nfsd: don't use the deferral service, return NFS4ERR_DELAY
[linux-2.6/x86.git] / net / sunrpc / svc_xprt.c
blob600d0918e3aea135a8c9df8cd9b43e169019c550
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <net/sock.h>
12 #include <linux/sunrpc/stats.h>
13 #include <linux/sunrpc/svc_xprt.h>
15 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
17 #define SVC_MAX_WAKING 5
19 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
20 static int svc_deferred_recv(struct svc_rqst *rqstp);
21 static struct cache_deferred_req *svc_defer(struct cache_req *req);
22 static void svc_age_temp_xprts(unsigned long closure);
24 /* apparently the "standard" is that clients close
25 * idle connections after 5 minutes, servers after
26 * 6 minutes
27 * http://www.connectathon.org/talks96/nfstcp.pdf
29 static int svc_conn_age_period = 6*60;
31 /* List of registered transport classes */
32 static DEFINE_SPINLOCK(svc_xprt_class_lock);
33 static LIST_HEAD(svc_xprt_class_list);
35 /* SMP locking strategy:
37 * svc_pool->sp_lock protects most of the fields of that pool.
38 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
39 * when both need to be taken (rare), svc_serv->sv_lock is first.
40 * BKL protects svc_serv->sv_nrthread.
41 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
42 * and the ->sk_info_authunix cache.
44 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
45 * enqueued multiply. During normal transport processing this bit
46 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
47 * Providers should not manipulate this bit directly.
49 * Some flags can be set to certain values at any time
50 * providing that certain rules are followed:
52 * XPT_CONN, XPT_DATA:
53 * - Can be set or cleared at any time.
54 * - After a set, svc_xprt_enqueue must be called to enqueue
55 * the transport for processing.
56 * - After a clear, the transport must be read/accepted.
57 * If this succeeds, it must be set again.
58 * XPT_CLOSE:
59 * - Can set at any time. It is never cleared.
60 * XPT_DEAD:
61 * - Can only be set while XPT_BUSY is held which ensures
62 * that no other thread will be using the transport or will
63 * try to set XPT_DEAD.
66 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68 struct svc_xprt_class *cl;
69 int res = -EEXIST;
71 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73 INIT_LIST_HEAD(&xcl->xcl_list);
74 spin_lock(&svc_xprt_class_lock);
75 /* Make sure there isn't already a class with the same name */
76 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
77 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
78 goto out;
80 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
81 res = 0;
82 out:
83 spin_unlock(&svc_xprt_class_lock);
84 return res;
86 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
91 spin_lock(&svc_xprt_class_lock);
92 list_del_init(&xcl->xcl_list);
93 spin_unlock(&svc_xprt_class_lock);
95 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
98 * Format the transport list for printing
100 int svc_print_xprts(char *buf, int maxlen)
102 struct list_head *le;
103 char tmpstr[80];
104 int len = 0;
105 buf[0] = '\0';
107 spin_lock(&svc_xprt_class_lock);
108 list_for_each(le, &svc_xprt_class_list) {
109 int slen;
110 struct svc_xprt_class *xcl =
111 list_entry(le, struct svc_xprt_class, xcl_list);
113 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
114 slen = strlen(tmpstr);
115 if (len + slen > maxlen)
116 break;
117 len += slen;
118 strcat(buf, tmpstr);
120 spin_unlock(&svc_xprt_class_lock);
122 return len;
125 static void svc_xprt_free(struct kref *kref)
127 struct svc_xprt *xprt =
128 container_of(kref, struct svc_xprt, xpt_ref);
129 struct module *owner = xprt->xpt_class->xcl_owner;
130 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
131 && xprt->xpt_auth_cache != NULL)
132 svcauth_unix_info_release(xprt->xpt_auth_cache);
133 xprt->xpt_ops->xpo_free(xprt);
134 module_put(owner);
137 void svc_xprt_put(struct svc_xprt *xprt)
139 kref_put(&xprt->xpt_ref, svc_xprt_free);
141 EXPORT_SYMBOL_GPL(svc_xprt_put);
144 * Called by transport drivers to initialize the transport independent
145 * portion of the transport instance.
