_iommu(domain);
1383 if (guest_width > cap_mgaw(iommu->cap))
1384 guest_width = cap_mgaw(iommu->cap);
1385 domain->gaw = guest_width;
1386 adjust_width = guestwidth_to_adjustwidth(guest_width);
1387 agaw = width_to_agaw(adjust_width);
1388 sagaw = cap_sagaw(iommu->cap);
1389 if (!test_bit(agaw, &sagaw)) {
1390 /* hardware doesn't support it, choose a bigger one */
1391 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1392 agaw = find_next_bit(&sagaw, 5, agaw);
1393 if (agaw >= 5)
1394 return -ENODEV;
1396 domain->agaw = agaw;
1397 INIT_LIST_HEAD(&domain->devices);
1399 if (ecap_coherent(iommu->ecap))
1400 domain->iommu_coherency = 1;
1401 else
1402 domain->iommu_coherency = 0;
1404 if (ecap_sc_support(iommu->ecap))
1405 domain->iommu_snooping = 1;
1406 else
1407 domain->iommu_snooping = 0;
1409 domain->iommu_count = 1;
1411 /* always allocate the top pgd */
1412 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1413 if (!domain->pgd)
1414 return -ENOMEM;
1415 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1416 return 0;
1419 static void domain_exit(struct dmar_domain *domain)
1421 struct dmar_drhd_unit *drhd;
1422 struct intel_iommu *iommu;
1424 /* Domain 0 is reserved, so dont process it */
1425 if (!domain)
1426 return;
1428 domain_remove_dev_info(domain);
1429 /* destroy iovas */
1430 put_iova_domain(&domain->iovad);
1432 /* clear ptes */
1433 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1435 /* free page tables */
1436 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1438 for_each_active_iommu(iommu, drhd)
1439 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1440 iommu_detach_domain(domain, iommu);
1442 free_domain_mem(domain);
1445 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1446 u8 bus, u8 devfn, int translation)
1448 struct context_entry *context;
1449 unsigned long flags;
1450 struct intel_iommu *iommu;
1451 struct dma_pte *pgd;
1452 unsigned long num;
1453 unsigned long ndomains;
1454 int id;
1455 int agaw;
1456 struct device_domain_info *info = NULL;
1458 pr_debug("Set context mapping for %02x:%02x.%d\n",
1459 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1461 BUG_ON(!domain->pgd);
1462 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1463 translation != CONTEXT_TT_MULTI_LEVEL);
1465 iommu = device_to_iommu(segment, bus, devfn);
1466 if (!iommu)
1467 return -ENODEV;
1469 context = device_to_context_entry(iommu, bus, devfn);
1470 if (!context)
1471 return -ENOMEM;
1472 spin_lock_irqsave(&iommu->lock, flags);
1473 if (context_present(context)) {
1474 spin_unlock_irqrestore(&iommu->lock, flags);
1475 return 0;
1478 id = domain->id;
1479 pgd = domain->pgd;
1481 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1482 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1483 int found = 0;
1485 /* find an available domain id for this device in iommu */
1486 ndomains = cap_ndoms(iommu->cap);
1487 num = find_first_bit(iommu->domain_ids, ndomains);
1488 for (; num < ndomains; ) {
1489 if (iommu->domains[num] == domain) {
1490 id = num;
1491 found = 1;
1492 break;
1494 num = find_next_bit(iommu->domain_ids,
1495 cap_ndoms(iommu->cap), num+1);
1498 if (found == 0) {
1499 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1500 if (num >= ndomains) {
1501 spin_unlock_irqrestore(&iommu->lock, flags);
1502 printk(KERN_ERR "IOMMU: no free domain ids\n");
1503 return -EFAULT;
1506 set_bit(num, iommu->domain_ids);
1507 iommu->domains[num] = domain;
1508 id = num;
1511 /* Skip top levels of page tables for
1512 * iommu which has less agaw than default.
1514 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1515 pgd = phys_to_virt(dma_pte_addr(pgd));
1516 if (!dma_pte_present(pgd)) {
1517 spin_unlock_irqrestore(&iommu->lock, flags);
1518 return -ENOMEM;
1523 context_set_domain_id(context, id);
1525 if (translation != CONTEXT_TT_PASS_THROUGH) {
1526 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1527 translation = info ? CONTEXT_TT_DEV_IOTLB :
1528 CONTEXT_TT_MULTI_LEVEL;
1531 * In pass through mode, AW must be programmed to indicate the largest
1532 * AGAW value supported by hardware. And ASR is ignored by hardware.
1534 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1535 context_set_address_width(context, iommu->msagaw);
1536 else {
1537 context_set_address_root(context, virt_to_phys(pgd));
1538 context_set_address_width(context, iommu->agaw);
1541 context_set_translation_type(context, translation);
1542 context_set_fault_enable(context);
1543 context_set_present(context);
1544 domain_flush_cache(domain, context, sizeof(*context));
1547 * It's a non-present to present mapping. If hardware doesn't cache
1548 * non-present entry we only need to flush the write-buffer. If the
1549 * _does_ cache non-present entries, then it does so in the special
1550 * domain #0, which we have to flush:
1552 if (cap_caching_mode(iommu->cap)) {
1553 iommu->flush.flush_context(iommu, 0,
1554 (((u16)bus) << 8) | devfn,
1555 DMA_CCMD_MASK_NOBIT,
1556 DMA_CCMD_DEVICE_INVL);
1557 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1558 } else {
1559 iommu_flush_write_buffer(iommu);
1561 iommu_enable_dev_iotlb(info);
1562 spin_unlock_irqrestore(&iommu->lock, flags);
1564 spin_lock_irqsave(&domain->iommu_lock, flags);
1565 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1566 domain->iommu_count++;
1567 domain_update_iommu_cap(domain);
1569 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1570 return 0;
1573 static int
1574 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1575 int translation)
1577 int ret;
1578 struct pci_dev *tmp, *parent;
1580 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1581 pdev->bus->number, pdev->devfn,
1582 translation);
1583 if (ret)
1584 return ret;
1586 /* dependent device mapping */
1587 tmp = pci_find_upstream_pcie_bridge(pdev);
1588 if (!tmp)
1589 return 0;
1590 /* Secondary interface's bus number and devfn 0 */
1591 parent = pdev->bus->self;
1592 while (parent != tmp) {
1593 ret = domain_context_mapping_one(domain,
1594 pci_domain_nr(parent->bus),
1595 parent->bus->number,
1596 parent->devfn, translation);
1597 if (ret)
1598 return ret;
1599 parent = parent->bus->self;
1601 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1602 return domain_context_mapping_one(domain,
1603 pci_domain_nr(tmp->subordinate),
1604 tmp->subordinate->number, 0,
1605 translation);
1606 else /* this is a legacy PCI bridge */
1607 return domain_context_mapping_one(domain,
1608 pci_domain_nr(tmp->bus),
1609 tmp->bus->number,
1610 tmp->devfn,
1611 translation);
1614 static int domain_context_mapped(struct pci_dev *pdev)
1616 int ret;
1617 struct pci_dev *tmp, *parent;
1618 struct intel_iommu *iommu;
1620 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1621 pdev->devfn);
1622 if (!iommu)
1623 return -ENODEV;
1625 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1626 if (!ret)
1627 return ret;
1628 /* dependent device mapping */
1629 tmp = pci_find_upstream_pcie_bridge(pdev);
1630 if (!tmp)
1631 return ret;
1632 /* Secondary interface's bus number and devfn 0 */
1633 parent = pdev->bus->self;
1634 while (parent != tmp) {
1635 ret = device_context_mapped(iommu, parent->bus->number,
1636 parent->devfn);
1637 if (!ret)
1638 return ret;
1639 parent = parent->bus->self;
1641 if (tmp->is_pcie)
1642 return device_context_mapped(iommu, tmp->subordinate->number,
1644 else
1645 return device_context_mapped(iommu, tmp->bus->number,
1646 tmp->devfn);
1649 /* Returns a number of VTD pages, but aligned to MM page size */
1650 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1651 size_t size)
1653 host_addr &= ~PAGE_MASK;