147 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
148 struct svc_serv *serv)
150 memset(xprt, 0, sizeof(*xprt));
151 xprt->xpt_class = xcl;
152 xprt->xpt_ops = xcl->xcl_ops;
153 kref_init(&xprt->xpt_ref);
154 xprt->xpt_server = serv;
155 INIT_LIST_HEAD(&xprt->xpt_list);
156 INIT_LIST_HEAD(&xprt->xpt_ready);
157 INIT_LIST_HEAD(&xprt->xpt_deferred);
158 mutex_init(&xprt->xpt_mutex);
159 spin_lock_init(&xprt->xpt_lock);
160 set_bit(XPT_BUSY, &xprt->xpt_flags);
162 EXPORT_SYMBOL_GPL(svc_xprt_init);
164 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
165 struct svc_serv *serv,
166 unsigned short port, int flags)
168 struct sockaddr_in sin = {
169 .sin_family = AF_INET,
170 .sin_addr.s_addr = htonl(INADDR_ANY),
171 .sin_port = htons(port),
173 struct sockaddr_in6 sin6 = {
174 .sin6_family = AF_INET6,
175 .sin6_addr = IN6ADDR_ANY_INIT,
176 .sin6_port = htons(port),
178 struct sockaddr *sap;
179 size_t len;
181 switch (serv->sv_family) {
182 case AF_INET:
183 sap = (struct sockaddr *)&sin;
184 len = sizeof(sin);
185 break;
186 case AF_INET6:
187 sap = (struct sockaddr *)&sin6;
188 len = sizeof(sin6);
189 break;
190 default:
191 return ERR_PTR(-EAFNOSUPPORT);
194 return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
197 int svc_create_xprt(struct svc_serv *serv, char *xprt_name, unsigned short port,
198 int flags)
200 struct svc_xprt_class *xcl;
202 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
203 spin_lock(&svc_xprt_class_lock);
204 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
205 struct svc_xprt *newxprt;
207 if (strcmp(xprt_name, xcl->xcl_name))
208 continue;
210 if (!try_module_get(xcl->xcl_owner))
211 goto err;
213 spin_unlock(&svc_xprt_class_lock);
214 newxprt = __svc_xpo_create(xcl, serv, port, flags);
215 if (IS_ERR(newxprt)) {
216 module_put(xcl->xcl_owner);
217 return PTR_ERR(newxprt);
220 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
221 spin_lock_bh(&serv->sv_lock);
222 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
223 spin_unlock_bh(&serv->sv_lock);
224 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
225 return svc_xprt_local_port(newxprt);
227 err:
228 spin_unlock(&svc_xprt_class_lock);
229 dprintk("svc: transport %s not found\n", xprt_name);
230 return -ENOENT;
232 EXPORT_SYMBOL_GPL(svc_create_xprt);
235 * Copy the local and remote xprt addresses to the rqstp structure
237 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
239 struct sockaddr *sin;
241 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
242 rqstp->rq_addrlen = xprt->xpt_remotelen;
245 * Destination address in request is needed for binding the
246 * source address in RPC replies/callbacks later.
248 sin = (struct sockaddr *)&xprt->xpt_local;
249 switch (sin->sa_family) {
250 case AF_INET:
251 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
252 break;
253 case AF_INET6:
254 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
255 break;
258 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
261 * svc_print_addr - Format rq_addr field for printing
262 * @rqstp: svc_rqst struct containing address to print
263 * @buf: target buffer for formatted address
264 * @len: length of target buffer
267 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
269 return __svc_print_addr(svc_addr(rqstp), buf, len);
271 EXPORT_SYMBOL_GPL(svc_print_addr);
274 * Queue up an idle server thread. Must have pool->sp_lock held.
275 * Note: this is really a stack rather than a queue, so that we only
276 * use as many different threads as we need, and the rest don't pollute
277 * the cache.
279 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
281 list_add(&rqstp->rq_list, &pool->sp_threads);
285 * Dequeue an nfsd thread. Must have pool->sp_lock held.
287 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
289 list_del(&rqstp->rq_list);
293 * Queue up a transport with data pending. If there are idle nfsd
294 * processes, wake 'em up.
297 void svc_xprt_enqueue(struct svc_xprt *xprt)
299 struct svc_serv *serv = xprt->xpt_server;
300 struct svc_pool *pool;
301 struct svc_rqst *rqstp;
302 int cpu;
303 int thread_avail;
305 if (!(xprt->xpt_flags &
306 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
307 return;
309 cpu = get_cpu();
310 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
311 put_cpu();
313 spin_lock_bh(&pool->sp_lock);
315 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
316 /* Don't enqueue dead transports */
317 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
318 goto out_unlock;
321 pool->sp_stats.packets++;
323 /* Mark transport as busy. It will remain in this state until
324 * the provider calls svc_xprt_received. We update XPT_BUSY
325 * atomically because it also guards against trying to enqueue
326 * the transport twice.