1654 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1657 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1658 struct scatterlist *sg, unsigned long phys_pfn,
1659 unsigned long nr_pages, int prot)
1661 struct dma_pte *first_pte = NULL, *pte = NULL;
1662 phys_addr_t uninitialized_var(pteval);
1663 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1664 unsigned long sg_res;
1666 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1668 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1669 return -EINVAL;
1671 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1673 if (sg)
1674 sg_res = 0;
1675 else {
1676 sg_res = nr_pages + 1;
1677 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1680 while (nr_pages--) {
1681 uint64_t tmp;
1683 if (!sg_res) {
1684 sg_res = aligned_nrpages(sg->offset, sg->length);
1685 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1686 sg->dma_length = sg->length;
1687 pteval = page_to_phys(sg_page(sg)) | prot;
1689 if (!pte) {
1690 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1691 if (!pte)
1692 return -ENOMEM;
1694 /* We don't need lock here, nobody else
1695 * touches the iova range
1697 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1698 if (tmp) {
1699 static int dumps = 5;
1700 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1701 iov_pfn, tmp, (unsigned long long)pteval);
1702 if (dumps) {
1703 dumps--;
1704 debug_dma_dump_mappings(NULL);
1706 WARN_ON(1);
1708 pte++;
1709 if (!nr_pages || first_pte_in_page(pte)) {
1710 domain_flush_cache(domain, first_pte,
1711 (void *)pte - (void *)first_pte);
1712 pte = NULL;
1714 iov_pfn++;
1715 pteval += VTD_PAGE_SIZE;
1716 sg_res--;
1717 if (!sg_res)
1718 sg = sg_next(sg);
1720 return 0;
1723 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1724 struct scatterlist *sg, unsigned long nr_pages,
1725 int prot)
1727 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1730 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1731 unsigned long phys_pfn, unsigned long nr_pages,
1732 int prot)
1734 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1737 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1739 if (!iommu)
1740 return;
1742 clear_context_table(iommu, bus, devfn);
1743 iommu->flush.flush_context(iommu, 0, 0, 0,
1744 DMA_CCMD_GLOBAL_INVL);
1745 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1748 static void domain_remove_dev_info(struct dmar_domain *domain)
1750 struct device_domain_info *info;
1751 unsigned long flags;
1752 struct intel_iommu *iommu;
1754 spin_lock_irqsave(&device_domain_lock, flags);
1755 while (!list_empty(&domain->devices)) {
1756 info = list_entry(domain->devices.next,
1757 struct device_domain_info, link);
1758 list_del(&info->link);
1759 list_del(&info->global);
1760 if (info->dev)
1761 info->dev->dev.archdata.iommu = NULL;
1762 spin_unlock_irqrestore(&device_domain_lock, flags);
1764 iommu_disable_dev_iotlb(info);
1765 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1766 iommu_detach_dev(iommu, info->bus, info->devfn);
1767 free_devinfo_mem(info);
1769 spin_lock_irqsave(&device_domain_lock, flags);
1771 spin_unlock_irqrestore(&device_domain_lock, flags);
1775 * find_domain
1776 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1778 static struct dmar_domain *
1779 find_domain(struct pci_dev *pdev)
1781 struct device_domain_info *info;
1783 /* No lock here, assumes no domain exit in normal case */
1784 info = pdev->dev.archdata.iommu;
1785 if (info)
1786 return info->domain;
1787 return NULL;
1790 /* domain is initialized */
1791 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1793 struct dmar_domain *domain, *found = NULL;
1794 struct intel_iommu *iommu;
1795 struct dmar_drhd_unit *drhd;
1796 struct device_domain_info *info, *tmp;
1797 struct pci_dev *dev_tmp;
1798 unsigned long flags;
1799 int bus = 0, devfn = 0;
1800 int segment;
1801 int ret;
1803 domain = find_domain(pdev);
1804 if (domain)
1805 return domain;
1807 segment = pci_domain_nr(pdev->bus);
1809 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1810 if (dev_tmp) {
1811 if (dev_tmp->is_pcie) {
1812 bus = dev_tmp->subordinate->number;
1813 devfn = 0;
1814 } else {
1815 bus = dev_tmp->bus->number;
1816 devfn = dev_tmp->devfn;
1818 spin_lock_irqsave(&device_domain_lock, flags);
1819 list_for_each_entry(info, &device_domain_list, global) {
1820 if (info->segment == segment &&
1821 info->bus == bus && info->devfn == devfn) {
1822 found = info->domain;
1823 break;
1826 spin_unlock_irqrestore(&device_domain_lock, flags);
1827 /* pcie-pci bridge already has a domain, uses it */
1828 if (found) {
1829 domain = found;
1830 goto found_domain;
1834 domain = alloc_domain();
1835 if (!domain)
1836 goto error;
1838 /* Allocate new domain for the device */
1839 drhd = dmar_find_matched_drhd_unit(pdev);
1840 if (!drhd) {
1841 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1842 pci_name(pdev));
1843 return NULL;
1845 iommu = drhd->iommu;
1847 ret = iommu_attach_domain(domain, iommu);
1848 if (ret) {
1849 domain_exit(domain);
1850 goto error;
1853 if (domain_init(domain, gaw)) {
1854 domain_exit(domain);
1855 goto error;
1858 /* register pcie-to-pci device */
1859 if (dev_tmp) {
1860 info = alloc_devinfo_mem();
1861 if (!info) {
1862 domain_exit(domain);
1863 goto error;
1865 info->segment = segment;
1866 info->bus = bus;
1867 info->devfn = devfn;
1868 info->dev = NULL;
1869 info->domain = domain;
1870 /* This domain is shared by devices under p2p bridge */
1871 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1873 /* pcie-to-pci bridge already has a domain, uses it */
1874 found = NULL;
1875 spin_lock_irqsave(&device_domain_lock, flags);
1876 list_for_each_entry(tmp, &device_domain_list, global) {
1877 if (tmp->segment == segment &&
1878 tmp->bus == bus && tmp->devfn == devfn) {
1879 found = tmp->domain;
1880 break;
1883 if (found) {
1884 free_devinfo_mem(info);
1885 domain_exit(domain);
1886 domain = found;
1887 } else {
1888 list_add(&info->link, &domain->devices);
1889 list_add(&info->global, &device_domain_list);
1891 spin_unlock_irqrestore(&device_domain_lock, flags);
1894 found_domain:
1895 info = alloc_devinfo_mem();
1896 if (!info)
1897 goto error;
1898 info->segment = segment;
1899 info->bus = pdev->bus->number;
1900 info->devfn = pdev->devfn;
1901 info->dev = pdev;
1902 info->domain = domain;
1903 spin_lock_irqsave(&device_domain_lock, flags);
1904 /* somebody is fast */
1905 found = find_domain(pdev);
1906 if (found != NULL) {
1907 spin_unlock_irqrestore(&device_domain_lock, flags);
1908 if (found != domain) {
1909 domain_exit(domain);
1910 domain = found;
1912 free_devinfo_mem(info);
1913 return domain;
1915 list_add(&info->link, &domain->devices);
1916 list_add(&info->global, &device_domain_list);
1917 pdev->dev.archdata.iommu = info;
1918 spin_unlock_irqrestore(&device_domain_lock, flags);
1919 return domain;
1920 error:
1921 /* recheck it here, maybe others set it */
1922 return find_domain(pdev);
1925 static int iommu_identity_mapping;
1927 static int iommu_domain_identity_map(struct dmar_domain *domain,
1928 unsigned long long start,
1929 unsigned long long end)
1931 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1932 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1934 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1935 dma_to_mm_pfn(last_vpfn))) {
1936 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1937 return -ENOMEM;
1940 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1941 start, end, domain->id);
1943 * RMRR range might have overlap with physical memory range,
1944 * clear it first
1946 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1948 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1949 last_vpfn - first_vpfn + 1,
1950 DMA_PTE_READ|DMA_PTE_WRITE);
1953 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1954 unsigned long long start,
1955 unsigned long long end)
1957 struct dmar_domain *domain;
1958 int ret;
1960 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1961 if (!domain)
1962 return -ENOMEM;
1964 /* For _hardware_ passthrough, don't bother. But for software
1965 passthrough, we do it anyway -- it may indicate a memory
1966 range which is reserved in E820, so which didn't get set
1967 up to start with in si_domain */
1968 if (domain == si_domain && hw_pass_through) {
1969 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1970 pci_name(pdev), start, end);
1971 return 0;
1974 printk(KERN_INFO
1975 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1976 pci_name(pdev), start, end);
1978 if (end >> agaw_to_width(domain->agaw)) {
1979 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1980 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1981 agaw_to_width(domain->agaw),
1982 dmi_get_system_info(DMI_BIOS_VENDOR),
1983 dmi_get_system_info(DMI_BIOS_VERSION),
1984 dmi_get_system_info(DMI_PRODUCT_VERSION));
1985 ret = -EIO;
1986 goto error;
1989 ret = iommu_domain_identity_map(domain, start, end);
1990 if (ret)
1991 goto error;
1993 /* context entry init */
1994 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1995 if (ret)
1996 goto error;
1998 return 0;
2000 error:
2001 domain_exit(domain);
2002 return ret;
2005 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2006 struct pci_dev *pdev)
2008 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2009 return 0;
2010 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2011 rmrr->end_address + 1);
2014 #ifdef CONFIG_DMAR_FLOPPY_WA
2015 static inline void iommu_prepare_isa(void)
2017 struct pci_dev *pdev;
2018 int ret;
2020 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2021 if (!pdev)
2022 return;
2024 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2025 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2027 if (ret)
2028 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2029 "floppy might not work\n");
2032 #else
2033 static inline void iommu_prepare_isa(void)
2035 return;
2037 #endif /* !CONFIG_DMAR_FLPY_WA */
2039 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2041 static int __init si_domain_work_fn(unsigned long start_pfn,
2042 unsigned long end_pfn, void *datax)
2044 int *ret = datax;
2046 *ret = iommu_domain_identity_map(si_domain,
2047 (uint64_t)start_pfn << PAGE_SHIFT,
2048 (uint64_t)end_pfn << PAGE_SHIFT);
2049 return *ret;
2053 static int __init si_domain_init(int hw)
2055 struct dmar_drhd_unit *drhd;
2056 struct intel_iommu *iommu;
2057 int nid, ret = 0;
2059 si_domain = alloc_domain();
2060 if (!si_domain)
2061 return -EFAULT;
2063 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2065 for_each_active_iommu(iommu, drhd) {
2066 ret = iommu_attach_domain(si_domain, iommu);
2067 if (ret) {
2068 domain_exit(si_domain);
2069 return -EFAULT;
2073 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2074 domain_exit(si_domain);
2075 return -EFAULT;
2078 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2080 if (hw)
2081 return 0;
2083 for_each_online_node(nid) {
2084 work_with_active_regions(nid, si_domain_work_fn, &ret);
2085 if (ret)
2086 return ret;
2089 return 0;
2092 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2093 struct pci_dev *pdev);
2094 static int identity_mapping(struct pci_dev *pdev)
2096 struct device_domain_info *info;
2098 if (likely(!iommu_identity_mapping))
2099 return 0;
2102 list_for_each_entry(info, &si_domain->devices, link)
2103 if (info->dev == pdev)
2104 return 1;
2105 return 0;
2108 static int domain_add_dev_info(struct dmar_domain *domain,
2109 struct pci_dev *pdev,
2110 int translation)
2112 struct device_domain_info *info;
2113 unsigned long flags;
2114 int ret;
2116 info = alloc_devinfo_mem();
2117 if (!info)
2118 return -ENOMEM;
2120 ret = domain_context_mapping(domain, pdev, translation);
2121 if (ret) {
2122 free_devinfo_mem(info);
2123 return ret;
2126 info->segment = pci_domain_nr(pdev->bus);
2127 info->bus = pdev->bus->number;
2128 info->devfn = pdev->devfn;
2129 info->dev = pdev;
2130 info->domain = domain;
2132 spin_lock_irqsave(&device_domain_lock, flags);
2133 list_add(&info->link, &domain->devices);
2134 list_add(&info->global, &device_domain_list);
2135 pdev->dev.archdata.iommu = info;
2136 spin_unlock_irqrestore(&device_domain_lock, flags);
2138 return 0;
2141 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2143 if (iommu_identity_mapping == 2)
2144 return IS_GFX_DEVICE(pdev);
2147 * We want to start off with all devices in the 1:1 domain, and
2148 * take them out later if we find they can't access all of memory.
2150 * However, we can't do this for PCI devices behind bridges,
2151 * because all PCI devices behind the same bridge will end up
2152 * with the same source-id on their transactions.
2154 * Practically speaking, we can't change things around for these
2155 * devices at run-time, because we can't be sure there'll be no
2156 * DMA transactions in flight for any of their siblings.
2158 * So PCI devices (unless they're on the root bus) as well as
2159 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2160 * the 1:1 domain, just in _case_ one of their siblings turns out
2161 * not to be able to map all of memory.
2163 if (!pdev->is_pcie) {
2164 if (!pci_is_root_bus(pdev->bus))
2165 return 0;
2166 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2167 return 0;
2168 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2169 return 0;
2172 * At boot time, we don't yet know if devices will be 64-bit capable.
2173 * Assume that they will -- if they turn out not to be, then we can
2174 * take them out of the 1:1 domain later.
2176 if (!startup)
2177 return pdev->dma_mask > DMA_BIT_MASK(32);
2179 return 1;
2182 static int __init iommu_prepare_static_identity_mapping(int hw)
2184 struct pci_dev *pdev = NULL;
2185 int ret;
2187 ret = si_domain_init(hw);
2188 if (ret)
2189 return -EFAULT;
2191 for_each_pci_dev(pdev) {
2192 if (iommu_should_identity_map(pdev, 1)) {
2193 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2194 hw ? "hardware" : "software", pci_name(pdev));
2196 ret = domain_add_dev_info(si_domain, pdev,
2197 hw ? CONTEXT_TT_PASS_THROUGH :
2198 CONTEXT_TT_MULTI_LEVEL);
2199 if (ret)
2200 return ret;
2204 return 0;
2207 int __init init_dmars(void)
2209 struct dmar_drhd_unit *drhd;
2210 struct dmar_rmrr_unit *rmrr;
2211 struct pci_dev *pdev;
2212 struct intel_iommu *iommu;
2213 int i, ret;
2216 * for each drhd
2217 * allocate root
2218 * initialize and program root entry to not present
2219 * endfor
2221 for_each_drhd_unit(drhd) {
2222 g_num_of_iommus++;
2224 * lock not needed as this is only incremented in the single
2225 * threaded kernel __init code path all other access are read
2226 * only
2230 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2231 GFP_KERNEL);
2232 if (!g_iommus) {
2233 printk(KERN_ERR "Allocating global iommu array failed\n");
2234 ret = -ENOMEM;
2235 goto error;
2238 deferred_flush = kzalloc(g_num_of_iommus *
2239 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2240 if (!deferred_flush) {
2241 ret = -ENOMEM;
2242 goto error;
2245 for_each_drhd_unit(drhd) {
2246 if (drhd->ignored)
2247 continue;
2249 iommu = drhd->iommu;
2250 g_iommus[iommu->seq_id] = iommu;
2252 ret = iommu_init_domains(iommu);
2253 if (ret)
2254 goto error;
2257 * TBD:
2258 * we could share the same root & context tables
2259 * amoung all IOMMU's. Need to Split it later.