328 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
329 /* Don't enqueue transport while already enqueued */
330 dprintk("svc: transport %p busy, not enqueued\n", xprt);
331 goto out_unlock;
333 BUG_ON(xprt->xpt_pool != NULL);
334 xprt->xpt_pool = pool;
336 /* Handle pending connection */
337 if (test_bit(XPT_CONN, &xprt->xpt_flags))
338 goto process;
340 /* Handle close in-progress */
341 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
342 goto process;
344 /* Check if we have space to reply to a request */
345 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
346 /* Don't enqueue while not enough space for reply */
347 dprintk("svc: no write space, transport %p not enqueued\n",
348 xprt);
349 xprt->xpt_pool = NULL;
350 clear_bit(XPT_BUSY, &xprt->xpt_flags);
351 goto out_unlock;
354 process:
355 /* Work out whether threads are available */
356 thread_avail = !list_empty(&pool->sp_threads); /* threads are asleep */
357 if (pool->sp_nwaking >= SVC_MAX_WAKING) {
358 /* too many threads are runnable and trying to wake up */
359 thread_avail = 0;
360 pool->sp_stats.overloads_avoided++;
363 if (thread_avail) {
364 rqstp = list_entry(pool->sp_threads.next,
365 struct svc_rqst,
366 rq_list);
367 dprintk("svc: transport %p served by daemon %p\n",
368 xprt, rqstp);
369 svc_thread_dequeue(pool, rqstp);
370 if (rqstp->rq_xprt)
371 printk(KERN_ERR
372 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
373 rqstp, rqstp->rq_xprt);
374 rqstp->rq_xprt = xprt;
375 svc_xprt_get(xprt);
376 rqstp->rq_reserved = serv->sv_max_mesg;
377 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
378 rqstp->rq_waking = 1;
379 pool->sp_nwaking++;
380 pool->sp_stats.threads_woken++;
381 BUG_ON(xprt->xpt_pool != pool);
382 wake_up(&rqstp->rq_wait);
383 } else {
384 dprintk("svc: transport %p put into queue\n", xprt);
385 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
386 pool->sp_stats.sockets_queued++;
387 BUG_ON(xprt->xpt_pool != pool);
390 out_unlock:
391 spin_unlock_bh(&pool->sp_lock);
393 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
396 * Dequeue the first transport. Must be called with the pool->sp_lock held.
398 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
400 struct svc_xprt *xprt;
402 if (list_empty(&pool->sp_sockets))
403 return NULL;
405 xprt = list_entry(pool->sp_sockets.next,
406 struct svc_xprt, xpt_ready);
407 list_del_init(&xprt->xpt_ready);
409 dprintk("svc: transport %p dequeued, inuse=%d\n",
410 xprt, atomic_read(&xprt->xpt_ref.refcount));
412 return xprt;
416 * svc_xprt_received conditionally queues the transport for processing
417 * by another thread. The caller must hold the XPT_BUSY bit and must
418 * not thereafter touch transport data.
420 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
421 * insufficient) data.
423 void svc_xprt_received(struct svc_xprt *xprt)
425 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
426 xprt->xpt_pool = NULL;
427 clear_bit(XPT_BUSY, &xprt->xpt_flags);
428 svc_xprt_enqueue(xprt);
430 EXPORT_SYMBOL_GPL(svc_xprt_received);
433 * svc_reserve - change the space reserved for the reply to a request.
434 * @rqstp: The request in question
435 * @space: new max space to reserve
437 * Each request reserves some space on the output queue of the transport
438 * to make sure the reply fits. This function reduces that reserved
439 * space to be the amount of space used already, plus @space.
442 void svc_reserve(struct svc_rqst *rqstp, int space)
444 space += rqstp->rq_res.head[0].iov_len;
446 if (space < rqstp->rq_reserved) {
447 struct svc_xprt *xprt = rqstp->rq_xprt;
448 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
449 rqstp->rq_reserved = space;
451 svc_xprt_enqueue(xprt);
454 EXPORT_SYMBOL_GPL(svc_reserve);
456 static void svc_xprt_release(struct svc_rqst *rqstp)
458 struct svc_xprt *xprt = rqstp->rq_xprt;
460 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
462 kfree(rqstp->rq_deferred);
463 rqstp->rq_deferred = NULL;
465 svc_free_res_pages(rqstp);
466 rqstp->rq_res.page_len = 0;
467 rqstp->rq_res.page_base = 0;
469 /* Reset response buffer and release
470 * the reservation.
471 * But first, check that enough space was reserved
472 * for the reply, otherwise we have a bug!