2261 ret = iommu_alloc_root_entry(iommu);
2262 if (ret) {
2263 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2264 goto error;
2266 if (!ecap_pass_through(iommu->ecap))
2267 hw_pass_through = 0;
2271 * Start from the sane iommu hardware state.
2273 for_each_drhd_unit(drhd) {
2274 if (drhd->ignored)
2275 continue;
2277 iommu = drhd->iommu;
2280 * If the queued invalidation is already initialized by us
2281 * (for example, while enabling interrupt-remapping) then
2282 * we got the things already rolling from a sane state.
2284 if (iommu->qi)
2285 continue;
2288 * Clear any previous faults.
2290 dmar_fault(-1, iommu);
2292 * Disable queued invalidation if supported and already enabled
2293 * before OS handover.
2295 dmar_disable_qi(iommu);
2298 for_each_drhd_unit(drhd) {
2299 if (drhd->ignored)
2300 continue;
2302 iommu = drhd->iommu;
2304 if (dmar_enable_qi(iommu)) {
2306 * Queued Invalidate not enabled, use Register Based
2307 * Invalidate
2309 iommu->flush.flush_context = __iommu_flush_context;
2310 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2311 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2312 "invalidation\n",
2313 (unsigned long long)drhd->reg_base_addr);
2314 } else {
2315 iommu->flush.flush_context = qi_flush_context;
2316 iommu->flush.flush_iotlb = qi_flush_iotlb;
2317 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2318 "invalidation\n",
2319 (unsigned long long)drhd->reg_base_addr);
2323 if (iommu_pass_through)
2324 iommu_identity_mapping = 1;
2325 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2326 else
2327 iommu_identity_mapping = 2;
2328 #endif
2330 * If pass through is not set or not enabled, setup context entries for
2331 * identity mappings for rmrr, gfx, and isa and may fall back to static
2332 * identity mapping if iommu_identity_mapping is set.
2334 if (iommu_identity_mapping) {
2335 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2336 if (ret) {
2337 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2338 goto error;
2342 * For each rmrr
2343 * for each dev attached to rmrr
2344 * do
2345 * locate drhd for dev, alloc domain for dev
2346 * allocate free domain
2347 * allocate page table entries for rmrr
2348 * if context not allocated for bus
2349 * allocate and init context
2350 * set present in root table for this bus
2351 * init context with domain, translation etc
2352 * endfor
2353 * endfor
2355 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2356 for_each_rmrr_units(rmrr) {
2357 for (i = 0; i < rmrr->devices_cnt; i++) {
2358 pdev = rmrr->devices[i];
2360 * some BIOS lists non-exist devices in DMAR
2361 * table.
2363 if (!pdev)
2364 continue;
2365 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2366 if (ret)
2367 printk(KERN_ERR
2368 "IOMMU: mapping reserved region failed\n");
2372 iommu_prepare_isa();
2375 * for each drhd
2376 * enable fault log
2377 * global invalidate context cache
2378 * global invalidate iotlb
2379 * enable translation
2381 for_each_drhd_unit(drhd) {
2382 if (drhd->ignored)
2383 continue;
2384 iommu = drhd->iommu;
2386 iommu_flush_write_buffer(iommu);
2388 ret = dmar_set_interrupt(iommu);
2389 if (ret)
2390 goto error;
2392 iommu_set_root_entry(iommu);
2394 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2395 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2396 iommu_disable_protect_mem_regions(iommu);
2398 ret = iommu_enable_translation(iommu);
2399 if (ret)
2400 goto error;
2403 return 0;
2404 error:
2405 for_each_drhd_unit(drhd) {
2406 if (drhd->ignored)
2407 continue;
2408 iommu = drhd->iommu;
2409 free_iommu(iommu);
2411 kfree(g_iommus);
2412 return ret;
2415 /* This takes a number of _MM_ pages, not VTD pages */
2416 static struct iova *intel_alloc_iova(struct device *dev,
2417 struct dmar_domain *domain,
2418 unsigned long nrpages, uint64_t dma_mask)
2420 struct pci_dev *pdev = to_pci_dev(dev);
2421 struct iova *iova = NULL;
2423 /* Restrict dma_mask to the width that the iommu can handle */
2424 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2426 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2428 * First try to allocate an io virtual address in
2429 * DMA_BIT_MASK(32) and if that fails then try allocating
2430 * from higher range
2432 iova = alloc_iova(&domain->iovad, nrpages,
2433 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2434 if (iova)
2435 return iova;
2437 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2438 if (unlikely(!iova)) {
2439 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2440 nrpages, pci_name(pdev));
2441 return NULL;
2444 return iova;
2447 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2449 struct dmar_domain *domain;
2450 int ret;
2452 domain = get_domain_for_dev(pdev,
2453 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2454 if (!domain) {
2455 printk(KERN_ERR
2456 "Allocating domain for %s failed", pci_name(pdev));
2457 return NULL;
2460 /* make sure context mapping is ok */
2461 if (unlikely(!domain_context_mapped(pdev))) {
2462 ret = domain_context_mapping(domain, pdev,
2463 CONTEXT_TT_MULTI_LEVEL);
2464 if (ret) {
2465 printk(KERN_ERR
2466 "Domain context map for %s failed",
2467 pci_name(pdev));
2468 return NULL;
2472 return domain;
2475 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2477 struct device_domain_info *info;
2479 /* No lock here, assumes no domain exit in normal case */
2480 info = dev->dev.archdata.iommu;
2481 if (likely(info))
2482 return info->domain;
2484 return __get_valid_domain_for_dev(dev);
2487 static int iommu_dummy(struct pci_dev *pdev)
2489 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2492 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2493 static int iommu_no_mapping(struct device *dev)
2495 struct pci_dev *pdev;
2496 int found;
2498 if (unlikely(dev->bus != &pci_bus_type))
2499 return 1;
2501 pdev = to_pci_dev(dev);
2502 if (iommu_dummy(pdev))
2503 return 1;
2505 if (!iommu_identity_mapping)
2506 return 0;
2508 found = identity_mapping(pdev);
2509 if (found) {
2510 if (iommu_should_identity_map(pdev, 0))
2511 return 1;
2512 else {
2514 * 32 bit DMA is removed from si_domain and fall back
2515 * to non-identity mapping.
2517 domain_remove_one_dev_info(si_domain, pdev);
2518 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2519 pci_name(pdev));
2520 return 0;
2522 } else {
2524 * In case of a detached 64 bit DMA device from vm, the device
2525 * is put into si_domain for identity mapping.
2527 if (iommu_should_identity_map(pdev, 0)) {
2528 int ret;
2529 ret = domain_add_dev_info(si_domain, pdev,
2530 hw_pass_through ?
2531 CONTEXT_TT_PASS_THROUGH :
2532 CONTEXT_TT_MULTI_LEVEL);
2533 if (!ret) {
2534 printk(KERN_INFO "64bit %s uses identity mapping\n",
2535 pci_name(pdev));
2536 return 1;
2541 return 0;
2544 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2545 size_t size, int dir, u64 dma_mask)
2547 struct pci_dev *pdev = to_pci_dev(hwdev);
2548 struct dmar_domain *domain;
2549 phys_addr_t start_paddr;
2550 struct iova *iova;
2551 int prot = 0;
2552 int ret;
2553 struct intel_iommu *iommu;
2554 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2556 BUG_ON(dir == DMA_NONE);
2558 if (iommu_no_mapping(hwdev))
2559 return paddr;
2561 domain = get_valid_domain_for_dev(pdev);
2562 if (!domain)
2563 return 0;
2565 iommu = domain_get_iommu(domain);
2566 size = aligned_nrpages(paddr, size);
2568 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2569 pdev->dma_mask);
2570 if (!iova)
2571 goto error;
2574 * Check if DMAR supports zero-length reads on write only
2575 * mappings..
2577 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2578 !cap_zlr(iommu->cap))
2579 prot |= DMA_PTE_READ;
2580 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2581 prot |= DMA_PTE_WRITE;
2583 * paddr - (paddr + size) might be partial page, we should map the whole
2584 * page. Note: if two part of one page are separately mapped, we
2585 * might have two guest_addr mapping to the same host paddr, but this
2586 * is not a big problem
2588 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2589 mm_to_dma_pfn(paddr_pfn), size, prot);
2590 if (ret)
2591 goto error;
2593 /* it's a non-present to present mapping. Only flush if caching mode */
2594 if (cap_caching_mode(iommu->cap))
2595 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2596 else
2597 iommu_flush_write_buffer(iommu);
2599 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2600 start_paddr += paddr & ~PAGE_MASK;
2601 return start_paddr;
2603 error:
2604 if (iova)
2605 __free_iova(&domain->iovad, iova);
2606 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2607 pci_name(pdev), size, (unsigned long long)paddr, dir);
2608 return 0;
2611 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2612 unsigned long offset, size_t size,
2613 enum dma_data_direction dir,
2614 struct dma_attrs *attrs)
2616 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2617 dir, to_pci_dev(dev)->dma_mask);
2620 static void flush_unmaps(void)
2622 int i, j;
2624 timer_on = 0;
2626 /* just flush them all */
2627 for (i = 0; i < g_num_of_iommus; i++) {
2628 struct intel_iommu *iommu = g_iommus[i];
2629 if (!iommu)
2630 continue;
2632 if (!deferred_flush[i].next)
2633 continue;
2635 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2636 DMA_TLB_GLOBAL_FLUSH);
2637 for (j = 0; j < deferred_flush[i].next; j++) {
2638 unsigned long mask;
2639 struct iova *iova = deferred_flush[i].iova[j];
2641 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2642 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2643 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2644 iova->pfn_lo << PAGE_SHIFT, mask);
2645 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2647 deferred_flush[i].next = 0;
2650 list_size = 0;
2653 static void flush_unmaps_timeout(unsigned long data)
2655 unsigned long flags;
2657 spin_lock_irqsave(&async_umap_flush_lock, flags);
2658 flush_unmaps();
2659 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2662 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2664 unsigned long flags;
2665 int next, iommu_id;
2666 struct intel_iommu *iommu;
2668 spin_lock_irqsave(&async_umap_flush_lock, flags);
2669 if (list_size == HIGH_WATER_MARK)
2670 flush_unmaps();
2672 iommu = domain_get_iommu(dom);
2673 iommu_id = iommu->seq_id;
2675 next = deferred_flush[iommu_id].next;
2676 deferred_flush[iommu_id].domain[next] = dom;
2677 deferred_flush[iommu_id].iova[next] = iova;
2678 deferred_flush[iommu_id].next++;
2680 if (!timer_on) {
2681 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2682 timer_on = 1;
2684 list_size++;
2685 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2688 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2689 size_t size, enum dma_data_direction dir,
2690 struct dma_attrs *attrs)
2692 struct pci_dev *pdev = to_pci_dev(dev);
2693 struct dmar_domain *domain;
2694 unsigned long start_pfn, last_pfn;
2695 struct iova *iova;
2696 struct intel_iommu *iommu;
2698 if (iommu_no_mapping(dev))
2699 return;
2701 domain = find_domain(pdev);
2702 BUG_ON(!domain);
2704 iommu = domain_get_iommu(domain);
2706 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2707 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2708 (unsigned long long)dev_addr))
2709 return;
2711 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2712 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2714 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2715 pci_name(pdev), start_pfn, last_pfn);
2717 /* clear the whole page */
2718 dma_pte_clear_range(domain, start_pfn, last_pfn);
2720 /* free page tables */
2721 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2723 if (intel_iommu_strict) {
2724 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2725 last_pfn - start_pfn + 1);
2726 /* free iova */
2727 __free_iova(&domain->iovad, iova);
2728 } else {
2729 add_unmap(domain, iova);
2731 * queue up the release of the unmap to save the 1/6th of the
2732 * cpu used up by the iotlb flush operation...
2737 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2738 dma_addr_t *dma_handle, gfp_t flags)
2740 void *vaddr;
2741 int order;
2743 size = PAGE_ALIGN(size);
2744 order = get_order(size);
2745 flags &= ~(GFP_DMA | GFP_DMA32);
2747 vaddr = (void *)__get_free_pages(flags, order);
2748 if (!vaddr)
2749 return NULL;
2750 memset(vaddr, 0, size);
2752 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2753 DMA_BIDIRECTIONAL,
2754 hwdev->coherent_dma_mask);
2755 if (*dma_handle)
2756 return vaddr;
2757 free_pages((unsigned long)vaddr, order);
2758 return NULL;
2761 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2762 dma_addr_t dma_handle)
2764 int order;
2766 size = PAGE_ALIGN(size);
2767 order = get_order(size);
2769 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2770 free_pages((unsigned long)vaddr, order);
2773 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2774 int nelems, enum dma_data_direction dir,
2775 struct dma_attrs *attrs)
2777 struct pci_dev *pdev = to_pci_dev(hwdev);
2778 struct dmar_domain *domain;
2779 unsigned long start_pfn, last_pfn;
2780 struct iova *iova;
2781 struct intel_iommu *iommu;
2783 if (iommu_no_mapping(hwdev))
2784 return;
2786 domain = find_domain(pdev);
2787 BUG_ON(!domain);
2789 iommu = domain_get_iommu(domain);
2791 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2792 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2793 (unsigned long long)sglist[0].dma_address))
2794 return;
2796 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2797 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2799 /* clear the whole page */
2800 dma_pte_clear_range(domain, start_pfn, last_pfn);
2802 /* free page tables */
2803 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2805 if (intel_iommu_strict) {
2806 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2807 last_pfn - start_pfn + 1);
2808 /* free iova */
2809 __free_iova(&domain->iovad, iova);
2810 } else {
2811 add_unmap(domain, iova);
2813 * queue up the release of the unmap to save the 1/6th of the
2814 * cpu used up by the iotlb flush operation...