474 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
475 printk(KERN_ERR "RPC request reserved %d but used %d\n",
476 rqstp->rq_reserved,
477 rqstp->rq_res.len);
479 rqstp->rq_res.head[0].iov_len = 0;
480 svc_reserve(rqstp, 0);
481 rqstp->rq_xprt = NULL;
483 svc_xprt_put(xprt);
487 * External function to wake up a server waiting for data
488 * This really only makes sense for services like lockd
489 * which have exactly one thread anyway.
491 void svc_wake_up(struct svc_serv *serv)
493 struct svc_rqst *rqstp;
494 unsigned int i;
495 struct svc_pool *pool;
497 for (i = 0; i < serv->sv_nrpools; i++) {
498 pool = &serv->sv_pools[i];
500 spin_lock_bh(&pool->sp_lock);
501 if (!list_empty(&pool->sp_threads)) {
502 rqstp = list_entry(pool->sp_threads.next,
503 struct svc_rqst,
504 rq_list);
505 dprintk("svc: daemon %p woken up.\n", rqstp);
507 svc_thread_dequeue(pool, rqstp);
508 rqstp->rq_xprt = NULL;
510 wake_up(&rqstp->rq_wait);
512 spin_unlock_bh(&pool->sp_lock);
515 EXPORT_SYMBOL_GPL(svc_wake_up);
517 int svc_port_is_privileged(struct sockaddr *sin)
519 switch (sin->sa_family) {
520 case AF_INET:
521 return ntohs(((struct sockaddr_in *)sin)->sin_port)
522 < PROT_SOCK;
523 case AF_INET6:
524 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
525 < PROT_SOCK;
526 default:
527 return 0;
532 * Make sure that we don't have too many active connections. If we have,
533 * something must be dropped. It's not clear what will happen if we allow
534 * "too many" connections, but when dealing with network-facing software,
535 * we have to code defensively. Here we do that by imposing hard limits.
537 * There's no point in trying to do random drop here for DoS
538 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
539 * attacker can easily beat that.
541 * The only somewhat efficient mechanism would be if drop old
542 * connections from the same IP first. But right now we don't even
543 * record the client IP in svc_sock.
545 * single-threaded services that expect a lot of clients will probably
546 * need to set sv_maxconn to override the default value which is based
547 * on the number of threads
549 static void svc_check_conn_limits(struct svc_serv *serv)
551 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
552 (serv->sv_nrthreads+3) * 20;
554 if (serv->sv_tmpcnt > limit) {
555 struct svc_xprt *xprt = NULL;
556 spin_lock_bh(&serv->sv_lock);
557 if (!list_empty(&serv->sv_tempsocks)) {
558 if (net_ratelimit()) {
559 /* Try to help the admin */
560 printk(KERN_NOTICE "%s: too many open "
561 "connections, consider increasing %s\n",
562 serv->sv_name, serv->sv_maxconn ?
563 "the max number of connections." :
564 "the number of threads.");
567 * Always select the oldest connection. It's not fair,
568 * but so is life
570 xprt = list_entry(serv->sv_tempsocks.prev,
571 struct svc_xprt,
572 xpt_list);
573 set_bit(XPT_CLOSE, &xprt->xpt_flags);
574 svc_xprt_get(xprt);
576 spin_unlock_bh(&serv->sv_lock);
578 if (xprt) {
579 svc_xprt_enqueue(xprt);
580 svc_xprt_put(xprt);
586 * Receive the next request on any transport. This code is carefully
587 * organised not to touch any cachelines in the shared svc_serv
588 * structure, only cachelines in the local svc_pool.