2819 static int intel_nontranslate_map_sg(struct device *hddev,
2820 struct scatterlist *sglist, int nelems, int dir)
2822 int i;
2823 struct scatterlist *sg;
2825 for_each_sg(sglist, sg, nelems, i) {
2826 BUG_ON(!sg_page(sg));
2827 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2828 sg->dma_length = sg->length;
2830 return nelems;
2833 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2834 enum dma_data_direction dir, struct dma_attrs *attrs)
2836 int i;
2837 struct pci_dev *pdev = to_pci_dev(hwdev);
2838 struct dmar_domain *domain;
2839 size_t size = 0;
2840 int prot = 0;
2841 size_t offset_pfn = 0;
2842 struct iova *iova = NULL;
2843 int ret;
2844 struct scatterlist *sg;
2845 unsigned long start_vpfn;
2846 struct intel_iommu *iommu;
2848 BUG_ON(dir == DMA_NONE);
2849 if (iommu_no_mapping(hwdev))
2850 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2852 domain = get_valid_domain_for_dev(pdev);
2853 if (!domain)
2854 return 0;
2856 iommu = domain_get_iommu(domain);
2858 for_each_sg(sglist, sg, nelems, i)
2859 size += aligned_nrpages(sg->offset, sg->length);
2861 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2862 pdev->dma_mask);
2863 if (!iova) {
2864 sglist->dma_length = 0;
2865 return 0;
2869 * Check if DMAR supports zero-length reads on write only
2870 * mappings..
2872 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2873 !cap_zlr(iommu->cap))
2874 prot |= DMA_PTE_READ;
2875 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2876 prot |= DMA_PTE_WRITE;
2878 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2880 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2881 if (unlikely(ret)) {
2882 /* clear the page */
2883 dma_pte_clear_range(domain, start_vpfn,
2884 start_vpfn + size - 1);
2885 /* free page tables */
2886 dma_pte_free_pagetable(domain, start_vpfn,
2887 start_vpfn + size - 1);
2888 /* free iova */
2889 __free_iova(&domain->iovad, iova);
2890 return 0;
2893 /* it's a non-present to present mapping. Only flush if caching mode */
2894 if (cap_caching_mode(iommu->cap))
2895 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2896 else
2897 iommu_flush_write_buffer(iommu);
2899 return nelems;
2902 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2904 return !dma_addr;
2907 struct dma_map_ops intel_dma_ops = {
2908 .alloc_coherent = intel_alloc_coherent,
2909 .free_coherent = intel_free_coherent,
2910 .map_sg = intel_map_sg,
2911 .unmap_sg = intel_unmap_sg,
2912 .map_page = intel_map_page,
2913 .unmap_page = intel_unmap_page,
2914 .mapping_error = intel_mapping_error,
2917 static inline int iommu_domain_cache_init(void)
2919 int ret = 0;
2921 iommu_domain_cache = kmem_cache_create("iommu_domain",
2922 sizeof(struct dmar_domain),
2924 SLAB_HWCACHE_ALIGN,
2926 NULL);
2927 if (!iommu_domain_cache) {
2928 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2929 ret = -ENOMEM;
2932 return ret;
2935 static inline int iommu_devinfo_cache_init(void)
2937 int ret = 0;
2939 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2940 sizeof(struct device_domain_info),
2942 SLAB_HWCACHE_ALIGN,
2943 NULL);
2944 if (!iommu_devinfo_cache) {
2945 printk(KERN_ERR "Couldn't create devinfo cache\n");
2946 ret = -ENOMEM;
2949 return ret;
2952 static inline int iommu_iova_cache_init(void)
2954 int ret = 0;
2956 iommu_iova_cache = kmem_cache_create("iommu_iova",
2957 sizeof(struct iova),
2959 SLAB_HWCACHE_ALIGN,
2960 NULL);
2961 if (!iommu_iova_cache) {
2962 printk(KERN_ERR "Couldn't create iova cache\n");
2963 ret = -ENOMEM;
2966 return ret;
2969 static int __init iommu_init_mempool(void)
2971 int ret;
2972 ret = iommu_iova_cache_init();
2973 if (ret)
2974 return ret;
2976 ret = iommu_domain_cache_init();
2977 if (ret)
2978 goto domain_error;
2980 ret = iommu_devinfo_cache_init();
2981 if (!ret)
2982 return ret;
2984 kmem_cache_destroy(iommu_domain_cache);
2985 domain_error:
2986 kmem_cache_destroy(iommu_iova_cache);
2988 return -ENOMEM;
2991 static void __init iommu_exit_mempool(void)
2993 kmem_cache_destroy(iommu_devinfo_cache);
2994 kmem_cache_destroy(iommu_domain_cache);
2995 kmem_cache_destroy(iommu_iova_cache);
2999 static void __init init_no_remapping_devices(void)
3001 struct dmar_drhd_unit *drhd;
3003 for_each_drhd_unit(drhd) {
3004 if (!drhd->include_all) {
3005 int i;
3006 for (i = 0; i < drhd->devices_cnt; i++)
3007 if (drhd->devices[i] != NULL)
3008 break;
3009 /* ignore DMAR unit if no pci devices exist */
3010 if (i == drhd->devices_cnt)
3011 drhd->ignored = 1;
3015 if (dmar_map_gfx)
3016 return;
3018 for_each_drhd_unit(drhd) {
3019 int i;
3020 if (drhd->ignored || drhd->include_all)
3021 continue;
3023 for (i = 0; i < drhd->devices_cnt; i++)
3024 if (drhd->devices[i] &&
3025 !IS_GFX_DEVICE(drhd->devices[i]))
3026 break;
3028 if (i < drhd->devices_cnt)
3029 continue;
3031 /* bypass IOMMU if it is just for gfx devices */
3032 drhd->ignored = 1;
3033 for (i = 0; i < drhd->devices_cnt; i++) {
3034 if (!drhd->devices[i])
3035 continue;
3036 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3041 #ifdef CONFIG_SUSPEND
3042 static int init_iommu_hw(void)
3044 struct dmar_drhd_unit *drhd;
3045 struct intel_iommu *iommu = NULL;
3047 for_each_active_iommu(iommu, drhd)
3048 if (iommu->qi)
3049 dmar_reenable_qi(iommu);
3051 for_each_active_iommu(iommu, drhd) {
3052 iommu_flush_write_buffer(iommu);
3054 iommu_set_root_entry(iommu);
3056 iommu->flush.flush_context(iommu, 0, 0, 0,
3057 DMA_CCMD_GLOBAL_INVL);
3058 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3059 DMA_TLB_GLOBAL_FLUSH);
3060 iommu_disable_protect_mem_regions(iommu);
3061 iommu_enable_translation(iommu);
3064 return 0;
3067 static void iommu_flush_all(void)
3069 struct dmar_drhd_unit *drhd;
3070 struct intel_iommu *iommu;
3072 for_each_active_iommu(iommu, drhd) {
3073 iommu->flush.flush_context(iommu, 0, 0, 0,
3074 DMA_CCMD_GLOBAL_INVL);
3075 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3076 DMA_TLB_GLOBAL_FLUSH);
3080 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3082 struct dmar_drhd_unit *drhd;
3083 struct intel_iommu *iommu = NULL;
3084 unsigned long flag;
3086 for_each_active_iommu(iommu, drhd) {
3087 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3088 GFP_ATOMIC);
3089 if (!iommu->iommu_state)
3090 goto nomem;
3093 iommu_flush_all();
3095 for_each_active_iommu(iommu, drhd) {
3096 iommu_disable_translation(iommu);
3098 spin_lock_irqsave(&iommu->register_lock, flag);
3100 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3101 readl(iommu->reg + DMAR_FECTL_REG);
3102 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3103 readl(iommu->reg + DMAR_FEDATA_REG);
3104 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3105 readl(iommu->reg + DMAR_FEADDR_REG);
3106 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3107 readl(iommu->reg + DMAR_FEUADDR_REG);
3109 spin_unlock_irqrestore(&iommu->register_lock, flag);
3111 return 0;
3113 nomem:
3114 for_each_active_iommu(iommu, drhd)
3115 kfree(iommu->iommu_state);
3117 return -ENOMEM;
3120 static int iommu_resume(struct sys_device *dev)
3122 struct dmar_drhd_unit *drhd;
3123 struct intel_iommu *iommu = NULL;
3124 unsigned long flag;
3126 if (init_iommu_hw()) {
3127 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3128 return -EIO;
3131 for_each_active_iommu(iommu, drhd) {
3133 spin_lock_irqsave(&iommu->register_lock, flag);
3135 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3136 iommu->reg + DMAR_FECTL_REG);
3137 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3138 iommu->reg + DMAR_FEDATA_REG);
3139 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3140 iommu->reg + DMAR_FEADDR_REG);
3141 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3142 iommu->reg + DMAR_FEUADDR_REG);
3144 spin_unlock_irqrestore(&iommu->register_lock, flag);
3147 for_each_active_iommu(iommu, drhd)
3148 kfree(iommu->iommu_state);
3150 return 0;
3153 static struct sysdev_class iommu_sysclass = {
3154 .name = "iommu",
3155 .resume = iommu_resume,
3156 .suspend = iommu_suspend,
3159 static struct sys_device device_iommu = {
3160 .cls = &iommu_sysclass,
3163 static int __init init_iommu_sysfs(void)
3165 int error;
3167 error = sysdev_class_register(&iommu_sysclass);
3168 if (error)
3169 return error;
3171 error = sysdev_register(&device_iommu);
3172 if (error)
3173 sysdev_class_unregister(&iommu_sysclass);
3175 return error;
3178 #else
3179 static int __init init_iommu_sysfs(void)
3181 return 0;
3183 #endif /* CONFIG_PM */
3185 int __init intel_iommu_init(void)
3187 int ret = 0;
3189 if (dmar_table_init())
3190 return -ENODEV;
3192 if (dmar_dev_scope_init())
3193 return -ENODEV;
3196 * Check the need for DMA-remapping initialization now.
3197 * Above initialization will also be used by Interrupt-remapping.
3199 if (no_iommu || swiotlb || dmar_disabled)
3200 return -ENODEV;
3202 iommu_init_mempool();
3203 dmar_init_reserved_ranges();
3205 init_no_remapping_devices();
3207 ret = init_dmars();
3208 if (ret) {
3209 printk(KERN_ERR "IOMMU: dmar init failed\n");
3210 put_iova_domain(&reserved_iova_list);
3211 iommu_exit_mempool();
3212 return ret;
3214 printk(KERN_INFO
3215 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3217 init_timer(&unmap_timer);
3218 force_iommu = 1;
3219 dma_ops = &intel_dma_ops;
3221 init_iommu_sysfs();
3223 register_iommu(&intel_iommu_ops);
3225 return 0;
3228 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3229 struct pci_dev *pdev)
3231 struct pci_dev *tmp, *parent;
3233 if (!iommu || !pdev)
3234 return;
3236 /* dependent device detach */
3237 tmp = pci_find_upstream_pcie_bridge(pdev);
3238 /* Secondary interface's bus number and devfn 0 */
3239 if (tmp) {
3240 parent = pdev->bus->self;
3241 while (parent != tmp) {
3242 iommu_detach_dev(iommu, parent->bus->number,
3243 parent->devfn);
3244 parent = parent->bus->self;
3246 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3247 iommu_detach_dev(iommu,
3248 tmp->subordinate->number, 0);
3249 else /* this is a legacy PCI bridge */
3250 iommu_detach_dev(iommu, tmp->bus->number,
3251 tmp->devfn);
3255 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3256 struct pci_dev *pdev)
3258 struct device_domain_info *info;
3259 struct intel_iommu *iommu;
3260 unsigned long flags;
3261 int found = 0;
3262 struct list_head *entry, *tmp;
3264 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3265 pdev->devfn);
3266 if (!iommu)
3267 return;
3269 spin_lock_irqsave(&device_domain_lock, flags);
3270 list_for_each_safe(entry, tmp, &domain->devices) {
3271 info = list_entry(entry, struct device_domain_info, link);
3272 /* No need to compare PCI domain; it has to be the same */
3273 if (info->bus == pdev->bus->number &&
3274 info->devfn == pdev->devfn) {
3275 list_del(&info->link);
3276 list_del(&info->global);
3277 if (info->dev)
3278 info->dev->dev.archdata.iommu = NULL;
3279 spin_unlock_irqrestore(&device_domain_lock, flags);
3281 iommu_disable_dev_iotlb(info);
3282 iommu_detach_dev(iommu, info->bus, info->devfn);
3283 iommu_detach_dependent_devices(iommu, pdev);
3284 free_devinfo_mem(info);
3286 spin_lock_irqsave(&device_domain_lock, flags);
3288 if (found)
3289 break;
3290 else
3291 continue;
3294 /* if there is no other devices under the same iommu
3295 * owned by this domain, clear this iommu in iommu_bmp
3296 * update iommu count and coherency
3298 if (iommu == device_to_iommu(info->segment, info->bus,
3299 info->devfn))
3300 found = 1;
3303 if (found == 0) {
3304 unsigned long tmp_flags;
3305 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3306 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3307 domain->iommu_count--;
3308 domain_update_iommu_cap(domain);
3309 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3312 spin_unlock_irqrestore(&device_domain_lock, flags);
3315 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3317 struct device_domain_info *info;
3318 struct intel_iommu *iommu;
3319 unsigned long flags1, flags2;
3321 spin_lock_irqsave(&device_domain_lock, flags1);
3322 while (!list_empty(&domain->devices)) {
3323 info = list_entry(domain->devices.next,
3324 struct device_domain_info, link);
3325 list_del(&info->link);
3326 list_del(&info->global);
3327 if (info->dev)
3328 info->dev->dev.archdata.iommu = NULL;
3330 spin_unlock_irqrestore(&device_domain_lock, flags1);
3332 iommu_disable_dev_iotlb(info);
3333 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3334 iommu_detach_dev(iommu, info->bus, info->devfn);
3335 iommu_detach_dependent_devices(iommu, info->dev);
3337 /* clear this iommu in iommu_bmp, update iommu count
3338 * and capabilities
3340 spin_lock_irqsave(&domain->iommu_lock, flags2);
3341 if (test_and_clear_bit(iommu->seq_id,
3342 &domain->iommu_bmp)) {
3343 domain->iommu_count--;
3344 domain_update_iommu_cap(domain);
3346 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3348 free_devinfo_mem(info);
3349 spin_lock_irqsave(&device_domain_lock, flags1);
3351 spin_unlock_irqrestore(&device_domain_lock, flags1);
3354 /* domain id for virtual machine, it won't be set in context */
3355 static unsigned long vm_domid;
3357 static int vm_domain_min_agaw(struct dmar_domain *domain)
3359 int i;
3360 int min_agaw = domain->agaw;
3362 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3363 for (; i < g_num_of_iommus; ) {
3364 if (min_agaw > g_iommus[i]->agaw)
3365 min_agaw = g_iommus[i]->agaw;
3367 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3370 return min_agaw;
3373 static struct dmar_domain *iommu_alloc_vm_domain(void)
3375 struct dmar_domain *domain;
3377 domain = alloc_domain_mem();
3378 if (!domain)
3379 return NULL;
3381 domain->id = vm_domid++;
3382 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3383 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3385 return domain;
3388 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3390 int adjust_width;
3392 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3393 spin_lock_init(&domain->iommu_lock);
3395 domain_reserve_special_ranges(domain);
3397 /* calculate AGAW */
3398 domain->gaw = guest_width;
3399 adjust_width = guestwidth_to_adjustwidth(guest_width);
3400 domain->agaw = width_to_agaw(adjust_width);
3402 INIT_LIST_HEAD(&domain->devices);
3404 domain->iommu_count = 0;
3405 domain->iommu_coherency = 0;
3406 domain->iommu_snooping = 0;
3407 domain->max_addr = 0;
3409 /* always allocate the top pgd */
3410 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3411 if (!domain->pgd)
3412 return -ENOMEM;
3413 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3414 return 0;
3417 static void iommu_free_vm_domain(struct dmar_domain *domain)
3419 unsigned long flags;
3420 struct dmar_drhd_unit *drhd;
3421 struct intel_iommu *iommu;
3422 unsigned long i;
3423 unsigned long ndomains;