590 int svc_recv(struct svc_rqst *rqstp, long timeout)
592 struct svc_xprt *xprt = NULL;
593 struct svc_serv *serv = rqstp->rq_server;
594 struct svc_pool *pool = rqstp->rq_pool;
595 int len, i;
596 int pages;
597 struct xdr_buf *arg;
598 DECLARE_WAITQUEUE(wait, current);
599 long time_left;
601 dprintk("svc: server %p waiting for data (to = %ld)\n",
602 rqstp, timeout);
604 if (rqstp->rq_xprt)
605 printk(KERN_ERR
606 "svc_recv: service %p, transport not NULL!\n",
607 rqstp);
608 if (waitqueue_active(&rqstp->rq_wait))
609 printk(KERN_ERR
610 "svc_recv: service %p, wait queue active!\n",
611 rqstp);
613 /* now allocate needed pages. If we get a failure, sleep briefly */
614 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
615 for (i = 0; i < pages ; i++)
616 while (rqstp->rq_pages[i] == NULL) {
617 struct page *p = alloc_page(GFP_KERNEL);
618 if (!p) {
619 set_current_state(TASK_INTERRUPTIBLE);
620 if (signalled() || kthread_should_stop()) {
621 set_current_state(TASK_RUNNING);
622 return -EINTR;
624 schedule_timeout(msecs_to_jiffies(500));
626 rqstp->rq_pages[i] = p;
628 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
629 BUG_ON(pages >= RPCSVC_MAXPAGES);
631 /* Make arg->head point to first page and arg->pages point to rest */
632 arg = &rqstp->rq_arg;
633 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
634 arg->head[0].iov_len = PAGE_SIZE;
635 arg->pages = rqstp->rq_pages + 1;
636 arg->page_base = 0;
637 /* save at least one page for response */
638 arg->page_len = (pages-2)*PAGE_SIZE;
639 arg->len = (pages-1)*PAGE_SIZE;
640 arg->tail[0].iov_len = 0;
642 try_to_freeze();
643 cond_resched();
644 if (signalled() || kthread_should_stop())
645 return -EINTR;
647 spin_lock_bh(&pool->sp_lock);
648 if (rqstp->rq_waking) {
649 rqstp->rq_waking = 0;
650 pool->sp_nwaking--;
651 BUG_ON(pool->sp_nwaking < 0);
653 xprt = svc_xprt_dequeue(pool);
654 if (xprt) {
655 rqstp->rq_xprt = xprt;
656 svc_xprt_get(xprt);
657 rqstp->rq_reserved = serv->sv_max_mesg;
658 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
659 } else {
660 /* No data pending. Go to sleep */
661 svc_thread_enqueue(pool, rqstp);
664 * We have to be able to interrupt this wait
665 * to bring down the daemons ...
667 set_current_state(TASK_INTERRUPTIBLE);
670 * checking kthread_should_stop() here allows us to avoid
671 * locking and signalling when stopping kthreads that call
672 * svc_recv. If the thread has already been woken up, then
673 * we can exit here without sleeping. If not, then it
674 * it'll be woken up quickly during the schedule_timeout
676 if (kthread_should_stop()) {
677 set_current_state(TASK_RUNNING);
678 spin_unlock_bh(&pool->sp_lock);
679 return -EINTR;
682 add_wait_queue(&rqstp->rq_wait, &wait);
683 spin_unlock_bh(&pool->sp_lock);
685 time_left = schedule_timeout(timeout);
687 try_to_freeze();
689 spin_lock_bh(&pool->sp_lock);
690 remove_wait_queue(&rqstp->rq_wait, &wait);
691 if (!time_left)
692 pool->sp_stats.threads_timedout++;
694 xprt = rqstp->rq_xprt;
695 if (!xprt) {
696 svc_thread_dequeue(pool, rqstp);
697 spin_unlock_bh(&pool->sp_lock);
698 dprintk("svc: server %p, no data yet\n", rqstp);
699 if (signalled() || kthread_should_stop())
700 return -EINTR;
701 else
702 return -EAGAIN;
705 spin_unlock_bh(&pool->sp_lock);
707 len = 0;
708 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
709 dprintk("svc_recv: found XPT_CLOSE\n");
710 svc_delete_xprt(xprt);
711 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
712 struct svc_xprt *newxpt;
713 newxpt = xprt->xpt_ops->xpo_accept(xprt);
714 if (newxpt) {
716 * We know this module_get will succeed because the
717 * listener holds a reference too
719 __module_get(newxpt->xpt_class->xcl_owner);
720 svc_check_conn_limits(xprt->xpt_server);
721 spin_lock_bh(&serv->sv_lock);
722 set_bit(XPT_TEMP, &newxpt->xpt_flags);
723 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
724 serv->sv_tmpcnt++;
725 if (serv->sv_temptimer.function == NULL) {
726 /* setup timer to age temp transports */
727 setup_timer(&serv->sv_temptimer,
728 svc_age_temp_xprts,
729 (unsigned long)serv);
730 mod_timer(&serv->sv_temptimer,
731 jiffies + svc_conn_age_period * HZ);
733 spin_unlock_bh(&serv->sv_lock);
734 svc_xprt_received(newxpt);
736 svc_xprt_received(xprt);
737 } else {
738 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
739 rqstp, pool->sp_id, xprt,
740 atomic_read(&xprt->xpt_ref.refcount));
741 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
742 if (rqstp->rq_deferred) {
743 svc_xprt_received(xprt);
744 len = svc_deferred_recv(rqstp);
745 } else
746 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
747 dprintk("svc: got len=%d\n", len);
750 /* No data, incomplete (TCP) read, or accept() */
751 if (len == 0 || len == -EAGAIN) {
752 rqstp->rq_res.len = 0;
753 svc_xprt_release(rqstp);
754 return -EAGAIN;
756 clear_bit(XPT_OLD, &xprt->xpt_flags);
758 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
759 rqstp->rq_chandle.defer = svc_defer;
761 if (serv->sv_stats)
762 serv->sv_stats->netcnt++;
763 return len;
765 EXPORT_SYMBOL_GPL(svc_recv);
768 * Drop request
770 void svc_drop(struct svc_rqst *rqstp)
772 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
773 svc_xprt_release(rqstp);
775 EXPORT_SYMBOL_GPL(svc_drop);
778 * Return reply to client.