3425 for_each_drhd_unit(drhd) {
3426 if (drhd->ignored)
3427 continue;
3428 iommu = drhd->iommu;
3430 ndomains = cap_ndoms(iommu->cap);
3431 i = find_first_bit(iommu->domain_ids, ndomains);
3432 for (; i < ndomains; ) {
3433 if (iommu->domains[i] == domain) {
3434 spin_lock_irqsave(&iommu->lock, flags);
3435 clear_bit(i, iommu->domain_ids);
3436 iommu->domains[i] = NULL;
3437 spin_unlock_irqrestore(&iommu->lock, flags);
3438 break;
3440 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3445 static void vm_domain_exit(struct dmar_domain *domain)
3447 /* Domain 0 is reserved, so dont process it */
3448 if (!domain)
3449 return;
3451 vm_domain_remove_all_dev_info(domain);
3452 /* destroy iovas */
3453 put_iova_domain(&domain->iovad);
3455 /* clear ptes */
3456 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3458 /* free page tables */
3459 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3461 iommu_free_vm_domain(domain);
3462 free_domain_mem(domain);
3465 static int intel_iommu_domain_init(struct iommu_domain *domain)
3467 struct dmar_domain *dmar_domain;
3469 dmar_domain = iommu_alloc_vm_domain();
3470 if (!dmar_domain) {
3471 printk(KERN_ERR
3472 "intel_iommu_domain_init: dmar_domain == NULL\n");
3473 return -ENOMEM;
3475 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3476 printk(KERN_ERR
3477 "intel_iommu_domain_init() failed\n");
3478 vm_domain_exit(dmar_domain);
3479 return -ENOMEM;
3481 domain->priv = dmar_domain;
3483 return 0;
3486 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3488 struct dmar_domain *dmar_domain = domain->priv;
3490 domain->priv = NULL;
3491 vm_domain_exit(dmar_domain);
3494 static int intel_iommu_attach_device(struct iommu_domain *domain,
3495 struct device *dev)
3497 struct dmar_domain *dmar_domain = domain->priv;
3498 struct pci_dev *pdev = to_pci_dev(dev);
3499 struct intel_iommu *iommu;
3500 int addr_width;
3501 u64 end;
3503 /* normally pdev is not mapped */
3504 if (unlikely(domain_context_mapped(pdev))) {
3505 struct dmar_domain *old_domain;
3507 old_domain = find_domain(pdev);
3508 if (old_domain) {
3509 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3510 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3511 domain_remove_one_dev_info(old_domain, pdev);
3512 else
3513 domain_remove_dev_info(old_domain);
3517 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3518 pdev->devfn);
3519 if (!iommu)
3520 return -ENODEV;
3522 /* check if this iommu agaw is sufficient for max mapped address */
3523 addr_width = agaw_to_width(iommu->agaw);
3524 end = DOMAIN_MAX_ADDR(addr_width);
3525 end = end & VTD_PAGE_MASK;
3526 if (end < dmar_domain->max_addr) {
3527 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3528 "sufficient for the mapped address (%llx)\n",
3529 __func__, iommu->agaw, dmar_domain->max_addr);
3530 return -EFAULT;
3533 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3536 static void intel_iommu_detach_device(struct iommu_domain *domain,
3537 struct device *dev)
3539 struct dmar_domain *dmar_domain = domain->priv;
3540 struct pci_dev *pdev = to_pci_dev(dev);
3542 domain_remove_one_dev_info(dmar_domain, pdev);
3545 static int intel_iommu_map_range(struct iommu_domain *domain,
3546 unsigned long iova, phys_addr_t hpa,
3547 size_t size, int iommu_prot)
3549 struct dmar_domain *dmar_domain = domain->priv;
3550 u64 max_addr;
3551 int addr_width;
3552 int prot = 0;
3553 int ret;
3555 if (iommu_prot & IOMMU_READ)
3556 prot |= DMA_PTE_READ;
3557 if (iommu_prot & IOMMU_WRITE)
3558 prot |= DMA_PTE_WRITE;
3559 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3560 prot |= DMA_PTE_SNP;
3562 max_addr = iova + size;
3563 if (dmar_domain->max_addr < max_addr) {
3564 int min_agaw;
3565 u64 end;
3567 /* check if minimum agaw is sufficient for mapped address */
3568 min_agaw = vm_domain_min_agaw(dmar_domain);
3569 addr_width = agaw_to_width(min_agaw);
3570 end = DOMAIN_MAX_ADDR(addr_width);
3571 end = end & VTD_PAGE_MASK;
3572 if (end < max_addr) {
3573 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3574 "sufficient for the mapped address (%llx)\n",
3575 __func__, min_agaw, max_addr);
3576 return -EFAULT;
3578 dmar_domain->max_addr = max_addr;
3580 /* Round up size to next multiple of PAGE_SIZE, if it and
3581 the low bits of hpa would take us onto the next page */
3582 size = aligned_nrpages(hpa, size);
3583 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3584 hpa >> VTD_PAGE_SHIFT, size, prot);
3585 return ret;
3588 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3589 unsigned long iova, size_t size)
3591 struct dmar_domain *dmar_domain = domain->priv;
3593 if (!size)
3594 return;
3596 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3597 (iova + size - 1) >> VTD_PAGE_SHIFT);
3599 if (dmar_domain->max_addr == iova + size)
3600 dmar_domain->max_addr = iova;
3603 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3604 unsigned long iova)
3606 struct dmar_domain *dmar_domain = domain->priv;
3607 struct dma_pte *pte;
3608 u64 phys = 0;
3610 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3611 if (pte)
3612 phys = dma_pte_addr(pte);
3614 return phys;
3617 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3618 unsigned long cap)
3620 struct dmar_domain *dmar_domain = domain->priv;
3622 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3623 return dmar_domain->iommu_snooping;
3625 return 0;
3628 static struct iommu_ops intel_iommu_ops = {
3629 .domain_init = intel_iommu_domain_init,
3630 .domain_destroy = intel_iommu_domain_destroy,
3631 .attach_dev = intel_iommu_attach_device,
3632 .detach_dev = intel_iommu_detach_device,
3633 .map = intel_iommu_map_range,
3634 .unmap = intel_iommu_unmap_range,
3635 .iova_to_phys = intel_iommu_iova_to_phys,
3636 .domain_has_cap = intel_iommu_domain_has_cap,
3639 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3642 * Mobile 4 Series Chipset neglects to set RWBF capability,
3643 * but needs it:
3645 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3646 rwbf_quirk = 1;
3649 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);