780 int svc_send(struct svc_rqst *rqstp)
782 struct svc_xprt *xprt;
783 int len;
784 struct xdr_buf *xb;
786 xprt = rqstp->rq_xprt;
787 if (!xprt)
788 return -EFAULT;
790 /* release the receive skb before sending the reply */
791 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
793 /* calculate over-all length */
794 xb = &rqstp->rq_res;
795 xb->len = xb->head[0].iov_len +
796 xb->page_len +
797 xb->tail[0].iov_len;
799 /* Grab mutex to serialize outgoing data. */
800 mutex_lock(&xprt->xpt_mutex);
801 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
802 len = -ENOTCONN;
803 else
804 len = xprt->xpt_ops->xpo_sendto(rqstp);
805 mutex_unlock(&xprt->xpt_mutex);
806 svc_xprt_release(rqstp);
808 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
809 return 0;
810 return len;
814 * Timer function to close old temporary transports, using
815 * a mark-and-sweep algorithm.
817 static void svc_age_temp_xprts(unsigned long closure)
819 struct svc_serv *serv = (struct svc_serv *)closure;
820 struct svc_xprt *xprt;
821 struct list_head *le, *next;
822 LIST_HEAD(to_be_aged);
824 dprintk("svc_age_temp_xprts\n");
826 if (!spin_trylock_bh(&serv->sv_lock)) {
827 /* busy, try again 1 sec later */
828 dprintk("svc_age_temp_xprts: busy\n");
829 mod_timer(&serv->sv_temptimer, jiffies + HZ);
830 return;
833 list_for_each_safe(le, next, &serv->sv_tempsocks) {
834 xprt = list_entry(le, struct svc_xprt, xpt_list);
836 /* First time through, just mark it OLD. Second time
837 * through, close it. */
838 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
839 continue;
840 if (atomic_read(&xprt->xpt_ref.refcount) > 1
841 || test_bit(XPT_BUSY, &xprt->xpt_flags))
842 continue;
843 svc_xprt_get(xprt);
844 list_move(le, &to_be_aged);
845 set_bit(XPT_CLOSE, &xprt->xpt_flags);
846 set_bit(XPT_DETACHED, &xprt->xpt_flags);
848 spin_unlock_bh(&serv->sv_lock);
850 while (!list_empty(&to_be_aged)) {
851 le = to_be_aged.next;
852 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
853 list_del_init(le);
854 xprt = list_entry(le, struct svc_xprt, xpt_list);
856 dprintk("queuing xprt %p for closing\n", xprt);
858 /* a thread will dequeue and close it soon */
859 svc_xprt_enqueue(xprt);
860 svc_xprt_put(xprt);
863 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
867 * Remove a dead transport
869 void svc_delete_xprt(struct svc_xprt *xprt)
871 struct svc_serv *serv = xprt->xpt_server;
872 struct svc_deferred_req *dr;
874 /* Only do this once */
875 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
876 return;
878 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
879 xprt->xpt_ops->xpo_detach(xprt);
881 spin_lock_bh(&serv->sv_lock);
882 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
883 list_del_init(&xprt->xpt_list);
885 * We used to delete the transport from whichever list
886 * it's sk_xprt.xpt_ready node was on, but we don't actually
887 * need to. This is because the only time we're called
888 * while still attached to a queue, the queue itself
889 * is about to be destroyed (in svc_destroy).
891 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
892 serv->sv_tmpcnt--;
894 for (dr = svc_deferred_dequeue(xprt); dr;
895 dr = svc_deferred_dequeue(xprt)) {
896 svc_xprt_put(xprt);
897 kfree(dr);
900 svc_xprt_put(xprt);
901 spin_unlock_bh(&serv->sv_lock);
904 void svc_close_xprt(struct svc_xprt *xprt)
906 set_bit(XPT_CLOSE, &xprt->xpt_flags);
907 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
908 /* someone else will have to effect the close */
909 return;
911 svc_xprt_get(xprt);
912 svc_delete_xprt(xprt);
913 clear_bit(XPT_BUSY, &xprt->xpt_flags);
914 svc_xprt_put(xprt);
916 EXPORT_SYMBOL_GPL(svc_close_xprt);
918 void svc_close_all(struct list_head *xprt_list)
920 struct svc_xprt *xprt;
921 struct svc_xprt *tmp;
923 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
924 set_bit(XPT_CLOSE, &xprt->xpt_flags);
925 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
926 /* Waiting to be processed, but no threads left,
927 * So just remove it from the waiting list
929 list_del_init(&xprt->xpt_ready);
930 clear_bit(XPT_BUSY, &xprt->xpt_flags);
932 svc_close_xprt(xprt);
937 * Handle defer and revisit of requests
940 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
942 struct svc_deferred_req *dr =
943 container_of(dreq, struct svc_deferred_req, handle);
944 struct svc_xprt *xprt = dr->xprt;
946 spin_lock(&xprt->xpt_lock);
947 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
948 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
949 spin_unlock(&xprt->xpt_lock);
950 dprintk("revisit canceled\n");
951 svc_xprt_put(xprt);
952 kfree(dr);
953 return;
955 dprintk("revisit queued\n");
956 dr->xprt = NULL;
957 list_add(&dr->handle.recent, &xprt->xpt_deferred);
958 spin_unlock(&xprt->xpt_lock);
959 svc_xprt_enqueue(xprt);
960 svc_xprt_put(xprt);
964 * Save the request off for later processing. The request buffer looks
965 * like this:
967 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
969 * This code can only handle requests that consist of an xprt-header
970 * and rpc-header.
972 static struct cache_deferred_req *svc_defer(struct cache_req *req)
974 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
975 struct svc_deferred_req *dr;
977 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
978 return NULL; /* if more than a page, give up FIXME */
979 if (rqstp->rq_deferred) {
980 dr = rqstp->rq_deferred;
981 rqstp->rq_deferred = NULL;
982 } else {
983 size_t skip;
984 size_t size;
985 /* FIXME maybe discard if size too large */
986 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
987 dr = kmalloc(size, GFP_KERNEL);
988 if (dr == NULL)
989 return NULL;
991 dr->handle.owner = rqstp->rq_server;
992 dr->prot = rqstp->rq_prot;
993 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
994 dr->addrlen = rqstp->rq_addrlen;
995 dr->daddr = rqstp->rq_daddr;
996 dr->argslen = rqstp->rq_arg.len >> 2;
997 dr->xprt_hlen = rqstp->rq_xprt_hlen;
999 /* back up head to the start of the buffer and copy */
1000 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1001 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1002 dr->argslen << 2);
1004 svc_xprt_get(rqstp->rq_xprt);
1005 dr->xprt = rqstp->rq_xprt;
1007 dr->handle.revisit = svc_revisit;
1008 return &dr->handle;
1012 * recv data from a deferred request into an active one
1014 static int svc_deferred_recv(struct svc_rqst *rqstp)
1016 struct svc_deferred_req *dr = rqstp->rq_deferred;
1018 /* setup iov_base past transport header */
1019 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1020 /* The iov_len does not include the transport header bytes */
1021 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1022 rqstp->rq_arg.page_len = 0;
1023 /* The rq_arg.len includes the transport header bytes */
1024 rqstp->rq_arg.len = dr->argslen<<2;
1025 rqstp->rq_prot = dr->prot;
1026 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1027 rqstp->rq_addrlen = dr->addrlen;
1028 /* Save off transport header len in case we get deferred again */
1029 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1030 rqstp->rq_daddr = dr->daddr;
1031 rqstp->rq_respages = rqstp->rq_pages;
1032 return (dr->argslen<<2) - dr->xprt_hlen;
1036 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1038 struct svc_deferred_req *dr = NULL;
1040 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1041 return NULL;
1042 spin_lock(&xprt->xpt_lock);
1043 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1044 if (!list_empty(&xprt->xpt_deferred)) {
1045 dr = list_entry(xprt->xpt_deferred.next,
1046 struct svc_deferred_req,
1047 handle.recent);
1048 list_del_init(&dr->handle.recent);
1049 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1051 spin_unlock(&xprt->xpt_lock);
1052 return dr;
1056 * Return the transport instance pointer for the endpoint accepting
1057 * connections/peer traffic from the specified transport class,
1058 * address family and port.
1060 * Specifying 0 for the address family or port is effectively a
1061 * wild-card, and will result in matching the first transport in the
1062 * service's list that has a matching class name.
1064 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, char *xcl_name,
1065 int af, int port)
1067 struct svc_xprt *xprt;
1068 struct svc_xprt *found = NULL;
1070 /* Sanity check the args */
1071 if (!serv || !xcl_name)
1072 return found;
1074 spin_lock_bh(&serv->sv_lock);
1075 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1076 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1077 continue;
1078 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1079 continue;
1080 if (port && port != svc_xprt_local_port(xprt))
1081 continue;
1082 found = xprt;
1083 svc_xprt_get(xprt);
1084 break;
1086 spin_unlock_bh(&serv->sv_lock);
1087 return found;
1089 EXPORT_SYMBOL_GPL(svc_find_xprt);
1092 * Format a buffer with a list of the active transports. A zero for
1093 * the buflen parameter disables target buffer overflow checking.
1095 int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen)
1097 struct svc_xprt *xprt;
1098 char xprt_str[64];
1099 int totlen = 0;
1100 int len;
1102 /* Sanity check args */
1103 if (!serv)
1104 return 0;
1106 spin_lock_bh(&serv->sv_lock);
1107 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1108 len = snprintf(xprt_str, sizeof(xprt_str),
1109 "%s %d\n", xprt->xpt_class->xcl_name,
1110 svc_xprt_local_port(xprt));
1111 /* If the string was truncated, replace with error string */
1112 if (len >= sizeof(xprt_str))
1113 strcpy(xprt_str, "name-too-long\n");
1114 /* Don't overflow buffer */
1115 len = strlen(xprt_str);
1116 if (buflen && (len + totlen >= buflen))
1117 break;
1118 strcpy(buf+totlen, xprt_str);
1119 totlen += len;
1121 spin_unlock_bh(&serv->sv_lock);
1122 return totlen;
1124 EXPORT_SYMBOL_GPL(svc_xprt_names);
1127 /*----------------------------------------------------------------------------*/
1129 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1131 unsigned int pidx = (unsigned int)*pos;
1132 struct svc_serv *serv = m->private;
1134 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1136 lock_kernel();
1137 /* bump up the pseudo refcount while traversing */
1138 svc_get(serv);
1139 unlock_kernel();
1141 if (!pidx)
1142 return SEQ_START_TOKEN;
1143 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1146 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1148 struct svc_pool *pool = p;
1149 struct svc_serv *serv = m->private;
1151 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1153 if (p == SEQ_START_TOKEN) {
1154 pool = &serv->sv_pools[0];
1155 } else {
1156 unsigned int pidx = (pool - &serv->sv_pools[0]);
1157 if (pidx < serv->sv_nrpools-1)
1158 pool = &serv->sv_pools[pidx+1];
1159 else
1160 pool = NULL;
1162 ++*pos;
1163 return pool;
1166 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1168 struct svc_serv *serv = m->private;
1170 lock_kernel();
1171 /* this function really, really should have been called svc_put() */
1172 svc_destroy(serv);
1173 unlock_kernel();
1176 static int svc_pool_stats_show(struct seq_file *m, void *p)
1178 struct svc_pool *pool = p;
1180 if (p == SEQ_START_TOKEN) {
1181 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken overloads-avoided threads-timedout\n");
1182 return 0;
1185 seq_printf(m, "%u %lu %lu %lu %lu %lu\n",
1186 pool->sp_id,
1187 pool->sp_stats.packets,
1188 pool->sp_stats.sockets_queued,
1189 pool->sp_stats.threads_woken,
1190 pool->sp_stats.overloads_avoided,
1191 pool->sp_stats.threads_timedout);
1193 return 0;
1196 static const struct seq_operations svc_pool_stats_seq_ops = {
1197 .start = svc_pool_stats_start,
1198 .next = svc_pool_stats_next,
1199 .stop = svc_pool_stats_stop,
1200 .show = svc_pool_stats_show,
1203 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1205 int err;
1207 err = seq_open(file, &svc_pool_stats_seq_ops);
1208 if (!err)
1209 ((struct seq_file *) file->private_data)->private = serv;
1210 return err;
1212 EXPORT_SYMBOL(svc_pool_stats_open);
1214 /*----------------------------------------------------------------------------*/